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Abstract 

Purpose:  Glioblastoma (GBM) is the most common primary brain tumor in adults and 
is notorious for its lethality. Given its limited therapeutic measures and high heteroge-
neity, the development of new individualized therapies is important. mRNA vaccines 
have exhibited promising performance in a variety of solid tumors, those designed 
for glioblastoma (GBM) need further development. The aim of this study is to explore 
tumor antigens for the development of mRNA vaccines against GBM and to iden-
tify potential immune subtypes of GBM to identify the patients suitable for different 
immunotherapies.

Methods:  RNA-seq data and the clinical information of 143 GBM patients was 
extracted from the TCGA database; microarray data and the clinical information of 181 
GBM patients was obtained from the REMBRANDT cohort. A GBM immunotherapy 
cohort of 17 patients was obtained from a previous literature. GEPIA2, cBioPortal, and 
TIMER2 were used to identify the potential tumor antigens. Immune subtypes and 
gene modules were identified using consensus clustering; immune landscape was 
constructed using graph-learning-based dimensionality reduction analysis.

Results:  Nine potential tumor antigens associated with poor prognosis and infiltration 
of antigen-presenting cells were identified in GBM: ADAMTSL4, COL6A1, CTSL, CYTH4, 
EGFLAM, LILRB2, MPZL2, SAA2, and LSP1. Four robust immune subtypes and seven 
functional gene modules were identified and validated in an independent cohort. 
Immune subtypes had different cellular and molecular characteristics, with IS1, an 
immune cold phenotype; IS2, an immune hot and immunosuppressive phenotype; IS3, 
a relatively immune cold phenotype, second only to IS1; IS4, having a moderate tumor 
immune microenvironment. Immune landscape revealed the immune distribution of 
the GBM patients. Additionally, the potential value of immune subtypes for individual-
ized immunotherapy was demonstrated in a GBM immunotherapy cohort.

Conclusions:  ADAMTSL4, COL6A1, CTSL, CYTH4, EGFLAM, LILRB2, MPZL2, SAA2, and 
LSP1 are the candidate tumor antigens for mRNA vaccine development in GBM, and 
IS1 GBM patients are best suited for mRNA vaccination, IS2 patients are best suited for 
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immune checkpoint inhibitor. This study provides a theoretical framework for GBM 
mRNA vaccine development and individualized immunotherapy strategies.

Keywords:  Glioblastoma, mRNA vaccines, Immune subtypes, Tumor 
microenvironment, Individualized immunotherapy

Introduction
Glioblastoma (GBM), a World Health Organization grade 4 glioma, is notorious for its 
highly lethal and refractory nature. Compared with low-grade glioma, GBM develops 
faster and has a worse prognosis [1, 2]. GBM is usually located in the subcortex, has an 
infiltrative growth, and often invades multiple cerebral lobes and deep structures; thus, 
it is extremely difficult to operate on [3]. Despite the current standard of care, with mul-
timodal therapy including surgery, temozolomide chemotherapy, and radiotherapy, the 
median overall survival (OS) of GBM patients is only about 19 months, and postopera-
tive recurrence is almost unavoidable [4–6]. Hence, there is an urgent need to devise 
new treatment strategies to improve the management of GBM patients.

The role of immunotherapy in GBM has garnered attention because of the signifi-
cant clinical benefits achieved with this treatment modality in a variety of malignan-
cies, including melanoma and hepatocellular carcinoma [7–10]. However, current 
attempts to use immunotherapy for GBM have resulted in limited success. For exam-
ple, while immune checkpoint inhibitor (ICI) monotherapies, including anti-PD-1 and 
anti-CTLA4, have been used successfully to treat a variety of cancers [11, 12], no signifi-
cant efficacy has been seen in GBM so far [13, 14]. A recent study showed that T cells 
expressing multiple immune checkpoints in GBM were more dysfunctional than the T 
cells expressing only the PD-1 checkpoint [15]. This suggests that combination thera-
pies targeting multiple immune checkpoints may be more effective in GBM compared 
to ICI monotherapy. In addition to ICI therapy, use of tumor vaccines is another therapy 
that has attracted great interest in GBM. There are four main types of tumor vaccines 
being developed: peptide vaccines, tumor cell or immune cell vaccines, viral vector vac-
cines, and nucleic acid (DNA or RNA) vaccines [16]. Tumor vaccine research in GBM is 
mainly focused on peptide vaccines. Among these, a peptide vaccine targeting EGFRvIII 
(rindopepimut) lead to slightly mitigated GBM progression in phase II clinical studies 
[17–19]. Although the vaccine resulted in only a few months of clinical benefit, it indi-
cates the vast potential for tumor vaccines in the treatment of GBM. In addition, another 
peptide vaccine, ICT-107, for GBM showed some efficacy in a phase II clinical trial [20, 
21] in which six peptides of the vaccine were significantly overexpressed in GBM. Unfor-
tunately, the phase III trial of this vaccine was terminated due to problems in funding. 
Unlike peptide vaccines, nucleic acid vaccines can encode full-length tumor antigens, 
are not restricted by human leukocyte antigen (HLA) type, and are more likely to stimu-
late a broad T-cell response [22]. In addition, nucleic acid vaccines can deliver multiple 
antigens including both tumor-associated antigens (TAAs) and tumor-specific antigens 
(TSAs), making them more resistant to the development of drug resistance [23]. Addi-
tionally, the production of nucleic acid vaccines can be more rapid and cost-effective 
compared to peptide vaccine production, which is time-consuming and labor-intensive 
[24, 25]. Among the nucleic acid vaccines, messenger RNA (mRNA) vaccines have very 
significant advantages over DNA vaccines, which include the advantage of expression 
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rate and magnitude and the safety advantage of not integrating into the cellular genome, 
thereby preventing insertional mutations [22, 25, 26]. More importantly, the ease with 
which mRNA sequences can be designed and modified allows them to encode any path-
ological antigen easily and rapidly, which is particularly advantageous in the individual-
ized treatment of tumors, especially actual the pandemic period [25]. Although mRNA 
vaccines are relatively unstable structurally and generally require cold storage below 
0 °C and for short periods of time [27], the widespread use of the two mRNA vaccines 
(BioNTech and Moderna) in the COVID-19 pandemic and their impressive efficiency 
still further prove their superiority [28, 29]. Until now, the efficacy of mRNA vaccines 
in a variety of solid tumors has been promising [23]. For example, in the clinical trials of 
advanced non-small cell lung cancer and prostate cancer, mRNA vaccines induced spe-
cific immune responses and improved patient prognosis [30, 31]. However, the mRNA 
vaccine designed for GBM needs to be developed further, and the screening of vaccine-
sensitive patients based on their immune characteristics is necessary.

