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Introduction
In machine learning, instance selection is to select a subset from a training set such 
that there is little or no performance degradation training a learning system with the 
selected subset. The condensed nearest neighbor (CNN) [1] proposed by Hart is the 
first instance selection algorithm to reduce the computational complexity of 1-nearest 
neighbor (1-NN). The core concept of CNN is consistent subset, which can correctly 
classify all instances in the training set with 1-NN. The goal of CNN is to find the 
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minimal consistent subset of the training set. However, the consistent subset found 
by CNN may not be the smallest. To deal with this drawback, Gates [2] proposed 
reduced nearest neighbor (RNN). Based on the relative significance of the instances 
in training set, Dasarathy [3] proposed another algorithm to find the minimal consist-
ent subset of the training set. In addition, CNN is sensitive to noise. To this end, Wil-
son and Martinez [4] proposed edited nearest neighbor (ENN). Based on CNN, the 
researchers also proposed some other improved algorithms. For instance, Brighton 
and Mellish [5] introduced the concepts of reachable set and coverage set into CNN 
and proposed an iterative case filtering algorithm. Angiulli [6] introduced the idea of 
Voronoi partition into CNN and proposed fast CNN. Li and Maguire [7] proposed 
a critical pattern selection algorithm by considering local geometrical and statistical 
information, which selects both border and edge instances from training set. Hernan-
dez-Leal et  al. [8] introduced an instance ranking per class using borders, and pro-
posed an instance selection algorithm using the ranking information. Cavalcanti and 
Soares [9] also proposed a ranking based instance selection algorithm. Different from 
[8], the algorithm calculates a score for each instance given its relations with other 
instances in the training set, and then selects instances according to the score.

The algorithms mentioned above are all k-nearest neighbor based methods, and 
the researchers have also proposed instance selection methods based on other learn-
ing algorithms. Liu et  al. [10] proposed an efficient self-adaption instance selection 
algorithm reconstructing training set for support vector machine from the viewpoint 
of geometry. Aslani and Seipel [11] adopted locality-sensitive hashing for develop-
ing an instance selection method which rests on rapidly finding similar and redun-
dant training instances and excluding them from the training set. Based on clustering 
technique, Chen et al. [12] proposed an instance selection algorithm for speeding up 
support vector machines. Ant colony optimization (ACO) algorithm performs two 
primary functions: boundary detection and boundary instance selection. Based on 
ACO, Akinyelu et  al. [13] proposed an instance selection algorithm for SVM speed 
optimization. Shao et  al. [14] combined instance and feature selection, and pro-
posed an uniform sparse primal and dual LSSVM model. Furthermore, Du et al. [15] 
found that if the feature and instance selection are addressed separately, the irrel-
evant features may mislead the process of instance selection. In order to deal with 
this problem, they proposed a unified framework, which selects instances and fea-
tures simultaneously. Liaw [16] proposed a framework for cooperative evolutionary 
learning and instance selection in an adaptive manner, and an effective data evalua-
tion of representativeness of promising solution for evolutionary instance selection. 
Chen et  al. [17] proposed a sample selection method based on genetic algorithm 
(GA). Arnaiz-González et  al. [18] proposed a new technique for instance selection 
and noise filtering for regression, the technique uses instance selection for classifica-
tion after output value discretization, and demonstrates well robustness to noise. In 
addition, Arnaiz-González et al. [19] also proposed fusion of instance selection algo-
rithms for regression tasks to improve the selection performance. Malhat et al. [20] 
proposed a sample selection algorithm based on global probability density and cor-
relation functions. Czarnowski [21] proposed a sample selection algorithm based on 
cluster analysis.
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Most of the above instance selection algorithms are only applicable to small and 
medium data sets since the entire data set needs to be loaded into memory when select-
ing instances from a data set. However, these algorithms may become infeasible for 
big data, when the size of the training set far exceeds the memory capacity of the com-
puter. There have been few studies on instance selection for big data, and only a few 
researchers have explored this topic. Based on the locally sensitive hashing technique, 
Arnaiz-González et al. [22] proposed an instance selection algorithm for large data with 
linear computational time complexity. In addition, they extended the instance selection 
algorithm based on democratic distance to the big data environment and implement 
the algorithm with MapReduce [23]. In the framework of instance reduction, Triguero 
et  al. [24] proposed a MapReduce based instance reduction method, which can con-
duct instance reduction on big data, thus realizing the classification of big data. Based 
k-nearest neighbor graph, Mall et  al. [25] propose a method to select representative 
subsets from big data set to realize the learning of big data. Based on random muta-
tion hill climbing and MapReduce, Si et al. [26] proposed a big data instance selection 
algorithm. Inspired by the idea of cross validation and divide and conquer, we proposed 
an approach to select optimal instance subset from big data using genetic algorithm and 
open source framework. The main contributions of this paper lie in the following three 
folds. 

