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Background
Over the past decades, researchers have been studying malaria risk factors, i.e., root 
causes of malaria, as this infectious disease has caused more than 400,000 human 
deaths annually [1]. Many Genome-Wide Associations Studies (GWAS) have been 
carried out since human genetics has been identified as one of the main malaria risk 
factors. Substantial studies have linked specific genetic variants, i.e., single nucleotide 
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polymorphisms (SNPs), to malaria; and have shown that populations have different sus-
ceptibility or resistance levels towards malaria [2, 3]. More specifically, genetic differ-
ences are caused by genetic diversity that stems from various events shaping a peculiar 
population’s genetic structure and uniqueness. Thus, specific genetic markers in the 
human genome affect individuals’ susceptibility (possibly infected) and resistance (pos-
sibly protected) against malaria [3].

More and more GWAS has been applied to several malaria-endemic areas. It has suc-
cessfully identified genetic markers that characterize the disease’s complexity. For exam-
ple, genes such as HBB, ABO, ATP2B4, G6PD, CD40LG, FY, GYPA, GYPB, GYPC, HBA, 
HP, SCL4A1 have been associated with malaria susceptibility or resistance across dif-
ferent populations [4]. The genotype in each genetic marker in these genes is formed by 
two alleles, A and a, generally expressed as AA, Aa, and aa. In this regard, some observa-
tions in the literature have indicated that the sickle cell anemia traits of the hemoglobin 
gene can partially prevent malaria [3, 5–7]. To have sickle cell anemia, an individual 
needs to have two recessive alleles—one from the mother and one from the father. If the 
alleles are heterozygous (Aa), the individual tends to be resistant to the development of 
malaria. In contrast, if the alleles are homozygous (AA/aa), the individual is susceptible 
to the development of malaria. Their findings demonstrated that the genotype pattern 
(heterozygosity and homozygosity) of the genetic marker has significant implications to 
the association of malaria.

Besides that, an SNP mutation is one of the primary sources of genetic variation, where 
mutation changes the DNA sequences. Multiple prior studies [8, 9] have established that 
the effects of mutation may be neutral, harmful, or beneficial to individuals, depending 
on the characteristics of the disease or location. For example, the mutation location is 
crucial for the development of Parkinson’s disease [10]. In contrast, the mutation loca-
tion does not affect the development of Juvenile-onset myopia [11]. Therefore, this study 
explores the correlation between mutation location and malaria genetic marker to incor-
porate this information for individual malaria risk prediction through a machine learn-
ing approach.

In this study, we chose a machine learning approach because the big data contain-
ing genetic variation collected from GWAS provides unprecedented opportunities for 
further exploration. As an alternative, we also provide a deep learning approach. More 
specifically, we are developing a risk prediction model based on regression algorithms. 
Existing prediction studies focusing on binary classification via one-class learning, deep 
learning, and ensemble learning have shown great promise in classifying biological data 
[12–16]. However, we are interested in finding out whether it is possible to quantify an 
individual’s risk of malaria based on SNP genotype data for facilitating personalized 
prevention and treatment. Therefore, we are unable to use the existing classification 
approach that generates a “yes” or “no” outcome. Thus, this study aims to provide a score 
that reflects the level of risk in the presence of genetic markers based on an individual’s 
genetic variation profile. The current state-of-the-art risk score is based on the weighted 
genetic risk score (wGRS) to estimate the cumulative contribution of genetic factors to a 
specific disease [17]. Inspired by the importance mentioned above, we will incorporate 
the risk score calculation information on genotype patterns and mutation locations into 
wGRS.
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Another important aspect is determining the optimal number of SNPs that are 
required for malaria risk prediction. This is because the genetic basis of malaria’s suscep-
tibility or resistance is complex on several levels where many genes are involved [3]. For 
example, previous studies [3, 4, 18–24] have proved that the genetic marker, SNP rs334 
from the HBB gene, is malaria’s main genetic risk factor. In other words, SNP rs334 may 
give the most predictive ability, while other malaria-related SNPs may only improve the 
predictive power slightly. From a biological point of view, each genetic marker, i.e., SNP, 
has a certain degree of interaction and contribution to the development of the disease 
[25]. Statistical tests are commonly done in GWAS to determine the effect size of SNPs 
to see the implications for the association of malaria. However, there is still uncertainty 
on the most important SNPs for all populations due to population differentiation. There-
fore, this study utilized 104 malaria-related SNPs identified in the literature review of 31 
papers to determine the optimal number of SNPs required for malaria risk prediction.

