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Introduction
Visual captioning, alternatively referred to as video/image captioning, is the process of 
creating a description/caption for a video/image. The caption/sentence defines the items 
and actions in the image or video succinctly and precisely. Combining computer vision 
and Natural Language Processing (NLP) to generate video descriptions was previously 
considered a difficult task from a vision standpoint. The goal of establishing a correlation 
between video content comprehension and textual prediction has been the subject of 
extensive research in recent years [1–5].
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The overall video captioning framework is explained in Fig.  1. Establishing a con-
nection between visual stuff and text prediction is a relatively simple task for humans. 
However, it has been viewed as a particularly difficult problem for machines and a vital 
component of machine intelligence. The proposed Multi-Layer Attention Framework 
generates the video descriptions by combining encoder and decoder architectures. Since 
LSTM encoders are bidirectional, their output is twice as large as the hidden layer. The 
encoder, which is composed of a BiLSTM, contains 1024 hidden units. In a single opera-
tion, the encoder concatenates the BiLSTM’s forward and reverse LSTM outputs, result-
ing in a 2048-byte output. The decoder is developed using a stacked LSTM unit with 
a single direction. This unit is merged with 2048 hidden units, a 1024-node attention 
layer, a 256-node embedding, and a dense layer with nodes matching the corpus’ vocab-
ulary to achieve better performance. In addition, the decoder consists of fully convo-
lution layers including nodes reflecting the corpus’s vocabulary. A notable advantage is 
that the decoder LSTM has a concealed size that is twice as large as the encoder LSTMs. 
It has numerous applications, such as video comprehension, video retrieval, and video 
subtitling.

In recent years, Deep Neural Networks (DNN) [6] have made significant progress in 
image/video captioning. However, it is not as basic as image captioning, and it cannot 
be accomplished just through the use of Convolutional Neural Networks (CNN). Ideally, 
in layered LSTM networks, temporal attention helps more to bridge the gap between 
video visuals and words to be predicted as output. LSTM networks [7] and attention 
mechanisms have been used to describe a video in order to improve semantic consist-
ency by capturing the most striking aspects of the visual representation. The work was 
motivated by a desire to make a significant contribution to the field of LSTM applica-
tion. Using Bidirectional LSTM [BiLSTM] [8–10] in the encoding step of the framework 
has resulted in improved overall performance of the framework.

Attention is a cutting-edge breakthrough in the deep learning realm. It has resulted 
in significant advancements in a variety of domains such as machine translation, visual 
captioning, question answering, and so on. To perform a soft selection over source ele-
ments based on their categorical distribution, we create multilayer attention in a hidden 
layer and apply it to the source elements. The attention on the framework has made a 
substantial contribution to its overall performance.

Visual Model 
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Language  Model 
LSTM
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into a washing
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Generated CaptionInput Video Encoder-Decoder Model

Embeddings
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Fig. 1  The overview video captioning framework
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At the start of the procedure, we utilised the VGG-16 [11] model to extract contextual 
details from the frames of a clip. The work in this proposed framework was inspired by 
the work reported in [8] and led to the usage of VGG-16 in the proposed framework. In 
this case, the spatial 2D CNN highlight vectors are encoded using an LSTM-based visual 
encoder. The contextual attention mechanism employs the dynamic weighted sum of 
neighbouring spatial 2D CNNs that contain vectors as the input to the LSTM decoder’s 
multiple layers.

The proposed framework results are obtained by coupling a state-of-the-art notion 
called attention with a variation of the Recurrent Neural Network (RNN), particularly 
the LSTM network, which is effective in learning long-term dependencies. In order to 
provide accurate descriptions for video clips, video captioning uses a combination of 
visual content interpretation and NLP. The multimedia community has been studying 
the topic of video captioning extensively. However, most present techniques significantly 
rely on static visual information or capture just a portion of local temporal knowledge, 
making it difficult to adequately describe motions from a global perspective. A multi-
layer bidirectional long short-term memory (BiLSTM) structure is proposed to describe 
video’s temporal dependencies, which investigates both forward and backward tempo-
ral information in the entire sequence of video frames. To fully leverage the video clip’s 
bidirectional global temporal structure, we create a joint model that combines a forward 
pass LSTM, a backward pass LSTM, and CNN features. Furthermore, to enhance our 
model’s focus on semantic and relevant information, we add an attention mechanism 
to the decoding stage of the multi-layer unidirectional LSTM. As a result, the video’s 
one-way global representation and one-way local concentration could be useful to our 
model. Captions for given videos can be accurately described or predicted thanks to the 
framework’s extensive use of hidden semantic information in videos and texts.

The motivations behind this result-oriented approach are manifold. Modeling the tem-
poral dependencies of video content, the majority of publications employed RNN for 
video content description. Nonetheless, the LSTM and GRU have proven useful break-
throughs that provide excellent performance outcomes. Combinations of bidirectional 
and unidirectional LSTM have been applied to both the encoding and decoding portions 
to maximise the potential of forward and reverse networks. In addition, the BiLSTM 
structure fully examines both forward and backward temporal information over the 
whole video frame sequence. In addition, researchers discovered that the visual atten-
tion mechanism facilitates the efficient comprehension of visual content by machines. 
The suggested research makes use of temporal soft attention in a hierarchical manner to 
focus on certain phrases and contexts in videos.

