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Abstract 

We propose a novel feature popularity framework, and introduce this new framework 
to the cybersecurity domain. Feature popularity has not yet been used in machine 
learning or data mining, and we implement it with three web attacks from the CSE-CIC-
IDS2018 dataset: Brute Force, SQL Injection, and XSS web attacks. Feature popularity 
is based upon ensemble Feature Selection Techniques (FSTs) and allows us to more 
easily understand common and important features between different cyberattacks. 
Three filter-based and four supervised learning-based FSTs are used to generate fea-
ture subsets for each of our three different web attack datasets, and then our feature 
popularity frameworks are applied. Classification performance for feature popularity is 
mostly similar as compared to when “all features” are evaluated (with feature popularity 
subsets having better performance in 5 out of 15 experiments). Our feature popularity 
technique effectively builds an ensemble of ensembles by first building an ensemble 
of FSTs for each dataset, and then building another ensemble across a dataset agree-
ment dimension. The Jaccard similarity is also employed with our feature popularity 
framework in order to better identify which attack classes should (or should not) be 
grouped together when applying feature popularity. The four most popular features 
across all three web attacks from this experiment are: Flow_Bytes_s, Flow_IAT_Max, 
Fwd_IAT_Std, and Fwd_IAT_Total. When only using these four features as input to our 
models, classification performance is not seriously degraded. This feature popularity 
framework granted us new and previously unseen insights into the web attack detec-
tion process with CSE-CIC-IDS2018 big data, even though we had intensely studied it 
previously. We realized these four particular features cannot properly identify our three 
web attacks, as they operate mainly from the time dimension and NetFlow features 
from layers 3 and 4 of the OSI model. Conversely, our three web attacks operate in the 
application layer (7) of the OSI model and should not leave signatures in these four 
features. Feature popularity produces easier to explain models which provide domain 
experts better visibility into the problem, and can also reduce the complexity of imple-
menting models in real-world systems.
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Introduction
With consumers spending over $600 billion on e-commerce in the United States dur-
ing 2019 [1], cybersecurity is becoming increasingly important to help defend against 
attackers. Machine learning can be employed to help in detecting cyberattacks. Feature 
selection is a common technique used by machine learning practitioners. Benefits of fea-
ture selection include improving classification efficiency by training models with fewer 
features which requires less computing resources, and feature selection can sometimes 
even improve classification performance.

Another benefit of feature selection, in the context of cybersecurity, is it can help 
practitioners better understand the attack detection process. This can be accomplished 
because feature selection can identify the most important features during the model 
building process. Gaining a better understanding of the most important features not 
only helps during the machine learning model building process, but it can be even more 
helpful when machine learning models are deployed and implemented into real-world 
products and systems.

Various Feature Selection Techniques (FSTs) can generate very different feature lists 
on the same dataset (which we identify throughout this study). However, finding “com-
mon features” between different FSTs can sometimes help us find an even better feature 
subset through the diversity of different FSTs acting in an ensemble [2, 3]. While ensem-
ble FSTs can sometimes improve classification performance, they might still be desirable 
even with minor degradations in classification performance. Reasons for using ensemble 
FSTs with minor decreases in performance may include: feature stability [4], reducing 
model complexity for real-world implementations, and simply providing models which 
are easier to understand and are more explainable.

Feature similarity is a concept which is implicit in the ensemble FST process. For 
example, an ensemble FST can find similar (or “common”) features between the differ-
ent FSTs by identifying features which appear in common among the “Top N” Feature 
Importance Lists from different FSTs. However, we extend this concept and introduce 
the notion of “feature popularity” [5] by also finding common features across different 
datasets. For example, in cybersecurity there are different types of cyberattacks and we 
can generate different datasets which are based upon those different attacks.

To explore feature popularity, we utilize the CSE-CIC-IDS2018 dataset which was cre-
ated by Sharafaldin et al. [6]. CSE-CIC-IDS2018 is a more recent version of the popular 
CIC-IDS2017 dataset [7], which was also created by Sharafaldin et  al. The CSE-CIC-
IDS2018 dataset includes over 16 million instances which includes normal instances, as 
well as the following family of attacks: web attack, Denial of Service (DoS), Distributed 
Denial of Service (DDoS), brute force, infiltration, and botnet.

The CSE-CIC-IDS2018 dataset is big data, as it contains over 16 million instances. 
While big data has not been formally defined in terms of the number of instances, one 
study [8] considers only 100,000 instances to be big data. Other studies [9, 10] have 
considered 1,000,000 instances to be big data. Since CSE-CIC-IDS2018 is more than 
1,000,000 instances, we consider it to be big data as well.

Given its richness in containing many different attack labels, CSE-CIC-IDS2018 is a 
good dataset for investigating feature popularity. To do so, we only evaluate the following 
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three different web attacks from CSE-CIC-IDS2018: Brute Force (BF), Cross-Site Script-
ing (XSS), and SQL Injection (which we commonly refer to only as “SQL” throughout 
this document). Basically, we generate three new datasets by combining each of these 
three attack labels with all of the normal traffic from the full CSE-CIC-IDS2018 data-
set. We then compare feature popularity results between these three different web attack 
datasets.

Brute Force web attacks correspond to brute force login attacks targeting web pages. 
Next, the XSS web attack refers to where attackers inject malicious client-side scripts 
into susceptible web pages targeting web users which view those pages. Finally, the SQL 
Injection web attack represents a code injection technique where attackers craft special 
sequences of characters and submit them to web page forms in an attempt to directly 
query the back-end database of that website. The feature popularity techniques which we 
introduce to CSE-CIC-IDS2018 in this study allows us to visually explain and quantify 
common features across these three different web attacks.

We selected web attacks to implement feature popularity because they are important 
to cybersecurity practitioners and they still commonly appear in the Open Web Appli-
cation Security Project (OWASP) “Top 10 Web Application Security Risks" [11]. Also, 
the web attacks from the CSE-CIC-IDS2018 have three different web attack labels, and 
this allows us to partition the datasets into three new datasets in order to implement 
feature popularity. In other words, with feature popularity we can find the most popular 
features across these three different web attacks by applying feature popularity to these 
three newly created datasets.

The remaining sections of this paper are organized as follows. The "Related work" sec-
tion studies existing literature for feature popularity with CSE-CIC-IDS2018 data. Then, 
the "Methodologies" section describes the data preparation, classifiers, FSTs, perfor-
mance metrics, and feature popularity techniques applied in our experiments. Next, we 
provide a walk-through example of feature popularity in the Creating Feature Popularity 
Lists with Web Attack Datasets section. The "Results and discussion" section provides 
our results and analysis. Finally, the "Conclusion" section concludes our work.

Related work
Sarhan et  al. [12] focus on how to explain models with feature selection and the eX-
plainable Artificial Intelligence (XAI) method using the CSE-CIC-IDS2018 dataset. 
Their motivation in using this XAI method is to be able to more easily explain the attack 
detection process through a better understanding of what the most important features 
are after applying the feature selection process. To score the most important features, 
they assign a Shapley value to each of the features. The Shapley value “is the weighted 
average of the respective contribution of a feature value” (which is essentially the amount 
a feature contributes towards making a prediction).

Random Forest and Deep Feed Forward classifiers are employed by Sarhan et al. to 
score the top 20 features of CSE-CIC-IDS2018 with Shapley values. These two differ-
ent classifiers produce two very different lists of top 20 features for each of the clas-
sifiers. For example, the top ranked feature from the Deep Feed Forward classifier is 
Bwd_Packets_s, while the Random Forest classifier ranks this same feature as the 16th 
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best feature overall. It is difficult to ascertain how similar the two feature subsets are 
between the two different classifiers. Their research does not compare the feature simi-
larity between these two different feature subsets like our research does. They do not 
benchmark the classification performance of only using the top 20 features versus all 
of the features, but their main motivation is to better explain and interpret the clas-
sification models by understanding the most important features used to generate those 
models.

Leevy et al. [13] apply an ensemble feature selection technique to the full CSE-CIC-
IDS2018 dataset, and employ binary classification by merging the multiple attacks to 
one attack label. The ensemble feature selection technique considers seven different 
FSTs, of which three are filter-based FSTs and four are supervised FSTs. Different fea-
ture subsets are generated by finding common features among the seven different FSTs 
where a certain number of the FSTs agree. This ensemble FST concept is similar to this 
current study, but the main difference is that study only considers one attack dataset 
while this current study extends the approach by also finding common features across 
multiple attack datasets. In other words, this current study is different as it not only finds 
common features for a single attack dataset, but it also finds common features across 
multiple attacks. Also, the current study introduces the Jaccard similarity for quantifying 
feature subset similarity between different attacks.

Fitni et  al. [14] compare two different feature selection techniques with the full 
CSE-CIC-IDS2018 dataset and map the multiple attacks to a binary classification 
problem with only attack and normal labels. Their two feature selection techniques 
are Chi-Squared (top 22 features) and Spearman’s rank correlation coefficient (top 23 
features), and they compare these two FSTs with Logistic Regression and Decision 
Tree classifiers. The Spearman’s rank correlation coefficient technique performed bet-
ter with F1 scores of 0.983 and 0.974, as compared to the Chi-Squared results of F1 
scores of 0.791 and 0.974. Also, the full feature set performed best with the Decision 
Tree yielding an Area Under the Receiver Operating Character-istic Curve (AUC) 
score of 0.975.

