
A new feature popularity framework
for detecting cyberattacks using popular
features
Richard Zuech*, John Hancock and Taghi M. Khoshgoftaar 

Abstract 

We propose a novel feature popularity framework, and introduce this new framework
to the cybersecurity domain. Feature popularity has not yet been used in machine
learning or data mining, and we implement it with three web attacks from the CSE-CIC-
IDS2018 dataset: Brute Force, SQL Injection, and XSS web attacks. Feature popularity
is based upon ensemble Feature Selection Techniques (FSTs) and allows us to more
easily understand common and important features between different cyberattacks.
Three filter-based and four supervised learning-based FSTs are used to generate fea-
ture subsets for each of our three different web attack datasets, and then our feature
popularity frameworks are applied. Classification performance for feature popularity is
mostly similar as compared to when “all features” are evaluated (with feature popularity
subsets having better performance in 5 out of 15 experiments). Our feature popularity
technique effectively builds an ensemble of ensembles by first building an ensemble
of FSTs for each dataset, and then building another ensemble across a dataset agree-
ment dimension. The Jaccard similarity is also employed with our feature popularity
framework in order to better identify which attack classes should (or should not) be
grouped together when applying feature popularity. The four most popular features
across all three web attacks from this experiment are: Flow_Bytes_s, Flow_IAT_Max,
Fwd_IAT_Std, and Fwd_IAT_Total. When only using these four features as input to our
models, classification performance is not seriously degraded. This feature popularity
framework granted us new and previously unseen insights into the web attack detec-
tion process with CSE-CIC-IDS2018 big data, even though we had intensely studied it
previously. We realized these four particular features cannot properly identify our three
web attacks, as they operate mainly from the time dimension and NetFlow features
from layers 3 and 4 of the OSI model. Conversely, our three web attacks operate in the
application layer (7) of the OSI model and should not leave signatures in these four
features. Feature popularity produces easier to explain models which provide domain
experts better visibility into the problem, and can also reduce the complexity of imple-
menting models in real-world systems.

Keywords:  Feature popularity, Feature similarity, Feature selection, Intrusion detection,
Web attacks

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Zuech et al. Journal of Big Data (2022) 9:119
https://doi.org/10.1186/s40537-022-00661-9

Journal of Big Data

*Correspondence:
rich@richardzuech.com

Florida Atlantic University, 777
Glades Road, Boca Raton, FL, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-022-00661-9&domain=pdf

Page 2 of 30Zuech et al. Journal of Big Data (2022) 9:119

Introduction
With consumers spending over $600 billion on e-commerce in the United States dur-
ing 2019 [1], cybersecurity is becoming increasingly important to help defend against
attackers. Machine learning can be employed to help in detecting cyberattacks. Feature
selection is a common technique used by machine learning practitioners. Benefits of fea-
ture selection include improving classification efficiency by training models with fewer
features which requires less computing resources, and feature selection can sometimes
even improve classification performance.

Another benefit of feature selection, in the context of cybersecurity, is it can help
practitioners better understand the attack detection process. This can be accomplished
because feature selection can identify the most important features during the model
building process. Gaining a better understanding of the most important features not
only helps during the machine learning model building process, but it can be even more
helpful when machine learning models are deployed and implemented into real-world
products and systems.

Various Feature Selection Techniques (FSTs) can generate very different feature lists
on the same dataset (which we identify throughout this study). However, finding “com-
mon features” between different FSTs can sometimes help us find an even better feature
subset through the diversity of different FSTs acting in an ensemble [2, 3]. While ensem-
ble FSTs can sometimes improve classification performance, they might still be desirable
even with minor degradations in classification performance. Reasons for using ensemble
FSTs with minor decreases in performance may include: feature stability [4], reducing
model complexity for real-world implementations, and simply providing models which
are easier to understand and are more explainable.

Feature similarity is a concept which is implicit in the ensemble FST process. For
example, an ensemble FST can find similar (or “common”) features between the differ-
ent FSTs by identifying features which appear in common among the “Top N” Feature
Importance Lists from different FSTs. However, we extend this concept and introduce
the notion of “feature popularity” [5] by also finding common features across different
datasets. For example, in cybersecurity there are different types of cyberattacks and we
can generate different datasets which are based upon those different attacks.

To explore feature popularity, we utilize the CSE-CIC-IDS2018 dataset which was cre-
ated by Sharafaldin et al. [6]. CSE-CIC-IDS2018 is a more recent version of the popular
CIC-IDS2017 dataset [7], which was also created by Sharafaldin et al. The CSE-CIC-
IDS2018 dataset includes over 16 million instances which includes normal instances, as
well as the following family of attacks: web attack, Denial of Service (DoS), Distributed
Denial of Service (DDoS), brute force, infiltration, and botnet.

The CSE-CIC-IDS2018 dataset is big data, as it contains over 16 million instances.
While big data has not been formally defined in terms of the number of instances, one
study [8] considers only 100,000 instances to be big data. Other studies [9, 10] have
considered 1,000,000 instances to be big data. Since CSE-CIC-IDS2018 is more than
1,000,000 instances, we consider it to be big data as well.

Given its richness in containing many different attack labels, CSE-CIC-IDS2018 is a
good dataset for investigating feature popularity. To do so, we only evaluate the following

Page 3 of 30Zuech et al. Journal of Big Data (2022) 9:119 	

three different web attacks from CSE-CIC-IDS2018: Brute Force (BF), Cross-Site Script-
ing (XSS), and SQL Injection (which we commonly refer to only as “SQL” throughout
this document). Basically, we generate three new datasets by combining each of these
three attack labels with all of the normal traffic from the full CSE-CIC-IDS2018 data-
set. We then compare feature popularity results between these three different web attack
datasets.

Brute Force web attacks correspond to brute force login attacks targeting web pages.
Next, the XSS web attack refers to where attackers inject malicious client-side scripts
into susceptible web pages targeting web users which view those pages. Finally, the SQL
Injection web attack represents a code injection technique where attackers craft special
sequences of characters and submit them to web page forms in an attempt to directly
query the back-end database of that website. The feature popularity techniques which we
introduce to CSE-CIC-IDS2018 in this study allows us to visually explain and quantify
common features across these three different web attacks.

We selected web attacks to implement feature popularity because they are important
to cybersecurity practitioners and they still commonly appear in the Open Web Appli-
cation Security Project (OWASP) “Top 10 Web Application Security Risks" [11]. Also,
the web attacks from the CSE-CIC-IDS2018 have three different web attack labels, and
this allows us to partition the datasets into three new datasets in order to implement
feature popularity. In other words, with feature popularity we can find the most popular
features across these three different web attacks by applying feature popularity to these
three newly created datasets.

The remaining sections of this paper are organized as follows. The "Related work" sec-
tion studies existing literature for feature popularity with CSE-CIC-IDS2018 data. Then,
the "Methodologies" section describes the data preparation, classifiers, FSTs, perfor-
mance metrics, and feature popularity techniques applied in our experiments. Next, we
provide a walk-through example of feature popularity in the Creating Feature Popularity
Lists with Web Attack Datasets section. The "Results and discussion" section provides
our results and analysis. Finally, the "Conclusion" section concludes our work.

Related work
Sarhan et al. [12] focus on how to explain models with feature selection and the eX-
plainable Artificial Intelligence (XAI) method using the CSE-CIC-IDS2018 dataset.
Their motivation in using this XAI method is to be able to more easily explain the attack
detection process through a better understanding of what the most important features
are after applying the feature selection process. To score the most important features,
they assign a Shapley value to each of the features. The Shapley value “is the weighted
average of the respective contribution of a feature value” (which is essentially the amount
a feature contributes towards making a prediction).

Random Forest and Deep Feed Forward classifiers are employed by Sarhan et al. to
score the top 20 features of CSE-CIC-IDS2018 with Shapley values. These two differ-
ent classifiers produce two very different lists of top 20 features for each of the clas-
sifiers. For example, the top ranked feature from the Deep Feed Forward classifier is
Bwd_Packets_s, while the Random Forest classifier ranks this same feature as the 16th

Page 4 of 30Zuech et al. Journal of Big Data (2022) 9:119

best feature overall. It is difficult to ascertain how similar the two feature subsets are
between the two different classifiers. Their research does not compare the feature simi-
larity between these two different feature subsets like our research does. They do not
benchmark the classification performance of only using the top 20 features versus all
of the features, but their main motivation is to better explain and interpret the clas-
sification models by understanding the most important features used to generate those
models.

Leevy et al. [13] apply an ensemble feature selection technique to the full CSE-CIC-
IDS2018 dataset, and employ binary classification by merging the multiple attacks to
one attack label. The ensemble feature selection technique considers seven different
FSTs, of which three are filter-based FSTs and four are supervised FSTs. Different fea-
ture subsets are generated by finding common features among the seven different FSTs
where a certain number of the FSTs agree. This ensemble FST concept is similar to this
current study, but the main difference is that study only considers one attack dataset
while this current study extends the approach by also finding common features across
multiple attack datasets. In other words, this current study is different as it not only finds
common features for a single attack dataset, but it also finds common features across
multiple attacks. Also, the current study introduces the Jaccard similarity for quantifying
feature subset similarity between different attacks.

Fitni et al. [14] compare two different feature selection techniques with the full
CSE-CIC-IDS2018 dataset and map the multiple attacks to a binary classification
problem with only attack and normal labels. Their two feature selection techniques
are Chi-Squared (top 22 features) and Spearman’s rank correlation coefficient (top 23
features), and they compare these two FSTs with Logistic Regression and Decision
Tree classifiers. The Spearman’s rank correlation coefficient technique performed bet-
ter with F1 scores of 0.983 and 0.974, as compared to the Chi-Squared results of F1
scores of 0.791 and 0.974. Also, the full feature set performed best with the Decision
Tree yielding an Area Under the Receiver Operating Character-istic Curve (AUC)
score of 0.975.

Based on the results of these two classifiers (Logistic Regression and Decision Tree),
Fitni et al. performed further experimentation using seven classifiers with only the
Spearman’s rank correlation coefficient FST and the full feature set. They do a nice job
displaying their feature subsets which provides good insight into the attack detection
process (similar to the XAI motivations of Sarhan et al. [12]). However, their research
does not consider feature popularity concepts like our study does.

Beechey et al. [15] apply feature selection to the Goldeneye and Slowloris Denial of
Services attacks from CSE-CIC-IDS2018. Their dataset only considers one day out of the
ten days of available network traffic from CSE-CIC-IDS2018 with 1,048,575 instances,
while our experiment considers all ten days of normal traffic encompassing over 13 mil-
lion instances. Eight feature selection techniques were employed with at least six classifi-
ers, and their Table 6 indicates perfect AUC scores for several combinations of FSTs and
classifiers (sometimes overfitting can be associated with perfect classification). While
Beechey et al. and others [16] apply feature ranking techniques to CSE-CIC-IDS2018,

Page 5 of 30Zuech et al. Journal of Big Data (2022) 9:119 	

they do not explore the notion of feature popularity between different attacks or com-
mon features between different FSTs.