1.	 We defined a novel criterion which combines information entropies with respect to 
multiple classifiers to measure the importance of an instance subset. Because multi-
ple independent classifiers are used to evaluate the optimality of an instance subset, 
the evaluation is consistent with human cognition and is more reasonable.

2.	 Based on the criterion, and inspired by the ideas of cross validation and divide and 
conquer, we proposed an approach to select optimal instance subset from big data 
using genetic algorithm and open source framework.

3.	 We implemented the proposed algorithm on two open source big data frameworks, 
Hadoop1 and Spark.2 Experiments on four artificial data sets demonstrate the feasi-
bility of the proposed algorithm and visualize the distribution of selected instances. 
Experiments on four real data sets compared with three closely related methods on 
test accuracy and compression ratio demonstrate the effectiveness of the proposed 
algorithm.

The rest of this paper is organized as follows. In  “Extreme learning machine” section, 
we present the preliminaries used in this paper. In  “The proposed algorithm” section, 
we describe the details of the proposed approach. In “Experimental results and analysis” 
section, the experiments are conducted to demonstrate the feasibility and effectiveness 
of the proposed approach. At last, we conclude our work in “Conclusions” section.

1  https://​hadoop.​apache.​org/.
2  http://​spark.​apache.​org/.

https://hadoop.apache.org/
http://spark.apache.org/
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Extreme learning machine
In this section, we will briefly review the extreme learning machine (ELM) [27] that will 
be used in the proposed method.

ELM is an algorithm for training random weighted network that is a single hidden 
layer feedforward neural network (SLFN) with a special architecture. The particularity 
of the architecture of SLFN is that the activation function of all nodes in the input layer 
is linear function y = x , that of all nodes in the output layer is also linear function y = x , 
and that of all nodes in the hidden layer is sigmoid function y = 1

1+e−x . In addition, all 
nodes of the hidden layer have bias, while all nodes of the output layer have no bias. The 
weights wi between the input layer and the hidden layer and the biases bi of the nodes 
of the hidden layer are randomly assigned, where 1 ≤ i ≤ m and m is the number of the 
nodes of the hidden layer. The weights β i between the hidden layer and the output layer 
are obtained by solving the following optimization problem:

where Y  is the expected output matrix, H is the output matrix of hidden layer.
Given a training set S = {(xi, yi)|1 ≤ i ≤ n} , the smallest norm least-squares solution 

of Eq. (1) can be obtained by Eq. (2).

where H † is the Moore–Penrose generalized inverse of H , and H † =
(

HH
T
)−1

H.
Since the training of SLFN with ELM does not need to iteratively adjust weight param-

eters, its learning speed is very fast. In addition, ELM has good generalization perfor-
mance [27], it has been widely used in classification and regression [28–31], pattern 
recognition [32–34], and data reduction [35–40].

The proposed algorithm
In this section, we present the details of the proposed algorithm. An overview of the 
proposed method is shown in Fig. 1. First, the big data set is partitioned into k sub-
sets, and k-1 subsets are used to train classifiers via MapReduce. Then, the trained 
classifiers are used to classify instances from the remaining subset. Finally, genetic 

(1)min
β

�Hβ − Y �

(2)β = H
†
Y

Fig. 1  The technical route of the ith round for selecting instances
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algorithm is used to select informative instances that are more likely being misclas-
sified by these classifiers from the remaining subset. This section is organized as fol-
lows, details of classifier training and calculating information entropy of subset are 
introduced in “Training classifiers and calculating information entropy of subset” 
section, Optimal subset selection using genetic algorithm is introduced in “Optimal 
subset selection via genetic algorithm” section, and computational time complexity is 
analyzed in “Computational time complexity” section.