The aim of this study was to explore tumor antigens for the development of anti-GBM 
mRNA vaccines and to identify immunophenotypes that could be used to screen the 
GBM patients suitable for different immunotherapies including mRNA vaccines.

Methods
Patients and datasets

RNA-seq data for the 143 GBM patients in The Cancer Genome Atlas (TCGA) discov-
ery cohort and the clinical information were obtained from the University of California, 
Santa Cruz, Xena Functional Genomics Explorer (https://​xenab​rowser.​net/​datap​ages/) 
(Additional file 1: Table S1 and Additional file 2: Table S2). RNA-seq data was normal-
ized by log2(x + 1) transformation. The normalized expression matrix and the clinical 
information of the 181 GBM cases in the REMBRANDT microarray validation cohort 
were obtained from GlioVis (http://​gliov​is.​bioin​fo.​cnio.​es/) (Additional file 1: Table S1) 
[32]. The normalized RNA-seq data and clinical information for 17 GBM patients in the 
PD-1 inhibitors (nivolumab or pembrolizumab) cohort were obtained from the study by 
Zhao et al. (Additional file 1: Table S1) [33]. All data were obtained from the correspond-
ing author or supplemental material of this publication. All cases in our study are adults 
and cases without complete clinical information were excluded, and only the genes with 
non-zero expression levels in > 50% of the samples were retained.

Identification of tumor antigens

The cBioPortal (https://​www.​cbiop​ortal.​org/) tool integrates raw data from multiple 
cohorts, including TCGA cohort [34]. In this study, we used the cBioPortal tool to visu-
alize genetic alterations in GBM patients and to screen the mutant genes.

In this study, differentially expressed genes in GBM patients were identified by 
ANOVA using the “Differential Genes” module of Gene Expression Profiling Interac-
tive Analysis version 2 (GEPIA2, http://​gepia2.​cancer-​pku.​cn/#​index) tool [35], with 
parameters set to |log2FC| value > 1 and q < 0.01. In addition, the OS and relapse-free 
survival (RFS) of GBM patients were evaluated using the Kaplan–Meier “survival analy-
sis” module in GEPIA2. GBM cases were divided into high and low expression groups 
based on the median value of selected tumor antigen expression, Kaplan–Meier curves 

https://xenabrowser.net/datapages/
http://gliovis.bioinfo.cnio.es/
https://www.cbioportal.org/
http://gepia2.cancer-pku.cn/#index
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were obtained, and log-rank test p values and hazard ratios were calculated. Statistical 
significance was set at p < 0.05.

Tumor Immune Estimation Resource (TIMER, https://​cistr​ome.​shiny​apps.​io/​timer/) 
is a web server for the comprehensive analysis of tumor-infiltrating immune cells, among 
them, dendritic cells include resting dendritic cells and activated dendritic cells, and 
macrophages include monocytes, macrophage M0, macrophage M1 and macrophage 
M2 [36]. In this study, the correlation between identified tumor antigen expression and 
antigen-presenting cell (APC) infiltration was evaluated using a purity-adjusted partial 
Spearman’s correlation analysis based on the TIMER tool. Statistical significance was set 
at p < 0.05.

Identification and validation of immune subtypes

Firstly, we extracted 2348 immune-related genes from the scientific literature and the 
ImmPort database (Additional file  2: Table  S3) [37, 38]; this comprehensive gene set 
included the genes responsible for various immune processes such as antigen pro-
cessing and presentation, production of chemokines, etc. Subsequently, based on the 
immune-related gene expression profiles, unsupervised consensus clustering was per-
formed using the partition around medoids (PAM) algorithm to identify robust clusters 
of GBM. A total of 1000 bootstraps were executed and each bootstrap resampled 80% 
of the patients in the TCGA cohort. The maximum number of clusters was 10, and K 
values were evaluated using a consensus cumulative distribution function and consensus 
heatmap [39].

The verification of the immune subtypes (ISs) identified in the TCGA cohort was 
done as follows: we first determined the immune-related genes shared by the TCGA and 
REMBRANDT cohorts and calculated the centroid of each IS of the shared immune-
related genes in the TCGA cohort; next, we trained a PAM-based classifier in the TCGA 
cohort to predict IS for cases in the validation cohort. Specifically, each sample in the 
REMBRANDT cohort was assigned to an IS, the centroid of which has the highest Pear-
son correlation with the given sample. An intra-group proportion (IGP) analysis was 
performed to assess the reproducibility and similarity of IS between the TCGA and 
REMBRANDT cohorts [40]. Meanwhile, we also used the PAM-based classifier to iden-
tify IS in the PD-1 inhibitor cohort. The R package “limma” was used to identify differ-
entially expressed genes (DEGs) between pre- and post-immunotherapy samples, and 
Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis and Gene ontology 
(GO) biological process enrichment analysis of DEGs were performed using R package 
“clusterProfiler”.

Identification of immune gene modules

Identification of robust immune gene modules (GMs) was done by applying consensus 
clustering using the same settings and parameters that were employed for IS identifi-
cation in the discovery cohort. Next, the biological functions of each GM were anno-
tated. The genes in each GM were annotated in terms of GO biological processes by R 
package “clusterProfiler”. GMs in the validation cohort were defined using the same gene 
arrangement as in the discovery cohort. Scores for GM (GM scores) were defined as the 
average expression levels of all the genes in a particular module.

https://cistrome.shinyapps.io/timer/
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Evaluation of molecular and cellular characteristics related to immune subtypes

Single-sample gene set enrichment analysis (ssGSEA) was performed using the R 
package “GSVR” to quantify the abundance of 28 immune cell infiltration in each 
sample [41]. In addition, the relationship between IS and the 56 previously reported 
immune-related molecular and cellular features was assessed [42].

Analysis of the immune landscape

To further reveal the intrinsic structure of IS and the distribution of individual cases, 
we performed a dimensionality reduction analysis based on a graph-learning-based 
approach. Discriminative dimensionality reduction with trees (DDRTree) was per-
formed using the reduceDimension function in the R package “Monocle” with the 
maximum component setting of two, and was visualized using the plot cell trajectory 
function [43].

Establishment of immune proteins interaction network

Protein–protein interaction (PPI) networks were constructed using genes from the 
GM by employing the STRING tool (https://​string-​db.​org/) [44]. Subsequently, hub 
genes in the PPI networks were obtained using the cytoHubba plugin in the Cytoscape 
software [45].