One of the most extensive processes in training prediction models is hyperparameter 
optimization. This process determines the optimal hyperparameter values to achieve 
the best performance model. Hyperparameters have a significant impact on the perfor-
mance of the model being trained because these values directly control the behaviour of 
the training algorithm [26]. Although studies have shown several approaches for opti-
mizing hyperparameter values, grid search and random search have always been consid-
ered the most straightforward algorithms to implement. This is because grid search tries 
all possible value combinations [27], whereas random search randomly combines differ-
ent values [28]. However, one of the disadvantages of grid search is that it is computa-
tionally expensive on large datasets [27]. On the other hand, the random search is not 
exhaustive, where the randomly combined values were chosen without any strategy or 
prior trial information [28]. Another common approach is Bayesian optimization. This 
approach does not sample every possible combination like the grid search but works 
more systematically than the random search. Nevertheless, it consumes more comput-
ing resources than both approaches [29]. Thus, to overcome the curse of dimensionality 
and improve resource efficiency, we propose a Genetic Algorithm (GA) with probabil-
ity values, population, and generation sizes. Determining these values is still an open 
research question as they depend on the research domain [30].

In recent malaria research, the complexity of the disease was explored using machine 
learning algorithms, particularly malaria parasites and development stages, through 
blood smear images [31, 32]. In addition, environmental data were retrieved and trained 
by machine learning algorithms to link malaria transmission in climate change [33, 34]. 
Besides, RNA-Seq mosquito data has been extensively explored through different fea-
ture selection methods and classification algorithms to predict and detect novel genes 
for malaria infection [35–39]. The mentioned prediction strategies are considered suc-
cessful. However, a machine learning prediction model based on genetic variation is still 
required to fully explore the genetic markers to facilitate personalized prevention and 
treatment. Therefore, this paper aims to provide a machine learning model that predicts 
individual malaria risk based on large-scale genetic variation data obtained from GWAS, 
particularly susceptibility or resistance genetic markers. As an alternative approach, this 
paper also aims to provide a deep learning model. The main contributions of this paper 
are summarized below:
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•	 Proposes optimal crossover, mutation, and parameter mutation probabilities, as well 
as population and generation sizes of GA for three machine learning models: Light 
Gradient Boosting Machine (LightGBM), Ridge Regression, and Support Vector 
Regression (SVR) in this domain;

•	 Proposes a formula that incorporates mutation location information to improve the 
wGRS-based score;

•	 Proposes a novel deep learning model as an alternative approach to predict individ-
ual malaria risk;

•	 Provides a comprehensive analysis of the experimental results, and;
•	 Proposes an optimal number of SNPs for malaria prediction.

The rest of this paper discusses materials and method; results and discussion; and 
conclusions.

Materials and method
Dataset

We used the Malaria Genomic Epidemiology Network (MalariaGEN) dataset, which 
consists of 20,854 individuals (10,791 malaria-affected individuals and 10,063 controls) 
from 11 global populations (Table  1). This dataset comes from the MalariaGEN Con-
sortial Project 1 entitled: “Genome-wide study of resistance to severe malaria in eleven 
populations.” The consortial project structure has been expressed in [40], and the contri-
butions of each partner’s studies and field sites to the project are acknowledged on the 
MalariaGEN website http://​www.​malar​iagen.​net/.