Training classifiers and calculating information entropy of subset

For the convenience of description, we present the details of the proposed algorithm 
in the framework of Hadoop MapReduce. Since the algorithm is inspired by the idea 
of k-fold cross validation, it is a k-round iterative algorithm. Similar to the method of 
k-fold cross validation, we first partition a big data set D into k subsets, D1,D2, . . . ,Dk , 
and then we use the genetic algorithm to select informative instances from a subset 
Di(1 ≤ i ≤ k).

In the following, we present the details of ith round for selecting informative instances 
from Di with genetic algorithm. Let Ri = D − Di . Obviously, Ri is a big data set. In the 
ith round, Ri is automatically partitioned into m splits by map mechanism of MapRe-
duce, and the m splits are deployed to m map computing nodes, where m is the number 
of map nodes in a big data computing platform. In addition, the subset Di is broadcast to 
m map nodes.

On the m map nodes, complete the following works in parallel:

1.	 Training SLFN classifier by ELM

	 The m SLFN classifiers are trained in parallel at m nodes on the local splits 
Rij(1 ≤ j ≤ m) by ELM algorithm. The reason why we choose ELM algorithm to 
train SLFN is that it has a very fast learning speed and excellent generalization ability 
[27]. The m SLFN classifiers denoted by SLFN1, SLFN2, . . . , SLFNm form a commit-
tee.

2.	 Classifying the instances in Di by the trained SLFNs
	 Given an instance x ∈ Di , the classification result of x by a SLFN on a map node can 

be transformed into a posterior probability distribution by the Eq. (3).

In Eq. (3), ωl stands for the lth class, L is the number of classes.
3.	 Calculating the information entropy of the instances in Di

	 The information entropy of instance x with respect to classifier SLFNj is defined by 
Eq. (4).

(3)p(ωl |x; SLFNj) =
eyi

∑L
l=1 e

yl

(4)E(x; SLFNj) = −

L
∑

l=1

p(ωl |x; SLFNj) log2 p(ωl |x; SLFNj)



Page 6 of 18Zhai and Song ﻿Journal of Big Data            (2022) 9:87 

On a reduce node, complete the following works:

1.	 Calculating the average information entropy of the instances in Di with respect to the 
committee.

	 The average information entropy of instance x in Di with respect to the committee is 
defined by Eq. (5).

2.	 Calculating the information entropy of a subset of Di

	 Given a subset Q ⊆ Di , the information entropy of Q is defined by Eq. (6).

3.	 Selecting the optimal subset of Di by genetic algorithm. The details of selecting opti-
mal subset using genetic algorithm with Eq. (6) is presented in the next section.

Optimal subset selection via genetic algorithm

In this section, we demonstrate how the optimal instance subset is selected. The opti-
mal instance subset consists of a number of informative instances. It is believed that hard 
instances that are more likely being misclassified by the classifiers are more informative to 
the classifiers. The reason is that for classifiers, easy instances that are more likely being 
correctly classified by the classifiers cannot contribute much to the losses of the classifiers, 
therefore do not contribute to the training of the classifiers. The misclassified instances are 
more informative and contribute more to the losses, and the classifiers learn most from the 
incorrectly classified instances and in turn adjust the decision boundaries.

A naive approach is to select hard instances using hard thresholds, e.g. selecting 
instances with scores above or below a threshold or selecting top-k instances. However, 
it is very hard to find a global hard threshold which works well for all subset partitions. 
Therefore, we propose to search dynamic thresholds using genetic algorithm (GA) [41–
43]. GA uses population search strategy to find the optimal solution of the addressed 
problem. A population consist of some individuals, and an individual is a candidate solu-
tion which is usually encoded as a character string. There are three key issues for instance 
selection using genetic algorithm, which are (1) the encoding of candidate solutions of the 
addressed problem, (2) the design of fitness function and (3) genetic manipulations.

(5)

AVE(x) =
1

m

m
∑

j=1

E(x; SLFNj)

= −
1

m

m
∑

j=1

L
∑

l=1

p(ωl |x; SLFNj) log2 p(ωl |x; SLFNj)

(6)

E(Q) =
1

|Q|

∑

x∈Q

AVE(x)

= −
1

m|Q|

∑

x∈Q

m
∑

j=1

L
∑

l=1

p(ωl |x; SLFNj) log2 p(ωl |x; SLFNj)
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Regarding to the issue (1). Given an individual Q ∈ P , namely, a subset of Di , P is a 
population. It is suitable to encode Q by 0 and 1. If |Di| = ni(1 ≤ i ≤ k) , then it is obvi-
ous that the length of binary strings used for representing Q is ni.