Results
Identification of potential tumor antigens in GBM

To explore the potential tumor antigens in GBM, firstly, the aberrantly expressed 
genes were identified from the GBM gene expression profile and 5221 overexpressed 
genes that may encode TAAs were filtered (Fig. 1A). Subsequently, based on the frac-
tional genomic alternations and mutation counts of individual samples, 6,585 muta-
tion genes potentially encoding TSAs were filtered (Fig. 1B, C). Notably, most patients 
had low fractional genomic alterations and mutation counts, suggesting low immuno-
genicity of GBM (Fig. 1B, C). In Fig. 1D, E, the top 10 genes in the fractional genomic 
alteration and mutation count groups in terms of alteration frequency are shown, 
respectively. It is worth noting that epidermal growth factor receptor, phosphatase 
and tensin homolog (PTEN), cyclin dependent kinase inhibitor 2A, and CDKN2B 
antisense RNA 1 had a high alteration frequency in both the groups (Fig. 1D, E). Con-
sidering the intersection of the overexpression group and the mutation group, 1332 
overexpressed and frequently mutated genes were obtained.

Further, identification of tumor antigens that may play a critical role in the pro-
gression of GBM and can be used in mRNA vaccine development was achieved by 
screening 30 candidate genes that were closely associated with OS of GBM among 
the above mentioned genes, nine of which were significantly associated with RFS 
(Fig. 2A). As shown in the Fig. 2B–J, patients with high expression of ADAMTS-like 
4 (ADAMTSL4), collagen type VI alpha 1 chain (COL6A1), cathepsin L (CTSL), cyto-
hesin 4 (CYTH4), EGF like, fibronectin type III and laminin G domains (EGFLAM), 
leukocyte immunoglobulin-like receptor B2 (LILRB2), myelin protein zero like 2 
(MPZL2), serum amyloid A2 (SAA2), and lymphocyte specific protein 1 (LSP1) in 

https://string-db.org/
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GBM had significantly poor OS and RFS (Additional file 1: Figure S1). In summary, 
nine candidate genes that undergo overexpression and mutation are highly relevant to 
the progression of GBM. It was also found that the expression of these nine candidate 
genes in GBM had significant positive correlation with dendritic cell infiltration, and 

Fig. 1  Identification of potential tumor antigens in GBM. a The chromosomal distribution of up- and 
down-regulated genes in GBM. b Samples overlapping in the altered genome fraction group. c Samples 
overlapping in the mutation count group. d Genes with highest frequency in the fraction genome altered 
group. e Genes with highest frequency in the mutation count group
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the expression of SAA2 was also positively correlated with macrophage infiltration 
(Additional file 1: Figure S2A–I). This implies that these nine tumor antigens may be 
directly processed and presented by the APCs to induce an immune response, making 
them promising candidates for the development of GBM mRNA vaccines. In addi-
tion, it is noteworthy that by stepwise regression we found that LSP1 and ADAMTSL4 
could constitute a two-gene signature. The risk score based on this gene signature can 
predict the prognosis of GBM patients (Additional file 1: Figure S3A–C).

Fig. 2  Identification of tumor antigens associated with GBM prognosis. a Potential tumor antigens (total 
1332) with both overexpression and mutation, and tumor antigens significantly associated with OS and RFS 
(total 9 candidates). Kaplan–Meier curves comparing OS for groups with different expression of ADAMTSL4 
(b), COL6A1 (c), CTSL (d), CYTH4 (e), EGFLAM (f), LILRB2 (g), MPZL2 (h), SAA2 (i), and LSP1 (j) in GBM. Red lines 
represented high gene expression, blue represented low gene expression
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Identification of potential immune subtypes in GBM

Identification of potential immune subtypes in GBM for screening of patients suitable 
for mRNA vaccination was achieved by clustering the 143 GBM cases from the TCGA 
cohort using consensus clustering based on immune-related gene expression pro-
file. After analyzing the consensus cumulative distribution function, delta area, and 
consensus heatmap, we chose K = 4 and identified four ISs in GBM, namely IS1–IS4 
(Fig. 3A–C). GBM cases in the REMBRANDT validation cohort were also assigned to 
the four ISs. In addition, ISs were found to have no significant correlation with OS in 
either of the cohorts (Additional file 1: Figure S4). Given the widely known clinical rel-
evance of isocitrate dehydrogenase [NADP (+)] 1 (IDH1) mutation, O-6-methylgua-
nine-DNA methyltransferase (MGMT) methylation and cytosine-phosphate-guanine 
(CpG) island methylator phenotype (CIMP) status in GBM [2], we also explored the 
distribution of ISs in different IDH1 mutation, MGMT methylation and CIMP states. 
Notably, patients with IDH1 mutant phenotype belonged mainly to the IS1, followed 
by the IS3 (Fig.  3D). IS1–IS4 were evenly distributed in both MGMT-methylated 

Fig. 3  Identification of potential immune subtypes in GBM. Cumulative distribution function curve (a), delta 
area curve (b) and consensus heatmap (c) based on immune-related gene expression profile in the TCGA 
cohort. d The distribution of immune subtypes in GBM patients with different IDH1 status in TCGA cohort. 
e The distribution of immune subtypes in GBM patients with different MGMT status in the TCGA cohort. f 
The distribution of immune subtypes in GBM patients with different G-CIMP status in the TCGA cohort and 
the REMBRANDT cohort. g The distribution of immune subtypes in GBM patients with different molecular 
subtype in the TCGA cohort and the REMBRANDT cohort
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and unmethylated patients (Fig. 3E). The distribution of ISs in patients with different 
CIMP status showed that all the glioma-CIMP (G-CIMP) patients were identified as 
IS1 and IS3, whereas, the non-G-CIMP patients were found to have all four ISs; this 
result was also validated in the REMBRANDT cohort (Fig. 3F). In addition, in both 
the TCGA cohort and the REMBRANDT cohort, patients with the classical subtype 
were predominantly IS3 and IS4, patients with the mesenchymal subtype were pre-
dominantly IS2 and IS4, and patients with the proneural subtype were mainly IS1 and 
IS3 (Fig.  3G). The above results implied reproducibility of ISs in the discovery and 
validation cohorts, while the IGP analysis further confirmed moderate to good agree-
ment between the two cohorts (Additional file 1: Table S4).