The following are the most significant contributions made by our present research.

•	 The proposed framework makes use of a novel multi-layer BiLSTM encoder and a 
multi-layer unidirectional decoder.

•	 Both the encoder and decoder units employ two layers of temporal soft attention. 
This emphasis on the complete global view of video segments adds additional repre-
sentational features.

•	 Additionally, to ascertain the superiority of the proposed framework, three variants 
of the models are examined.



Page 4 of 23Naik and Jaidhar ﻿Journal of Big Data           (2022) 9:104 

•	 Additional trials on two benchmark video captioning datasets demonstrate our pro-
posal’s superiority over existing standard methodologies.

•	 The proposed framework is evaluated with performance metrics like BLUE and 
METEOR.

The remainder of the paper is divided into the following sections. The section on related 
works explores the study of existing works. The proposed methodology section explains 
the proposed framework’s multiple components. The experiments, results and discus-
sion section provides in-depth explanations of the conducted experiments and their out-
comes for video captioning. Finally, the Conclusion section summarises the proposed 
work and makes future research directions.

Related works
Determining how to describe an image or video has been the subject of exten-
sive research over many years. The efficiency of the model is achieved by using deep 
learning methods and other modules. Based on the research done in this field, the 
approaches used can be put into two main groups: bottom-up approaches and top-down 
approaches. The articles in the bottom-up approach [12–16], the various aspects of the 
video are taken and analysed and compared against, and once a pool of terms has been 
generated, these terms are merged to obtain words/sentences that are used to gener-
ate relevant descriptions and captions for the video. The top-down approaches [17–20], 
use a differentiated approach, attempting to generate sentences from a expression that 
encompasses all of the video’s spatial and temporal aspects.

The article [12] introduces a comprehensive, data-driven method for creating natural-
language definitions of short videos by selecting the most effective subject-verb-object 
triplet for describing realistic MSVD videos. By utilising knowledge extracted from huge 
corpora to assess the likelihood of alternative SVO combinations, they improve the 
capacity to identify the optimum triplet for describing a video and develop sentences 
that are chosen by both machine and human evaluation. In their strategy, linguistic 
expertise dramatically enhances activity detection, particularly when the distributions of 
the training data and the test data differ greatly.

The authors of the paper Ref. [13] developed a new method, Hierarchical Recurrent 
Neural Encoder (HRNE), for constructing video representation with a focus on tempo-
ral modelling. The proposed HRNE is more capable of video modelling than existing 
approaches because (1) HRNE reduces the size of input data flow and leverages tempo-
ral structure over a wider range and at a higher level; (2) HRNE adds more non-linearity 
and flexibility; and (3) HRNE limits temporal transitions at multiple levels of granularity.

In the study Ref. [14], researchers describe a new strategy, a Factor Graph Model 
(FGM), to determine the optimum subject-verb-object-place description of a clip by 
merging visual and linguistic information. Additionally, the model incorporates scene 
(location) information.

The article [17] offered an innovative strategy for video description. The authors 
develop descriptions using a sequence-to-sequence model, in which sequential read-
ing of frames is followed by consecutive generations of words. This enables for variable-
length input and output while simulating temporal structure simultaneously.
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The authors of Ref. [18], introduced a unique three-dimensional convolutional neural 
network capable of capturing local fine-grained motion data from consecutive frames. 
They propose employing a temporal visual attention mechanism that acquires the abil-
ity to pay attention to subsets of frames in order to acquire global temporal structure. 
Lastly, the two proposed methods naturally integrate into an encoder-decoder neural 
video caption generator. In Ref.   [19], the construction of a novel bidirectional LSTM 
(BiLSTM) network for video captioning is proposed. Specifically, they construct joint 
visual modelling to investigate bidirectional global temporal information in video data 
fully by merging a forward LSTM pass, a backward LSTM pass, and CNN’s characteris-
tics. To improve subsequent sentence synthesis, the acquired visual representations are 
fed as initialization to an LSTM-based language model.

The article [20] presents a unified framework called aLSTMs, a semantically consist-
ent attention-based LSTM model. First, they employ the Inception-v3 neural network, 
an expanded version of GoogleNet, to extract more significant spatial characteristics. 
In order to take advantage of temporal information, they developed a one-layer LSTM 
visual encoder to capture the spatial 2D CNN feature vectors. The model also incorpo-
rated an attention mechanism that uses the dynamic weighted sum of local 2D CNN fea-
ture vectors as input for the LSTM decoder. They integrate multi-word embedding and 
cross-view approach to project the generated words and visual elements into a shared 
space in order to bridge the semantic gap between videos and their related texts.

In Ref. [14, 17] used a LSTM network, to simulate the overall temporal structure of the 
video sample. However, these approaches did not take advantage of bidirectional global 
temporal structure, which may benefit from both previous and future video frames.

The article [20] focused on a LSTM network and how to model the global temporal 
structure of the whole video snippet. But these methods didn’t take advantage of global 
temporal structure that goes both ways. But the article [19] used BiLSTM to take advan-
tage of the benefits of forwarding and backward pass.