Based on the results of these two classifiers (Logistic Regression and Decision Tree), 
Fitni et  al. performed further experimentation using seven classifiers with only the 
Spearman’s rank correlation coefficient FST and the full feature set. They do a nice job 
displaying their feature subsets which provides good insight into the attack detection 
process (similar to the XAI motivations of Sarhan et al. [12]). However, their research 
does not consider feature popularity concepts like our study does.

Beechey et  al. [15] apply feature selection to the Goldeneye and Slowloris Denial of 
Services attacks from CSE-CIC-IDS2018. Their dataset only considers one day out of the 
ten days of available network traffic from CSE-CIC-IDS2018 with 1,048,575 instances, 
while our experiment considers all ten days of normal traffic encompassing over 13 mil-
lion instances. Eight feature selection techniques were employed with at least six classifi-
ers, and their Table 6 indicates perfect AUC scores for several combinations of FSTs and 
classifiers (sometimes overfitting can be associated with perfect classification). While 
Beechey et  al. and others [16] apply feature ranking techniques to CSE-CIC-IDS2018, 
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they do not explore the notion of feature popularity between different attacks or com-
mon features between different FSTs.

We thoroughly surveyed Google Scholar to find related works to CSE-CIC-IDS2018 
and our feature popularity research, and we searched for terms like “feature popular-
ity”, “CSE-CIC-IDS2018 feature similarity”, and “CSE-CIC-IDS2018 feature selection”. 
First, Google Scholar did not provide any results significantly related to our “feature 
popularity” focus from any application domain, and so we are the first to conceive the 
feature popularity concept. Second, after reviewing more than 261 CSE-CIC-IDS2018 
works at the time of this writing, only the works by Sarhan et al. [12] and Leevy et al. 
[13] had aspects which were remotely similar to our feature popularity research. While 
the rest of the CSE-CIC-IDS2018 corpus did contain some feature selection aspects, we 
only included [14, 15] as those had the most compelling details of feature ranking with 
CSE-CIC-IDS2018.

The XAI method highlighted by Sarhan et  al. provides good insights, and we agree 
that a better understanding and explanation of feature subsets is important to the attack 
detection process when implementing machine learning models in the real world. More-
over, this is especially important when considering different attacks like we have done, 
as different attacks can generate very different feature subsets. To the best of our knowl-
edge, ours is the first study to define the concept of feature popularity, especially in the 
context of network intrusion detection. In addition, it is the first study to utilize the Jac-
card similarity metric for examining feature similarity between different attack types.

Methodologies
Data preparation

In this section, we describe how we prepared and cleaned the dataset files used in our 
experiments. Properly documenting these steps is important in being able to reproduce 
experiments.

We dropped the “Protocol” and “Timestamp” fields from CSE-CIC-IDS2018 during 
our preprocessing steps. The “Protocol” field is somewhat redundant as the “Dst Port” 
(Destination_Port) field mostly contains equivalent “Protocol” values for each Destina-
tion_Port value. Additionally, we dropped the “Timestamp” field as we wanted the learn-
ers not to discriminate attack predictions based on time, especially with more stealthy 
attacks in mind. In other words, the learners should be able to discriminate attacks 
regardless of whether the attacks are high volume or slow and stealthy. Dropping the 
“Timestamp” field also allows us the convenience of combining or dividing the datasets 
into ways more compatible with our experimental frameworks. Additionally, a total of 
59 records were dropped from CSE-CIC-IDS2018 due to header rows being repeated in 
certain days of the datasets. These duplicates were easily found and removed by filtering 
records based on a white list of valid label values.

The fourth downloaded file named “Thuesday-20-02-2018_TrafficForML_CICFlow-
Meter.csv” was different than the other nine files from CSE-CIC-IDS2018. This file con-
tained four extra columns: “Flow ID”, “Src IP”, “Src Port”, and “Dst IP”. We dropped these 
four additional fields. Also of note is that this one particular file contained nearly half of 
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all the records for CSE-CIC-IDS2018. This fourth file contained 7,948,748 records of the 
dataset’s total 16,232,943 records.

Certain fields contained negative values which are invalid values and so we dropped 
those instances with negative values for the “Fwd_Header_Length”, “Flow_Duration”, 
and “Flow_IAT_Min” fields (with a total of 15 records dropped from CSE-CIC-IDS2018 
for these fields containing negative values). Negative values in these fields were causing 
extreme values that can skew classifiers which are sensitive to outliers.

Eight fields contained constant values of zero for every instance. In other words, these 
fields did not contain any value other than zero. Before starting machine learning, we 
filtered out the following list of fields (which all had values of zero): 

1	 Bwd_PSH_Flags
2	 Bwd_URG_Flags
3	 Fwd_Avg_Bytes_Bulk
4	 Fwd_Avg_Packets_Bulk
5	 Fwd_Avg_Bulk_Rate
6	 Bwd_Avg_Bytes_Bulk
7	 Bwd_Avg_Packets_Bulk
8	 Bwd_Avg_Bulk_Rate

We also excluded the “Init_Win_bytes_forward” and “Init_Win_bytes_backward” fields 
because they contained negative values. These fields were excluded since about half 
of the total instances contained negative values for these two fields (so we would have 
removed a very large portion of the dataset by filtering all these instances out). Similarly, 
we did not use the “Flow_Duration” field as some of those values were unreasonably low 
with zero values.

The “Flow Bytes/s” and “Flow Packets/s” fields contained some “Infinity” and “NaN” 
values (with less than 0.6% of the records containing these values). We dropped these 
instances where either “Flow Bytes/s” or “Flow Packets/s” contained “Infinity” or “NaN” 
values. Upon carefully and manually inspecting the entire CSE-CIC-IDS2018 dataset for 
such values, there was too much uncertainty as to whether they were valid records or 
not. As sorted from minimum to maximum on these fields, neighboring records were 
very different where “Infinity” was found. Similar to Zhang et al. [17], we did attempt to 
impute values for these columns by taking the maximum value of the column and adding 
one. In the end, we abandoned this imputation approach and dropped 95,760 records 
from CSE-CIC-IDS2018 for records containing any “Infinity” or “NaN” values.

We also excluded the Destination_Port categorical feature which contains more than 
64,000 distinct categorical values. Since Destination_Port has so many values, we deter-
mined that finding an optimal encoding technique was out of scope for this study. For 
each of the three web attacks in Table 2, we dropped all the other attack instances and 
kept all the normal instances from all ten days in Table  1 (except for those instances 
which we removed as indicated earlier in this section). Each of the three final datasets 
for our individual web attacks ended up having roughly 13 million instances as specified 
in Table 2. For full descriptions of all 79 features of the downloaded CSE-CIC-IDS2018 
dataset, please refer to its website [18].
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Classifiers

Five different classifiers are utilized in this experiment: Decision Tree (DT), Ran-dom 
Forest (RF), CatBoost (CB), LightGBM (LGB), and XGBoost (XGB). These classifiers are 
used for two different purposes in our experiment. The first purpose these classifiers are 
employed is to implement feature selection, and the second purpose these classifiers are 
employed is to train and test our models. In other words, a classifier could first be used 
to apply feature selection and then later that same (or different) classifier could be used 
to train and test our model.

For all models trained and tested in this study, stratified 5-fold cross validation [19] is 
used. Stratified refers to evenly splitting each training and test fold so that each class is 
proportionately weighted across all folds equally. Splitting in a stratified manner is espe-
cially important when dealing with high levels of class imbalance, as randomness can 
inadvertently skew the results between the cross-validation folds [20].

To treat the severe class imbalances encountered throughout this experiment, we 
employ random undersampling (RUS). Every model trained throughout this experiment 
first applies RUS at a 1:1 sampling ratio during the model training process (sampling is 
not applied during the model testing process). Further details for how we apply RUS can 
be found in [21].

To account for randomness, each stratified 5-fold cross validation was repeated 10 
times. Therefore, all of our AUC results are the mean values from 50 measurements (5 
folds x 10 repeats). All classifiers from this experiment are implemented with Scikit-
learn [22] and their respective Python modules. Next, our five classifiers are described.

Table 1  Entire CSE-CIC-IDS2018 Dataset by files/days (only web attacks and normal traffic are used 
in our experiments)

Day Normal Instances Attack Instances

02/14 Wed - Brute Force 667,626 380,949

02/15 Thurs - DoS 996,077 52,498

02/16 Fri - DoS 446,772 601,802

02/20 Tues - DDoS 7,372,557 576,191

02/21 Wed - DDoS 360,833 687,742

02/22 Thu - Web 1,048,213 362

02/23 Fri - Web 1,048,009 566

02/28 Wed - Infiltration 544,200 688,871

03/01 Thurs - Infiltration 238,037 93,063

03/02 Fri - Bot 762,384 286,191

Total Records 13,484,708 2,748,235

Table 2  Web attacks used in this experiment from CSE-CIC-IDS2018

Attack type Attack instances Normal instances

Brute Force (BF) Web 611 13,390,234

Sql Injection (SQL) Web 87 13,390,234

XSS Web 230 13,390,234
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Decision Tree is a learner which builds branches of a tree by splitting on features based 
on a cost [23]. The algorithm will attempt to select the most important features to split 
branches upon, and iterate through the feature space by building leaf nodes as the tree 
is built. Cost functions utilized to evaluate splits in the branches are Entropy and Gini 
impurity [24].