The relationship between immune subtypes and mutational status

It is well known that tumor mutational burden (TMB) and the number of somatic 
mutations are closely related to the effect of immunotherapy [46]. Therefore, TMB 
and mutations in IS1-IS4 were analyzed based on mutation data from the varscan-
processed mutation dataset of the TCGA cohort. As shown in Additional file 1: Figure 
S5A, B, there was no significant difference in the TMB and the number of mutated 
genes in the four ISs. This demonstrated that the amount of tumor antigen encoded 
by the mutated genes did not differ among the ISs, and overall GBM has a relatively 
low TMB. In Additional file  1: Figure S5C, we showed the top 10 most frequently 
mutated genes in the four ISs, including PTEN.

The relationship between immune subtypes and immunomodulators

Immune checkpoints (ICPs) and immunogenic cell death (ICD) modulators play 
an important role in tumor immunity and may influence the selection of different 
immunotherapies including mRNA vaccines [47]. In the present study, we detected 
44 expressed ICP-related genes from the TCGA cohort; 39 (88.6%) of these had sig-
nificant expression differences among the ISs (Fig.  4A). We detected 31 expressed 
ICP-related genes from the REMBRANDT cohort, and 20 (64.5%) of these were dif-
ferentially expressed among the ISs (Fig. 4B). Notably, in the TCGA cohort, patients 
with IS2 showed significantly higher expression of almost all the ICP-related genes, 
including CD274 (also known as PD-L1) and CTLA4. In contrast, in patients with 
IS1, most ICP-related genes showed low levels of expression. Increased expression of 
most of the ICP-related genes in IS2 was also observed in the REMBRANDT cohort. 
In addition, we also detected 21 expressed ICD-related genes in the TCGA cohort, 
and 17 (81.0%) of them were differentially expressed among the ISs (Fig.  4C). For 
example, EIF2A, HMGB1, P2RX7, and PANX1 were significantly highly expressed in 
IS1. In the REMBRANDT cohort, 24 ICD-related genes were detected, of which, 17 
(70.8%) were differentially expressed among the ISs (Fig. 4D). EIF2A and P2RX7 were 
also significantly highly expressed in IS1 in the REMBRANDT cohort. Therefore, dif-
ferent ISs reflect different expression levels of ICPs and ICD modulators, contributing 
to the selection of patients suitable for mRNA vaccination.
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Molecular and cellular characteristics of immune subtypes

Since the effectiveness of immunotherapy is linked to the infiltration of immune cells 
in the tumor microenvironment (TME), we scored the enrichment of 28 immune cells 
using the ssGSEA method [41]. As shown in Fig.  5 A, B, the 28 immune cells were 
divided into four clusters based on ISs in both the cohorts, and the components of 
immune cells were significantly different among the ISs (Fig.  5C, D). For example, 
IS2 in TCGA cohort had the highest scores for almost all immune-stimulating cells 
such as activated CD8+ T cells, activated dendritic cells, and natural killer cells, and 
also for almost all immunosuppressive cells such as myeloid-derived suppressor cells 
(MDSCs) and regulatory T cells. Contrary to IS2, IS1 had the lowest scores for most 
of the immune cells, while IS3 has the second lowest score after IS1 (Fig. 5A, C). Sim-
ilar results were observed in the REMBRANDT cohort (Fig. 5B, D). This suggests an 
immune hot but strongly immunosuppressive TME in IS2, whereas IS1 is an immune 
cold phenotype, IS3 is a relatively cold phenotype, and IS4 has a moderate and com-
plex TME.

In the previous studies, Thorsson et  al. developed a pan-cancer immunopheno-
typing method, which divided 33 cancers, including GBM, into six immunotypes 
(C1–C6) with different characteristics [42]. Here, we explored pan-cancer immu-
nophenotyping in relation to the four ISs in our study. As shown in Fig. 5E, almost 

Fig. 4  Association between immune subtypes and immunomodulators in GBM. Differences in expression 
levels of ICP-related genes among GBM immune subtypes in the TCGA cohort (a) and the REMBRANDT 
cohort (b). Differences in expression levels of ICD-related genes among GBM immune subtypes in the TCGA 
cohort (c) and the REMBRANDT cohort (d). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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all the GBM samples belonged to the C4 immunotype, and of the only three C1 sam-
ples, two were IS1 and one was IS2; while the only C5 sample belonged to IS3. This 
indicates that the TME of GBM is very different from that of other tumors, and the 
immunophenotyping method developed in our study may be more applicable to 
GBM and is complementary to the classifications mentioned in the previous studies. 

Fig. 5  Cellular and molecular characteristic of immune subtypes in GBM. Heatmaps of 28 previously 
reported immune cell signatures scores among GBM immune subtypes in the TCGA cohort (a) and the 
REMBRANDT cohort (b). Differences of 28 immune cell signatures scores among GBM immune subtypes in 
the TCGA cohort (c) and the REMBRANDT cohort (d). e The distribution of GBM four immune subtypes in the 
pan-cancer immune subtypes. f 21 immune-related molecular signatures with significant differences among 
GBM immune subtypes. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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Furthermore, the relationship between ISs and the 56 previously reported immune-
related molecular signatures was examined, 21 of which differed significantly among 
the ISs (Fig.  5F). IS2 had the highest scores in leukocyte fraction, lymphocyte infil-
tration, and Th17 cells, along with the highest scores in stromal fraction, TGF-β 
response, macrophage regulation, and mast cell activated signatures, indicating an 
immune hot and immunosuppressive phenotype. In contrast, the lowest leukocyte 
fraction, lymphocyte infiltration, macrophage M1, IFN-γ response, stromal fraction, 
macrophage regulation, and TGF-β response scores in IS1 reflected an immunologi-
cal cold phenotype. IS3 was characterized by a relatively low leukocyte fraction, Th17 
cells, stromal fraction, TGF-β response, macrophage regulation, neutrophils, and the 
highest IFN-γ response, macrophage M1, and NK cell activation, suggesting a rela-
tively cold phenotype with some immune activation. IS4 showed moderate immune 
infiltration, suggesting a complex TME. These results are consistent with the pre-
vious results. In summary, ISs can reflect the immune status of GBM patients and 
are promising immunotherapy biomarkers. IS1 and IS3, which have an immunologi-
cally cold or relatively cold phenotype, could be potential mRNA vaccine-susceptible 
patients, while IS2 could be suitable for ICI threapy.