We thoroughly surveyed Google Scholar to find related works to CSE-CIC-IDS2018
and our feature popularity research, and we searched for terms like “feature popular-
ity”, “CSE-CIC-IDS2018 feature similarity”, and “CSE-CIC-IDS2018 feature selection”.
First, Google Scholar did not provide any results significantly related to our “feature
popularity” focus from any application domain, and so we are the first to conceive the
feature popularity concept. Second, after reviewing more than 261 CSE-CIC-IDS2018
works at the time of this writing, only the works by Sarhan et al. [12] and Leevy et al.
[13] had aspects which were remotely similar to our feature popularity research. While
the rest of the CSE-CIC-IDS2018 corpus did contain some feature selection aspects, we
only included [14, 15] as those had the most compelling details of feature ranking with
CSE-CIC-IDS2018.

The XAI method highlighted by Sarhan et al. provides good insights, and we agree
that a better understanding and explanation of feature subsets is important to the attack
detection process when implementing machine learning models in the real world. More-
over, this is especially important when considering different attacks like we have done,
as different attacks can generate very different feature subsets. To the best of our knowl-
edge, ours is the first study to define the concept of feature popularity, especially in the
context of network intrusion detection. In addition, it is the first study to utilize the Jac-
card similarity metric for examining feature similarity between different attack types.

Methodologies
Data preparation

In this section, we describe how we prepared and cleaned the dataset files used in our
experiments. Properly documenting these steps is important in being able to reproduce
experiments.

We dropped the “Protocol” and “Timestamp” fields from CSE-CIC-IDS2018 during
our preprocessing steps. The “Protocol” field is somewhat redundant as the “Dst Port”
(Destination_Port) field mostly contains equivalent “Protocol” values for each Destina-
tion_Port value. Additionally, we dropped the “Timestamp” field as we wanted the learn-
ers not to discriminate attack predictions based on time, especially with more stealthy
attacks in mind. In other words, the learners should be able to discriminate attacks
regardless of whether the attacks are high volume or slow and stealthy. Dropping the
“Timestamp” field also allows us the convenience of combining or dividing the datasets
into ways more compatible with our experimental frameworks. Additionally, a total of
59 records were dropped from CSE-CIC-IDS2018 due to header rows being repeated in
certain days of the datasets. These duplicates were easily found and removed by filtering
records based on a white list of valid label values.

The fourth downloaded file named “Thuesday-20-02-2018_TrafficForML_CICFlow-
Meter.csv” was different than the other nine files from CSE-CIC-IDS2018. This file con-
tained four extra columns: “Flow ID”, “Src IP”, “Src Port”, and “Dst IP”. We dropped these
four additional fields. Also of note is that this one particular file contained nearly half of

Page 6 of 30Zuech et al. Journal of Big Data (2022) 9:119

all the records for CSE-CIC-IDS2018. This fourth file contained 7,948,748 records of the
dataset’s total 16,232,943 records.

Certain fields contained negative values which are invalid values and so we dropped
those instances with negative values for the “Fwd_Header_Length”, “Flow_Duration”,
and “Flow_IAT_Min” fields (with a total of 15 records dropped from CSE-CIC-IDS2018
for these fields containing negative values). Negative values in these fields were causing
extreme values that can skew classifiers which are sensitive to outliers.

Eight fields contained constant values of zero for every instance. In other words, these
fields did not contain any value other than zero. Before starting machine learning, we
filtered out the following list of fields (which all had values of zero):

1	 Bwd_PSH_Flags
2	 Bwd_URG_Flags
3	 Fwd_Avg_Bytes_Bulk
4	 Fwd_Avg_Packets_Bulk
5	 Fwd_Avg_Bulk_Rate
6	 Bwd_Avg_Bytes_Bulk
7	 Bwd_Avg_Packets_Bulk
8	 Bwd_Avg_Bulk_Rate

We also excluded the “Init_Win_bytes_forward” and “Init_Win_bytes_backward” fields
because they contained negative values. These fields were excluded since about half
of the total instances contained negative values for these two fields (so we would have
removed a very large portion of the dataset by filtering all these instances out). Similarly,
we did not use the “Flow_Duration” field as some of those values were unreasonably low
with zero values.

The “Flow Bytes/s” and “Flow Packets/s” fields contained some “Infinity” and “NaN”
values (with less than 0.6% of the records containing these values). We dropped these
instances where either “Flow Bytes/s” or “Flow Packets/s” contained “Infinity” or “NaN”
values. Upon carefully and manually inspecting the entire CSE-CIC-IDS2018 dataset for
such values, there was too much uncertainty as to whether they were valid records or
not. As sorted from minimum to maximum on these fields, neighboring records were
very different where “Infinity” was found. Similar to Zhang et al. [17], we did attempt to
impute values for these columns by taking the maximum value of the column and adding
one. In the end, we abandoned this imputation approach and dropped 95,760 records
from CSE-CIC-IDS2018 for records containing any “Infinity” or “NaN” values.

We also excluded the Destination_Port categorical feature which contains more than
64,000 distinct categorical values. Since Destination_Port has so many values, we deter-
mined that finding an optimal encoding technique was out of scope for this study. For
each of the three web attacks in Table 2, we dropped all the other attack instances and
kept all the normal instances from all ten days in Table 1 (except for those instances
which we removed as indicated earlier in this section). Each of the three final datasets
for our individual web attacks ended up having roughly 13 million instances as specified
in Table 2. For full descriptions of all 79 features of the downloaded CSE-CIC-IDS2018
dataset, please refer to its website [18].

Page 7 of 30Zuech et al. Journal of Big Data (2022) 9:119 	

Classifiers

Five different classifiers are utilized in this experiment: Decision Tree (DT), Ran-dom
Forest (RF), CatBoost (CB), LightGBM (LGB), and XGBoost (XGB). These classifiers are
used for two different purposes in our experiment. The first purpose these classifiers are
employed is to implement feature selection, and the second purpose these classifiers are
employed is to train and test our models. In other words, a classifier could first be used
to apply feature selection and then later that same (or different) classifier could be used
to train and test our model.

For all models trained and tested in this study, stratified 5-fold cross validation [19] is
used. Stratified refers to evenly splitting each training and test fold so that each class is
proportionately weighted across all folds equally. Splitting in a stratified manner is espe-
cially important when dealing with high levels of class imbalance, as randomness can
inadvertently skew the results between the cross-validation folds [20].

To treat the severe class imbalances encountered throughout this experiment, we
employ random undersampling (RUS). Every model trained throughout this experiment
first applies RUS at a 1:1 sampling ratio during the model training process (sampling is
not applied during the model testing process). Further details for how we apply RUS can
be found in [21].

To account for randomness, each stratified 5-fold cross validation was repeated 10
times. Therefore, all of our AUC results are the mean values from 50 measurements (5
folds x 10 repeats). All classifiers from this experiment are implemented with Scikit-
learn [22] and their respective Python modules. Next, our five classifiers are described.

Table 1  Entire CSE-CIC-IDS2018 Dataset by files/days (only web attacks and normal traffic are used
in our experiments)

Day Normal Instances Attack Instances

02/14 Wed - Brute Force 667,626 380,949

02/15 Thurs - DoS 996,077 52,498

02/16 Fri - DoS 446,772 601,802

02/20 Tues - DDoS 7,372,557 576,191

02/21 Wed - DDoS 360,833 687,742

02/22 Thu - Web 1,048,213 362

02/23 Fri - Web 1,048,009 566

02/28 Wed - Infiltration 544,200 688,871

03/01 Thurs - Infiltration 238,037 93,063

03/02 Fri - Bot 762,384 286,191

Total Records 13,484,708 2,748,235

Table 2  Web attacks used in this experiment from CSE-CIC-IDS2018

Attack type Attack instances Normal instances

Brute Force (BF) Web 611 13,390,234

Sql Injection (SQL) Web 87 13,390,234

XSS Web 230 13,390,234

Page 8 of 30Zuech et al. Journal of Big Data (2022) 9:119

Decision Tree is a learner which builds branches of a tree by splitting on features based
on a cost [23]. The algorithm will attempt to select the most important features to split
branches upon, and iterate through the feature space by building leaf nodes as the tree
is built. Cost functions utilized to evaluate splits in the branches are Entropy and Gini
impurity [24].

Random Forest is an ensemble of independent decision trees. Each instance is initially
classified by every individual decision tree, and the instance is then finally classified by
consensus among the individual trees (e.g., majority voting) [25]. Diversity among the
individual decision trees can improve overall classification performance, and so bag-
ging is introduced to each of the individual decision trees to promote diversity. Bagging
(bootstrap aggregation) [26] is a technique to sample the dataset with replacement to
accommodate randomness for each of the decision trees.

CatBoost [27] is based on gradient boosting, and is essentially another ensemble of
tree-based learners. It utilizes an ordered boosting algorithm [28] to overcome predic-
tion shifting difficulties which are common in gradient boosting. CatBoost has native
built-in support for categorical features.

LightGBM, or Light Gradient Boosted Machine [29], is another learner based on Gra-
dient Boosted Trees (GBTs) [30]. To optimize and avoid the need to scan every instance
of a dataset when considering split points, LightGBM implements Gradient-based One-
Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) algorithms [31]. LightGBM
also offers native built-in support for categorical features.

XGBoost is another ensemble based on GBTs. To help determine splitting points,
XGBoost utilizes a Weighted Quantile Sketch algorithm [32] to improve upon where
split points should occur. Additionally, XGBoost employs a sparsity-aware algorithm to
help with sparse data to determine default tree directions for missing values. Categori-
cal features are not natively supported by XGBoost, and must be encoded outside of the
learner with a technique such as One Hot Encoding (OHE) [33].

Unless specified otherwise here, default values were utilized for hyper-parameters with
the classifiers. To prevent overfitting with Decision Tree, max_depth = 5 was assigned.
For Random Forest, both n_estimators = 5 and max_depth = 6 were set to prevent over-
fitting. When using CatBoost both iterations = 4 and max_depth = 5 were assigned to
prevent overfitting, while thread_count = 8 was set to take advantage of parallel pro-
cessing functionality. Finally, with XGBoost both n_estimators = 4 and max_depth = 5
were set to prevent overfitting, and n_jobs = 8 was assigned to leverage parallel process-
ing functionality. Also, objective = “binary logistic” was set to specify the objective func-
tion for binary classification with XGB.

Feature selection techniques and rankers

At its core, our new feature popularity framework utilizes underlying feature selection
techniques to build our ensembles. Any FST can be utilized which produces ranking lists
of the most important features, also known as Feature Importance Lists. In this study,
all seven of the FSTs we employ utilize their respective Python libraries [34] to generate
their respective Feature Importance Lists.