Stacked Multimodal Attention Network (SMAN) is a revolutionary video captioning 
paradigm proposed in Ref. [21]. It adopts extra visual and textual historical information 
as context features during caption generation, utilized a layered architecture to pro-
cess distinct data gradually, and employs Reinforcement Learning and a coarse-to-fine 
training technique to further enhance the obtained results. Captioning can be improved 
by using a semantic and syntax-guided hierarchical attention network (SHAN) [22] to 
incorporate visual and sentence-context elements. An object-scene relational graph 
model [23] is created to convey the association characteristics based on the object detec-
tor and scene segmenter in order to address key fine-grained semantic qualities and 
video variety. An encoded graph neural network enhances visual qualities by encoding 
the graph.

Recent research has demonstrated that the soft attention mechanism is highly effective 
and has attracted increased interest from the computer vision field. The authors of Ref. 
[8] used this attention technique to concentrate on specific information and adjust the 
sentence’s prediction to the associated video. However, there is a lack of diverse levels of 
attention, which might be addressed.

The other major field of research, particularly at the early stages, was sequen-
tial modelling, which understands features and other parameters to correlate visual 
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contents vector and a textual sentence into a semantic vector space and investigates 
distribution in the merged space. The article [24] discusses how two stacked RNNs 
are used to decode video frame information into a mapping space that is then utilised 
for captioning.

The combination of an image model with CNN and a language model with LSTM 
architecture has gained popularity in the research community and has affected video 
captioning with practically excellent results. These combinations virtually always 
demonstrated superior performance on a variety of standard datasets. Both the fea-
ture extraction and word generation methods are critical for the quality of the input 
video’s description.

In Ref. [25], the soft attention module selectively selects the most pertinent frames 
and the proper location of objects within each frame. Additionally, the authors pro-
posed an attention unit that would prioritise the most comparable phrases in order to 
exploit more precise language descriptions. For visual captioning, an approach based 
on hierarchical LSTMs with two-level abstraction was presented in Ref. [26]. The 
authors of Ref. [27] demonstrated a two-tiered approach to determining the context 
of words in captions. This method is superior to the other because it detects long-
distance text sequence dependencies and is faster to compute. To ensure the semantic 
compatibility of the sentence description and the visual content of video [28], sug-
gests mapping the visual and textual properties into a joint space using an attention 
mechanism with a local two-dimensional encoder and LSTM decoder.

The RNN is intended to handle grouping tasks such as machine interpretation, lan-
guage interpretation, and music composition [29] which persistently saves data about 
previous activities through the use of critical associations. Two distinct master networks 
with linear and logarithmic combinations are combined using a bidirectional RNN for 
language recognition, which extensively utilises the whole dataset of Schuster and Pali-
wal [30]. In comparison to bidirectional RNN, the BiLSTM is a type of upgraded RNN 
with a long history of use in the domain of natural language processing.

Karpathy et  al. [31] have also employed bidirectional RNNs in video captioning, 
where they are used to learn the relationship between video frames and English like 
sentences and to add word embedding. Ullah et al. [32] use a BiLSTM and CNN fea-
tures to extract activities from videos. The result in Ref. [32] established that bidirec-
tional ones outperform unidirectional ones in sequence processing.

The research [33] analyses the effect of attention on spatial and temporal features 
and contributes to the effectiveness of their deep network P3D ResNet and 2D-CNN. 
Additionally, they examine the use of language models such as LSTMs and Sentence 
Transformers in video captioning. RNNs make another contribution to dynamic non-
linearity by mapping input sequence data to output sequences.

Research methodology
The proposed work’s overall objective is to generate English language descriptions of 
the video content. This section will discuss the proposed approach for video descrip-
tion generation using LSTM, BiLSTM, and Multi-Attention. Following that, the tech-
nical concepts underlying the proposed methodology are described.
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Preprocessing unit

•	 Video preprocessing In order to lessen the computational cost, we take 30 frames 
from each video that are evenly spaced. In this step, the VGG-16 model is used to 
retrieve the features from video frames, which is then fed into the encoding unit 
to provide a global view of the videos.

•	 Text preprocessing In order to clean up the corpus, deleting any unnecessary spac-
ing and special symbols that were there. We eliminate sentences with fewer than 
three words and more than 30 words since more than 90 percent of the sentences 
have lengths larger than three words and fewer than 30 words, respectively. The 
< BOSs > and < EOS > tokens are added at the beginning and end of each phrase, 
respectively, to mark the beginning and end of sentences. When a batch of these 
sentences is formed, a token < pad > is added to ensure that all of the sentences 
are of the same length, which increases the computational speed of the batch.

Inspired by the baseline [8], this article presents a total of four deep learning models, 
one of which being the base model. The following paragraph summarises and lists all 
of the models.

•	 Base line model: This design is backed up by research outlined in Ref. [8]. The 
encoder and decoder, respectively, are made up of one BiLSTM and one unidirec-
tional LSTM, as indicated in the Fig. 2.

•	 Base model with batch-normalization: A batch normalisation layer at the encod-
er’s output and another batch normalisation layer at the decoder’s LSTM output 
were incorporated in this model.

•	 Stacked LSTM: Two BiLSTMs are layered together for the encoder in this archi-
tecture, while two unidirectional LSTMs are stacked together for the decoder as 
depicted in Fig. 3. The attention layer makes use of the encoder’s second BiLSTM 
output at every time interval, as well as the hidden state of the decoder’s second 
LSTM. However, the hidden states of both language model LSTMs were initialised 
with the hidden states of the visual model.