The immune landscape of GBM

To visualize the immune distribution of each patient to complement the previously 
defined ISs, the immune landscape of GBM was constructed based on the immune 
gene expression profiles of individual patients and the graph-learning-based dimen-
sionality reduction analysis. Each point represented a patient, the horizontal axis was 
principal component 1 based on the immune gene expression profile and the vertical 
axis was principal component 2 (Fig.  6A). Immune hot phenotype IS2 and immune 
cold phenotype IS1 were distributed opposite to each other on the horizontal axis 
of the immune landscape. Furthermore, the horizontal axis of the immune landscape 
was negatively related to most immune cells, especially the activated dendritic cells, 
effector memory CD8+ T cells, natural killer cells, macrophages, MDSCs, and reg-
ulatory T cells, but positively correlated with Th2 cells, while the vertical axis was 
negatively correlated only to the memory B cells (Fig. 6B). In addition, the horizon-
tal axis was also significantly negatively correlated with leukocyte fraction, stromal 
fraction, macrophage regulation, and lymphocyte infiltration, and positively corre-
lated with proliferation, Th2 cells and resting mast cells (Additional file 1: Figure S6). 
The immune landscape also reflected the intra-cluster heterogeneity of ISs, particu-
larly within IS3 and IS4. IS3 and IS4 were further divided into different subgroups 
based on their distribution in the immune landscape (Fig. 6C) and these subgroups 
also exhibited different immune cell enrichment scores. IS3A and IS4A had signifi-
cantly higher scores of activated CD8+ T cells, activated dendritic cells, natural killer 
cells, macrophages, MDSCs, and regulatory T cells as compared to IS3B and IS4B 
(Fig. 6D, E). Thus, IS3B has a relatively cold immune status compared to IS3A, hence, 
could be more suitable for mRNA vaccination rather than ICI treatment. Similarly, 
IS4B could be a relatively promising candidate for mRNA vaccines as compared to 
IS4A. We divided the samples located at the extreme positions of the immune land-
scape into three different groups (group 1–3) and the rest of the samples were group 
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other. Interestingly, when we performed prognostic analysis on samples in group 1–3, 
we found that the patients in group 3 appeared to have a relatively better prognosis 
than groups 1 and 2, although this trend was not significant (Fig. 6F, G). This result 
indicated that the distribution of patients in the immune landscape may be associ-
ated with difference in their prognosis. In general, the IS-based immune landscape 
can effectively reflect the status of immune components in GBM patients and may 

Fig. 6  The immune landscape of GBM. a The immune landscape of GBM. Each dot represents a patient, and 
different colors represent different immune subtypes. The horizontal axis represents the principal component 
1, and the vertical axis represents the principal component 2. b Correlation between principal component 
1/2 and 28 immune cell enrichment scores. c Immune landscape of the subgroups of GBM immune 
subtypes. Differences of 28 immune cells enrichment scores in the subgroups of IS3 (d) and IS4 (e). Immune 
landscape of samples from three extreme locations (f) and their prognostic status (g). −p ≥ 0.1, ·p < 0.1, 
*p < 0.05, **p < 0.01, ***p < 0.001
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correlate with their prognosis. It is complementary to the previously defined ISs and 
contributes to the selection of patients for immunotherapies.

Identification of functional immune genes modules and hub genes in GBM

The classification of immune-related genes in GBM helps to understand the charac-
teristics of different ISs. By performing consensus clustering of the immune-related 
gene expression profile in GBM, we identified seven robust GMs (GM1–GM7) (Addi-
tional file 1: Figure S7). The six previously defined ISs showed significantly different 
expression patterns in GMs. In the TCGA cohort, IS2 had significantly higher expres-
sion scores in GM1, GM2, and GM7, while IS1 had the opposite and also had the 
lowest expression score in GM5 (Fig.  7A, B). In addition, IS3 also had lower GM1 
and GM2 scores, while IS4 had relatively moderate expression scores in each GM 
(Fig.  7A, B). The ISs in the REMBRANDT cohort also showed similar GM expres-
sion patterns (Fig.  7C, D). Subsequently, prognostic analysis showed that GM2 was 
significantly related to OS in GBM patients (Fig. 8A), while other GMs were not sig-
nificantly correlated with OS of GBM (Additional file 1: Figure S8). Patients with high 
GM2 scores had significantly worse OS than patients with low GM2 scores (Fig. 8B). 
A similar trend was observed in the REMBRANDT cohort (Additional file 1: Figure 

Fig. 7  Functional immune genes modules in GBM. Heatmaps of four immune subtypes and seven gene 
modules in the TCGA cohort (a) and the REMBRANDT cohort (c). Genes are ordered based on the gene 
modules, and patients are arranged based on their immune subtypes. Box plots of the expression patterns 
of seven gene modules of four immune subtypes in the TCGA cohort (b) and the REMBRANDT cohort (d). 
****p < 0.0001
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S9). Further analysis of GO biological processes showed that the functions of GM1-
GM7 correspond to T cell, reactive stroma, angiogenesis, cell morphogenesis, IFN-γ, 
SMAD protein phosphorylation, and antigen processing and presentation, respec-
tively (Additional file 1: Table S5). GO enrichment analysis showed that GM2 is pri-
marily associated with the extracellular matrix and structure (Fig. 8C). Since this GM 
is consistent with a previously reported 25-gene stroma signature [46], we annotated 
GM2 to reactive stroma. Specifically, 23 genes from the 25-gene stroma signature 
were included in our immune-related gene set, 18 of which were assigned to GM2. 
Interestingly, GM2 also showed a significant negative correlation with component 1 
of the immune landscape (Fig. 8D). Furthermore, we noticed that GM1 was not only 
associated with T-cell activation but also with lymphocyte and leukocyte activation 

Fig. 8  Gene module characteristics in GBM. a The relationship between gene modules and OS in GBM 
patients. b Kaplan–Meier curve showing OS analysis of GM2 in the TCGA cohort. GO biological process 
enrichment analysis of GM2 (c) and GM1 (e). Correlation between GM2 score (d) and GM1 score (f) and 
principal component 1 in the immune landscape
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(Fig. 8E). GM1 likewise had a significant negative correlation with component 1 of the 
immune landscape (Fig. 8F). Since the activation and infiltration of T cells and other 
immune cells and immunosuppressive TME have important implications for the 
therapeutic potential of mRNA vaccines in GBM patients with specific ISs, patients 
with high expression of GM1 and GM2 genes may not be suitable for treatment with 
mRNA vaccines. To identify the hub genes in GM1 and GM2, we first constructed PPI 
networks for GM1 (Additional file 1: Figure S10) and GM2 genes (Additional file 1: 
Figure S11) separately. Subsequently, 51 hub genes were identified in GM1 (Addi-
tional file  1: Figure S12A) and the top 10 hub genes were identified in GM2 (Addi-
tional file  1: Figure S12B) using the cytoHubba plugin in the Cytoscape software. 
These hub genes are potential biomarkers for identifying the GBM patients that are 
suitable for mRNA vaccination.