Data preprocessing and data preparation

Our data preprocessing steps are as follows. (i) Data extraction: We extracted 122 
malaria-related SNPs as variables from the MalariaGEN dataset. These SNPs were deter-
mined by reviewing and analysing 31 academic articles [2, 4, 18–23, 41–63]. (ii) SNPs 
that did not report effect size or availability in all populations were excluded from the 
analysis (18 SNPs). (iii) All unparseable values, such as data types and standard format 

Table 1  Analysed populations and samples

Sample size indicates the total number of individuals for each population

Population Case Control Sample size

Burkina Faso 807 639 1446

Cameroon 693 778 1471

Gambia 2807 2786 5593

Ghana 422 342 764

Kenya 1944 1738 3682

Malawi 1590 1498 3088

Mali 475 394 869

Nigeria 288 131 419

Tanzania 485 494 979

Vietnam 860 868 1728

Papua New Guinea 420 395 815

Total 20,854

http://www.malariagen.net/
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errors, are converted to null representations. (iv) The Single Nucleotide Polymorphism 
database, in collaboration with EMBL-EBI European Variation Archive, assigns a unique 
ID to human genetic variation data, including SNPs [64]. These IDs are called rsIDs and 
appear in the format rs##. On the other hand, kgpIDs are identifiers created by Illumina 
during sequencing. The rsID of each SNP indicates variant information, including chro-
mosome position. Any SNP assigned with kgpID is mapped to rsID (32 SNPs). (v) Sam-
ples without detailed information on the severe malaria subtype were excluded from the 
analysis (37 samples). This preprocessing procedure yielded 104 SNP variables from a 
total of 20,817 samples used in the model. The descriptions of all 104 SNPs are provided 
in Additional file 1.

This stage also imputes any missing genotypes based on the MalariaGEN dataset 
used in this study. Unfortunately, the existing genotype imputation software, such as 
IMPUTE2 [65] and Beagle [66] are based on publicly available reference datasets such 
as 1000 Genomes Project or HapMap 3. Therefore, we cannot estimate missing geno-
types as we require the imputation to be more specific, i.e., based on population group 
and severe malaria subtypes. We developed a python program that imputes missing 
genotypes using the MalariaGEN dataset. The program first groups individuals based 
on their countries and then by their severe malaria subtypes. A comparison of a total of 
six SNPs for each missing genotype, i.e., three SNPs before and after the missing loci, is 
made before selecting the most common genotype data to impute the missing genotype.

On the other hand, for feature selection, we prepare the genotype data as a feature 
and class label data frame. Each column consists of an SNP with genotypes comprising 
major allele A and minor allele a, generally expressed as AA, Aa, and aa. The last col-
umn represents the class label and contains the binary classification of the individuals: 
0—case (malaria-affected) and 1—control (healthy). However, for model development, 
we replace the binary classification in the last column with the wGRS-based risk scores 
instead.

Statistical analysis

Descriptive statistics

We performed descriptive statistics to understand the data characteristics and utilized 
kurtosis and skewness to identify the normality of the data. If the kurtosis and skewness 
fall within the range of [− 7, + 7] and [− 2, + 2], the data is considered normal [67, 68]. 
However, since we obtained the kurtosis and skewness within the range of [− 1.9, + 46.3] 
and [−  5.7, + 6.7], the data is non-normally distributed. These results further reaffirm 
the conclusion in [69, 70] that normally distributed medical data is an exception because 
real-world data is usually non-normally distributed and contains ordinal data. Therefore, 
we adopted a non-parametric test, the Spearman correlation coefficient, to evaluate the 
association between mutation location and malaria genetic marker.

Spearman correlation coefficient

We first implemented the Spearman correlation coefficient in Python using the scipy.
stats.spearmanr() function. This function measures the degree of association between 
the mutation location and the malaria genetic marker in terms of strength and direction. 
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It then returns the test result with correlation coefficient and p-value to indicate statisti-
cal significance.

Next, we generated 104 feature sets to observe the statistical significance of the asso-
ciation when the number of malaria genetic markers increases. These feature sets are 
based on the feature importance ranking obtained from feature selection. Thus, for 
example, the first feature set is composed of the top one feature, whereas the second 
feature set is composed of the top two features, and so on. More specifically, feature 
selection is performed on the preprocessed MalariaGEN dataset using the Logistic 
Regression and Recursive Feature Elimination (LR–RFE) method.