Regarding to the issue (2). Given an individual Q ∈ P , we use Eq. (6) as the fitness 
function to evaluate the goodness of Q. As discussed before, the goal is to select hard 
instances which are more likely being misclassified by the classifier. And Eq. (6) can 
naturally measure how confident the classifier is or how likely each instance is being 
misclassified by the classifier. Larger entropy values indicate less confidence and more 
errors. To sum up, the larger E(Q) is, the harder Q is, therefore the more important Q is.

In genetic algorithm, the genetic manipulations include selection, crossover and muta-
tion. We use roulette wheel method to select two parent individuals from a population 
according to their fitness (the better fitness, the bigger chance to be selected). The rou-
lette wheel method include the following four steps: 

1.	 Calculate selection probability. For each individual Qi in the population P, let 
|P| = N  . The selection probability of Qi is calculated by pi = E(Qi)

∑N
j=1 E(Qj)

 . Obviously, it 

is true that 
∑N

i=1 pi = 1.
2.	 Calculate cumulative probability. For each individual Qi ∈ P , the cumulative prob-

ability of Qi is calculated by qi =
∑i

j=1 pj.
3.	 Partition [0, 1] into N intervals, such that the length of ith interval is pi(1 ≤ i ≤ N ).
4.	 Select N individuals. Repeat the following operations N times: generate a random 

number r ∈ [0, 1] , if r ≤ q1 , then select the individual Q1 ; Otherwise, if qi−1 ≤ r ≤ qi , 
then select the individual Qi.

We use one-point crossover with a crossover probability pc to cross over the parents to 
form new offsprings, and we randomly select a position in an individual with a mutation 
probability pm to mutate (i.e. change 1 to 0, or change 0 to 1) to form a new individual. 
The pseudo-code of the algorithm for instance selection by genetic algorithm is given in 
algorithm 1.

Computational time complexity

In this section, we analyze the computational time complexity of the proposed algo-
rithm. At each map node, the main operations include (1) Training a SLFN classifier by 



Page 8 of 18Zhai and Song ﻿Journal of Big Data            (2022) 9:87 

ELM algorithm, (2) Classifying the instances in Di by the trained SLFN classifier, and (3) 
Calculating the information entropy of the instances in Di by Eq. (4). The computational 
time complexity of training SLFN by ELM is O(m2n) [44], where m is the number of 
hidden nodes of SLFN, n is the number of instances in training set. The computational 
time complexity of classifying the instances in Di by the trained SLFN classifier is O(ni) , 
where ni is the number of instances in Di . The computational time complexity of calcu-
lating the information entropy of the instances in Di is O(L× ni) . Accordingly, the com-
putational time complexity of operations at one map node is O(m2n)+ O(ni)+ O(Lni) . 
Since usually L ≪ ni and ni ≃ 1

k
n , we have O(m2n)+ O(ni)+ O(Lni) = O(m2n) . Totally, 

the computational time complexity of operations at k map nodes is O(km2n).
At reduce node, the main operations include (1) calculating the average information 

entropy of the instances in Di with respect to the committee by Eq. (5), (2) calculating the 
information entropy of a subset of Di by Eq. (6), and (3) selecting the optimal subset of 
Di by genetic algorithm. From formula Eq. (5) and Eq. (6), we can find that the computa-
tional time complexities of calculating the average information entropy of the instances 
in Di and of calculating the information entropy of a subset of Di are O(Lm) and O(Lmni) , 
respectively. From the algorithm 1, we can find that the computational time complexities 
of selecting the optimal subset of Di by genetic algorithm mainly determined by the first 
for loop, its computational time complexity is O(NLmni) . Accordingly, the computa-
tional time complexity of operations at reduce node is O(Lm)+ O(Lmni)+ O(NLmni) . 
Obviously, O(Lm)+ O(Lmni)+ O(NLmni) = O(mn) . Hence, the computational time 
complexity of the proposed algorithm is O(km2n)+ O(mn) = O(km2n).

Experimental results and analysis
We conducted two experiments to demonstrate the feasibility and effectiveness of the 
proposed approach respectively.