Page 9 of 30Zuech et al. Journal of Big Data (2022) 9:119 	

These Feature Importance Lists, are based upon feature importance [35] rankings.
Effectively, each FST will produce lists of features which are sorted and ranked accord-
ing to their most important features. While we selected only the top 20 features from
the seven rankers in this study, future work could also experiment with different cutoff
points for Feature Importance Lists and vary the number of features to be included. This
experiment utilizes the following four supervised learning-based FST rankers and three
filter-based FST rankers.

Supervised learning‑based FST rankers

The four supervised learning-based FSTs rankers from this study are implemented from
four of our classifiers: RF, CB, LGB, and XGB. These four classifiers are used for two pur-
poses in this study. First, these four classifiers will be utilized to generate their respective
Feature Importance Lists (rankings of the most important features). Second, these four
classifiers are also used later in the experiment to train and test our machine learning
models. The Decision Tree classifier is also used to train and test our machine learning
models, but DT is not used in the FST process to build Feature Importance Lists. Future
work can consider experimenting with different underlying FSTs and the feature popu-
larity framework.

These supervised learning-based FST rankers offer a simple feature selection tech-
nique in the sense that they are implemented by the Feature Importance Lists from their
respective RF, CB, LGB, and XGB Python libraries. For example, to generate the top 20
feature rankings with the RF supervised learning-based FST ranker, its Python library
would generate a Feature Importance List and we would select the top 20 features from
that list. Essentially, the Feature Importance Lists being generated from these super-
vised learning-based FST rankers are effectively serving as a feature selection technique.
Please note that sometimes these supervised learning-based FST rankers might only
produce less than 20 features, and in those cases their Feature Importance Lists will con-
tain less than 20 features.

Filter‑based FST rankers

Three filter-based FST rankers are applied in this study: Chi Squared, Information Gain,
and Information Gain Ratio. Filter-based techniques utilize independent algorithms or
statistical measurements when selecting features, and filter techniques are easily identi-
fied since they do not use learning algorithms in the feature selection process. Feature
Importance Lists are generated from these three filter-based FST rankers in the same
manner as the supervised learning-based FST rankers. These three FSTs are described
below.

The Chi Squared technique tests which variables are most independent to the class,
and the “chi2” function [36] from Python is used to calculate this list of ranked features.
Information Gain, which is also known as Mutual Information evaluates features to
determine which one maximizes the information gained [37]. Information Gain Ratio
is similar to Information Gain, but Information Gain Ratio decreases its bias when the
number of branching features is high [38]. In this experiment, both Information Gain
and Information Gain Ratio are implemented with “info_gain” and “info_gain_ratio”

Page 10 of 30Zuech et al. Journal of Big Data (2022) 9:119

Python functions from [39]. Further details for how we implement these three filter-
based FST rankers can be found in [13].

Classification performance metrics

AUC is a metric which measures the area under the Receiver Operator Charac- teristic
(ROC) curve. The ROC curve is a plot of the True Positive Rate (TPR) along the y-axis
versus the False Positive Rate (FPR) along the x-axis. The area under this ROC curve
corresponds to a numeric value ranging between 0.0 to 1.0, where an AUC value equal
to 1.0 would correspond to a perfect classification system. An AUC value of 0.5 would
represent a classifier system performing as well as a random guess, similar to flipping a
coin. The AUC metric scores how effective a classification system is in terms of compar-
ing TPR to FPR across all classification thresholds [40].

Feature popularity metrics

The Jaccard similarity metric allows us to obtain quantitative scores for how similar
feature sets are between each other. If we have a set of features from one dataset and
another set of features from a different dataset, then we can score how similar these fea-
ture sets are with the Jaccard similarity. The Jaccard similarity of two sets is the ratio of
the size of the intersection of the sets to the size of the union of the sets. That is, for two
sets A and B, their Jaccard similarity is:

We calculate the Jaccard similarity for pairs of different web attacks, and present those
Jaccard similarity scores in tables in the "Results and discussion" section. These tables
give the reader a quantitative score indicating the degree to which different FSTs agree
between pairs of different web attacks. In other words, the Jaccard similarity gives us
a quantitative sense for how similar feature subsets are for one web attack dataset as
compared to a different web attack dataset after an ensemble of FSTs has been applied to
each dataset.

New feature popularity framework

We present a new feature popularity framework which can identify popular features
across different cyberattack datasets. For example, if we have three different web attacks
we can identify the most popular features across these three different web attacks. Iden-
tifying the most popular features across different attack datasets enables application
domain experts to gain new insights into the problem. By using fewer features (which are
also the most important), models can be more explainable and less complex to imple-
ment and deploy. We introduce this new feature popularity framework to the cyberse-
curity domain, but it can be applied to any application domain which has multiple class
labels in a dataset.

At a high level, our feature popularity framework is based upon an ensemble of ensem-
bles with respect to underlying feature selection techniques and datasets. First, Feature

Jaccard similarity =
|A ∩ B|

|A ∪ B|

Page 11 of 30Zuech et al. Journal of Big Data (2022) 9:119 	

Importance Lists are generated from the rankings of various FSTs (such as filter-based
and supervised FSTs) for each dataset. Second, an ensemble of FSTs is built for each
dataset where a specified number of FSTs must agree for a feature to be included in a
“FST Agreement List”. This FST Agreement List includes features which are common
across one particular dataset where a specified number of FSTs are in agreement for a
particular feature to be included in this list. Third, a final ensemble across the different
datasets constructs a “Feature Popularity List” where a feature can only be included into
this list if it appears in a minimum number of “FST Agreement Lists” from the previous
step. The following notations are defined to more easily provide examples of our feature
popularity framework:

Figure 1 indicates the three main dimensions for our feature popularity framework. The
“Feature Importance Dimension” is the first step of constructing the Feature Importance
Lists across each dataset for each FST. Next, FST Agreement Lists are built in the “FST
Agreement Dimension” for each dataset where a specified number of FSTs must agree
(which is denoted by fstA ). Finally, Feature Popularity Lists are generated in the “Dataset
Agreement Dimension” where a feature can only be included into a list if it appears in
a minimum number of datasets (which is denoted by dsA ) for each level of fstA . In the
next section, we provide step by step examples to illustrate our new feature popularity
framework.

Creating feature popularity lists with web attack datasets
In this section, we visually illustrate our feature popularity framework with tables of fea-
tures being built at each step along with pseudocode listings to describe the process.
For these examples, three datasets are constructed from CSE-CIC-IDS2018 as indicated
in Table 2 for three different web attacks: Brute Force, SQL Injection, and XSS. For the

nT = Number of Top (cutoff) features per FST Ranker

fstT = Total Number of FSTs

fstA = Agreement criteria of FSTs

dsT = Total Number of Datasets

dsA = Agreement criteria of Datasets

(2. build FST Agreement Lists
finding common features among FSTs
for each dataset)

(3. build Feature Popularity Lists
finding common features across fstA and dsA)

fstT = 7

dsT = 3 nT = 20

Feature Importance Dimension

fstA = FST Agreement Dimension

dsA = Dataset Agreement Dimension

(1. build Feature Importance Lists
for each dataset and FST)

Fig. 1  Feature Popularity Dimensions

Page 12 of 30Zuech et al. Journal of Big Data (2022) 9:119

pseudocode listings, we initialize variables in Listing 1 where we define our variables for
our earlier notations: nT , fstT , fstA , dsT , and dsA.

Create feature importance lists (Step 1)

Creating Feature Importance Lists is the first step of the process for building Feature
Popularity Lists. There is nothing new in this step for machine learning practitioners
who are familiar with feature selection. In this step, we simply generate Feature Impor-
tance Lists which are standard in many machine learning Python modules (such as the
ones we include here for supervisor-based and filter-based FSTs).

For example, the idea is to use these FSTs as Rankers to only include the Top 20
features into our Feature Importance Lists (since nT=20). We note that other experi-
ments can easily consider using a different cutoff point for the number of top features
to be included into these lists. Future work could also consider incorporating weighted
numerical scores of feature importance into our feature popularity framework.

In our example, a total of 21 Feature Importance Lists will be constructed since we
consider three datasets ( dsT=3) and seven FSTs ( fstT=7). The three web attack datasets
are: BF, SQL, and XSS. Also as described in the "Methodologies" section, these seven
FSTs are employed: Chi-Squared, Information Gain, Information Gain Ratio, Random
Forest, XGBoost, Random Forest, CatBoost, and LightGBM. Listing 2 contains an exam-
ple of the pseudocode to iterate over the three datasets and seven FSTs to create these 21
Feature Importance Lists. These 21 Feature Importance Lists are displayed in Tables 14,
15, 16, 17, 18, 19 of the Appendix.

Page 13 of 30Zuech et al. Journal of Big Data (2022) 9:119 	

Create FST agreement lists (Step 2)

Generating FST Agreement Lists is the second step of the process for building Feature
Popularity Lists. These FST Agreement Lists are built by identifying common features
across the seven FSTs (denoted by fstT ) for each dataset, where a specified threshold of
these FSTs must agree (denoted by fstA ). For example, if fstA =4 then we build a FST
Agreement List where at least four of the seven FSTs must agree in order for common
features to appear in that particular list for that dataset.

Table 3 contains the four FST Agreement Lists for only the Brute Force web attack.
There are four different FST Agreement Lists as we consider four different levels for fstA :
4, 5, 6, and 7. Each numeric superscript in this table indicates the number of FSTs agree-
ing ( fstA ) on that particular feature for that particular web attack. For example, the first
listed feature Bwd_IAT_Mean of the Brute Force web attack is found to have exactly four
of seven (“4/7”) FSTs agree that it is a common feature between those FSTs for that web
attack. In other words, Bwd_IAT_Mean occurs in exactly “4/7” Feature Importance Lists
for the Brute Force web attack found in Tables 14 and 15 from the Appendix. Likewise,
the Fwd_IAT_Total feature is found in all “7/7” FSTs for the Brute Force web attack. All
of the other superscripts in Table 3 are found the same way by parsing their respective

Table 3  4 FST Agreement Lists for only Brute Force web attack (superscripts indicate fstA , which is
the number of FSTs agreeing on that feature)

BF 4/7 FSTs Agree BF 5/7 FSTs Agree BF 6/7 FSTs Agree BF 7/7 FSTs Agree

Bwd_IAT_Mean 4 Flow_Bytes_s 5 TotLenFwdPkts 6 Fwd_IAT_Total 7

Flow_IAT_Mean 4 Flow_IAT_Max 5 Fwd_IAT_Total 7

Flow_IAT_Std 4 Flow_Packets_s 5

FwdPktLenMean 4 Fwd_IAT_Std 5

Subflow_Fwd_Bytes 4 TotLenFwdPkts 6

Flow_Bytes_s 5 Fwd_IAT_Total 7

Flow_IAT_Max 5

Flow_Packets_s 5

Fwd_IAT_Std 5

TotLenFwdPkts 6

Fwd_IAT_Total 7

Page 14 of 30Zuech et al. Journal of Big Data (2022) 9:119

Feature Importance Lists and finding the number of FSTs which agree upon a particular
feature in a given web attack.