The statistical analysis results indicate a correlation between the mutation location and 
the malaria genetic marker for all the feature sets, as the coefficient values are between 
[− 1, + 1] [71]. The values within this range show a correlation; more specifically, values 
closer to − 1 or + 1 are considered to have a strong correlation, whereas values farther 
away are considered to have a weaker correlation. Moreover, the obtained p-values also 
show very significant differences (p < 0.001) for all feature sets, except for feature set 9, 
where p = 0.8873. The feature set 104 (containing all SNPs) indicated a correlation coeffi-
cient of − 0.0908 and p = 0.00E + 00. These results show that mutation location plays an 
important role in malaria development. To simply put it in layman’s terms, SNPs formed 
by the same genotype, e.g., AA, do not have the same importance in malaria develop-
ment. Thus, we combine the mutation location information into the malaria risk predic-
tion model.

To further elaborate on the relationship between the mutation location and the 
malaria genetic marker, we also observed the positive and negative correlations in the 
analysis. A positive correlation means that two variables move in the same direction, i.e., 
one increases and the other also increases. Conversely, a negative correlation means that 
two variables move in different directions, i.e., one increases and the other decreases. In 
our case, feature sets 2, 8, 10, and 12 obtained a positive correlation; feature set 2 has a 
very strong positive relationship with a correlation coefficient of 0.8754. In contrast, the 
remaining feature sets have a negative correlation. Figure  1 shows a graph containing 
the correlation coefficients against the number of features. The correlation coefficients 
and p-values for all the feature sets are summarized in Additional file  2. We consider 
p = 0.00E + 00 as very significant differences (p < 0.001).

Risk score

Inspired by the above results, we propose a formula that incorporates mutation location 
information to the wGRS + GF score. The proposed formula, namely, wGRS + GF + POS, 
combines the wGRS, genotype patterns, and mutation location information of genetic 
marker, i.e., SNP. These two formulas: wGRS + GF + POS and wGRS + GF, are utilized to 
calculate the target variable. The wGRS + GF is a baseline score.

wGRS + GF

The wGRS + GF is composed of wGRS and genotype frequency [72]. The wGRS is cal-
culated by multiplying the number of risk alleles (0, 1, 2) with the estimated effect size 
reported for each variant. In contrast, the genotype frequency is calculated from the 
genotype data by using the Hardy–Weinberg equation. Thus, to generate wGRS + GF 
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for each genotype, we multiple the genotype frequency with the wGRS obtained from 
each genotype. The calculation of wGRS + GF is summarized as: (risk allele * effect size) 
* genotype frequency = wGRS + GF.

wGRS + GF + POS

The wGRS + GF + POS is based on the wGRS + GF algorithm. The algorithm first 
encodes each genotype with a unique value in increments of 104 as there are 104 SNPs. 
(See Fig. 2a for details). Thus, for example, genotype AA is assigned with 104, whereas 
genotype AC is assigned with 208. Likewise, we encode each column name with a value 
in increments of 1. (See Fig. 2b for details). For example, rs334 is the first column in the 
prepared data and is assigned a value of 1. In contrast, rs2070724 is the second column 
in the prepared data and is assigned a value of 2. Next, for each genotype, we multiply 
the genotype encoding value with the column name encoding value to compute a value 
that we call as the mutation value. Continuing with the example, the mutation value of 

Fig. 1  Association between mutation location and malaria genetic marker with respect to correlation 
coefficients and feature sets based on Spearman correlation coefficient

Fig. 2  Overview of steps to encode genotypes and column names for the proposed wGRS + GF + POS 
algorithm
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genotype AA in the first column is 1*104 = 104, while its mutation value in the second 
column is 2*104 = 208. Finally, we compute wGRS + GF + POS for each genotype by first 
multiplying wGRS with the genotype frequency and then dividing by the mutation value. 
The pseudocode of the proposed wGRS + GF + POS algorithm is presented in Fig. 3.