Random Forest is an ensemble of independent decision trees. Each instance is initially 
classified by every individual decision tree, and the instance is then finally classified by 
consensus among the individual trees (e.g., majority voting) [25]. Diversity among the 
individual decision trees can improve overall classification performance, and so bag-
ging is introduced to each of the individual decision trees to promote diversity. Bagging 
(bootstrap aggregation) [26] is a technique to sample the dataset with replacement to 
accommodate randomness for each of the decision trees.

CatBoost [27] is based on gradient boosting, and is essentially another ensemble of 
tree-based learners. It utilizes an ordered boosting algorithm [28] to overcome predic-
tion shifting difficulties which are common in gradient boosting. CatBoost has native 
built-in support for categorical features.

LightGBM, or Light Gradient Boosted Machine [29], is another learner based on Gra-
dient Boosted Trees (GBTs) [30]. To optimize and avoid the need to scan every instance 
of a dataset when considering split points, LightGBM implements Gradient-based One-
Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) algorithms [31]. LightGBM 
also offers native built-in support for categorical features.

XGBoost is another ensemble based on GBTs. To help determine splitting points, 
XGBoost utilizes a Weighted Quantile Sketch algorithm [32] to improve upon where 
split points should occur. Additionally, XGBoost employs a sparsity-aware algorithm to 
help with sparse data to determine default tree directions for missing values. Categori-
cal features are not natively supported by XGBoost, and must be encoded outside of the 
learner with a technique such as One Hot Encoding (OHE) [33].

Unless specified otherwise here, default values were utilized for hyper-parameters with 
the classifiers. To prevent overfitting with Decision Tree, max_depth = 5 was assigned. 
For Random Forest, both n_estimators = 5 and max_depth = 6 were set to prevent over-
fitting. When using CatBoost both iterations = 4 and max_depth = 5 were assigned to 
prevent overfitting, while thread_count = 8 was set to take advantage of parallel pro-
cessing functionality. Finally, with XGBoost both n_estimators = 4 and max_depth = 5 
were set to prevent overfitting, and n_jobs = 8 was assigned to leverage parallel process-
ing functionality. Also, objective = “binary logistic” was set to specify the objective func-
tion for binary classification with XGB.

Feature selection techniques and rankers

At its core, our new feature popularity framework utilizes underlying feature selection 
techniques to build our ensembles. Any FST can be utilized which produces ranking lists 
of the most important features, also known as Feature Importance Lists. In this study, 
all seven of the FSTs we employ utilize their respective Python libraries [34] to generate 
their respective Feature Importance Lists.



Page 9 of 30Zuech et al. Journal of Big Data           (2022) 9:119 	

These Feature Importance Lists, are based upon feature importance [35] rankings. 
Effectively, each FST will produce lists of features which are sorted and ranked accord-
ing to their most important features. While we selected only the top 20 features from 
the seven rankers in this study, future work could also experiment with different cutoff 
points for Feature Importance Lists and vary the number of features to be included. This 
experiment utilizes the following four supervised learning-based FST rankers and three 
filter-based FST rankers.

Supervised learning‑based FST rankers

The four supervised learning-based FSTs rankers from this study are implemented from 
four of our classifiers: RF, CB, LGB, and XGB. These four classifiers are used for two pur-
poses in this study. First, these four classifiers will be utilized to generate their respective 
Feature Importance Lists (rankings of the most important features). Second, these four 
classifiers are also used later in the experiment to train and test our machine learning 
models. The Decision Tree classifier is also used to train and test our machine learning 
models, but DT is not used in the FST process to build Feature Importance Lists. Future 
work can consider experimenting with different underlying FSTs and the feature popu-
larity framework.

These supervised learning-based FST rankers offer a simple feature selection tech-
nique in the sense that they are implemented by the Feature Importance Lists from their 
respective RF, CB, LGB, and XGB Python libraries. For example, to generate the top 20 
feature rankings with the RF supervised learning-based FST ranker, its Python library 
would generate a Feature Importance List and we would select the top 20 features from 
that list. Essentially, the Feature Importance Lists being generated from these super-
vised learning-based FST rankers are effectively serving as a feature selection technique. 
Please note that sometimes these supervised learning-based FST rankers might only 
produce less than 20 features, and in those cases their Feature Importance Lists will con-
tain less than 20 features.

Filter‑based FST rankers

Three filter-based FST rankers are applied in this study: Chi Squared, Information Gain, 
and Information Gain Ratio. Filter-based techniques utilize independent algorithms or 
statistical measurements when selecting features, and filter techniques are easily identi-
fied since they do not use learning algorithms in the feature selection process. Feature 
Importance Lists are generated from these three filter-based FST rankers in the same 
manner as the supervised learning-based FST rankers. These three FSTs are described 
below.

The Chi Squared technique tests which variables are most independent to the class, 
and the “chi2” function [36] from Python is used to calculate this list of ranked features. 
Information Gain, which is also known as Mutual Information evaluates features to 
determine which one maximizes the information gained [37]. Information Gain Ratio 
is similar to Information Gain, but Information Gain Ratio decreases its bias when the 
number of branching features is high [38]. In this experiment, both Information Gain 
and Information Gain Ratio are implemented with “info_gain” and “info_gain_ratio” 
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Python functions from [39]. Further details for how we implement these three filter-
based FST rankers can be found in [13].

Classification performance metrics

AUC is a metric which measures the area under the Receiver Operator Charac- teristic 
(ROC) curve. The ROC curve is a plot of the True Positive Rate (TPR) along the y-axis 
versus the False Positive Rate (FPR) along the x-axis. The area under this ROC curve 
corresponds to a numeric value ranging between 0.0 to 1.0, where an AUC value equal 
to 1.0 would correspond to a perfect classification system. An AUC value of 0.5 would 
represent a classifier system performing as well as a random guess, similar to flipping a 
coin. The AUC metric scores how effective a classification system is in terms of compar-
ing TPR to FPR across all classification thresholds [40].

Feature popularity metrics

The Jaccard similarity metric allows us to obtain quantitative scores for how similar 
feature sets are between each other. If we have a set of features from one dataset and 
another set of features from a different dataset, then we can score how similar these fea-
ture sets are with the Jaccard similarity. The Jaccard similarity of two sets is the ratio of 
the size of the intersection of the sets to the size of the union of the sets. That is, for two 
sets A and B, their Jaccard similarity is:

We calculate the Jaccard similarity for pairs of different web attacks, and present those 
Jaccard similarity scores in tables in the "Results and discussion" section. These tables 
give the reader a quantitative score indicating the degree to which different FSTs agree 
between pairs of different web attacks. In other words, the Jaccard similarity gives us 
a quantitative sense for how similar feature subsets are for one web attack dataset as 
compared to a different web attack dataset after an ensemble of FSTs has been applied to 
each dataset.

New feature popularity framework

We present a new feature popularity framework which can identify popular features 
across different cyberattack datasets. For example, if we have three different web attacks 
we can identify the most popular features across these three different web attacks. Iden-
tifying the most popular features across different attack datasets enables application 
domain experts to gain new insights into the problem. By using fewer features (which are 
also the most important), models can be more explainable and less complex to imple-
ment and deploy. We introduce this new feature popularity framework to the cyberse-
curity domain, but it can be applied to any application domain which has multiple class 
labels in a dataset.

At a high level, our feature popularity framework is based upon an ensemble of ensem-
bles with respect to underlying feature selection techniques and datasets. First, Feature 

Jaccard similarity =
|A ∩ B|

|A ∪ B|
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Importance Lists are generated from the rankings of various FSTs (such as filter-based 
and supervised FSTs) for each dataset. Second, an ensemble of FSTs is built for each 
dataset where a specified number of FSTs must agree for a feature to be included in a 
“FST Agreement List”. This FST Agreement List includes features which are common 
across one particular dataset where a specified number of FSTs are in agreement for a 
particular feature to be included in this list. Third, a final ensemble across the different 
datasets constructs a “Feature Popularity List” where a feature can only be included into 
this list if it appears in a minimum number of “FST Agreement Lists” from the previous 
step. The following notations are defined to more easily provide examples of our feature 
popularity framework:

Figure 1 indicates the three main dimensions for our feature popularity framework. The 
“Feature Importance Dimension” is the first step of constructing the Feature Importance 
Lists across each dataset for each FST. Next, FST Agreement Lists are built in the “FST 
Agreement Dimension” for each dataset where a specified number of FSTs must agree 
(which is denoted by fstA ). Finally, Feature Popularity Lists are generated in the “Dataset 
Agreement Dimension” where a feature can only be included into a list if it appears in 
a minimum number of datasets (which is denoted by dsA ) for each level of fstA . In the 
next section, we provide step by step examples to illustrate our new feature popularity 
framework.

Creating feature popularity lists with web attack datasets
In this section, we visually illustrate our feature popularity framework with tables of fea-
tures being built at each step along with pseudocode listings to describe the process. 
For these examples, three datasets are constructed from CSE-CIC-IDS2018 as indicated 
in Table 2 for three different web attacks: Brute Force, SQL Injection, and XSS. For the 

nT = Number of Top (cutoff) features per FST Ranker

fstT = Total Number of FSTs

fstA = Agreement criteria of FSTs

dsT = Total Number of Datasets

dsA = Agreement criteria of Datasets

(2. build FST Agreement Lists 
finding common features among FSTs
for each dataset)

(3. build Feature Popularity Lists
finding common features across fstA and dsA)

fstT = 7

dsT = 3 nT = 20

Feature Importance Dimension

fstA = FST Agreement Dimension

dsA = Dataset Agreement Dimension

(1. build Feature Importance Lists
for each dataset and FST)

Fig. 1  Feature Popularity Dimensions
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pseudocode listings, we initialize variables in Listing 1 where we define our variables for 
our earlier notations: nT , fstT , fstA , dsT , and dsA.