•	 Multi-layer attention model:The encoder and decoder are constructed by stacking 
two BiLSTMs for the visual model and two unidirectional LSTMs for the language 
model, respectively. The following step is to use the output of the first BiLSTM of 
the visual encoder at each time step, as well as the hidden unit of the first LSTM of 
the language model, for the first attention layer. The second attention layer is formed 
using the outcome of the second BiLSTM of the visual encoder at every sampling 
interval, as well as the hidden unit of the second LSTM of the word embedding. To 
preconfigure the hidden states of either the LSTMs in the language model, they must 
first be populated using the visual encoder’s hidden units. This proposed Multi-Layer 
Attention Framework for video description generation is depicted in Fig. 4.

The fundamental distinction between the Baseline and Stacked LSTM models is that 
the Stacked LSTM model’s encoder and decoder are built of two layered LSTMs, as 
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previously described and illustrated in Fig.  3. Similarly, the second LSTM output 
is considered while building the soft attention mechanism in the encoder, and it is 
employed to generate one word at a time when developing the word output mecha-
nism in the decoder. The Stacked LSTM Model is twice as large as the Baseline due 
to the presence of two LSTM in both the visual encoding and language model stages. 
It is imperative to highlight between the Stacked and Multi-Layer Attention Models 
because the Multi-Layer Attention Model incorporates an additional attention layer 
interconnecting the encoder’s first BiLSTM and the decoder’s first LSTM, as depicted 
in Fig. 4.

Architectures for encoder and decoder are used in conjunction to create the frame-
work under consideration. There are 1024 hidden units in the encoder, which is made 
up of a BiLSTM. The encoder generates a 2048-byte output since this concatenates the 
BiLSTM’s forward as well as backward LSTM outputs in a single operation. Since the 
encoder and decoder work together to initialize the decoder with video representation. 
Additionally, we use an original CNNs feature to continuously merge forward and back-
ward passes with a BiLSTM as Merge Unit (MU) to inject the final hidden state and 
memory cell into the language decoder as a global video representation. In light of the 
attention method, we assume that the context set to which the sentence generator pays 
attention, contains all of the output states of the merging layer.

The decoder is constructed using a single direction layered LSTM unit. To achieve 
higher performance, this unit is merged with 2048 hidden units, a 1024-node atten-
tion layer, a 256-node embedding layer, and a fully connected layers with nodes 
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Fig. 2  Base Model Architecture [8]
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matching to the vocabulary of the corpus. The decoder LSTM has a concealed size 
that is twice as large as the encoder LSTMs, which is a significant advantage.

LSTM encoders are bidirectional, which means that their output is double the size 
of their hidden layer, as explained above. Utilizing a decoder of above mentioned size 
enables us to take advantage of the encoder’s hidden states in the LSTM decoder, 
which is a considerable advantage. This permits the encoder’s overall video content 
interpretation to be propagated to the decoder’s global video representation.

The encoder BiLSTM is used to generate a global representation of the input video 
from each video that has been processed once it has been obtained after preprocessing. 
This data is kept in order to make it available to the decoder’s attention layer at each and 
every time step of the usual decoding stage. When a end of the time step is reached, the 
attention unit delivers a context vector that contains the encoder output and the decod-
er’s hidden state. When a sentence is input, the decoder goes over each word and gener-
ates the following word. Each word is fed to the decoding embedding unit at the input, 
and its output is combined with the context vector received from the attention unit. This 
output is fed to the LSTM decoder, which decodes it. The outcome of the LSTM is sent 
to a fully connected layers, which generates a vector with a length equal to the vocabu-
lary size of the corpus and including information about the next term.
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Fig. 3  Stacked LSTM Model Architecture
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Sequential model using LSTM‑based Neural Network

To use a single input sequence, conventional RNNs can theoretically take account 
of arbitrary long-term relationships in word sequence. When utilising LSTM units as 
RNNs, the vanishing gradient problem is partially solved due to fact that LSTM units 
ensure gradients to continue to flow unchanged or unmodified. Initially, a video clip 
V = (F1, ..., FN ) , is used, with Ft denoting the video’s tth frame as the initial starting point 
for the captioning task. In this case, the primary goal is to encode video with words and 
express the result as a feature vector Vfeature . The repeating nature of each frame must be 
considered in order to emphasise the time dependence of the frames’ content. The RNN 
variation maps the input word sequence X = (x1, ..., xt) to an output word sequence 
Z = (z1, ..., zt) , which can be expressed as

(1)ht = φ(Whxxt +Whhht−1),

Feature Extraction Using
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Fig. 4  Proposed Multi-Layer Attention Framework
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Where, Ft : which symbolises the tth frame. V = (F1, ..., FN ):denotes the contextual fea-
ture vector. Wh∗ : Weights that are related to previously hidden states / the present input. 
Wo translates the hidden states between the hidden and output spaces. ht−1 and ht : rep-
resent the RNN’s hidden states at t − 1 and t, respectively. φ and ψ represent nonlinear, 
two functions, respectively.