Next, Table 4 provides one consolidated listing for 12 different FST Agreement Lists.
Each of the three web attack columns actually contains four different FST Agreement
Lists, where these four lists simply differ by fstA . We consolidated everything into one
table so that parsing these lists is easier in the third (later) step. For example, the “4/7”
FST Agreement List for BF contains all 11 features displayed in the BF column of Table 4
as it is actually inclusive of the FST Agreement Lists where 5, 6, and 7 FSTs agree as well.
Table 3 is simply just a more detailed example of the four different FST Agreement Lists
for the Brute Force column of Table 4. These tables are the simplest way to visually illus-
trate how FST Agreement Lists are created.

Table 4  12 FST Agreement Lists for 3 Web Attacks with each having 4 levels of FST Agreement
(numeric superscripts indicate fstA , the number of FSTs agreeing on that feature for that attack)

BF SQL XSS

Bwd_IAT_Mean 4 Bwd_IAT_Mean 4 Bwd_IAT_Std 4

Flow_IAT_Mean 4 Bwd_Packets_s 4 Bwd_Packets_s 4

Flow_IAT_Std 4 Flow_IAT_Std 4 Flow_IAT_Min 4

FwdPktLenMean 4 FwdPktLenMax 4 Flow_Packets_s 4

Subflow_Fwd_Bytes 4 FwdPktLenStd 4 Fwd_IAT_Mean 4

Flow_Bytes_s 5 Packet_Length_Std 4 Fwd_Packets_s 4

Flow_IAT_Max 5 BwdPktLenStd 5 Max_Packet_Length 4

Flow_Packets_s 5 Flow_Bytes_s 5 Packet_Length_Mean 4

Fwd_IAT_Std 5 Flow_IAT_Mean 5 PktLenVar 4

TotLenFwdPkts 6 Flow_Packets_s 5 Flow_Bytes_s 5

Fwd_IAT_Total 7 Fwd_IAT_Mean 5 Fwd_IAT_Max 5

Fwd_IAT_Std 5 Fwd_IAT_Total 5

Fwd_IAT_Total 5 Packet_Length_Std 5

Max_Packet_Length 5 TotLenFwdPkts 5

PktLenVar 5 Flow_IAT_Max 6

Flow_IAT_Max 6 Flow_IAT_Mean 6

Fwd_IAT_Max 6 Fwd_IAT_Std 6

Page 15 of 30Zuech et al. Journal of Big Data (2022) 9:119 	

Listing 3 illustrates the pseudocode for building FST Agreement Lists. First, we iter-
ate over each dataset ( dsT=3) and build a specified number of FST Agreement Lists for
each dataset. In our example, we have selected fstA =4 to be the minimum agreement
criteria for our ensemble FST otherwise too many features would have been included
in our FST Agreement Lists. In other words, it would be undesirable to select fstA =3 as
many of those FST Agreement Lists would contain more than 20 features ( nT ). We have
also selected fstA =7 to be our maximum agreement criteria. The inner loop of Listing 3
then iterates over each of our four values for fstA={4,5,6,7}, effectively building four FST
Agreement Lists for each of our three datasets.

Create feature popularity lists (Step 3)

Finally, creating the actual Feature Popularity Lists is the third and final step of the pro-
cess for building Feature Popularity Lists. FST Agreement Lists from the prior step are
used as the main input of this step. The best way to understand this process is through
a specific example like the following. Table 5 indicates the two Feature Popularity Lists
where four of seven datasets agree ( fstA =4 and fstT=7). This table contains two different
lists as we have one list where two of three web attack datasets agree ( dsA =2 and dsT
=3), and a second list where three of three datasets agree ( dsA =3 and dsT=3).

The “2/3 Datasets & 4/7 FSTs Agree” Feature Popularity List in Table 5 is generated
by parsing the three FST Agreement Lists from the prior step where fstA=4. We include
features into this new Feature Popularity Lists where at least two of the three datasets
agree that it is a popular feature. For example, the Bwd_IAT_Mean feature is found in
exactly two of the three FST Agreement Lists for web attacks where fstA =4 and so it is
included in the “2/3 Datasets & 4/7 FSTs Agree” list. However, Bwd_IAT_Mean is not
included in the “3/3 Datasets & 4/7 FSTs Agree” list because it does not occur in all three
FST Agreement Lists for web attacks where fstA=4. Flow_Bytes_s is included in both the
“2/3 Datasets & 4/7 FSTs Agree” and “3/3 Datasets & 4/7 FSTs Agree” Feature Popularity

Table 5  2 Feature Popularity Lists where 4/7 FSTs Agree ( fstA =4 and dsA={2,3})

2/3 Datasets & 4/7 FSTs Agree 3/3 Datasets &
4/7 FSTs Agree

Bwd_IAT_Mean Flow_Bytes_s

Bwd_Packets_s Flow_IAT_Max

Flow_Bytes_s Flow_IAT_Mean

Flow_IAT_Max Flow_Packets_s

Flow_IAT_Mean Fwd_IAT_Std

Flow_IAT_Std Fwd_IAT_Total

Flow_Packets_s

Fwd_IAT_Max

Fwd_IAT_Mean

Fwd_IAT_Std

Fwd_IAT_Total

Max_Packet_Length

Packet_Length_Std

PktLenVar

TotLenFwdPkts

Page 16 of 30Zuech et al. Journal of Big Data (2022) 9:119

Lists because it occurs in all three of the FST Agreement Lists where fstA=4. In other
words, the “3/3 Datasets” lists are a subset of the “2/3 Datasets” lists.

Next, in Table 6, Flow_Bytes_s also appears in both the ‘2/3 Datasets & 5/7 FSTs
Agree” and “3/3 Datasets & 5/7 FSTs Agree” Feature Popularity Lists, and it is one of
the most “popular features.” The “5/7 FSTs Agree” lists are also a subset of the “4/7 FSTs
Agree” lists. This is one of the nice characteristics of the feature popularity technique.
We can keep adding more (or less) restrictive criteria for fstA and dsA until we have too
few or too many features in our Feature Popularity Lists.

Feature Popularity Lists are mostly empty for fstA =6 and fstA =7 in Tables 7 and 8.
The only feature which appears is Flow_IAT_Max, and it appears in the least restric-
tive of these four Feature Popularity Lists where fstA =6 and dsA=2. So, we can say that
Flow_IAT_Max is the most popular feature overall. However, we did not consider run-
ning machine learning models with only one input feature as we thought that was too
few for the purposes of this experiment. Overall, we construct eight Feature Popular-
ity Lists with four levels of FST agreement criteria ( fstA={4,5,6,7}) and two levels of
dataset Agreement criteria ( dsA={2,3}). However, we only conduct machine learning
experiments with the four Feature Popularity Lists from Tables 5 and 6 as the other four
Feature Popularity Lists were either empty or contained only one feature.

In Listing 4 we illustrate this last step with pseudocode, where the FST Agreement
Lists from the prior step are used as the main input of building the Feature Popularity
Lists. First, we iterate over all four values of our FST agreement criteria ( fstA={4,5,6,7}).
Next in the inner loop, we iterate over our two values of dataset agreement criteria
( dsA={2,3}). For each value of dsA , we are finding common (popular) features among
the three datasets ( dsT=3) for the FST Agreement Lists for particular values of fstA .

Table 6  2 Feature Popularity Lists where 5/7 FSTs Agree ( fstA =5 and dsA={2,3})

2/3 Datasets & 5/7 FSTs Agree 3/3 Datasets &
5/7 FSTs Agree

Flow_Bytes_s Flow_Bytes_s

Flow_IAT_Max Flow_IAT_Max

Flow_IAT_Mean Fwd_IAT_Std

Flow_Packets_s Fwd_IAT_Total

Fwd_IAT_Max

Fwd_IAT_Std

Fwd_IAT_Total

TotLenFwdPkts

Table 7  2 Feature Popularity Lists where 6/7 FSTs Agree ( fstA =6 and dsA={2,3})

2/3 Datasets & 6/7 FSTs Agree 3/3 Datasets & 6/7 FSTs Agree

Flow_IAT_Max No Features (empty list)

Table 8  2 Feature Popularity Lists where 7/7 FSTs Agree ( fstA =7 and dsA={2,3})

2/3 Datasets & 7/7 FSTs Agree 3/3 Datasets & 7/7 FSTs Agree

No Features (empty list) No Features (empty list)

Page 17 of 30Zuech et al. Journal of Big Data (2022) 9:119 	

For example, with fstA =4 and dsA=2, we will find common (popular) features where 4
of 7 FSTs agree and 2 of 3 datasets agree. In this case, we will find common (popular)
features among two ( dsA=2) of the three FST Agreement Lists ( dsT=3) having fstA=4.
From the second step of our example, only three FST Agreement Lists were generated
where fstA =4 (one for each dataset).

Results and discussion
Dataset similarity

First, results are provided for Jaccard similarity scores between the FST Agreement Lists
of the three different web attacks: Brute Force, SQL Injection, and XSS. Jaccard similar-
ity scores are provided between these three web attacks for the following four different
levels of FST Agreement criteria: fstA={4,5,6,7}. Tables 9, 10, 11, 12 include the Jaccard
similarity scores for the FST Agreement Lists of these three web attacks and varying
levels of fstA.

From Tables 9 and 10 where fstA =4 and fstA =5 respectively, we can easily observe
that SQL and XSS have the most features in common between their respective subsets.
However, we cannot easily determine which pairs of web attacks have the least amount
of features in common for these two different values of FST agreement criteria. One pair

Table 9  Jaccard similarities by dataset for FST Agreement Lists where 4/7 FSTs Agree ( fstA=4)

BF SQL XSS

BF 1.0 0.42105 0.38095

SQL 0.42105 1.0 0.61905

XSS 0.38095 0.61905 1.0

Table 10  Jaccard similarities by dataset for FST Agreement Lists where 5/7 FSTs Agree ( fstA=5)

BF SQL XSS

BF 1.0 0.45455 0.6

SQL 0.45455 1.0 0.66667

XSS 0.6 0.66667 1.0

Page 18 of 30Zuech et al. Journal of Big Data (2022) 9:119

(BF/XSS) has the lowest score for fstA=4, while the other pair (BF/XSS) has the lowest
score for fstA=5. Regardless, these scores are close enough to each other for our pur-
poses of generating Feature Popularity Lists as we were able to obtain a desirable amount
of fewer and popular features in Tables 5 and 6 (where these lists had fewer than 20 fea-
tures but more than 2-3 features). In the next section, we will employ machine learning
to determine whether we have serious performance degradation with these lists of fewer
features.