Create feature importance lists (Step 1)

Creating Feature Importance Lists is the first step of the process for building Feature 
Popularity Lists. There is nothing new in this step for machine learning practitioners 
who are familiar with feature selection. In this step, we simply generate Feature Impor-
tance Lists which are standard in many machine learning Python modules (such as the 
ones we include here for supervisor-based and filter-based FSTs).

For example, the idea is to use these FSTs as Rankers to only include the Top 20 
features into our Feature Importance Lists (since nT=20). We note that other experi-
ments can easily consider using a different cutoff point for the number of top features 
to be included into these lists. Future work could also consider incorporating weighted 
numerical scores of feature importance into our feature popularity framework.

In our example, a total of 21 Feature Importance Lists will be constructed since we 
consider three datasets ( dsT=3) and seven FSTs ( fstT=7). The three web attack datasets 
are: BF, SQL, and XSS. Also as described in the "Methodologies" section, these seven 
FSTs are employed: Chi-Squared, Information Gain, Information Gain Ratio, Random 
Forest, XGBoost, Random Forest, CatBoost, and LightGBM. Listing 2 contains an exam-
ple of the pseudocode to iterate over the three datasets and seven FSTs to create these 21 
Feature Importance Lists. These 21 Feature Importance Lists are displayed in Tables 14, 
15, 16, 17, 18,  19 of the Appendix.
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Create FST agreement lists (Step 2)

Generating FST Agreement Lists is the second step of the process for building Feature 
Popularity Lists. These FST Agreement Lists are built by identifying common features 
across the seven FSTs (denoted by fstT ) for each dataset, where a specified threshold of 
these FSTs must agree (denoted by fstA ). For example, if fstA =4 then we build a FST 
Agreement List where at least four of the seven FSTs must agree in order for common 
features to appear in that particular list for that dataset.

Table 3 contains the four FST Agreement Lists for only the Brute Force web attack. 
There are four different FST Agreement Lists as we consider four different levels for fstA : 
4, 5, 6, and 7. Each numeric superscript in this table indicates the number of FSTs agree-
ing ( fstA ) on that particular feature for that particular web attack. For example, the first 
listed feature Bwd_IAT_Mean of the Brute Force web attack is found to have exactly four 
of seven (“4/7”) FSTs agree that it is a common feature between those FSTs for that web 
attack. In other words, Bwd_IAT_Mean occurs in exactly “4/7” Feature Importance Lists 
for the Brute Force web attack found in Tables 14 and 15 from the Appendix. Likewise, 
the Fwd_IAT_Total feature is found in all “7/7” FSTs for the Brute Force web attack. All 
of the other superscripts in Table 3 are found the same way by parsing their respective 

Table 3  4 FST Agreement Lists for only Brute Force web attack (superscripts indicate fstA , which is 
the number of FSTs agreeing on that feature)

BF 4/7 FSTs Agree BF 5/7 FSTs Agree BF 6/7 FSTs Agree BF 7/7 FSTs Agree

Bwd_IAT_Mean 4 Flow_Bytes_s 5 TotLenFwdPkts 6 Fwd_IAT_Total 7

Flow_IAT_Mean 4 Flow_IAT_Max 5 Fwd_IAT_Total 7

Flow_IAT_Std 4 Flow_Packets_s 5

FwdPktLenMean 4 Fwd_IAT_Std 5

Subflow_Fwd_Bytes 4 TotLenFwdPkts 6

Flow_Bytes_s 5 Fwd_IAT_Total 7

Flow_IAT_Max 5

Flow_Packets_s 5

Fwd_IAT_Std 5

TotLenFwdPkts 6

Fwd_IAT_Total 7



Page 14 of 30Zuech et al. Journal of Big Data           (2022) 9:119 

Feature Importance Lists and finding the number of FSTs which agree upon a particular 
feature in a given web attack.

Next, Table 4 provides one consolidated listing for 12 different FST Agreement Lists. 
Each of the three web attack columns actually contains four different FST Agreement 
Lists, where these four lists simply differ by fstA . We consolidated everything into one 
table so that parsing these lists is easier in the third (later) step. For example, the “4/7” 
FST Agreement List for BF contains all 11 features displayed in the BF column of Table 4 
as it is actually inclusive of the FST Agreement Lists where 5, 6, and 7 FSTs agree as well. 
Table 3 is simply just a more detailed example of the four different FST Agreement Lists 
for the Brute Force column of Table 4. These tables are the simplest way to visually illus-
trate how FST Agreement Lists are created.

Table 4  12 FST Agreement Lists for 3 Web Attacks with each having 4 levels of FST Agreement 
(numeric superscripts indicate fstA , the number of FSTs agreeing on that feature for that attack)

BF SQL XSS

Bwd_IAT_Mean 4 Bwd_IAT_Mean 4 Bwd_IAT_Std 4

Flow_IAT_Mean 4 Bwd_Packets_s 4 Bwd_Packets_s 4

Flow_IAT_Std 4 Flow_IAT_Std 4 Flow_IAT_Min 4

FwdPktLenMean 4 FwdPktLenMax 4 Flow_Packets_s 4

Subflow_Fwd_Bytes 4 FwdPktLenStd 4 Fwd_IAT_Mean 4

Flow_Bytes_s 5 Packet_Length_Std 4 Fwd_Packets_s 4

Flow_IAT_Max 5 BwdPktLenStd 5 Max_Packet_Length 4

Flow_Packets_s 5 Flow_Bytes_s 5 Packet_Length_Mean 4

Fwd_IAT_Std 5 Flow_IAT_Mean 5 PktLenVar 4

TotLenFwdPkts 6 Flow_Packets_s 5 Flow_Bytes_s 5

Fwd_IAT_Total 7 Fwd_IAT_Mean 5 Fwd_IAT_Max 5

Fwd_IAT_Std 5 Fwd_IAT_Total 5

Fwd_IAT_Total 5 Packet_Length_Std 5

Max_Packet_Length 5 TotLenFwdPkts 5

PktLenVar 5 Flow_IAT_Max 6

Flow_IAT_Max 6 Flow_IAT_Mean 6

Fwd_IAT_Max 6 Fwd_IAT_Std 6
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Listing 3 illustrates the pseudocode for building FST Agreement Lists. First, we iter-
ate over each dataset ( dsT=3) and build a specified number of FST Agreement Lists for 
each dataset. In our example, we have selected fstA =4 to be the minimum agreement 
criteria for our ensemble FST otherwise too many features would have been included 
in our FST Agreement Lists. In other words, it would be undesirable to select fstA =3 as 
many of those FST Agreement Lists would contain more than 20 features ( nT ). We have 
also selected fstA =7 to be our maximum agreement criteria. The inner loop of Listing 3 
then iterates over each of our four values for fstA={4,5,6,7}, effectively building four FST 
Agreement Lists for each of our three datasets.

Create feature popularity lists (Step 3)

Finally, creating the actual Feature Popularity Lists is the third and final step of the pro-
cess for building Feature Popularity Lists. FST Agreement Lists from the prior step are 
used as the main input of this step. The best way to understand this process is through 
a specific example like the following. Table 5 indicates the two Feature Popularity Lists 
where four of seven datasets agree ( fstA =4 and fstT=7). This table contains two different 
lists as we have one list where two of three web attack datasets agree ( dsA =2 and dsT
=3), and a second list where three of three datasets agree ( dsA =3 and dsT=3).

The “2/3 Datasets & 4/7 FSTs Agree” Feature Popularity List in Table 5 is generated 
by parsing the three FST Agreement Lists from the prior step where fstA=4. We include 
features into this new Feature Popularity Lists where at least two of the three datasets 
agree that it is a popular feature. For example, the Bwd_IAT_Mean feature is found in 
exactly two of the three FST Agreement Lists for web attacks where fstA =4 and so it is 
included in the “2/3 Datasets & 4/7 FSTs Agree” list. However, Bwd_IAT_Mean is not 
included in the “3/3 Datasets & 4/7 FSTs Agree” list because it does not occur in all three 
FST Agreement Lists for web attacks where fstA=4. Flow_Bytes_s is included in both the 
“2/3 Datasets & 4/7 FSTs Agree” and “3/3 Datasets & 4/7 FSTs Agree” Feature Popularity 

Table 5  2 Feature Popularity Lists where 4/7 FSTs Agree ( fstA =4 and dsA={2,3})

2/3 Datasets & 4/7 FSTs Agree 3/3 Datasets & 
4/7 FSTs Agree

Bwd_IAT_Mean Flow_Bytes_s

Bwd_Packets_s Flow_IAT_Max

Flow_Bytes_s Flow_IAT_Mean

Flow_IAT_Max Flow_Packets_s

Flow_IAT_Mean Fwd_IAT_Std

Flow_IAT_Std Fwd_IAT_Total

Flow_Packets_s

Fwd_IAT_Max

Fwd_IAT_Mean

Fwd_IAT_Std

Fwd_IAT_Total

Max_Packet_Length

Packet_Length_Std

PktLenVar

TotLenFwdPkts
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Lists because it occurs in all three of the FST Agreement Lists where fstA=4. In other 
words, the “3/3 Datasets” lists are a subset of the “2/3 Datasets” lists.