While traditional RNNs suffer from the gradient vanishing or explosion problem, an 
upgraded RNN stores information in a memory cell and uses numerous control gates to 
have read-write operation from and to the memory unit or cell respectively, resulting in 
improved performance when leveraging extremely long temporal dependency relation-
ships. Refer to Fig. 5 for an illustration of the core LSTM architecture, and all of the gate 
information can be logically stated as follows:

(2)zt = ψ(Woht),

(3)it = σ(Wixxt +Wihht−1),

(4)ft = σ(Wfxxt +Wfhht−1),

(5)ot = σ(Woxxt +Wohht−1),

(6)ct = ft ⊙ ct−1 + it ⊙ φ(Wcxxt +Wchht−1),

(7)ht = ot ⊙ φ(ct),

tanhsigmoid sigmoid sigmoid

tanh

ht-1 ht

xt

ct-1 ct

ft it
ot

Pointwise Multiplication

Vector Concatenation

Pointwise Addition

Fig. 5  LSTM architectural preview
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 Where, W∗h : Weights that relate each gate in the LSTM to previous hidden states. W∗x

:Weighing units that connect the current input to each gate. σ : depicts the sigmoid non-
linear activation functions. φ : depicts the hyperbolic tangent nonlinear activation func-
tions.  ⊙ : represents the operation of element-by-element multiplication.

Bidirectional LSTM

CNNs have entirely independent inputs and outputs, but in some cases, the model may 
need to recollect prior meaningful words to choose the subsequent relevent word. For 
example, you might be watching a video clip and pausing to estimate the finish; your 
guess will be based on already watched portion of clips and what interpretation has 
come to mind so far. RNN recalls the previous event and tries to predict the next word in 
this way. This way it tunes to solve the CNN problem by introducing a hidden units as a 
layer into the network.

An LSTM recalls every piece of information over the course of time, just as it remem-
bers prior inputs. It is advantageous in the prediction of time series. Bidirectional RNNs 
connect two RNNs together, allowing them to provide information on both the forward 
and backward sequences. LSTM provides stronger sequence processing capabilities and 
has the capacity to detect lengthy dependencies in sequences. LSTM-based networks are 
used to analyse the temporal feature for video and, the framework uses them to do so. It 
does this by mapping the video-level activity into the language model, which results in 
word-for-word video descriptions.

Whilst employing unidirectional LSTM, only past data may be used as inputs; thus, 
only previous data can be preserved. Alternatively, when employing BiLSTM, inputs can 
be processed in either direction: forward or backward. This strategy is far more effective 
at any moment in time, because it allows you to obtain knowledge from both the future 
and the past by combining two latent states.

In BiLSTM, contextual information is processed in both the forward and backward 
directions, allowing for the retention of information from both the past and the future. 
According to recent study, bidirectional RNNs produce better results when relying on 
sequential voice recognition processing and image captioning for a lengthy period of 
time. The Bidirectional LSTM architecture used in our proposed framework depicted in 
Fig. 6.

Temporal attention

Soft attention is a global attention in which weights are placed lightly across all visual 
patches. Therefore, soft attention assesses the complete source image. Suppose we are 
observing the face of a woman. We may concentrate on her face and render its features 
with precision, but we may also observe her clothing and hair. In other words, humans 
are able to “focus” our visual attention on a tiny region without losing awareness of other 
visual regions. Specifically, we simply modify the “weights” of our visual attention for 
each visual field, assigning high weights to the areas of focus. Xu et al. [34] segmented an 
image into multiple patches and employed a spatial attentional mechanism to determine 
which patches should be “focused” as each word is formed for image description. The 
soft attention can also be viewed as temporal attention.
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The study in recent past on neural deep learning network has made extensive use 
of the attention mechanism, particularly in domains requiring vision, such as video/
image captioning and machine translation. The basic notion is to increase the empha-
sis on a specific section of an image or video frame. A mechanism of attention that 
placing a greater emphasis on essential or crucial video frames with objectivity and 
their associations such as human actions, as opposed to its spatial mechanism, which 
promotes on the image’s more semantically significant components.

Temporal attention can be viewed as a context set of visual elements with a window 
of visuals. Depending on the context, these visual features are referred to as regions 
or frames. At each discrete time step, the attention vector in Eq. (8) can be created in 
conjunction with the dynamic weights for each visual element. The value in Eq. (9) is 
appropriately accommodated by the dyanamic weights. For each visual element along 
the last concealed state shown in Eq. (10), a relevancy score is produced.

Eq. (11) used to standardise the acquired relevance ratings.

 Where,

(8)sat =

m∑

i=1

αt
i vci,

(9)
m∑

i=1

αt
i = 1,

(10)γ t
i = Wreltanh(Wavci +Uaht−1 + ba),

(11)αt
i = exp(γ t

i )/

m∑

j=1

exp(γ t
j ),
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Fig. 6  Bidirectional LSTM architecture
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FOV: Field Of View. vci : Represents ith element of context set.  VC = (vc1, ..., vcm ): 
Denotes visual context set. αt

i  : Signifies dynamic activation weights for each element 
in context set. sat : Generated attention vector. γ t

i  : Context set relevance score. Wrel 
: relevance parameter for Context set. Wa : Context element parameter. Ua : Hidden 
state learning parameter.