The role of immune subtypes in the GBM immunotherapy cohort

To further elucidate the potential value of IS in individualized immunotherapy, we 
extracted a PD-1 inhibitor treatment cohort containing 17 GBM patients from a previ-
ous study. This cohort contained 16 pre-anti-PD-1 treatment samples and 10 post-anti-
PD-1 treatment samples and is the only known multi-sample GBM anti-PD-1 treatment 
RNA-seq cohort. Based on the PAM-based classifier established in the TCGA cohort, 
both pre- and post-immunotherapy samples in the PD-1 inhibitor cohort could be clas-
sified into four ISs with different immune characteristics (Fig. 9A, B). Similar to previ-
ous results, IS2 exhibited the immune hot and immunosuppressive phenotype, while the 
opposite was true for IS1. IS3 has a relatively cold but partially activated immune pheno-
type, and IS4 has a moderate TME. Analysis of the response of pre-immunotherapy sam-
ples to PD-1 inhibitors showed that all immune cold IS1 samples were non-responsive to 
anti-PD-1 treatment, whereas most IS2 samples were responsive and some IS3 samples 
were responsive (Fig. 9C). This is consistent with our previous results that IS1 and some 
IS3 may not be suitable for ICI treatment and that mRNA vaccines may be more prom-
ising for this group of patients. IS2 patients are ideal candidates for ICI treatment but 
may not be suitable for mRNA vaccines. Interestingly, after a comparative analysis of 
paired samples before and after anti-PD1 treatment, four IS2 cases were found to have 
switched to other ISs after treatment, namely TME turned from hot to cold, making two 
of them non-responsive to treatment (Fig. 9D). Patient #100 who turned from IS3 to IS2 
responded to anti-PD-1treatment, patient #71 showed IS2 after treatment despite hav-
ing no pre-treatment data, again making this patient responsive to anti-PD1 treatment 
(Fig. 9D). These results suggested that IS2 may have a critical impact on the response 
to anti-PD-1 therapy in GBM. In addition, IS2 patients appeared to have a slightly 
increased prognostic advantage compared to IS1 and IS3 after anti-PD-1 treatment, par-
ticularly in terms of progression-free survival time (Fig. 9E, F). Although this result was 
not significant due to sample size limitations, it still implied that IS may have potential 
prognostic significance for the prognosis of GBM immunotherapy. Using |log2FC|≥ 1.5 
and P value < 0.05 as the threshold, 292 DEGs were identified between responders and 
non-responders from the pre-anti-PD-1 treatment samples (Fig.  9G, Additional file  2: 
Table  S6), while 2201 DEGs were identified in the post-anti-PD-1 treatment samples 
(Fig. 9I, Additional file 2: Table S7), indicating that greater differences in gene expression 
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Fig. 9  The role of immune subtypes in anti-PD-1 treatment cohort. Heatmaps of 28 previously reported 
immune cells infiltration among GBM immune subtypes in the pre-anti-PD-1 treatment group (a) 
and post-anti-PD-1 treatment group (b). c Distribution of immune subtypes among responders and 
non-responders in pre-anti-PD-1treatment samples. d Changes of immune subtypes in paired pre- and 
post-anti-PD-1 treatment samples. e Kaplan–Meier curve showing OS analysis of immune subtypes 
(IS1-IS3) in pre-anti-PD-1treatment samples. IS4 had only one sample and therefore was not included 
in this analysis. f Kaplan–Meier curve showing progression-free survival analysis of immune subtypes in 
pre-anti-PD-1treatment samples. IS4 had only one sample and therefore was not included in this analysis. 
Volcano plots showing DEGs between responders and non-responders in pre- (g) and post-anti-PD-1 
treatment (i) samples. Red represented DEGs that were upregulated by responders relative to 
non-responders, while green represented DEGs that were downregulated. GO biological process enrichment 
analysis of DEGs between responders and non-responders in pre- (h) and post-anti-PD-1 treatment (j) 
samples
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emerged between responders and non-responders after anti-PD-1 treatment. KEGG and 
GO analysis showed that DEGs from pre-treatment samples were mainly enriched in 
metabolism-related pathways (Additional file 1: Figure S13A) and neuron development-
related biological processes (Fig.  9H), while DEGs from post-treatment samples were 
mainly enriched in cell cycle-related pathways (Additional file 1: Figure S13B) and RNA 
biosynthesis and DNA transcription biological processes (Fig. 9J).

Discussion

The development of mRNA vaccines relies on the identification of potential TAAs and 
TSAs. Huang et  al. screened the potential tumor antigens for mRNA vaccine devel-
opment by identifying genes that are mutated, amplified, or overexpressed in pancre-
atic adenocarcinoma and cholangiocarcinoma [48, 49]. However, there are currently 
no available candidates for mRNA vaccine development in GBM. In the present 
study, we used the abnormal gene expression profile and mutant gene information of 
GBM patients to identify nine potential mRNA vaccine antigen candidates, namely 
ADAMTSL4, COL6A1, CTSL, CYTH4, EGFLAM, LILRB2, MPZL2, SAA2, and LSP1. 
High expression of these genes was not only associated with poor prognosis of GBM 
but was also significantly associated with infiltration of APCs, strengthening their value 
as mRNA vaccine candidates. In addition, some of them have also been confirmed to 
have significant correlation with T-cell receptor Shannon, richness and evenness in the 
TCGA cohort (Additional file 1: Figure S14). Although further functional validation and 
preclinical evaluation are needed, the available studies support their potential as candi-
dates. For example, a study by Zhao et al. showed that ADAMTSL4 is associated with 
a variety of immune-related processes, including immune cell infiltration in GBM and 
can be used as an independent circulating biomarker of GBM [50]. Recent studies have 
shown that COL6A1 expression is significantly elevated in the tumor stem cells of GBM, 
is involved in interaction with the extracellular matrix [51], and is a key gene associated 
with anti-vascular endothelial growth factor therapy [52]. CTSL is involved in ionizing 
radiation-induced epithelial mesenchymal transition and promotes glioma cell invasion 
and migration via the Akt/GSK-3 β/Snail and CUX1 pathways [53]. CYTH4 expression 
is significantly related to a variety of chemokines, immunomodulators, and MHC mol-
ecules [54]. In addition, high expression of EGFLAM in GBM is associated with poor 
prognosis, and silencing EGFLAM can inhibit proliferation, invasion, and migration 
of GBM cells by negatively regulating the PI3K/AKT pathway [55]. A study by Li et al. 
showed that LILRB2, a TME-related gene, is a potential prognostic biomarker in malig-
nant glioma [56]. SAA2 has a unique role in promoting Th17 cell-mediated inflammatory 
disease [57] and plays an important role in many cancers, including GBM [57, 58]. LSP1 
expression in GBM is not only closely associated with radiotherapy and chemotherapy 
response but is also positively correlated with immunosuppressive cell infiltration. Its 
high expression significantly enhances the expression of immunosuppression-related 
genes, including PD1, which is considered a potential new therapeutic target [59].