For the Jaccard similarity scores of Tables 11 and 12 where six or seven FSTs must
agree for the FST Agreement Lists between the three different web attacks, we notice a
sharp dropoff in Jaccard similarity scores. This is also evidenced in the Feature Popular-
ity Lists for those FST agreement criteria in Tables 7 and 8 as well, which have mostly
empty lists. In this regard, Jaccard similarity scores may help us understand more desir-
able FST agreement criteria thresholds to employ (by looking for steep dropoffs in
scores).

Similarly, Jaccard similarity scores could also help us understand which different types
of cyberattacks might be good candidates to generate Feature Popularity Lists with. Or,
very low Jaccard similarity scores between certain cyberattacks could indicate they are
not good candidates to group together within the same Feature Popularity Lists. And
possibly, for different classes of attacks, they might be better suited to group them into
separate Feature Popularity Lists. For example, if Denial of Service attack types as com-
pared to web attack types obtained very divergent Jaccard similarity scores for their FST
Agreement Lists, then maybe separate Feature Popularity Lists could be created for each
different class of attack as appropriate.

This is an introductory study with our feature popularity framework and only three
different attacks. But, employing these techniques to dozens or even hundreds of dif-
ferent types of cyberattacks might be even more helpful to properly group different
cyberattacks into different Feature Popularity Lists by using Jaccard similarity scores of
their respective FST Agreement Lists. Future work can extend these feature popularity
frameworks towards many different types of cyberattacks, by grouping different types of
cyberattacks into different groupings of Feature Popularity Lists. Collectively, additional

Table 11  Jaccard similarities by dataset for FST Agreement Lists where 6/7 FSTs Agree ( fstA=6)

BF SQL XSS

BF 1.0 na 0.2

SQL na 1.0 0.16667

XSS 0.2 0.16667 1.0

Table 12  Jaccard similarities by dataset for FST Agreement Lists where 7/7 FSTs Agree ( fstA=7); na
values indicate there is no feature 7 out of 7 rankers agree on for at least one dataset in a pair

BF SQL XSS

BF 1.0 na na

SQL na 1.0 na

XSS na na 1.0

Page 19 of 30Zuech et al. Journal of Big Data (2022) 9:119 	

Feature Popularity List groupings for different cyberattacks might even improve classi-
fication performance. Although, at a minimum, it would provide better insights into the
application domain problem with easier to explain models.

Feature popularity performance

In this section, classification performance results are provided for both before and after
we apply our new feature popularity framework. Overall, we observe that classification
performance is not degraded too much with our Feature Popularity Lists which have
fewer features. In some cases, classification performance is even improved. Regardless of
classification performance, employing Feature Popularity Lists is a powerful framework
which enabled us to uncover previously unseen insights into the attack detection process
with CSE-CIC-IDS2018 data.

Table 13 provides the classification performance results with four Feature Popularity
Lists and “All Features” for five classifiers (CB, DT, LGB, RF, and XGB) with three dif-
ferent web attacks: BF, SQL, and XSS. For the FST column, “All Features” refers to the
full feature set of 66 features (before any feature selection technique is applied), and the
four Feature Popularity Lists comprise: “2/3 & 4/7 Agree”, “2/3 & 5/7 Agree”, “3/3 & 4/7
Agree”, and “3/3 & 5/7 Agree”. With these Feature Popularity Lists, the first fractional
term refers to dsA (specifying how many datasets agree) and the second fractional term
refers to fstA (specifying how many FSTs agree). Classification performance is presented
in terms of AUC for these five different levels of Feature Popularity Lists in the FST col-
umn across the five classifiers for each of the three web attacks. The three different web
attacks are represented as three columns in the table. “SD AUC” refers to the standard
deviation for each AUC score. Top AUC scores are indicated in bold for each combina-
tion of: FST, classifier, and web attack.

Overall, when visually inspecting Table 13 we can see the classification performance
for the Feature Popularity Lists is not seriously degraded. For 5 of the 15 classifier and
web attack combinations, Feature Popularity Lists have higher scores as compared to “All
Features”. The best AUC scores of the Feature Popularity Lists are not more than 0.02
AUC lower than the “All Features” score. In other words, “All Features” AUC scores are
not more than 0.02 AUC above the best score of the Feature Popularity Lists. In particu-
lar, the least restrictive “2/3 & 4/7 Agree” Feature Popularity List also does not perform
worse than 0.02 AUC score of the “All Features” score. The other Feature Popularity Lists
are just subsets of this “2/3 & 4/7 Agree” list (with fewer features due to more restric-
tive agreement criteria). Mostly throughout this experiment, classification performance
is only mildly degraded by employing Feature Popularity Lists and performance is even
improved in several cases.

Cybersecurity analysis and insights

A major benefit of feature popularity is providing domain experts with new insights
from models which are more explainable. Our feature popularity framework led us to
major discoveries into the web attack detection process within the CSE-CIC-IDS2018
dataset, even though we had intensely researched this dataset in prior work [21]. Based
on our survey of other CSE-CIC-IDS2018 studies, none of them have identified these
insights into the web attack detection process as of the date of this writing.

Page 20 of 30Zuech et al. Journal of Big Data (2022) 9:119

Our most restrictive “3/3 & 5/7 Agree” Feature Popularity List ( dsA =3 and fstA=5)
only includes the following four features from Table 6: Flow_Bytes_s (flow bytes per
second), Flow_IAT_Max (maximum time between two flows), Fwd_IAT_Std (standard
deviation time between two packets sent in the forward direction), and Fwd_IAT_Total
(total time between two packets sent in the forward direction). Using only these four
input features, our machine learning models from Table 13 achieved favorable classifi-
cation performance which was nearly as good as the “All Features” dataset. All four of

Table 13  Classification performance for 4 feature popularity lists (plus all features), 3 web attacks,
and 5 classifiers

Bold values indicate the best AUC score for each web attack and FST.

Brute force (web) SQL injection (web) XSS (web)

CatBoost

 FST AUC​ SD AUC​ AUC​ SD AUC​ AUC​ SD AUC​

 All Features 0.93277 0.00920 0.90008 0.02382 0.93743 0.01432

 2/3 & 4/7 Agree 0.91121 0.01242 0.87876 0.03297 0.92574 0.01290

 2/3 & 5/7 Agree 0.91121 0.01322 0.86604 0.02766 0.92791 0.01226

 3/3 & 4/7 Agree 0.88749 0.01398 0.87531 0.03579 0.92627 0.01420

 3/3 & 5/7 Agree 0.88858 0.01770 0.87057 0.03077 0.92167 0.01696

Decision Tree

 FST AUC​ SD AUC​ AUC​ SD AUC​ AUC​ SD AUC​

 All Features 0.92252 0.01355 0.90876 0.03032 0.93830 0.01244

 2/3 & 4/7 Agree 0.90346 0.01235 0.91000 0.02972 0.93417 0.01456

 2/3 & 5/7 Agree 0.91178 0.01391 0.91206 0.03209 0.94020 0.01389

 3/3 & 4/7 Agree 0.87643 0.01820 0.91527 0.03260 0.93716 0.01701

 3/3 & 5/7 Agree 0.87384 0.01813 0.91334 0.03429 0.93335 0.01301

LightGBM

 FST AUC​ SD AUC​ AUC​ SD AUC​ AUC​ SD AUC​

 All Features 0.93863 0.00975 0.93499 0.03401 0.94622 0.01416

 2/3 & 4/7 Agree 0.93511 0.01052 0.91610 0.03595 0.94354 0.01320

 2/3 & 5/7 Agree 0.93536 0.01078 0.90934 0.03810 0.94191 0.01491

 3/3 & 4/7 Agree 0.93379 0.01159 0.90404 0.04282 0.94170 0.01360

 3/3 & 5/7 Agree 0.93652 0.01084 0.91161 0.04016 0.94166 0.01347

Random Forest

 FST AUC​ SD AUC​ AUC​ SD AUC​ AUC​ SD AUC​

 All Features 0.93945 0.00910 0.91773 0.02602 0.94216 0.01316

 2/3 & 4/7 Agree 0.93799 0.00944 0.91105 0.03448 0.94455 0.01214

 2/3 & 5/7 Agree 0.93441 0.01089 0.90349 0.03102 0.94036 0.01592

 3/3 & 4/7 Agree 0.92851 0.01070 0.89572 0.03404 0.94274 0.01418

 3/3 & 5/7 Agree 0.92106 0.01235 0.90950 0.02971 0.93966 0.01546

XGBoost

 FST AUC​ SD AUC​ AUC​ SD AUC​ AUC​ SD AUC​

 All Features 0.93668 0.00891 0.89892 0.04456 0.93581 0.01363

 2/3 & 4/7 Agree 0.92197 0.01063 0.89720 0.03518 0.92918 0.01379

 2/3 & 5/7 Agree 0.92613 0.01357 0.90861 0.03699 0.94058 0.01425

 3/3 & 4/7 Agree 0.91230 0.01552 0.90421 0.03625 0.93121 0.01521

 3/3 & 5/7 Agree 0.91188 0.01677 0.90233 0.03867 0.92933 0.01460

Page 21 of 30Zuech et al. Journal of Big Data (2022) 9:119 	

these features are mainly based upon the time dimension. From a cybersecurity analyst’s
perspective, these four features do not truly signal SQL Injection or XSS web attacks. In
other words, detection for these two web attacks is not primarily based upon temporal
features. For the third and only other web attack label in CSE-CIC-IDS2018, it is not so
clear whether Brute Force web attacks should be detected primarily on time-based fea-
tures and so we will discuss this separately.

Attack characteristics of SQL Injection and XSS web attacks are mainly found in the
application layer (7) of the OSI model [41], as the payloads for these two web attacks
operate at protocols which are in layer 7 of the OSI model. The four features (Flow_
Bytes_s, Flow_IAT_Max, Fwd_IAT_Std, and Fwd_IAT_Total) are features based on Net-
Flows [42, 43] and are operating at lower layers 3 and 4 of the OSI model. Overall, these
four features are not indicating attack signatures for these web attacks, because their
attack fingerprints occur in the application layer (7) of the OSI model.

For example, Flow_Bytes_s does not signal a SQL Injection or XSS web attack. The
Flow_Bytes_s feature is merely indicating the number of bytes per second in a network
flow. Normal web traffic can just as easily produce similar values for the Flow_Bytes_s
feature, as compared to SQL Injection or XSS web attack traffic. In other words, the
Flow_Bytes_s does not properly discriminate normal web traffic as compared to SQL
Injection or XSS web attack traffic. Normal web traffic can just as easily have lower or
higher values for Flow_Bytes_s as compared to SQL Injection or XSS web attack traffic.