Experiment 1: demonstrating the feasibility of the proposed algorithm

In this section, we conduct experiments on four artificial data sets and visualize the 
selected instances to verify the feasibility of the proposed algorithm. The first and the 
second artificial data sets have clear classification boundaries between different catego-
ries. While the third and fourth artificial data sets do not have clear classification bound-
aries between different categories, i.e., there is overlap between the instances belonging 
to different classes.

The first artificial data set Circle is a two-dimensional data set, which consists of 1000 
data points belonging to two classes, 500 data points per class. The points of the class 1 
are uniformly distributed into a circle of radius 0.3 centered on (0.5, 0.5). The points of 
the class 2 are uniformly distributed into a ring centered on (0.5, 0.5) with internal and 
external radii equal to 0.3 and 0.5, respectively. The distribution of the instances in the 
artificial data set Circle, and the distribution of the instances selected from the data set 
Circle by the proposed algorithm are shown on the left and right of Fig. 2 respectively.

The second artificial data set Square consists of four 2000 data points belonging to 
four classes. The points of the class 1 are uniformly distributed in a square centered 
on (0.5, 0.5) and with length 1.0; The points of the class 2 are uniformly distributed 
in a square centered on (−0.5, 0.5) and with length 1.0; The points of the class 3 are 
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uniformly distributed in a square centered on (−0.5,−0.5) and with length 1.0; The 
points of the class 4 are uniformly distributed in a square centered on (0.5,−0.5) and 
with length 1.0. The distribution of the instances in the artificial data set Square, and 
the distribution of the instances selected from the data set Square by the proposed 
algorithm are shown on the left and right of Fig. 3 respectively.

The third artificial data set Gaussian1 is a two-dimensional data set with three 
classes followed three Gaussian distributions, it contains 1500 data points, 500 data 
points per class. The mean vectors and covariance matrices of the three Gauss-
ian distributions are given in Table 1. The distribution of the instances in the artifi-
cial data set Gaussian1, and the distribution of the instances selected from the data 

Fig. 2  The distribution of the instances in the artificial data set Circle (left), and the distribution of the 
instances selected from the artificial data set Circle (right)

Fig. 3  The distribution of the instances in the artificial data set Square (left), and the distribution of the 
instances selected from the artificial data set Square (right)

Table 1  The mean vectors and covariance matrices of three Gaussian distributions in Gaussian1

i µi �i

1 (0.0, 0.0)T
[

0.7 0.0

0.0 0.7

]

2 (1.0, 1.0)T
[

0.8 0.2

0.2 0.8

]

3 (−1.0, 1.0)T
[

0.8 0.2

0.2 0.8

]
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set Gaussian1 by the proposed algorithm are shown on the left and right of Fig.  4 
respectively.

The fourth artificial data set Gaussian2 is a three-dimensional data set with three 
classes followed three Gaussian distributions, it contains 1500 data points, 500 data 
points per class. The mean vectors and covariance matrices of the three Gaussian 

Fig. 4  The distribution of the instances in the artificial data set Gaussian1 (left), and the distribution of the 
instances selected from the artificial data set Gaussian1 (right)

Table 2  The mean vectors and covariance matrices of three Gaussian distributions in Gaussian2

i µi �i

1 (0.0, 0.0, 0.0)T




3.0 0.0 0.0

0.0 5.0 0.0

0.0 0.0 2.0





2 (1.0, 5.0,−3.0)T




1.0 0.0 0.0

0.0 4.0 1.0

0.0 1.0 6.0





3 (0.0, 0.0, 0.0)T




10.0 0.0 0.0

0.0 10.0 0.0

0.0 0.0 10.0





Fig. 5  The distribution of the instances in the artificial data set Gaussian2 (left), and the distribution of the 
instances selected from the artificial data set Gaussian2 (right)
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distributions are given in Table 2. The distribution of the instances in the artificial data 
set Gaussian2, and the distribution of the instances selected from the data set Gauss-
ian2 by the proposed algorithm are shown on the left and right of Fig. 5 respectively.

From the visualized results presented in Figs. 2 and 3, it is found that the data points 
selected from artificial data sets Circle and Square by the proposed algorithm are dis-
tributed near the classification boundary. While from the visualized results presented in 
Figs. 4 and 5, it is found that the data points selected from artificial data sets Gaussian1 
and Gaussian2 by the proposed algorithm are distributed in overlapping areas of differ-
ent classes. The experimental results are consistent with the instance selection criteria or 
heuristic given in formula Eq. (6).