The approach, soft attention attempts to replicate the attention allocation cycle 
for a given field of vision. By integrating forward and backward passes with tempo-
ral attention and applying temporal attention in the process, the current framework 
constructs sentences word by word in two phases. The approach produces a context 
set for each specific situation by utilising CNN highlights of edges and other latent 
information states in the merging layers. Moments after the production of a word, 
temporal attention directs the language model’s focus to explicitly wordly locations 
that are more semantically significant. When the input word sequence is combined 
with the output, it is advantageous to consider the attention vector with the input, as 
illustrated in the base model, Fig. 2.

Batch normalization’s mathematical model

When training a DNN with multiple layers, the outcomes may differ due to factors 
such as the learning algorithm’s design and the initial random weights. Due to the fact 
that the weights are updated after each mini-batch, the distribution of inputs to the 
network’s deep layers differs with each mini-batch. They can make it more challeng-
ing for the model to acquire new skills by following a moving object. A deep neural 
network’s “internal covariate shift” refers to a change in the proportion of inputs to 
layers due to the shift in the internal covariate dispersion of a network. Large neu-
ral network models that have a large number of inputs are standardised batch-by-
batch using a technique known as Batch Normalization. This strategy significantly 
decreases the number of epochs necessary for training while simultaneously stabilis-
ing the model’s learning process. During training, batch normalisation can be accom-
plished by computing the mean and standard deviation of each input parameter for 
each mini-batch. Finally, these results are employed to restore the network’s represen-
tational capacity; a transformation logic is established. The mini batch mean is calcu-
lated using Eq. (12),

where xi is values of x over a minibatch, B = x1....m.
The mini bacth variance can be defined with help of Eq. (13),

Now, for a layer with d-dimensions, x = (x1...xd) , each dimensions of its input can be 
normalized using, Eq. (14),

(12)E[x]B =
1

m

m∑

i=1

xi,

(13)Var[x]2B =
1

m

m∑

i=1

(xi − E[x]B)
2,



Page 15 of 23Naik and Jaidhar ﻿Journal of Big Data           (2022) 9:104 	

where k ∈ [1, d] and i ∈ [1,m] . The ǫ is an arbitrary small constant for numerical staility. 
The final transformation is logically defined in Eq. (15),

The γ and β are learnable parameter during the optimization process. By default, γ ele-
ments are set to 1 and β elements to 0.

Multi‑layer attention

Following preprocessing in this proposed framework, each video is transmitted onto the 
encoder BiLSTM, which produces a global representation of the original video. During 
each time step, the encoder’s output is kept in order to be fed into the decoder’s atten-
tion layer [35]. During each time step, the attention unit receives the encoder output 
from the decoder as well as the hidden state and returns a context vector. When a sen-
tence is input, the decoder takes each word in turn and produces the following word in 
the sentence.

The framework proposes adding two layers of LSTM and two attention layers shown 
in Fig. 4. The outcome of the framework is discussed in the result section. The intent 
behind the framework as based on earlier research by Schuster et al. [30], Karpathy et al. 
[31], Ullah et  al. [32]. The performance of bidirectional LSTMs is always significantly 
superior than the performance of unidirectional models, which has been found in a vari-
ety of fields such as image captioning, speech recognition, and action recognition. Add-
ing another layer of attention allows for a more in-depth examination of the results of 
both layers of attention. The addition of two layers of attention to the framework can 
help it to optimise the results even more effectively.

Experiments, results and discussion
Dataset

•	 MSVD This standard dataset called Microsoft Video Description (MSVD) [36] cor-
pus, is comprised of 1970 videos and additional 80,000 captioning sentences. Each 
video clip is between eight and twenty-five seconds long. Each sentence has roughly 
seven words, and each video contains approximately 43 sentences total for the 
duration of the video. The dataset contained 1970 videos, which we utilised in our 
research. We divided the entire dataset into two groups: 80% for training and 20% for 
testing.

•	 MSR-VTT 10K The MSR-VTT [37] corpus has ten thousand video clips with twenty 
descriptive text for each clip. The dataset categorises videos broadly, including 
“music,” “TV shows,” and “tourism.” Each clip lasts between 10 and 30 s. The data-
set contains about 20,000 unique words, with an average of around ten words per 
description. The framework was built using a dataset split into 6513, 497, and 3000 
rows for train, validation, and test, respectively.

(14)x̂ki =
xki − E[x]kB√
Var[x]

k2

B + ǫ

,

(15)yki = γ k .x̂ki + βk ,
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Experiments

Implementation details

PyTorch was used to create the framework. The work took into account both the 
dataset video-sentence as well as a sample. When an input sentence sequence is fed 
further into the decoder, a new word is produced alongside the original word. The 
proposed models were optimised using an Adadelta [38] and initial learning param-
eters. The additional hyperparameters are defined as follows: ρ with a value of 0.9 
and ǫ with a value of 10−6 , respectively. In this instance, a mini-batch of size 64 was 
employed during training. The framework trained iteratively until the best results.

•	 MSVD  To train these models using the dataset, the framework was created using 
open source Google Colab. Each epoch took 570 s, 800 s, and 1040 s, respectively, 
for the Base Model, the Stacked LSTM model, and the Multi-Layer Attention 
model.

•	 MSR-VTT To train these models using the dataset, the framework was created 
using open source Google Colab. Each epoch lasted 1156, 1520, and 1940  s, 
respectively, for the Base Model, Stacked Model, and Multi-Attention Model.

A word was constructed by initialising the global video interpretation with the 
< BOS > token and then outputting the following word using the decoder’s output.