One small and brief web request representing normal traffic could just as easily have
similar values for Flow_Bytes_s as compared to a slow and stealthy web attack for either
a SQL Injection or XSS web attack. This same logic applies towards moderate velocity
normal traffic as compared to moderate velocity traffic for SQL Injection and XSS web
attacks for the Flow_Bytes_s feature. While it could be argued that very high velocity
traffic for the Flow_Bytes_s feature could be signalling web attacks such as for SQL Injec-
tion or XSS, this is simply not the case in the CSE-CIC-IDS2018 dataset as high velocity
attack traffic does not exist for these two attack web labels. In CSE-CIC-IDS2018, the
SQL Injection label only encompasses 87 instances and the XSS label only encompasses
230 labels. Plus, this approach would not detect slow and stealthy web attacks.

The other three features (Flow_IAT_Max, Fwd_IAT_Std, and Fwd_IAT_Total) have
the identical problems as compared to Flow_Bytes_s in discriminating between normal
web traffic and SQL Injection and XSS web attacks. These features are all signaling infor-
mation from layers 3 and 4 of the OSI model, and not layer 7 of the OSI model. Plus,
these four features are heavily focused on the time dimension. SQL Injection and XSS
web attacks do not typically have characteristics which are based on temporal features
(especially when executed in a slow and stealthy fashion by attackers seeking to avoid
detection). Instead of detecting these classes of web attacks based on time, other attack
characteristics could be used such as those found in the application layer. Better exam-
ples of attack characteristics for these classes of web attacks are parsing text payloads for
malicious sequences of characters or monitoring error logs (both are in the application
layer of the OSI model).

Then, the question arises of what could be signaling such good detection of SQL Injec-
tion and XSS web attacks within the CSE-CIC-IDS2018 dataset. We can only speculate

Page 22 of 30Zuech et al. Journal of Big Data (2022) 9:119

on this question, as this question deserves further research. One possibility could be
unintentional contamination in the data collection process, where the machine learning
models are detecting patterns that are discriminating between attack and normal traffic
based on temporal patterns of the data collection and not the underlying signatures of
the web attacks. Future work can further investigate this phenomenon.

With regards to the Brute Force web attacks, the same arguments are true as for the
SQL Injection and XSS web attacks that these four (Flow_Bytes_s, Flow_IAT_Max,
Fwd_IAT_Std, and Fwd_IAT_Total) features do not necessarily signal a web attack. It is
true that these four features might signal a Brute Force web attack during a very extreme
scenario of massive web traffic spikes. An example for this would be a Brute Force attack
which is similar to a Denial of Service attack where the attacker is causing a massive
flood of web traffic. However, this approach would not detect Brute Force web attacks
which are more slow and stealthy in nature. Many attackers seek to evade detection, and
only using these four features would effectively miss detecting one of the most impor-
tant classes of attacker adversaries (those seeking to avoid detection).

Most importantly, the CSE-CIC-IDS2018 dataset only contains 611 labels for Brute
Force web attacks as compared to over 2 million “Normal” labels for those two days of
the data collection for web attacks. Given the small fraction of Brute Force web attack
labels of 0.03% compared to the normal traffic for those two days, our machine learning
models are not detecting some sort of “flood” type of Brute Force web attack. Instead,
our machine learning models are likely detecting other patterns regarding the data col-
lection which requires future research.

Even for Brute Force web attacks, the higher application layer (7) of the OSI model
contains better attack characteristics as compared to the lower network layers of 3 and
4 (containing NetFlow features). The OWASP Top 10 [11] contains two items on how to
handle Brute Force web attacks at the application layer. First, “OWASP A2:2017-Broken
Authentication” [44] indicates that web applications should “limit or increasingly delay
failed login attempts” and “log all failures and alert administrators when credential stuff-
ing, brute force, or other attacks are detected”. Second, “OWASP A10:2017-Insufficient
Logging & Monitoring” [45] highlights that “exploitation of insufficient logging and
monitoring is the bedrock of nearly every major incident”. Essentially, properly designed
web applications would remove “flood” types of Brute Force web attacks by increasingly
delaying their logins. Sensors from application layer logs would still be best equipped to
detect Brute Force web attacks which are more slow and stealthy.

Even though we have obtained respectable classification results for web attacks in
this study, our newly conceived feature popularity framework allowed us to realize that
the features we were detecting upon did not make sense from a cybersecurity analyst’s
perspective. When looking at all 79 independent features of the downloaded CSE-CIC-
IDS2018 dataset, it can be difficult for a cybersecurity analyst to ascertain whether those
NetFlow-based features might be good candidates in detecting web attacks. Even after
generating a myriad of Feature Importance Lists in Tables 14, 15, 16, 17, 18, 19, it still
was not clear as these lists of features were very divergent from each other. After employ-
ing feature popularity which enabled us to visualize more explainable models, we could

Page 23 of 30Zuech et al. Journal of Big Data (2022) 9:119 	

then ascertain that our top four features (Flow_Bytes_s, Flow_IAT_Max, Fwd_IAT_Std,
and Fwd_IAT_Total) did not properly characterize the web attack signatures in question.
Overall, future research can further answer the question of whether or not Netflow-
based features are even good candidates for detecting web attacks from the application
layer of the OSI model.

Conclusion
Feature popularity is a novel framework that we introduce in this study, and we imple-
ment it with CSE-CIC-IDS2018 big data and the following three web attacks: Brute
Force, SQL Injection, and XSS. These three web attacks are partitioned into three sepa-
rate datasets so that we can employ feature popularity. For our underlying feature selec-
tion techniques, we use three filter-based rankers and four supervised-based rankers:
Chi Squared, Information Gain, Information Gain Ratio, CB, LGB, RF, and XGB.

First, we generate Feature Importance Lists where the top 20 features are generated
for our three web attack datasets and our seven (FST) rankers. Second, we create FST
Agreement Lists which find the common features across each dataset’s Feature Impor-
tance Lists according to varying levels of FST agreement criteria ( fstA ) among our seven
FSTs. Third, we build Feature Popularity Lists from FST Agreement Lists according to
varying levels of dataset agreement criteria ( dsA={2,3}) and FST agreement criteria ( fstA
={4,5,6,7}). Our feature popularity technique effectively builds an ensemble of ensem-
bles by first building an ensemble of FSTs for each dataset, and then building another
ensemble across a dataset agreement dimension.

We also introduce the use of the Jaccard similarity score with our FST Agreement Lists
to give a quantitative sense for how similar or not various pairs of FST Agreement Lists
compare to each other across different FST agreement criteria ( fstA ). Employing Jaccard
similarity scores in this manner becomes more important as many more datasets are
considered with the feature popularity framework. These Jaccard similarity scores can
help decide which classes of attacks should be grouped together with feature popularity,
versus those which should be broken apart into different feature popularity groupings.

Classification performance did not seriously degrade with Feature Popularity Lists
(which contain fewer features), as compared to the “All Features” list. In 5 out of 15
cases, Feature Popularity Lists even fared better as compared to the “All Features” list.
AUC scores did not degrade by more than 0.02 for the best of the Feature Popularity List
groupings as compared to the “All Features” list. Classification performance was evalu-
ated with the following five classifiers: CB, DT, LGB, RF, and XGB. Overall LightGBM
performed the best, and classification performance held especially well for Feature Pop-
ularity Lists with LGB.

Not only does feature popularity produce models which are easier to understand and
implement, but it can also provide new insights to application domain experts. Even
though we had been working intensely with web attacks from CSE-CIC-IDS2018, we did
not discover new realizations until working with models produced with feature popular-
ity and results from its most popular features. With our feature popularity experiment

Page 24 of 30Zuech et al. Journal of Big Data (2022) 9:119

and underlying FSTs, the four most popular features for CSE-CIC-IDS2018 web attacks
are: Flow_Bytes_s, Flow_IAT_Max, Fwd_IAT_Std, and Fwd_IAT_Total.

When using only these four most popular features as input to our classifiers, we still
achieved nearly the same favorable classification performance as compared to the “All
Features” list. We realized these four features do not signal attack characteristics for our
three web attacks: Brute Force, SQL Injection, and XSS. These four features are mainly
based upon the time dimension and Netflow-based attributes from layers 3 and 4 of the
OSI model.

However, our three web attacks should not be leaving signatures in these four fea-
tures as they operate at the application layer (7) of the OSI model. Instead, something
other than attack signatures of these three web attacks is causing them to be correctly
classified as attacks. Future work can evaluate whether unintentional contamination in
the data collection patterns for CSE-CIC-IDS2018 is signalling these web attacks. Also,
future work can consider whether NetFlow-based features can legitimately signal web
attack payloads from the application layer (7) of the OSI model in terms of forensic
evidence.

Feature popularity is a powerful new framework which can be applied to any applica-
tion domain. Any multi-class classification problem (containing more than two classes),
can be decomposed with feature popularity so that the most popular features for its
multiple classes can be discovered through ensembles across a new dataset agreement
dimension ( dsA ) as well as a FST agreemention dimension ( fstA ). The beauty of the fea-
ture popularity technique, is that its agreement criteria for dsA and fstA can be tuned by
a practitioner until the desired classification performance is achieved with a more desir-
able number of fewer and more popular features.

Future work can consider additional application domains as well as additional types
of cyberattacks, as feature popularity is a flexible framework that can accommodate any
application domain or cyberattack dataset which have multiple class labels (more than
binary classification). Other FSTs and classifiers can also be implemented with feature
popularity. Additionally, different cutoff points for the “Top N” features of the Feature
Importance Lists could be investigated. Feature stability could also be explored with fea-
ture popularity to determine its effectiveness with the same most popular features as
datasets evolve with new data over time, and whether this ensemble approach provides
better feature stability as compared to more simplistic feature selection techniques.
Finally, future research could develop these feature popularity frameworks in an auto-
mated manner through open-source tools to allow easier exploration of popular features
across different cyberattacks or datasets.

Appendix
See Tables 14, 15, 16, 17, 18, 19.