In addition, we also compared the test accuracies of the classifiers trained on the four 
original artificial data sets with that trained on the selected instance subsets, the test 
accuracies are denoted by test accuracy1 and test accuracy2 respectively. The classifier is 
a single hidden layer feedforward neural network trained by extreme learning machine. 
The results of the experimental comparison are listed in Table 3. In Table 3, the bold val-
ues indicate the maximum value of Test accuracy1 and Test accuracy2.

From the experimental results listed in Table 3, we can find that the test accuracies of 
the classifiers trained on the selected instance subsets of Circle and Square are slightly 
lower than test accuracies of the classifiers trained on the two original data sets, Circle 
and Square. While the test accuracies of the classifiers trained on the selected instance 
subsets of Gaussian1 and Gaussian2 are higher than test accuracies of the classifiers 
trained on the two original data sets, Gaussian1 and Gaussian2. The experimental results 
verified that the algorithm proposed in this paper is feasible. In the second experiment, 
we will demonstrate the effectiveness of the proposed algorithm by comparing it with 
three closely related methods.

Experiment 2: demonstrating the effectiveness of the proposed algorithm

In this section, we demonstrate the effectiveness of the proposed method by compar-
ing it with three closely related methods on test accuracy and compression ratio. The 
three compared methods are MapReduce based condensed nearest neighbor method 
(denoted by MR-CNN), Spark based condensed nearest neighbor method (denoted by 
S-CNN), and locality sensitive hashing based instance selection method (denoted by 
LCS-IS) [22]. In the following, we first introduce the experimental environment and 
data sets, and then introduce the parameter setting used, finally present the comparisons 
with three related methods. In addition, we also compared the two implementations of 

Table 3  The experimental comparison of the test accuracies of the classifiers trained on the four 
original artificial data sets and on the four selected subsets

Data sets Test accuracy1 Test accuracy2

Circle 0.972 0.960

Square 0.986 0.973

Gaussian1 0.701 0.733
Gaussian2 0.733 0.793
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the proposed algorithm on big data platform Hadoop and Spark in terms of testing accu-
racy, compression ratio and running time, and visualized the experimental results.

The experimental environment and data sets

The experiment 2 is conducted on a big data platform with 8 computing nodes, the con-
figuration of computing nodes in the big data platform is given in Table 4. It should be 
noted that in the big data platform, the configuration of the master node and the slave 
node are same.

The data sets used for experiments include four UCI data sets, the basic information of 
the four used data sets is given in Table 5.

The parameter settings

The parameter settings include the setting of the number of hidden layer nodes in 
SLFN, and the setting of parameters in genetic algorithm. First, an ablation study on the 

Table 4  The configuration of the nodes in the computing platform

Items Configuration

CPU Inter Xeon E5-4603 with 
two cores, 2.0GZ

Memory 16GB

Network card Broadcom 5720 QP 1Gb

Hard disk 1TB

Operating system Ubuntu 13.04

Hadoop Hadoop 2.7.3

Sprk Spark 2.3.1

JDK JDK 1.8

Table 5  The basic information of the 4 data sets

Data sets Number of instances Number of attributes Number 
of 
classes

Shuttle 58,000 9 7

Poker 1,000,000 10 10

CovType 581,012 54 7

Skin 245,057 3 2

Table 6  The setting of parameters in genetic algorithm and in SLFN

Data sets Genetic algorithm SLFN

N pc pm Number of 
hidden nodes

Shuttle 70 0.70 0.05 50

Poker 130 0.85 0.08 40

CovType 110 0.80 0.06 190

Skin 90 0.75 0.05 25
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number of hidden layer nodes in SLFN is conducted. More specifically, we train SLFN 
on a subset randomly selected from big data set, and the size of the subset roughly equal 
to nm , where n is the size of a big data set, and m is the number of nodes in a big data 
platform. We train different SLFNs with different number of hidden layer nodes, and 
record the test accuracy of corresponding SLFNs. The results of the ablation study on 
different data sets are given in Fig. 6. The setting of the number of hidden layer nodes in 
SLFN is listed in column 5 of the Table 6. Based on our prior knowledge on the param-
eters in genetic algorithm [45, 46], the setting of parameters in genetic algorithm is listed 
in the column 2–4 of Table  6. The number of iterations is not set as a parameter, the 