It is worth noting that there are 2,164,968 mutation values as there are 20,817 indi-
viduals with 104 SNPs each. Hence, we are not generating unique values for each geno-
type in each location as it is computationally expensive. Our initial exploration results 
indicated that using exponential functions create unique mutation values. However, our 
large dataset makes it computationally expensive to train the model as very large muta-
tion values are computed. Furthermore, existing machine learning algorithms such as 
XGBoost returns an error if values larger than float32 are used.

Moreover, we expect the mutation values to overlap as; generally, each genotype in 
each location may have similar or little importance to malaria development. Thus, 
instead of randomly assigning weights to the mutation values, we leave them as they are. 
Another aspect worth noting is that we chose 104 as the incremental value as there are 
104 SNPs. Thus, our approach can easily be updated to represent a new dataset, i.e., dif-
ferent number of genotypes, and has been experimentally tested on 20,817 samples.

Machine learning analysis

We performed feature selection using the LR–RFE method to generate 104 feature sets. 
These feature sets were earlier used for Spearman correlation coefficient analysis. Here, 
we explore the different feature sets to determine the optimal number of SNPs required 
for malaria risk prediction. Moreover, recent research has shown that the complex inter-
action between the SNPs increases the model’s predictive ability [3]. Therefore, the tar-
get variable of each feature set is a risk score, which represents the cumulative effect of 
features calculated by using the wGRS + GF + POS and wGRS + GF.

Fig. 3  Pseudocode of the proposed wGRS + GF + POS algorithm
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We split the preprocessed MalariaGEN dataset into two independent datasets: Test-1 
(15%) and Test-2 (85%). Study [73] recommends the split percentage. Furthermore, 
we divided Test-1 and Test-2 into seven equally-sized random groups using sevenfold 
cross-validation to prevent overfitting. Hyperparameter optimization is done through 
a GA within the Test-1 dataset. We implemented three machine learning algorithms: 
LightGBM, Ridge Regression, and SVR to train the prediction model within the Test-2 
dataset. Finally, we use the Mean Absolute Error (MAE) metric to measure the model’s 
performance based on wGRS + GF + POS and the wGRS + GF baseline model. MAE is 
a negatively-oriented score, where the lower the MAE value, the higher the prediction 
accuracy. Figure 4 shows the methodology flow chart in detail.

Hyperparameter optimization

The most commonly used for hyperparameter optimization are the grid search and ran-
dom search methods due to their simplicity and ease of use [27]. On the other hand, 
Bayesian optimization is known as a more efficient alternative [74]. However, the grid 
search uses an exhaustive search approach which becomes computationally expen-
sive with large datasets. Moreover, the random search lacks strategies, and Bayesian 

Fig. 4  Methodology flow chart
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optimization consumes more computational resources. Thus, we propose and imple-
ment a GA instead, where all the three optimization methods are used for benchmark 
comparisons.

The Test-1 dataset is used to choose the optimized hyperparameters for LightGBM, 
Ridge Regression, and SVR algorithms. More specifically, we optimized the following 
hyperparameters: for LightGBM, the maximum tree leaves [8, 16, 32], the maximum 
tree depth [4, 6, 8], the subsample ratio of the training instance [0.6, 0.8, 1.0], and the 
subsample ratio of columns when constructing each tree [0.6, 0.8, 1.0]; for Ridge Regres-
sion, regularization strength [1, 10, 100, 1000]; and finally for SVR, the kernel type [lin-
ear, rbf ] and regularization parameter [1, 2, 3, 4, 5].

To date, researchers have proposed several variants of GA for different research 
domains [75]. Generally, GA comprises initial population development, fitness evalua-
tion, parent selection, crossover, and mutation. Figure 5 summarizes the pseudocode of 
GA, which we refer to as Algorithm GA. For each feature set, Algorithm GA first initial-
izes the population with random parameters according to the defined population size 
and then calculates the fitness values of all populations. This is followed by the crossover 
and mutation steps for breeding. The main difference of the existing GA lies in the cho-
sen crossover, mutation, and parameter mutation probabilities indicated in Steps 7, 11, 
and 12 of Algorithm GA. We chose a crossover probability of 0.5, a mutation probability 
of 0.2, and a parameter mutation probability of 0.15, as it worked sufficiently well by 
achieving good MAE scores.