Page 25 of 30Zuech et al. Journal of Big Data (2022) 9:119 	

Table 14  Top 20 features for Brute Force Web Attacks ranked by Filter-based techniques

Chi Squared Information Gain Information Gain Ratio

Idle_Std Fwd_Packets_s Fwd_Packets_s

Fwd_IAT_Total Flow_Packets_s Flow_Packets_s

Flow_IAT_Std Fwd_IAT_Mean Fwd_IAT_Mean

Idle_Max Flow_IAT_Mean Flow_IAT_Mean

Flow_IAT_Max Fwd_IAT_Total Fwd_IAT_Total

Fwd_IAT_Std Flow_IAT_Std Flow_IAT_Std

Active_Min Fwd_IAT_Std Fwd_IAT_Std

Fwd_IAT_Max Flow_IAT_Max Flow_IAT_Max

Active_Mean Flow_Bytes_s Flow_Bytes_s

Bwd_IAT_Max Fwd_IAT_Max Fwd_IAT_Max

Bwd_IAT_Total Packet_Length_Mean Packet_Length_Mean

Flow_IAT_Mean Average_Packet_Size Average_Packet_Size

Fwd_IAT_Mean FwdPktLenMean FwdPktLenMean

Active_Max AvgFwdSegSize AvgFwdSegSize

Idle_Min Max_Packet_Length Max_Packet_Length

Bwd_IAT_Mean Bwd_Packets_s Bwd_Packets_s

Bwd_IAT_Min TotLenFwdPkts TotLenFwdPkts

TotLenFwdPkts Subflow_Fwd_Bytes Subflow_Fwd_Bytes

Subflow_Fwd_Bytes Packet_Length_Std Packet_Length_Std

Bwd_IAT_Std PktLenVar PktLenVar

Table 15  Top 20 features for Brute Force web attacks ranked by Supervised-based Feature
Importance Lists

XGBoost Random Forest CatBoost LightGBM

Fwd_IAT_Min AvgFwdSegSize Idle_Min FwdPktLenMean

RST_Flag_Count TotLenBwdPkts FwdPktLenStd Flow_IAT_Min

Fwd_IAT_Total Max_Packet_Length ECE_Flag_Count Fwd_IAT_Min

Flow_Packets_s FwdPktLenMean Flow_Bytes_s Bwd_IAT_Min

Flow_IAT_Max RST_Flag_Count Fwd_IAT_Total Flow_IAT_Std

act_data_pkt_fwd TotLenFwdPkts RST_Flag_Count FwdPktLenStd

Bwd_IAT_Mean Flow_Bytes_s Active_Max Flow_Bytes_s

Bwd_IAT_Min Bwd_IAT_Max Fwd_Header_Length Fwd_IAT_Total

Subflow_Fwd_Bytes BwdPktLenStd Bwd_Packets_s

FwdPktLenStd Idle_Std Bwd_IAT_Mean

AvgBwdSegSize Min_Packet_Length Flow_Packets_s

Bwd_IAT_Mean Active_Min Fwd_IAT_Std

Fwd_IAT_Std TotLenFwdPkts Fwd_Packets_s

Idle_Mean act_data_pkt_fwd Flow_IAT_Max

Subflow_Bwd_Packets TotLenFwdPkts

Bwd_IAT_Std Idle_Std

Fwd_IAT_Total Fwd_Header_Length

BwdPktLenMean Flow_IAT_Mean

Fwd_IAT_Min FwdPktLenMax

Flow_Packets_s Total_Backward_Packets

Page 26 of 30Zuech et al. Journal of Big Data (2022) 9:119

Table 16  Top 20 features for SQL Injection web attacks ranked by Filter-based techniques

Chi Squared Information Gain Information Gain Ratio

Fwd_IAT_Total Fwd_Packets_s Fwd_Packets_s

Idle_Max Flow_Packets_s Flow_Packets_s

Bwd_IAT_Total Flow_IAT_Mean Flow_IAT_Mean

Idle_Mean Fwd_IAT_Mean Fwd_IAT_Mean

Idle_Min Fwd_IAT_Total Fwd_IAT_Total

Fwd_IAT_Max Bwd_Packets_s Bwd_Packets_s

Fwd_IAT_Min Flow_IAT_Max Flow_IAT_Max

Fwd_IAT_Mean Flow_IAT_Std Flow_IAT_Std

Flow_IAT_Min Fwd_IAT_Max Fwd_IAT_Max

Flow_IAT_Mean Fwd_IAT_Std Fwd_IAT_Std

Flow_IAT_Max Flow_Bytes_s Flow_Bytes_s

PktLenVar PktLenVar PktLenVar

Bwd_IAT_Max Packet_Length_Std Packet_Length_Std

Bwd_IAT_Min Bwd_IAT_Std Bwd_IAT_Std

Active_Max Bwd_IAT_Mean Bwd_IAT_Mean

Flow_Bytes_s FwdPktLenStd FwdPktLenStd

Fwd_IAT_Std Bwd_IAT_Total Bwd_IAT_Total

Active_Mean BwdPktLenStd BwdPktLenStd

Idle_Std Packet_Length_Mean Packet_Length_Mean

Bwd_IAT_Mean Max_Packet_Length Max_Packet_Length

Table 17  Top 20 features for SQL Injection web attacks ranked by Supervised-based Feature
Importance Lists

XGBoost Random Forest CatBoost LightGBM

Max_Packet_Length BwdPktLenMax ECE_Flag_Count Flow_IAT_Min

BwdPktLenMax Flow_Packets_s Fwd_IAT_Max Flow_Bytes_s

Bwd_IAT_Min Flow_IAT_Mean PSH_Flag_Count Fwd_IAT_Min

TotLenFwdPkts RST_Flag_Count Max_Packet_Length BwdPktLenStd

RST_Flag_Count FwdPktLenMax Total_Fwd_Packets Bwd_Packets_s

Packet_Length_Mean AvgBwdSegSize Bwd_IAT_Max Bwd_IAT_Min

Flow_IAT_Max Total_Backward_Packets Subflow_Bwd_Bytes FwdPktLenMean

Fwd_Header_Length Max_Packet_Length BwdPktLenStd Fwd_IAT_Total

FwdPktLenStd ECE_Flag_Count AvgBwdSegSize Flow_IAT_Mean

Bwd_Packets_s BwdPktLenMean FwdPktLenMax FwdPktLenMax

Packet_Length_Std Subflow_Bwd_Packets Subflow_Bwd_Packets Flow_Packets_s

Bwd_IAT_Max Fwd_IAT_Total Bwd_Header_Length Flow_IAT_Max

FwdPktLenMax BwdPktLenStd TotLenBwdPkts Fwd_IAT_Mean

Flow_Bytes_s Fwd_IAT_Max Down_Up_Ratio TotLenFwdPkts

Bwd_IAT_Mean FwdPktLenMean FwdPktLenStd

Fwd_IAT_Std Flow_IAT_Std Fwd_Packets_s

Fwd_IAT_Min min_seg_size_forward Fwd_IAT_Std

FwdPktLenMean PktLenVar Flow_IAT_Std

Flow_Packets_s Packet_Length_Std Fwd_IAT_Max

Fwd_IAT_Mean Flow_IAT_Max PktLenVar

Page 27 of 30Zuech et al. Journal of Big Data (2022) 9:119 	

Table 18  Top 20 features for XSS web attacks ranked by Filter-based techniques

Chi Squared Information Gain Information Gain Ratio

Bwd_IAT_Total Fwd_Packets_s Fwd_Packets_s

Fwd_IAT_Total Flow_Packets_s Flow_Packets_s

Idle_Min Fwd_IAT_Mean Fwd_IAT_Mean

Idle_Mean Fwd_IAT_Total Fwd_IAT_Total

Flow_IAT_Max Flow_IAT_Mean Flow_IAT_Mean

Fwd_IAT_Max Flow_IAT_Std Flow_IAT_Std

Idle_Max Fwd_IAT_Std Fwd_IAT_Std

Fwd_IAT_Mean Fwd_IAT_Max Fwd_IAT_Max

Fwd_IAT_Min Flow_IAT_Max Flow_IAT_Max

Flow_IAT_Min Flow_Bytes_s Flow_Bytes_s

Flow_IAT_Mean Bwd_Packets_s Bwd_Packets_s

Bwd_IAT_Max PktLenVar PktLenVar

TotLenFwdPkts Packet_Length_Std Packet_Length_Std

Subflow_Fwd_Bytes Packet_Length_Mean Packet_Length_Mean

PktLenVar Average_Packet_Size Average_Packet_Size

Subflow_Bwd_Bytes FwdPktLenMean FwdPktLenMean

TotLenBwdPkts AvgFwdSegSize AvgFwdSegSize

Bwd_IAT_Std TotLenFwdPkts TotLenFwdPkts

Fwd_IAT_Std Subflow_Fwd_Bytes Subflow_Fwd_Bytes

Bwd_IAT_Mean Max_Packet_Length Max_Packet_Length

Table 19  Top 20 features for XSS web attacks ranked by Supervised-based Feature Importance Lists

XGBoost Random Forest CatBoost LightGBM

BwdPktLenMean BwdPktLenMax Flow_Bytes_s Flow_IAT_Min

Total_Backward_Packets BwdPktLenMean Max_Packet_Length Fwd_IAT_Min

TotLenFwdPkts Max_Packet_Length Destination_Port Flow_IAT_Mean

FIN_Flag_Count Fwd_Packets_s Fwd_IAT_Std Fwd_Packets_s

Total_Fwd_Packets Packet_Length_Std Flow_IAT_Mean Flow_Bytes_s

Flow_IAT_Min ECE_Flag_Count Bwd_IAT_Max Flow_Packets_s

BwdPktLenMax Bwd_IAT_Std Bwd_IAT_Mean Flow_IAT_Max

Bwd_IAT_Mean Idle_Min AvgBwdSegSize Bwd_Packets_s

Flow_Packets_s AvgBwdSegSize TotLenFwdPkts Fwd_IAT_Total

Down_Up_Ratio Subflow_Bwd_Packets Idle_Std Fwd_IAT_Std

Packet_Length_Std Fwd_IAT_Total Bwd_IAT_Std Fwd_IAT_Max

Flow_Bytes_s Flow_IAT_Mean Flow_IAT_Max Flow_IAT_Std

ACK_Flag_Count Flow_IAT_Max Active_Min Bwd_IAT_Std

RST_Flag_Count Fwd_IAT_Min act_data_pkt_fwd Fwd_IAT_Mean

Bwd_IAT_Max Bwd_Header_Length min_seg_size_forward BwdPktLenMin

Idle_Max Flow_IAT_Min Fwd_Header_Length

Fwd_IAT_Std Active_Mean Bwd_IAT_Min

Packet_Length_Mean Idle_Max Packet_Length_Std

Active_Min Packet_Length_Mean Bwd_IAT_Total

Bwd_Packets_s Fwd_IAT_Max PktLenVar

Page 28 of 30Zuech et al. Journal of Big Data (2022) 9:119

Abbreviations
XAI	� eXplainable Artificial Intelligence
FST	� Feature Selection Technique
RUS	� Random undersampling
DT	� Decision Tree
RF	� Random Forest
CB	� CatBoost
LGB	� LightGBM
XGB	� XGBoost
NB	� Naive Bayes
LR	� Logistic Regression
GBT	� Gradient Boosted Tree
AUC​	� Area Under the Receiver Operating Characteristic Curve
ROC	� Receiver Operator Characteristic
TPR	� True Positive Rate
FPR	� False Positive Rate
GOSS	� Gradient-based One-Side Sampling
EFB	� Exclusive Feature Bundling
BF	� Brute Force
XSS	� Cross-Site Scripting
FIL	� Feature Importance List
FAL	� FST Agreement List
FPL	� Feature Popularity List
OWASP	� Open Web Application Security Project
OHE	� One Hot Encoding

Acknowledgements
We would like to thank the reviewers in the Data Mining and Machine Learning Laboratory at Florida Atlantic University.