Fig. 6  The relationship between the number of hidden layer nodes and test accuracy

Table 8  The experimental results compared with three related methods on compression ratio

Data sets MR-CNN S-CNN LCS-IS GA-MR-IS GA-S-IS

CovType 1.05 1.08 2.23 5.07 4.77

Poker 6.53 6.47 6.64 8.77 7.53

Shuttle 1.05 1.06 1.43 1.83 1.47

Skin 1.00 1.03 3.88 5.77 5.60

Table 7  The experimental results compared with three related methods on test accuracy

Data sets MR-CNN S-CNN LCS-IS GA-MR-IS GA-S-IS

CovType 0.918 0.917 0.920 0.935 0.941
Poker 0.877 0.808 0.853 0.923 0.919

Shuttle 0.983 0.985 0.987 0.987 0.989
Skin 0.906 0.907 0.962 0.973 0.969
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termination condition of the genetic algorithm is adaptive for different data sets. Specifi-
cally, when the value of fitness function does not increase, the algorithm will terminate.

The comparison with three related methods

We implemented the proposed approach on two open-source big data platforms, 
Hadoop and Spark, the two implementations are denoted by GA-MR-IS and GA-S-IS 
respectively. We experimentally compared GA-MR-IS and GA-S-IS with three related 
methods on test accuracy and compression ratio, the experimental results are given in 
Tables  7 and 8 respectively.  In Tables  7 and 8, the bold values  indicate the maximum 
accuracy of the five methods.

It can be seen from the experimental results listed in Tables 7 and 8 that, the proposed 
method is superior to the three compared methods in both the test accuracy and com-
pression ratio. We think the reasons include the following three aspects:

1.	 The proposed method selects the optimal instance subset, and the optimality is 
given by an expert committee whose members are independent from the candidate 
instance set.

2.	 The proposed method can overcome the following three shortcomings of CNN, 
while MR-CNN and S-CNN can not.

•	 CNN is especially sensitive to noise, because noisy instances will usually be mis-
classified by their neighbors, and thus will be retained.

•	 CNN is also sensitive to the order of instances presented to the algorithm to 
decide whether or not to select.

•	 There are also redundant instances in subset selected by CNN.

3.	 In the proposed method, we defined a novel criterion to measure importance of 
instance subset, the measure integrates the wisdom of all the members of a classifier 
committee. While LCS-IS uses the generated hash function to measure the impor-
tance of instances, the measure has high uncertainty.

Fig. 7  The comparison of the test accuracy of two implementations
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The comparison of two implementations

We also conducted experimental comparison between the two implementations (i.e., 
GA-MR-IS and GA-S-IS) in terms of testing accuracy, compression ratio and run-
ning time, and visualized the experimental results, as shown in Figs. 7, 8 and 9. It can 
be seen intuitively from the visualization results shown in Figs. 7 and 8 that the two 
implementations have little difference in test accuracy and compression ratio. The 
reasons for this are easy to understand, since GA-MR-IS and GA-S-IS have the same 
mechanism for selecting optimal instance sets. But it can be seen from Fig. 9 that the 
running times of GA-MR-IS and GA-S-IS are significantly different, this is because 
MapReduce and Spark use different mechanisms to process big data. MapReduce uses 
batch processing mechanism to handle big data, while Spark uses memory computing 
mechanism to handle big data. In Zhai and Huang [47], we analyze the computational 
time complexity of the two implementations in detail, which can theoretically explain 
the reason for the significant difference.

Fig. 8  The comparison of the compression ratio of two implementations

Fig. 9  The comparison of the running times of two implementations
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Conclusions
Based on the ideas of cross validation and divide and conquer, we defined a novel cri-
terion to measure the importance of an instance subset, and proposed a method based 
on genetic algorithm and open source framework to select optimal instance subset 
from big data. Genetic algorithm is adopted to select optimal subset, and the defined 
criterion is used as fitness function in genetic algorithm. The proposed approach has 
three advantages: (1) It uses the idea of cross validation to select the optimal instance 
subset, which can effectively reduce the inductive bias of the selected instance subset. 
(2) It has a high compression ratio compared with the related methods. (3) The clas-
sifier trained on the selected instance subset has competitive generalization perfor-
mance. The promising future works of this study include (1) proving theoretically that 
the selected instance subset is optimal; (2) conducting more experiments on more big 
data sets.
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