Given that the therapeutic response to immunotherapy including mRNA vaccine 
is closely related to the immune status of cancer patients, we classified GBM patients 
into four robust ISs based on their immune-related gene expression profile to identify 
those suitable for mRNA vaccines, and our ISs demonstrated good reproducibility in an 
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independent cohort. The four ISs have different molecular and cellular characteristics, 
indicating completely different responses to mRNA vaccines. IS2 in both the TCGA and 
REMBRANDT cohorts exhibited the highest expression of ICP-related genes, indicating 
a strong immunosuppressive TME, which means that it could be difficult for mRNA vac-
cines to induce an effective immune response in IS2, but ICI therapy could be effective. 
In contrast, IS1 had the lowest expression of ICP-related genes in both the cohorts and 
elevated expression of some ICD-related genes, suggesting a more promising results of 
mRNA vaccination in IS1. By analyzing the infiltration of different immune cells and the 
overall TME in ISs, IS2 tumors were identified as hot and immunosuppressive tumors. 
For IS2, the use of ICIs to improve immunosuppression, thus enhancing the existing 
antitumor immunity seems to be a good option. Zhao et al. showed that some specific 
GBM patients can benefit from anti-PD-1 therapy [33], while our study confirmed that 
IS2 patients were more likely to respond to anti-PD-1 therapy, indicating the guiding 
effect of our immunophenotyping to individualized immunotherapy. Given that some 
current studies suggested that GBM patients have difficulty achieving survival benefits 
from ICI monotherapy [13, 14], the use of ICI multidrug combinations or ICI monother-
apy in combination with NK cell-targeted therapy [60, 61], macrophage-targeted therapy 
[62], chimeric antigen receptor (CAR) T-cell therapy [63], oncolytic immunotherapy [64] 
or chemotherapy and radiotherapy [65] could be more effective strategies. IS1 identified 
as a cold phenotype, which is characterized by low immune cell infiltration and a low 
immunosuppressive TME, can be referred to as an immune desert phenotype. Accord-
ing to our study, it is difficult for IS1 patients to respond to PD-1 therapy. The use of 
mRNA vaccines can induce anti-tumor immune cell infiltration in IS1, thereby revital-
izing the immune system of IS1 patients, and further combination with other therapies 
may achieve considerable clinical benefits. Therefore, IS1 patients are the ideal subjects 
for mRNA vaccination. IS3 has a cold TME, second only to IS1, and also has low immu-
nosuppression, although some immune activation phenotype remains in IS3. Attempt-
ing the use of mRNA vaccines in IS3 to further activate the antitumor immune response 
seems promising. IS4 reflects moderate immune infiltration and moderate immunosup-
pressive TME. For this, mRNA vaccine combined with ICI and other treatment strate-
gies, including CAR T-cell therapy, could be considered to activate the immune response 
while blocking the immunosuppressive TME. Further, graph-learning-based dimension-
ality reduction analysis revealed intra-cluster heterogeneity of the ISs and provided a 
distribution map of GBM patients, which provided complementary information on ISs 
and constructed an immune landscape of GBM. Both IS3 and IS4 were further divided 
into two subgroups in the immune landscape, with IS3B and IS4B having relatively 
lower immune cell infiltration and immunosuppression, thereby being more suitable for 
mRNA vaccination than IS3A and IS4A, while IS3A and IS4A may be more suitable for 
other therapies such as ICI. This complements the previously described selection of suit-
able patients for different immunotherapies, and combining the use of ISs and immune 
landscapes enables the development of better immunotherapy strategies.

Previous studies have suggested that pre-existing antitumor immunity usually 
improves the prognosis of cancer patients [37, 66]. However, in our study, IS2 with a hot 
immune phenotype had no prognostic advantage over IS1 with a cold immune pheno-
type. Given the strong immunosuppression in IS2, determining the relative advantage 
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between immunostimulatory and immunosuppressive factors in GBM patients is criti-
cal for evaluating the prognosis. Immunosuppressive TME has a critical impact on the 
prognosis of GBM patients [67–69], consistent with this, we identified GM2 (reactive 
stroma module) as a risk factor contributing to the poor prognosis of GBM patients. In 
addition, group 3, which is at the extreme end of the immune landscape, has a relatively 
good prognosis and low infiltration of the stimulatory and suppressive immune cells. 
Therefore, immunosuppressive factors seem to have a critical impact on the prognosis of 
patients with GBM. Considering the overall immunosuppressive TME of GBM [67–69], 
the combination of mRNA vaccines with ICI is a recommended strategy even in IS1 with 
a cold immunophenotype.

In the recently established pan-cancer immunophenotyping, Thorsson et  al. defined 
six immune classes applicable to 33 different types of tumors, according to which, 
most of the GBM cases were classified as C4 [42]. Clearly, our study has shown that the 
immune status of different GBM patients is very different. Therefore, a simple classifica-
tion using pan-cancer immunophenotyping may not be adequate for a highly hetero-
geneous tumor like GBM. Our ISs provide immunophenotyping specifically for GBM 
and are complementary to the previously defined pan-cancer immunophenotyping. 
Moreover, the GM1 and GM2 gene scores were significantly negatively correlated with 
component 1 of the immune landscape, implying that high expression of GM1 and GM2 
genes is associated with high level of immune cell infiltration as well as immunosup-
pression. To further enhance clinical applicability, we identified hub genes in GM1 and 
GM2. Patients with high expression of these genes may show poor response to mRNA 
vaccines.

Notably, in the recent 2021 WHO classification, only IDH wildtype GBM is consid-
ered as GBM, while the previously known IDH-mutant GBM is classified as IDH-mutant 
high-grade astrocytoma [70]. Therefore, we analyzed IDH-wildtype GBM again after 
excluding 6 cases of IDH-mutant GBM in the TCGA cohort based on this classification. 
The results of the analysis of IDH-wildtype GBM were found to be highly consistent 
with the results described previously (Additional file 1: Figures S15–S19). In addition, 
there are some limitations in this study. First, we were unable to determine whether the 
identified tumor antigens were expressed by GBM cells or other immune/stromal cells. 
Second, we could not validate the response of different ISs to GBM vaccine because we 
didn’t find RNA-Seq data from a large clinical trial of GBM vaccine. Although the tumor 
antigens and ISs identified in this study require further experimental validation, this 
study provides important information for the development and clinical application of 
mRNA vaccine and individualized immunotherapy for GBM in the future.