Next, in Table  6, Flow_Bytes_s also appears in both the ‘2/3 Datasets & 5/7 FSTs 
Agree” and “3/3 Datasets & 5/7 FSTs Agree” Feature Popularity Lists, and it is one of 
the most “popular features.” The “5/7 FSTs Agree” lists are also a subset of the “4/7 FSTs 
Agree” lists. This is one of the nice characteristics of the feature popularity technique. 
We can keep adding more (or less) restrictive criteria for fstA and dsA until we have too 
few or too many features in our Feature Popularity Lists.

Feature Popularity Lists are mostly empty for fstA =6 and fstA =7 in Tables  7 and 8. 
The only feature which appears is Flow_IAT_Max, and it appears in the least restric-
tive of these four Feature Popularity Lists where fstA =6 and dsA=2. So, we can say that 
Flow_IAT_Max is the most popular feature overall. However, we did not consider run-
ning machine learning models with only one input feature as we thought that was too 
few for the purposes of this experiment. Overall, we construct eight Feature Popular-
ity Lists with four levels of FST agreement criteria ( fstA={4,5,6,7}) and two levels of 
dataset Agreement criteria ( dsA={2,3}). However, we only conduct machine learning 
experiments with the four Feature Popularity Lists from Tables 5 and 6 as the other four 
Feature Popularity Lists were either empty or contained only one feature.

In Listing 4 we illustrate this last step with pseudocode, where the FST Agreement 
Lists from the prior step are used as the main input of building the Feature Popularity 
Lists. First, we iterate over all four values of our FST agreement criteria ( fstA={4,5,6,7}). 
Next in the inner loop, we iterate over our two values of dataset agreement criteria 
( dsA={2,3}). For each value of dsA , we are finding common (popular) features among 
the three datasets ( dsT=3) for the FST Agreement Lists for particular values of fstA . 

Table 6  2 Feature Popularity Lists where 5/7 FSTs Agree ( fstA =5 and dsA={2,3})

2/3 Datasets & 5/7 FSTs Agree 3/3 Datasets & 
5/7 FSTs Agree

Flow_Bytes_s Flow_Bytes_s

Flow_IAT_Max Flow_IAT_Max

Flow_IAT_Mean Fwd_IAT_Std

Flow_Packets_s Fwd_IAT_Total

Fwd_IAT_Max

Fwd_IAT_Std

Fwd_IAT_Total

TotLenFwdPkts

Table 7  2 Feature Popularity Lists where 6/7 FSTs Agree ( fstA =6 and dsA={2,3})

2/3 Datasets & 6/7 FSTs Agree 3/3 Datasets & 6/7 FSTs Agree

Flow_IAT_Max No Features (empty list)

Table 8  2 Feature Popularity Lists where 7/7 FSTs Agree ( fstA =7 and dsA={2,3})

2/3 Datasets & 7/7 FSTs Agree 3/3 Datasets & 7/7 FSTs Agree

No Features (empty list) No Features (empty list)
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For example, with fstA =4 and dsA=2, we will find common (popular) features where 4 
of 7 FSTs agree and 2 of 3 datasets agree. In this case, we will find common (popular) 
features among two ( dsA=2) of the three FST Agreement Lists ( dsT=3) having fstA=4. 
From the second step of our example, only three FST Agreement Lists were generated 
where fstA =4 (one for each dataset).

Results and discussion
Dataset similarity

First, results are provided for Jaccard similarity scores between the FST Agreement Lists 
of the three different web attacks: Brute Force, SQL Injection, and XSS. Jaccard similar-
ity scores are provided between these three web attacks for the following four different 
levels of FST Agreement criteria: fstA={4,5,6,7}. Tables 9, 10, 11,  12 include the Jaccard 
similarity scores for the FST Agreement Lists of these three web attacks and varying 
levels of fstA.

From Tables  9 and 10 where fstA =4 and fstA =5 respectively, we can easily observe 
that SQL and XSS have the most features in common between their respective subsets. 
However, we cannot easily determine which pairs of web attacks have the least amount 
of features in common for these two different values of FST agreement criteria. One pair 

Table 9  Jaccard similarities by dataset for FST Agreement Lists where 4/7 FSTs Agree ( fstA=4)

BF SQL XSS

BF 1.0 0.42105 0.38095

SQL 0.42105 1.0 0.61905

XSS 0.38095 0.61905 1.0

Table 10  Jaccard similarities by dataset for FST Agreement Lists where 5/7 FSTs Agree ( fstA=5)

BF SQL XSS

BF 1.0 0.45455 0.6

SQL 0.45455 1.0 0.66667

XSS 0.6 0.66667 1.0
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(BF/XSS) has the lowest score for fstA=4, while the other pair (BF/XSS) has the lowest 
score for fstA=5. Regardless, these scores are close enough to each other for our pur-
poses of generating Feature Popularity Lists as we were able to obtain a desirable amount 
of fewer and popular features in Tables 5 and 6 (where these lists had fewer than 20 fea-
tures but more than 2-3 features). In the next section, we will employ machine learning 
to determine whether we have serious performance degradation with these lists of fewer 
features.

For the Jaccard similarity scores of Tables  11 and 12 where six or seven FSTs must 
agree for the FST Agreement Lists between the three different web attacks, we notice a 
sharp dropoff in Jaccard similarity scores. This is also evidenced in the Feature Popular-
ity Lists for those FST agreement criteria in Tables 7 and 8 as well, which have mostly 
empty lists. In this regard, Jaccard similarity scores may help us understand more desir-
able FST agreement criteria thresholds to employ (by looking for steep dropoffs in 
scores).

Similarly, Jaccard similarity scores could also help us understand which different types 
of cyberattacks might be good candidates to generate Feature Popularity Lists with. Or, 
very low Jaccard similarity scores between certain cyberattacks could indicate they are 
not good candidates to group together within the same Feature Popularity Lists. And 
possibly, for different classes of attacks, they might be better suited to group them into 
separate Feature Popularity Lists. For example, if Denial of Service attack types as com-
pared to web attack types obtained very divergent Jaccard similarity scores for their FST 
Agreement Lists, then maybe separate Feature Popularity Lists could be created for each 
different class of attack as appropriate.

This is an introductory study with our feature popularity framework and only three 
different attacks. But, employing these techniques to dozens or even hundreds of dif-
ferent types of cyberattacks might be even more helpful to properly group different 
cyberattacks into different Feature Popularity Lists by using Jaccard similarity scores of 
their respective FST Agreement Lists. Future work can extend these feature popularity 
frameworks towards many different types of cyberattacks, by grouping different types of 
cyberattacks into different groupings of Feature Popularity Lists. Collectively, additional 

Table 11  Jaccard similarities by dataset for FST Agreement Lists where 6/7 FSTs Agree ( fstA=6)

BF SQL XSS

BF 1.0 na 0.2

SQL na 1.0 0.16667

XSS 0.2 0.16667 1.0

Table 12  Jaccard similarities by dataset for FST Agreement Lists where 7/7 FSTs Agree ( fstA=7); na 
values indicate there is no feature 7 out of 7 rankers agree on for at least one dataset in a pair

BF SQL XSS

BF 1.0 na na

SQL na 1.0 na

XSS na na 1.0
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Feature Popularity List groupings for different cyberattacks might even improve classi-
fication performance. Although, at a minimum, it would provide better insights into the 
application domain problem with easier to explain models.

Feature popularity performance

In this section, classification performance results are provided for both before and after 
we apply our new feature popularity framework. Overall, we observe that classification 
performance is not degraded too much with our Feature Popularity Lists which have 
fewer features. In some cases, classification performance is even improved. Regardless of 
classification performance, employing Feature Popularity Lists is a powerful framework 
which enabled us to uncover previously unseen insights into the attack detection process 
with CSE-CIC-IDS2018 data.

Table 13 provides the classification performance results with four Feature Popularity 
Lists and “All Features” for five classifiers (CB, DT, LGB, RF, and XGB) with three dif-
ferent web attacks: BF, SQL, and XSS. For the FST column, “All Features” refers to the 
full feature set of 66 features (before any feature selection technique is applied), and the 
four Feature Popularity Lists comprise: “2/3 & 4/7 Agree”, “2/3 & 5/7 Agree”, “3/3 & 4/7 
Agree”, and “3/3 & 5/7 Agree”. With these Feature Popularity Lists, the first fractional 
term refers to dsA (specifying how many datasets agree) and the second fractional term 
refers to fstA (specifying how many FSTs agree). Classification performance is presented 
in terms of AUC for these five different levels of Feature Popularity Lists in the FST col-
umn across the five classifiers for each of the three web attacks. The three different web 
attacks are represented as three columns in the table. “SD AUC” refers to the standard 
deviation for each AUC score. Top AUC scores are indicated in bold for each combina-
tion of: FST, classifier, and web attack.