The framework includes the previous output word as an input word for that video’s 
caption until the decoder generates a < EOS > token or the maximum count of words 
possible for that video’s caption. Regardless of whether the model accurately cap-
tions a video, if the amount of words in the reference sentences exceeds the number 
of words in the caption, the model’s BLUE [39] and METEOR [40] scores are dropped, 
respectively.

To obtain the required results, the framework determines the maximum count of 
words to output as the average count of words in the reference collection for that 
individual video clip.

Results and analysis

The metrics BLEU and METEOR are two of the most commonly used in video/image 
captioning. METEOR performance metric pulls from the source documents and eva-
lautes the precise steming, paraphrasing, and synonym matching. It makes use of the 
WordNet database [41] and determines similarity scores at sentence level, allowing it 
to capture all semantic components of a sentence.

When comparing a candidate sentence to a large number of reference sentences, 
BLEU-n employs modified precision, which is the ratio of candidate n-grams in the 
corpus to the total number of candidate n-grams. The BLEU score evaluates textual 
and lexical coherence but does not evaluate semantic coherence.

Because METEOR is more robust than BLEU, we used METEOR as our key metric 
and BLEU as a secondary metric to evaluate model variations in our study.

Table 1 contains information about the performance of all the models on the MSVD 
and MSR-VTT datasets. The experimental observations demonstrated that by adding 



Page 17 of 23Naik and Jaidhar ﻿Journal of Big Data           (2022) 9:104 	

Ta
bl

e 
1 

Pe
rf

or
m

an
ce

 o
f p

ro
po

se
d 

m
od

el
s 

on
 M

SV
D

 a
nd

 M
SR

VT
T 

D
at

as
et

M
od

el
M

SV
D

M
SR

 V
TT

B@
1

B@
2

B@
3

B@
4

M
ET

EO
R

B@
1

B@
2

B@
3

B@
4

M
ET

EO
R

Ba
se

 m
od

el
66

.0
1

49
.4

2
38

.6
9

27
.1

9
48

.1
4

57
.7

5
37

.4
9

29
.5

0
16

.0
5

36
.2

5

Ba
se

 m
od

el
 w

ith
 B

N
62

.0
7

40
.2

8
27

.0
7

16
.6

1
39

.3
0

63
.0

9
38

.8
4

26
.9

9
14

.0
2

35
.8

2

St
ac

ke
d 

LS
TM

67
.4

9
51

.9
8

41
.9

0
31

.2
3

49
.1

9
58

.1
8

41
.4

1
32

.0
2

17
.6

1
37

.8
8

M
ul

ti-
la

ye
r a

tt
en

tio
n(

Pr
op

os
ed

)
70

.5
0

56
.6

2
49

.6
0

33
.0

7
51

.7
7

60
.3

3
43

.7
2

34
.1

2
19

.6
1

39
.4

7



Page 18 of 23Naik and Jaidhar ﻿Journal of Big Data           (2022) 9:104 

Batch Normalization to the Baseline Model, there is a slight decrease in the per-
formance on the test set on all evaluation metrics except B@1 and B@2 scores on 
MSR-VTT datasets. Stacked LSTM Model performance exceeds both the Base Model 
and the Base Model with (Batch Normalization). It regularly generates high-quality 
results. When both models are trained to the exact count of epochs, it outperforms 
the Base Model considerably. In comparison to the Base Model, the Stacked/layered 
LSTM Model is twice as large and hence capable of incorporating more detailed 
semantics from the video clips than another two models.

The Fig.  7 depicts the training loss curve for our developed framework using the 
MSVD dataset. This demonstrates that the model loss dropped steadily and stabilised 
around the 50–60 range epochs. The best findings have been selected and are given in 
Table  1. The proposed Multi-Layer Attention framework outperforms the other three 
models in terms of overall performance. However, even though the proposed framework 
size is the same as that of the Stacked LSTM model and the training loss of both mod-
els is virtually the same, the proposed framework outperforms both models on the test 
datasets, demonstrating that the first attention layer has an impact. When comparing 
the Stacked LSTM Model to the Multiple Layers of Attention Model, the model benefits 
from the additional layers of attention.

The Fig. 8 displays the MSR-VTT dataset’s training loss curve. This illustrates that the 
model loss decreased gradually and stabilised around the 40–50 epoch range. The per-
formance results of all the model measured on the MSR-VTT dataset is also summarised 
in Table 1. The proposed Multi-Layer Attention framework outperforms all three of the 
other variations in terms of performance by a wide margin. For this reason, relevant 
words have been focused by soft attention at each layer, allowing them to be predicted.

All of the variants in our proposed framework were evaluated using the performance 
metric METEOR, which was then compared to some of the existing video captioning 
state-of-the-art works on both datasets, as shown in Table  2. As a result of semantic 
attention being paid at both the encoding and decoding stages in our implementations, 

Fig. 7  MSVD Training Loss at each Epoch
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all of the variations on both standard datasets that were used exceeded all of the other 
findings. The adoption of BiLSTM has also been shown to have a considerable impact on 
the performance of the models in question.