Author Contributions
RZ prepared the manuscript and the primary literary review for this work. JH performed the statistical analyses. All
authors provided feedback to TMK and helped shape the research. TMK introduced this topic to RZ, and helped to com-
plete and finalize this work. All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 21 March 2022 Accepted: 20 October 2022

References
	1.	 Young J. US ecommerce sales grow 14.9% in 2019. 2020. https://​www.​digit​alcom​merce​360.​com/​artic​le/​us-​ecomm​

erce-​sales/. Accessed 28 Nov 2020
	2.	 Saeys Y, Abeel T, Van de Peer Y Robust feature selection using ensemble feature selection techniques. In: Joint Euro-

pean conference on machine learning and knowledge discovery in databases. Springer; 2008. p. 313–325
	3.	 Seijo-Pardo B, Porto-Díaz I, Bolón-Canedo V, Alonso-Betanzos A. Ensemble feature selection: homogeneous and

heterogeneous approaches. Knowl Based Syst. 2017;118:124–39.
	4.	 Kalousis A, Prados J, Hilario M. Stability of feature selection algorithms: a study on high-dimensional spaces. Knowl

Inf Syst. 2007;12(1):95–116.
	5.	 Zuech R, Hancock J, Khoshgoftaar TM. Feature popularity between different web attacks with supervised feature

selection rankers. In: 2021 20th IEEE international conference on machine learning and applications (ICMLA). IEEE;
2021. p. 30–37

	6.	 Sharafaldin I, Lashkari AH, Ghorbani AA. Toward generating a new intrusion detection dataset and intrusion traffic
characterization. In: ICISSP. 2018. p. 108–116

	7.	 CICIDS2017 Dataset. 2020. https://​www.​unb.​ca/​cic/​datas​ets/​ids-​2017.​html. Accessed 28 Aug 2020

https://www.digitalcommerce360.com/article/us-ecommerce-sales/
https://www.digitalcommerce360.com/article/us-ecommerce-sales/
https://www.unb.ca/cic/datasets/ids-2017.html

Page 29 of 30Zuech et al. Journal of Big Data (2022) 9:119 	

	8.	 Leevy JL, Khoshgoftaar TM, Bauder RA, Seliya N. A survey on addressing high-class imbalance in big data. J Big Data.
2018;5(1):1–30.

	9.	 Soltysik RC, Yarnold PR. Megaoda large sample and big data time trials: separating the chaff. Optim Data Anal.
2013;2:194–7.

	10.	 Cao M, Chychyla R, Stewart T. Big data analytics in financial statement audits. Account Horiz. 2015;29(2):423–9.
	11.	 OWASP Top Ten webpage. 2020. https://​owasp.​org/​www-​proje​ct-​top-​ten/. Accessed 10 Aug 2021
	12.	 Sarhan M, Layeghy S, Portmann M. An explainable machine learning-based network intrusion detection system for

enabling generalisability in securing iot networks. arXiv preprint arXiv:​2104.​07183 2021
	13.	 Leevy JL, Hancock J, Zuech R, Khoshgoftaar TM. Detecting cybersecurity attacks across different network features

and learners. J Big Data. 2021;8(1):1–29.
	14.	 Fitni QRS, Ramli K. Implementation of ensemble learning and feature selection for performance improvements in

anomaly-based intrusion detection systems. In: 2020 IEEE international conference on industry 4.0, artificial intel-
ligence, and communications technology (IAICT). IEEE; 2020. p. 118–124.

	15.	 Beechey M, Kyriakopoulos KG, Lambotharan S. Evidential classification and feature selection for cyber-threat hunt-
ing. Knowl Based Syst. 2021;226:107120.

	16.	 Hua Y. An efficient traffic classification scheme using embedded feature selection and lightgbm. In: 2020 informa-
tion communication technologies conference (ICTC). IEEE; 2020. p. 125–130.

	17.	 Zhang H, Huang L, Wu CQ, Li Z. An effective convolutional neural network based on smote and gaussian mixture
model for intrusion detection in imbalanced dataset. Comput Netw. 2020;177: 107315.

	18.	 CSE-CIC-IDS2018 Dataset. 2020. https://​www.​unb.​ca/​cic/​datas​ets/​ids-​2018.​html. Accessed 28 Aug 2020
	19.	 Arlot S, Celisse A, et al. A survey of cross-validation procedures for model selection. Stat Surv. 2010;4:40–79.
	20.	 Kohavi R, et al. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Ijcai.

Montreal, Canada; 1995. p. 14, 1137–1145 .
	21.	 Zuech R, Hancock J, Khoshgoftaar TM. Investigating rarity in web attacks with ensemble learners. J Big Data.

2021;8(1):1–27.
	22.	 Scikit-learn website. 2020. https://​scikit-​learn.​org/​stable/. Accessed 30 Jan 2021
	23.	 Myles AJ, Feudale RN, Liu Y, Woody NA, Brown SD. An introduction to decision tree modeling. J Chemom J Chemom

Soc. 2004;18(6):275–85.
	24.	 Raileanu LE, Stoffel K. Theoretical comparison between the gini index and information gain criteria. Ann Math Artif

Intell. 2004;41(1):77–93.
	25.	 Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
	26.	 Breiman L. Bagging predictors. Mach Learn. 1996;24(2):123–40.
	27.	 CatBoost home page. 2020. https://​catbo​ost.​ai/. Accessed 28 Aug 2020
	28.	 Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A. Catboost: unbiased boosting with categorical features.

In: Advances in neural information processing systems. 2018. p. 6638–6648
	29.	 LightGBM GitHub website. 2020. https://​github.​com/​micro​soft/​Light​GBM. Accessed 28 Aug 2020
	30.	 Natekin A, Knoll A. Gradient boosting machines, a tutorial. Front Neurorobot. 2013;7:21.
	31.	 Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y. Lightgbm: a highly efficient gradient boosting decision

tree. In: Advances in neural information processing systems. 2017. p. 3146–3154
	32.	 Chen T, Guestrin C. Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd international

conference on knowledge discovery and data mining. 2016. p. 785–794
	33.	 Guo C, Berkhahn F. Entity embeddings of categorical variables. 2016. arXiv preprint arXiv:​1604.​06737
	34.	 Scikit-learn Documentation—Feature Selection. 2020. https://​scikit-​learn.​org/​stable/​modul​es/​featu​re_​selec​tion.​

html. Accessed 16 Aug 2021
	35.	 Zien A, Krämer N, Sonnenburg S, Rätsch G. The feature importance ranking measure. In: Joint European conference

on machine learning and knowledge discovery in databases. Springer; 2009. p. 694–709 .
	36.	 Scikit-learn Documentation - chi2 Feature Selection. 2020. https://​scikit-​learn.​org/​stable/​modul​es/​gener​ated/​sklea​

rn-.​featu​re_​selec​tion.​chi2.​html. Accessed 16 Aug 2021
	37.	 Vergara JR, Estévez PA. A review of feature selection methods based on mutual information. Neural Comput Appl.

2014;24(1):175–86.
	38.	 Mohammad AH. Comparing two feature selections methods information gain and gain ratio on three different clas-

sification algorithms using arabic dataset. J Theor Appl Inf Technol 2018; 96(6)
	39.	 info_gain Pypi project. 2020. https://​pypi.​org/​proje​ct/​info-​gain/. Accessed 16 Aug 2021.
	40.	 Bradley AP. The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Rec-

ogn. 1997;30(7):1145–59.
	41.	 Day JD, Zimmermann H. The OSI reference model. Proc IEEE. 1983;71(12):1334–40.
	42.	 Lashkari AH, Draper-Gil G, Mamun MSI, Ghorbani AA. Characterization of tor traffic using time based features. In:

ICISSp, 2017. p. 253–262
	43.	 Draper-Gil G, Lashkari AH, Mamun MSI, Ghorbani AA. Characterization of encrypted and vpn traffic using time-

related. In: Proceedings of the 2nd international conference on information systems security and privacy (ICISSP).
2016. p. 407–414

	44.	 OWASP A2:2017-Broken Authentication. 2020. https://​owasp.​org/​www-​proje​ct-​top-​ten/​2017/​A2_​2017-​Broke​n-_​
Authe​ntica​tion. Accessed 10 Aug 2021

	45.	 OWASP A10:2017-Insufficient Logging & Monitoring. 2020. https://​owasp.​org/​www-​proje​ct-​top-​ten/​2017/​A10_​
2017--​Insuf​fi cie​nt_​Loggi​ng%​2526M​onito​ring. Accessed 10 Aug 2021

https://owasp.org/www-project-top-ten/
http://arxiv.org/abs/2104.07183
https://www.unb.ca/cic/datasets/ids-2018.html
https://scikit-learn.org/stable/
https://catboost.ai/
https://github.com/microsoft/LightGBM
http://arxiv.org/abs/1604.06737
https://scikit-learn.org/stable/modules/feature_selection.html
https://scikit-learn.org/stable/modules/feature_selection.html
https://scikit-learn.org/stable/modules/generated/sklearn-.feature_selection.chi2.html
https://scikit-learn.org/stable/modules/generated/sklearn-.feature_selection.chi2.html
https://pypi.org/project/info-gain/
https://owasp.org/www-project-top-ten/2017/A2_2017-Broken-_Authentication
https://owasp.org/www-project-top-ten/2017/A2_2017-Broken-_Authentication
https://owasp.org/www-project-top-ten/2017/A10_2017--Insufficient_Logging%2526Monitoring
https://owasp.org/www-project-top-ten/2017/A10_2017--Insufficient_Logging%2526Monitoring

Page 30 of 30Zuech et al. Journal of Big Data (2022) 9:119

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	A new feature popularity framework for detecting cyberattacks using popular features
	Abstract
	Introduction
	Related work
	Methodologies
	Data preparation
	Classifiers
	Feature selection techniques and rankers
	Supervised learning-based FST rankers
	Filter-based FST rankers

	Classification performance metrics
	Feature popularity metrics
	New feature popularity framework

	Creating feature popularity lists with web attack datasets
	Create feature importance lists (Step 1)
	Create FST agreement lists (Step 2)
	Create feature popularity lists (Step 3)

	Results and discussion
	Dataset similarity
	Feature popularity performance
	Cybersecurity analysis and insights

	Conclusion
	Acknowledgements
	References