Overall, when visually inspecting Table 13 we can see the classification performance 
for the Feature Popularity Lists is not seriously degraded. For 5 of the 15 classifier and 
web attack combinations, Feature Popularity Lists have higher scores as compared to “All 
Features”. The best AUC scores of the Feature Popularity Lists are not more than 0.02 
AUC lower than the “All Features” score. In other words, “All Features” AUC scores are 
not more than 0.02 AUC above the best score of the Feature Popularity Lists. In particu-
lar, the least restrictive “2/3 & 4/7 Agree” Feature Popularity List also does not perform 
worse than 0.02 AUC score of the “All Features” score. The other Feature Popularity Lists 
are just subsets of this “2/3 & 4/7 Agree” list (with fewer features due to more restric-
tive agreement criteria). Mostly throughout this experiment, classification performance 
is only mildly degraded by employing Feature Popularity Lists and performance is even 
improved in several cases.

Cybersecurity analysis and insights

A major benefit of feature popularity is providing domain experts with new insights 
from models which are more explainable. Our feature popularity framework led us to 
major discoveries into the web attack detection process within the CSE-CIC-IDS2018 
dataset, even though we had intensely researched this dataset in prior work [21]. Based 
on our survey of other CSE-CIC-IDS2018 studies, none of them have identified these 
insights into the web attack detection process as of the date of this writing.
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Our most restrictive “3/3 & 5/7 Agree” Feature Popularity List ( dsA =3 and fstA=5) 
only includes the following four features from Table  6: Flow_Bytes_s (flow bytes per 
second), Flow_IAT_Max (maximum time between two flows), Fwd_IAT_Std (standard 
deviation time between two packets sent in the forward direction), and Fwd_IAT_Total 
(total time between two packets sent in the forward direction). Using only these four 
input features, our machine learning models from Table 13 achieved favorable classifi-
cation performance which was nearly as good as the “All Features” dataset. All four of 

Table 13  Classification performance for 4 feature popularity lists (plus all features), 3 web attacks, 
and 5 classifiers

Bold values indicate the best AUC score for each web attack and FST.

Brute force (web) SQL injection (web) XSS (web)

CatBoost

 FST AUC​ SD AUC​ AUC​ SD AUC​ AUC​ SD AUC​

 All Features 0.93277 0.00920 0.90008 0.02382 0.93743 0.01432

 2/3 & 4/7 Agree 0.91121 0.01242 0.87876 0.03297 0.92574 0.01290

 2/3 & 5/7 Agree 0.91121 0.01322 0.86604 0.02766 0.92791 0.01226

 3/3 & 4/7 Agree 0.88749 0.01398 0.87531 0.03579 0.92627 0.01420

 3/3 & 5/7 Agree 0.88858 0.01770 0.87057 0.03077 0.92167 0.01696

Decision Tree

 FST AUC​ SD AUC​ AUC​ SD AUC​ AUC​ SD AUC​

 All Features 0.92252 0.01355 0.90876 0.03032 0.93830 0.01244

 2/3 & 4/7 Agree 0.90346 0.01235 0.91000 0.02972 0.93417 0.01456

 2/3 & 5/7 Agree 0.91178 0.01391 0.91206 0.03209 0.94020 0.01389

 3/3 & 4/7 Agree 0.87643 0.01820 0.91527 0.03260 0.93716 0.01701

 3/3 & 5/7 Agree 0.87384 0.01813 0.91334 0.03429 0.93335 0.01301

LightGBM

 FST AUC​ SD AUC​ AUC​ SD AUC​ AUC​ SD AUC​

 All Features 0.93863 0.00975 0.93499 0.03401 0.94622 0.01416

 2/3 & 4/7 Agree 0.93511 0.01052 0.91610 0.03595 0.94354 0.01320

 2/3 & 5/7 Agree 0.93536 0.01078 0.90934 0.03810 0.94191 0.01491

 3/3 & 4/7 Agree 0.93379 0.01159 0.90404 0.04282 0.94170 0.01360

 3/3 & 5/7 Agree 0.93652 0.01084 0.91161 0.04016 0.94166 0.01347

Random Forest

 FST AUC​ SD AUC​ AUC​ SD AUC​ AUC​ SD AUC​

 All Features 0.93945 0.00910 0.91773 0.02602 0.94216 0.01316

 2/3 & 4/7 Agree 0.93799 0.00944 0.91105 0.03448 0.94455 0.01214

 2/3 & 5/7 Agree 0.93441 0.01089 0.90349 0.03102 0.94036 0.01592

 3/3 & 4/7 Agree 0.92851 0.01070 0.89572 0.03404 0.94274 0.01418

 3/3 & 5/7 Agree 0.92106 0.01235 0.90950 0.02971 0.93966 0.01546

XGBoost

 FST AUC​ SD AUC​ AUC​ SD AUC​ AUC​ SD AUC​

 All Features 0.93668 0.00891 0.89892 0.04456 0.93581 0.01363

 2/3 & 4/7 Agree 0.92197 0.01063 0.89720 0.03518 0.92918 0.01379

 2/3 & 5/7 Agree 0.92613 0.01357 0.90861 0.03699 0.94058 0.01425

 3/3 & 4/7 Agree 0.91230 0.01552 0.90421 0.03625 0.93121 0.01521

 3/3 & 5/7 Agree 0.91188 0.01677 0.90233 0.03867 0.92933 0.01460
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these features are mainly based upon the time dimension. From a cybersecurity analyst’s 
perspective, these four features do not truly signal SQL Injection or XSS web attacks. In 
other words, detection for these two web attacks is not primarily based upon temporal 
features. For the third and only other web attack label in CSE-CIC-IDS2018, it is not so 
clear whether Brute Force web attacks should be detected primarily on time-based fea-
tures and so we will discuss this separately.

Attack characteristics of SQL Injection and XSS web attacks are mainly found in the 
application layer (7) of the OSI model [41], as the payloads for these two web attacks 
operate at protocols which are in layer 7 of the OSI model. The four features (Flow_
Bytes_s, Flow_IAT_Max, Fwd_IAT_Std, and Fwd_IAT_Total) are features based on Net-
Flows [42, 43] and are operating at lower layers 3 and 4 of the OSI model. Overall, these 
four features are not indicating attack signatures for these web attacks, because their 
attack fingerprints occur in the application layer (7) of the OSI model.

For example, Flow_Bytes_s does not signal a SQL Injection or XSS web attack. The 
Flow_Bytes_s feature is merely indicating the number of bytes per second in a network 
flow. Normal web traffic can just as easily produce similar values for the Flow_Bytes_s 
feature, as compared to SQL Injection or XSS web attack traffic. In other words, the 
Flow_Bytes_s does not properly discriminate normal web traffic as compared to SQL 
Injection or XSS web attack traffic. Normal web traffic can just as easily have lower or 
higher values for Flow_Bytes_s as compared to SQL Injection or XSS web attack traffic.

One small and brief web request representing normal traffic could just as easily have 
similar values for Flow_Bytes_s as compared to a slow and stealthy web attack for either 
a SQL Injection or XSS web attack. This same logic applies towards moderate velocity 
normal traffic as compared to moderate velocity traffic for SQL Injection and XSS web 
attacks for the Flow_Bytes_s feature. While it could be argued that very high velocity 
traffic for the Flow_Bytes_s feature could be signalling web attacks such as for SQL Injec-
tion or XSS, this is simply not the case in the CSE-CIC-IDS2018 dataset as high velocity 
attack traffic does not exist for these two attack web labels. In CSE-CIC-IDS2018, the 
SQL Injection label only encompasses 87 instances and the XSS label only encompasses 
230 labels. Plus, this approach would not detect slow and stealthy web attacks.

The other three features (Flow_IAT_Max, Fwd_IAT_Std, and Fwd_IAT_Total) have 
the identical problems as compared to Flow_Bytes_s in discriminating between normal 
web traffic and SQL Injection and XSS web attacks. These features are all signaling infor-
mation from layers 3 and 4 of the OSI model, and not layer 7 of the OSI model. Plus, 
these four features are heavily focused on the time dimension. SQL Injection and XSS 
web attacks do not typically have characteristics which are based on temporal features 
(especially when executed in a slow and stealthy fashion by attackers seeking to avoid 
detection). Instead of detecting these classes of web attacks based on time, other attack 
characteristics could be used such as those found in the application layer. Better exam-
ples of attack characteristics for these classes of web attacks are parsing text payloads for 
malicious sequences of characters or monitoring error logs (both are in the application 
layer of the OSI model).

Then, the question arises of what could be signaling such good detection of SQL Injec-
tion and XSS web attacks within the CSE-CIC-IDS2018 dataset. We can only speculate 
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on this question, as this question deserves further research. One possibility could be 
unintentional contamination in the data collection process, where the machine learning 
models are detecting patterns that are discriminating between attack and normal traffic 
based on temporal patterns of the data collection and not the underlying signatures of 
the web attacks. Future work can further investigate this phenomenon.

With regards to the Brute Force web attacks, the same arguments are true as for the 
SQL Injection and XSS web attacks that these four (Flow_Bytes_s, Flow_IAT_Max, 
Fwd_IAT_Std, and Fwd_IAT_Total) features do not necessarily signal a web attack. It is 
true that these four features might signal a Brute Force web attack during a very extreme 
scenario of massive web traffic spikes. An example for this would be a Brute Force attack 
which is similar to a Denial of Service attack where the attacker is causing a massive 
flood of web traffic. However, this approach would not detect Brute Force web attacks 
which are more slow and stealthy in nature. Many attackers seek to evade detection, and 
only using these four features would effectively miss detecting one of the most impor-
tant classes of attacker adversaries (those seeking to avoid detection).