Table  3 shows the performance metric B@4, of all the variations in our proposed 
framework. Also, it is compared with some of the existing state-of-the-art video 

Fig. 8  MSRVTT Training Loss at each Epoch

Table 2  Performance comparison of METEOR score with state-of-art-methods

MODEL METEOR

MSVD MSRVTT

LSTM [42] 26.9 23.4

LSTM-E[VGG] [42] 29.5 –

LSTM-E[C3D] [42] 29.9 –

MM-VDN [43] 29.0 –

LK [44] 30.3 –

S2VT-unidirectional [17] 29.6 25.2

S2VT-bidirectional [17] 29.7 25.6

S2VT-reinforced [17] 29.9 25.9

S2VT-VGG [17] 29.2 –

S2VT-VGG+Flow (Alexnet) [17] 29.8 –

DVWA-uni [8] 29.6 25.7

DVWA-BiLSTM [8] 29.8 26.1

DVWA-ReBiLSTM [8] 30.3 26.2

DVWA-uni SA [8] 30.2 25.9

DVWA-BiLSTM SA [8] 30.5 26.2

DVWA-ReBiLSTM SA (shortcut) [8] 30.7 26.4

DVWA-ReBiLSTM SA (attention) [8] 30.9 26.6

Base Model 48.14 36.25

Base model with BN 39.30 35.82

Stacked LSTM 49.19 37.88

Multi-layer attention (Proposed) 51.57 39.47
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captioning works on both datasets using B@4. To the best of our understanding, 
the proposed framework surpassed practically three of the existing video captioning 
works on MSVD that have been listed. In contrast to this, a satisfactory result on the 
bigger dataset MSR-VTT does not indicate that, even though sufficient semantics are 
involved in the proposed framework, further fine-tuning of parameters may result in 
an improved performance. Another experimental finding is that METEOR is more 
favoured and can also capture semantic characteristics. Table  2 is the experimental 
evidence for the METEOR performance.

As a part of ablation study we performed several other experiments. The outcomes 
of our suggested framework with dropout parameters [47] are reported in Table 4 and 
indicates that the framework discovers more value when nodes are not dropped than 
when nodes are dropped. This could be because our two-layer attention strategy is 
connected with layered bidirectional encoders and unidirectional decoders. Due to 
the framework’s two-layered attention, it intelligently selects the best fragments or 
visual frames from which to learn and anticipate new values without interfering with 
the growth or reduction of network nodes.

In addition to VGG-16, the proposed system is evaluated using another feature 
vector named NASNet Feature Extractor [48]. Table  5 summarises the findings. As 
demonstrated in Table  5, this Feature Extractor explored with and without a drop 

Table 3  Performance comparison of BLUE-4 Score[B@4] with state-of-the-art-methods

MODEL B@4

MSVD MSRVTT

STAT [45] 52.0 39.3

SpatioTempo [46] 47.9 38.3

LSTM [42] 31.2 –

LSTM-E [ALEX] [42] 38.9 –

LSTM-E [C3D] [42] 41.7 –

FGM [15] 13.68 –

LSTM-YT [24] 31.19 –

MP-LSTM [24] 33.3 –

Base model 27.19 16.05

Base model with BN 16.61 14.02

Stacked LSTM 31.23 17.61

Multi-layer attention (Proposed) 33.07 19.61

Table 4  Performance score with tuned parameters

MODEL MSVD MSR VTT

B@1 B@2 B@3 B@4 METEOR B@1 B@2 B@3 B@4 METEOR

Multi-layer atten-
tion (Proposed) 
without dropout

70.50 56.62 49.60 33.07 51.77 60.33 43.72 34.12 19.61 39.47

Multi-layer atten-
tion (Proposed) 
with dropout

67.79 52.29 45.36 30.36 50.59 58.02 41.30 31.82 16.99 38.35
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layer. Our model fared better when no drop out is included in the BLUE performance 
metric, however METEOR performs better when a drop layer and NASNet feature 
extractor are included. This illustrates that, as previously demonstrated, the multi-
attention framework optimises to select the best segments or frames, resulting in a 
high METEOR score.

Limitations

The experimental studies revealed that the proposed system performed admirably on 
the training part of the standard dataset used. However, the outcome on the test portion 
is less than the result on the training portion. Though the framework earned a higher 
METEOR score than any previous study, it fell short of achieving a superior BLUE score. 
Whereas appropriate measures must be taken to increase the BLEU score. The suggested 
structure takes into account the average length of phrases used during training. As a 
result, it may exclude some critical terms from the sentences. Additional study in this 
area may help improve the model’s performance.

Conclusions
It is proposed in this research to use a novel Multi-Layer Attention-based approach for 
video captioning that is both efficient and effective, and it is then compared to other 
modifications of the base model. The proposed framework consists of a visual encoder 
and a language model, which are primarily configured with LSTM networks.

The visual encoder is implemented using stacked Bi-LSTMs on resampled video data 
in order to maintain input at every time interval for attention. The encoder’s hidden 
states are then used to create a global perspective of the video, which is subsumed into 
the language model. The decoder unit, which was utilised to convert the video captions 
into sentences word for word. The framework’s implementation was carried out on the 
MSVD and MSR-VTT datasets, respectively. To the best of our knowledge, the sug-
gested approach surpassed practically most of the existing state-of-the-art visual cap-
tioning results that have been published and listed. The best way to increase the effect in 
the future is to modify it even further in order to achieve the best outcome on a larger 
dataset.
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