Conclusions
In conclusion, we identified ADAMTSL4, COL6A1, CTSL, CYTH4, EGFLAM, LILRB2, 
MPZL2, SAA2, and LSP1 as candidate tumor antigens for mRNA vaccine development 
for GBM and established four robust GBM immune subtypes to identify the potential 
subjects for different immunotherapies. This study provides a theoretical framework for 
future GBM mRNA vaccine development, selection of patients to be vaccinated, and 
better individualized immunotherapeutic strategy designs.
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Additional file 1: Figure S1. Identification of tumor antigens associated with GBM prognosis. Kaplan-Meier curves 
comparing RFS for groups with different expression of ADAMTSL4 (a), COL6A1 (b), CTSL (c), CYTH4 (d), EGFLAM (e), 
LILRB2 (f), MPZL2 (g), SAA2 (h), and LSP1 (i) in GBM. Red lines represented high gene expression, blue represented 
low gene expression. Figure S2. Identification of tumor antigens associated with infiltration of antigen-presenting 
cells in TCGA cohort. The correlation between the expression levels of ADAMTSL4 (a), COL6A1 (b), CTSL (c), CYTH4 
(d), EGFLAM (e), LILRB2 (f), MPZL2 (g), SAA2 (h), and LSP1 (i) and infiltration levels of dendritic cells and mac-
rophages in GBM. Figure S3. A two gene signature based on LSP1 and ADAMTSL4, risk score = LSP1*0.33421+ 
ADAMTSL4*0.12244. a Risk distribution, survival status and LSP1 and ADAMTSL4 expression in GBM patients. b 
Kaplan-Meier curve comparing OS of different risk in GBM patients. c ROC curve showing good predictive perfor-
mance. Figure S4. Correlation between immune subtypes and prognosis of GBM. a Kaplan-Meier curve comparing 
OS of different immune subtypes in the TCGA cohort. b Kaplan-Meier curve comparing OS of different immune sub-
types in the REMBRANDT cohort. Figure S5. Association of immune subtypes with TMB and mutation in GBM. TMB 
(a) and mutation number (b) of different immune subtypes in GBM. c The top 10 frequently mutated genes in GBM 
immune subtypes. Figure S6. Correlation between principal component 1/2 and 21 immune-related molecular 
signatures. Figure S7. Identification of functional immune genes modules in GBM. Cumulative distribution function 
curve (a), delta area curve (b), and consensus heatmap (c) of immune-related gene expression profile in the TCGA 
cohort. Figure S8. Relationship between GMs and prognosis of GBM patients in the TCGA cohort. Kaplan-Meier 
curves showing OS analysis of GM1 (a), GM3 (b), GM4 (c), GM5 (d), GM6 (e) and GM7 (f) in the TCGA cohort. Red 
lines represented high GM scores, blue represented low GM scores. Figure S9. Kaplan-Meier curve showing OS 
analysis of GM2 in the REMBRANDT cohort. Figure S10. Protein-protein interaction network for GM1 genes. Figure 
S11. Protein-protein interaction network for GM2 genes. Figure S12. Immune hub genes in GBM. a 51 hub genes 
in GM1. b The top 10 hub genes in GM2. Figure S13. KEGG pathway analysis of DEGs between responders and 
non-responders. a KEGG pathway analysis of DEGs in pre-anti-PD-1 treatment samples. b KEGG pathway analysis 
of DEGs in post-anti-PD-1 treatment samples. Figure S14. Seven candidate antigens detected in the TCGA cohort 
in relation to T cell receptors Shannon, richness and evenness. Figure S15. Association of immune subtypes with 
TMB and mutation in IDH-wildtype GBM. TMB (a) and mutation number (b) of different immune subtypes in IDH-
wildtype GBM. Figure S16. Association between immune subtypes and immunomodulators in IDH-wildtype GBM. 
a Differences in expression levels of ICP-related genes among immune subtypes in IDH-wildtype GBM. b Differences 
in expression levels of ICD-related genes among immune subtypes in IDH-wildtype GBM. *p < 0.05, **p < 0.01, ***p 
< 0.001, ****p < 0.0001. Figure S17. Cellular and molecular characteristic of immune subtypes in IDH-wildtype GBM. 
a Heatmap of 28 previously reported immune cell signatures scores among immune subtypes in IDH-wildtype 
GBM. b Differences of 28 immune cell signatures scores among immune subtypes in IDH-wildtype GBM. c The 
distribution of IDH-wildtype GBM four immune subtypes in the pan-cancer immune subtypes. d 21 immune-related 
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molecular signatures with significant differences among IDH-wildtype GBM immune subtypes. *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001. Figure S18. The immune landscape of IDH-wildtype GBM. a The immune landscape 
of IDH-wildtype GBM. Each dot represents a patient, and different colors represent different immune subtypes. The 
horizontal axis represents the principal component 1, and the vertical axis represents the principal component 2. 
b Correlation between principal component 1/2 and 28 immune cell enrichment scores. c Immune landscape of 
the subgroups of IDH-wildtype GBM immune subtypes. Differences of 28 immune cells enrichment scores in the 
subgroups of IS3 (d) and IS4 (e). Immune landscape of samples from three extreme locations (f) and their prognostic 
status (g). -p ≥ 0.1, ·p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001. Figure S19. Functional immune genes modules in 
IDH-wildtype GBM. a Heatmap of four immune subtypes and seven gene modules in IDH-wildtype GBM. Genes are 
ordered based on the gene modules, and patients are arranged based on their immune subtypes. b Box plots of the 
expression patterns of seven gene modules of four immune subtypes in IDH-wildtype GBM. ****p < 0.0001. Table 
S1. Clinical characteristics of GBM patients in the TCGA cohort, REMBRANDT cohort and PD-1 inhibitor cohort. Table 
S4. IGP was estimated for each immune subtype in the validation cohort. Table S5. Functional enrichment analysis 
of gene modules.

Additional file 2: Table S2. The clinical information of TCGA cohort. Table S3. Immune-related genes. Table S6. Dif-
ferentially expressed genes between responders and non-responders in pre-anti-PD-1 treatment samples. Table S7. 
Differentially expressed genes between responders and non-responders in post-anti-PD-1 treatment samples.
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