Most importantly, the CSE-CIC-IDS2018 dataset only contains 611 labels for Brute 
Force web attacks as compared to over 2 million “Normal” labels for those two days of 
the data collection for web attacks. Given the small fraction of Brute Force web attack 
labels of 0.03% compared to the normal traffic for those two days, our machine learning 
models are not detecting some sort of “flood” type of Brute Force web attack. Instead, 
our machine learning models are likely detecting other patterns regarding the data col-
lection which requires future research.

Even for Brute Force web attacks, the higher application layer (7) of the OSI model 
contains better attack characteristics as compared to the lower network layers of 3 and 
4 (containing NetFlow features). The OWASP Top 10 [11] contains two items on how to 
handle Brute Force web attacks at the application layer. First, “OWASP A2:2017-Broken 
Authentication” [44] indicates that web applications should “limit or increasingly delay 
failed login attempts” and “log all failures and alert administrators when credential stuff-
ing, brute force, or other attacks are detected”. Second, “OWASP A10:2017-Insufficient 
Logging & Monitoring” [45] highlights that “exploitation of insufficient logging and 
monitoring is the bedrock of nearly every major incident”. Essentially, properly designed 
web applications would remove “flood” types of Brute Force web attacks by increasingly 
delaying their logins. Sensors from application layer logs would still be best equipped to 
detect Brute Force web attacks which are more slow and stealthy.

Even though we have obtained respectable classification results for web attacks in 
this study, our newly conceived feature popularity framework allowed us to realize that 
the features we were detecting upon did not make sense from a cybersecurity analyst’s 
perspective. When looking at all 79 independent features of the downloaded CSE-CIC-
IDS2018 dataset, it can be difficult for a cybersecurity analyst to ascertain whether those 
NetFlow-based features might be good candidates in detecting web attacks. Even after 
generating a myriad of Feature Importance Lists in Tables 14, 15, 16, 17, 18, 19, it still 
was not clear as these lists of features were very divergent from each other. After employ-
ing feature popularity which enabled us to visualize more explainable models, we could 
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then ascertain that our top four features (Flow_Bytes_s, Flow_IAT_Max, Fwd_IAT_Std, 
and Fwd_IAT_Total) did not properly characterize the web attack signatures in question. 
Overall, future research can further answer the question of whether or not Netflow-
based features are even good candidates for detecting web attacks from the application 
layer of the OSI model.

Conclusion
Feature popularity is a novel framework that we introduce in this study, and we imple-
ment it with CSE-CIC-IDS2018 big data and the following three web attacks: Brute 
Force, SQL Injection, and XSS. These three web attacks are partitioned into three sepa-
rate datasets so that we can employ feature popularity. For our underlying feature selec-
tion techniques, we use three filter-based rankers and four supervised-based rankers: 
Chi Squared, Information Gain, Information Gain Ratio, CB, LGB, RF, and XGB.

First, we generate Feature Importance Lists where the top 20 features are generated 
for our three web attack datasets and our seven (FST) rankers. Second, we create FST 
Agreement Lists which find the common features across each dataset’s Feature Impor-
tance Lists according to varying levels of FST agreement criteria ( fstA ) among our seven 
FSTs. Third, we build Feature Popularity Lists from FST Agreement Lists according to 
varying levels of dataset agreement criteria ( dsA={2,3}) and FST agreement criteria ( fstA
={4,5,6,7}). Our feature popularity technique effectively builds an ensemble of ensem-
bles by first building an ensemble of FSTs for each dataset, and then building another 
ensemble across a dataset agreement dimension.

We also introduce the use of the Jaccard similarity score with our FST Agreement Lists 
to give a quantitative sense for how similar or not various pairs of FST Agreement Lists 
compare to each other across different FST agreement criteria ( fstA ). Employing Jaccard 
similarity scores in this manner becomes more important as many more datasets are 
considered with the feature popularity framework. These Jaccard similarity scores can 
help decide which classes of attacks should be grouped together with feature popularity, 
versus those which should be broken apart into different feature popularity groupings.

Classification performance did not seriously degrade with Feature Popularity Lists 
(which contain fewer features), as compared to the “All Features” list. In 5 out of 15 
cases, Feature Popularity Lists even fared better as compared to the “All Features” list. 
AUC scores did not degrade by more than 0.02 for the best of the Feature Popularity List 
groupings as compared to the “All Features” list. Classification performance was evalu-
ated with the following five classifiers: CB, DT, LGB, RF, and XGB. Overall LightGBM 
performed the best, and classification performance held especially well for Feature Pop-
ularity Lists with LGB.

Not only does feature popularity produce models which are easier to understand and 
implement, but it can also provide new insights to application domain experts. Even 
though we had been working intensely with web attacks from CSE-CIC-IDS2018, we did 
not discover new realizations until working with models produced with feature popular-
ity and results from its most popular features. With our feature popularity experiment 
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and underlying FSTs, the four most popular features for CSE-CIC-IDS2018 web attacks 
are: Flow_Bytes_s, Flow_IAT_Max, Fwd_IAT_Std, and Fwd_IAT_Total.

When using only these four most popular features as input to our classifiers, we still 
achieved nearly the same favorable classification performance as compared to the “All 
Features” list. We realized these four features do not signal attack characteristics for our 
three web attacks: Brute Force, SQL Injection, and XSS. These four features are mainly 
based upon the time dimension and Netflow-based attributes from layers 3 and 4 of the 
OSI model.

However, our three web attacks should not be leaving signatures in these four fea-
tures as they operate at the application layer (7) of the OSI model. Instead, something 
other than attack signatures of these three web attacks is causing them to be correctly 
classified as attacks. Future work can evaluate whether unintentional contamination in 
the data collection patterns for CSE-CIC-IDS2018 is signalling these web attacks. Also, 
future work can consider whether NetFlow-based features can legitimately signal web 
attack payloads from the application layer (7) of the OSI model in terms of forensic 
evidence.

Feature popularity is a powerful new framework which can be applied to any applica-
tion domain. Any multi-class classification problem (containing more than two classes), 
can be decomposed with feature popularity so that the most popular features for its 
multiple classes can be discovered through ensembles across a new dataset agreement 
dimension ( dsA ) as well as a FST agreemention dimension ( fstA ). The beauty of the fea-
ture popularity technique, is that its agreement criteria for dsA and fstA can be tuned by 
a practitioner until the desired classification performance is achieved with a more desir-
able number of fewer and more popular features.

Future work can consider additional application domains as well as additional types 
of cyberattacks, as feature popularity is a flexible framework that can accommodate any 
application domain or cyberattack dataset which have multiple class labels (more than 
binary classification). Other FSTs and classifiers can also be implemented with feature 
popularity. Additionally, different cutoff points for the “Top N” features of the Feature 
Importance Lists could be investigated. Feature stability could also be explored with fea-
ture popularity to determine its effectiveness with the same most popular features as 
datasets evolve with new data over time, and whether this ensemble approach provides 
better feature stability as compared to more simplistic feature selection techniques. 
Finally, future research could develop these feature popularity frameworks in an auto-
mated manner through open-source tools to allow easier exploration of popular features 
across different cyberattacks or datasets.

Appendix
See Tables 14, 15, 16, 17, 18, 19.
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Table 14  Top 20 features for Brute Force Web Attacks ranked by Filter-based techniques

Chi Squared Information Gain Information Gain Ratio

Idle_Std Fwd_Packets_s Fwd_Packets_s

Fwd_IAT_Total Flow_Packets_s Flow_Packets_s

Flow_IAT_Std Fwd_IAT_Mean Fwd_IAT_Mean

Idle_Max Flow_IAT_Mean Flow_IAT_Mean

Flow_IAT_Max Fwd_IAT_Total Fwd_IAT_Total

Fwd_IAT_Std Flow_IAT_Std Flow_IAT_Std

Active_Min Fwd_IAT_Std Fwd_IAT_Std

Fwd_IAT_Max Flow_IAT_Max Flow_IAT_Max

Active_Mean Flow_Bytes_s Flow_Bytes_s

Bwd_IAT_Max Fwd_IAT_Max Fwd_IAT_Max

Bwd_IAT_Total Packet_Length_Mean Packet_Length_Mean

Flow_IAT_Mean Average_Packet_Size Average_Packet_Size

Fwd_IAT_Mean FwdPktLenMean FwdPktLenMean

Active_Max AvgFwdSegSize AvgFwdSegSize

Idle_Min Max_Packet_Length Max_Packet_Length

Bwd_IAT_Mean Bwd_Packets_s Bwd_Packets_s

Bwd_IAT_Min TotLenFwdPkts TotLenFwdPkts

TotLenFwdPkts Subflow_Fwd_Bytes Subflow_Fwd_Bytes

Subflow_Fwd_Bytes Packet_Length_Std Packet_Length_Std

Bwd_IAT_Std PktLenVar PktLenVar

Table 15  Top 20 features for Brute Force web attacks ranked by Supervised-based Feature 
Importance Lists

XGBoost Random Forest CatBoost LightGBM

Fwd_IAT_Min AvgFwdSegSize Idle_Min FwdPktLenMean

RST_Flag_Count TotLenBwdPkts FwdPktLenStd Flow_IAT_Min

Fwd_IAT_Total Max_Packet_Length ECE_Flag_Count Fwd_IAT_Min

Flow_Packets_s FwdPktLenMean Flow_Bytes_s Bwd_IAT_Min

Flow_IAT_Max RST_Flag_Count Fwd_IAT_Total Flow_IAT_Std

act_data_pkt_fwd TotLenFwdPkts RST_Flag_Count FwdPktLenStd

Bwd_IAT_Mean Flow_Bytes_s Active_Max Flow_Bytes_s

Bwd_IAT_Min Bwd_IAT_Max Fwd_Header_Length Fwd_IAT_Total

Subflow_Fwd_Bytes BwdPktLenStd Bwd_Packets_s

FwdPktLenStd Idle_Std Bwd_IAT_Mean

AvgBwdSegSize Min_Packet_Length Flow_Packets_s

Bwd_IAT_Mean Active_Min Fwd_IAT_Std

Fwd_IAT_Std TotLenFwdPkts Fwd_Packets_s

Idle_Mean act_data_pkt_fwd Flow_IAT_Max

Subflow_Bwd_Packets TotLenFwdPkts

Bwd_IAT_Std Idle_Std

Fwd_IAT_Total Fwd_Header_Length

BwdPktLenMean Flow_IAT_Mean

Fwd_IAT_Min FwdPktLenMax

Flow_Packets_s Total_Backward_Packets
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Table 16  Top 20 features for SQL Injection web attacks ranked by Filter-based techniques

Chi Squared Information Gain Information Gain Ratio

Fwd_IAT_Total Fwd_Packets_s Fwd_Packets_s

Idle_Max Flow_Packets_s Flow_Packets_s

Bwd_IAT_Total Flow_IAT_Mean Flow_IAT_Mean

Idle_Mean Fwd_IAT_Mean Fwd_IAT_Mean

Idle_Min Fwd_IAT_Total Fwd_IAT_Total

Fwd_IAT_Max Bwd_Packets_s Bwd_Packets_s

Fwd_IAT_Min Flow_IAT_Max Flow_IAT_Max

Fwd_IAT_Mean Flow_IAT_Std Flow_IAT_Std

Flow_IAT_Min Fwd_IAT_Max Fwd_IAT_Max

Flow_IAT_Mean Fwd_IAT_Std Fwd_IAT_Std

Flow_IAT_Max Flow_Bytes_s Flow_Bytes_s

PktLenVar PktLenVar PktLenVar

Bwd_IAT_Max Packet_Length_Std Packet_Length_Std

Bwd_IAT_Min Bwd_IAT_Std Bwd_IAT_Std

Active_Max Bwd_IAT_Mean Bwd_IAT_Mean

Flow_Bytes_s FwdPktLenStd FwdPktLenStd

Fwd_IAT_Std Bwd_IAT_Total Bwd_IAT_Total

Active_Mean BwdPktLenStd BwdPktLenStd

Idle_Std Packet_Length_Mean Packet_Length_Mean

Bwd_IAT_Mean Max_Packet_Length Max_Packet_Length

Table 17  Top 20 features for SQL Injection web attacks ranked by Supervised-based Feature 
Importance Lists

XGBoost Random Forest CatBoost LightGBM

Max_Packet_Length BwdPktLenMax ECE_Flag_Count Flow_IAT_Min

BwdPktLenMax Flow_Packets_s Fwd_IAT_Max Flow_Bytes_s

Bwd_IAT_Min Flow_IAT_Mean PSH_Flag_Count Fwd_IAT_Min

TotLenFwdPkts RST_Flag_Count Max_Packet_Length BwdPktLenStd

RST_Flag_Count FwdPktLenMax Total_Fwd_Packets Bwd_Packets_s

Packet_Length_Mean AvgBwdSegSize Bwd_IAT_Max Bwd_IAT_Min

Flow_IAT_Max Total_Backward_Packets Subflow_Bwd_Bytes FwdPktLenMean

Fwd_Header_Length Max_Packet_Length BwdPktLenStd Fwd_IAT_Total

FwdPktLenStd ECE_Flag_Count AvgBwdSegSize Flow_IAT_Mean

Bwd_Packets_s BwdPktLenMean FwdPktLenMax FwdPktLenMax

Packet_Length_Std Subflow_Bwd_Packets Subflow_Bwd_Packets Flow_Packets_s

Bwd_IAT_Max Fwd_IAT_Total Bwd_Header_Length Flow_IAT_Max

FwdPktLenMax BwdPktLenStd TotLenBwdPkts Fwd_IAT_Mean

Flow_Bytes_s Fwd_IAT_Max Down_Up_Ratio TotLenFwdPkts

Bwd_IAT_Mean FwdPktLenMean FwdPktLenStd

Fwd_IAT_Std Flow_IAT_Std Fwd_Packets_s

Fwd_IAT_Min min_seg_size_forward Fwd_IAT_Std

FwdPktLenMean PktLenVar Flow_IAT_Std

Flow_Packets_s Packet_Length_Std Fwd_IAT_Max

Fwd_IAT_Mean Flow_IAT_Max PktLenVar
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Table 18  Top 20 features for XSS web attacks ranked by Filter-based techniques

Chi Squared Information Gain Information Gain Ratio

Bwd_IAT_Total Fwd_Packets_s Fwd_Packets_s

Fwd_IAT_Total Flow_Packets_s Flow_Packets_s

Idle_Min Fwd_IAT_Mean Fwd_IAT_Mean

Idle_Mean Fwd_IAT_Total Fwd_IAT_Total

Flow_IAT_Max Flow_IAT_Mean Flow_IAT_Mean

Fwd_IAT_Max Flow_IAT_Std Flow_IAT_Std

Idle_Max Fwd_IAT_Std Fwd_IAT_Std

Fwd_IAT_Mean Fwd_IAT_Max Fwd_IAT_Max

Fwd_IAT_Min Flow_IAT_Max Flow_IAT_Max

Flow_IAT_Min Flow_Bytes_s Flow_Bytes_s

Flow_IAT_Mean Bwd_Packets_s Bwd_Packets_s

Bwd_IAT_Max PktLenVar PktLenVar

TotLenFwdPkts Packet_Length_Std Packet_Length_Std

Subflow_Fwd_Bytes Packet_Length_Mean Packet_Length_Mean

PktLenVar Average_Packet_Size Average_Packet_Size

Subflow_Bwd_Bytes FwdPktLenMean FwdPktLenMean

TotLenBwdPkts AvgFwdSegSize AvgFwdSegSize

Bwd_IAT_Std TotLenFwdPkts TotLenFwdPkts

Fwd_IAT_Std Subflow_Fwd_Bytes Subflow_Fwd_Bytes

Bwd_IAT_Mean Max_Packet_Length Max_Packet_Length

Table 19  Top 20 features for XSS web attacks ranked by Supervised-based Feature Importance Lists

XGBoost Random Forest CatBoost LightGBM

BwdPktLenMean BwdPktLenMax Flow_Bytes_s Flow_IAT_Min

Total_Backward_Packets BwdPktLenMean Max_Packet_Length Fwd_IAT_Min

TotLenFwdPkts Max_Packet_Length Destination_Port Flow_IAT_Mean

FIN_Flag_Count Fwd_Packets_s Fwd_IAT_Std Fwd_Packets_s

Total_Fwd_Packets Packet_Length_Std Flow_IAT_Mean Flow_Bytes_s

Flow_IAT_Min ECE_Flag_Count Bwd_IAT_Max Flow_Packets_s

BwdPktLenMax Bwd_IAT_Std Bwd_IAT_Mean Flow_IAT_Max

Bwd_IAT_Mean Idle_Min AvgBwdSegSize Bwd_Packets_s

Flow_Packets_s AvgBwdSegSize TotLenFwdPkts Fwd_IAT_Total

Down_Up_Ratio Subflow_Bwd_Packets Idle_Std Fwd_IAT_Std

Packet_Length_Std Fwd_IAT_Total Bwd_IAT_Std Fwd_IAT_Max

Flow_Bytes_s Flow_IAT_Mean Flow_IAT_Max Flow_IAT_Std

ACK_Flag_Count Flow_IAT_Max Active_Min Bwd_IAT_Std

RST_Flag_Count Fwd_IAT_Min act_data_pkt_fwd Fwd_IAT_Mean

Bwd_IAT_Max Bwd_Header_Length min_seg_size_forward BwdPktLenMin

Idle_Max Flow_IAT_Min Fwd_Header_Length

Fwd_IAT_Std Active_Mean Bwd_IAT_Min

Packet_Length_Mean Idle_Max Packet_Length_Std

Active_Min Packet_Length_Mean Bwd_IAT_Total

Bwd_Packets_s Fwd_IAT_Max PktLenVar
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Abbreviations
XAI	� eXplainable Artificial Intelligence
FST	� Feature Selection Technique
RUS	� Random undersampling
DT	� Decision Tree
RF	� Random Forest
CB	� CatBoost
LGB	� LightGBM
XGB	� XGBoost
NB	� Naive Bayes
LR	� Logistic Regression
GBT	� Gradient Boosted Tree
AUC​	� Area Under the Receiver Operating Characteristic Curve
ROC	� Receiver Operator Characteristic
TPR	� True Positive Rate
FPR	� False Positive Rate
GOSS	� Gradient-based One-Side Sampling
EFB	� Exclusive Feature Bundling
BF	� Brute Force
XSS	� Cross-Site Scripting
FIL	� Feature Importance List
FAL	� FST Agreement List
FPL	� Feature Popularity List
OWASP	� Open Web Application Security Project
OHE	� One Hot Encoding
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