It is worth noting that determining the population and generation sizes is still an open 
research question as it depends on the research domain and selected features [30]. An 
optimal solution for one dataset or domain is not necessarily optimal for another data-
set or domain. Therefore, in our research, we explore the optimal combination value 
of these sizes by implementing the population size [population size = 5, 10, 15, 20] and 
the generation size [generation size = 1, 2, 3, 4, 5, 10, 15, 20], and evaluate their per-
formance based on MAE. Furthermore, studies have shown that the selection method 
employed by GA to choose the parents for breeding affects the MAE of the final model. 
Thus, choosing a suitable selection method is also crucial. Therefore, we implemented 
rank-based selection and tournament selection to observe the difference in generating 
the generations for breeding.

As noted earlier, we compared the performance of the proposed GA with three meth-
ods: grid search, random search, and Bayesian optimization. We evaluated these meth-
ods’ MAE, execution time, and peak random access memory (RAM) usage in optimizing 
the hyperparameter values for the three machine learning models. More specifically, we 
compared feature sets 20, 40, 60, 80, and 100 to provide an overview performance of 
running small and large feature sets. Thus, the purpose of this experiment is to gauge 
the performance of different hyperparameter optimization methods on genetic variation 
data ranging from 416,340 SNPs to 2,081,700 SNPs.

Alternative approach: deep learning model for individual malaria risk prediction

The deep learning model for individual malaria risk prediction of this paper is shown in 
Fig. 6. The input layer contains eight neurons, a bias initializer of 0.1, and an exponen-
tial linear unit (ELU) activation. The features are transformed via MinMaxScaler and fed 
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using the input_dim parameter. Moreover, there are eight neurons with ELU activation 
on both the hidden layers. Finally, the output layer consists of one neuron representing 
the single risk score. All layers contain the HeUniform kernel initializer.

We chose the ELU activation as it is known to reduce computational complexity by 
pushing the mean activation toward zero during training and thereby increasing the 
learning speed [76]. In contrast, we chose the number of neurons via the trial-and-error 
approach since unnecessary increments of neurons can lead to overfitting, and insuf-
ficient neurons can lead to underfitting [77]. Lastly, we use the Adam optimizer as it is 
an adaptive optimization algorithm that is effective in solving practical deep learning 
problems even on large datasets [78].

For hyperparameter optimization and training of the deep model, the Test-1 data-
set is used to select the optimized hyperparameters, while the Test-2 dataset is used to 

Fig. 5  Pseudocode of the proposed GA
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train the prediction model with the optimal hyperparameter values. The performance of 
the model is also measured using the MAE metric. We search hyperparameters by grid 
search and report the results using the best values for the batch size [4, 8, 16, 20], epoch 
[10, 20, 30, 40], and learning rate [0.0001, 0.001, 0.01].

Implementation details

We implemented the proposed approach using the python programming language while 
utilizing the sklearn library for the machine learning models and the Keras library for 
the deep learning model. The experiments were run on a Mac machine equipped with a 
2.7 GHz Quad-Core Intel Core i7 processor and 16 GB of memory.

Results and discussion
This study established machine learning models to predict the risk score of individuals 
developing malaria, using the MalariaGEN dataset, with 20,817 samples and 104 SNPs 
as features. Moreover, a deep learning model is also proposed as an alternative approach. 
Based on the feature importance ranking obtained by the LR–RFE method, 104 feature 
sets are generated to explore different feature sets for predicting malaria risk. Of note, 
a recent study [79] used LR–RFE to rank feature importance and selection to find the 
optimal feature set in breast cancer prediction. This study developed several models to 
predict breast cancer using the cytological characteristics obtained from the breast fine 
needle aspiration test. It was concluded that LR–RFE contributed to better classification 
performance and improved model accuracy. Hence, we chose to use LR–RFE on genetic 
variation to observe the effectiveness of improving the accuracy of risk score prediction.

We implemented the wGRS + GF + POS algorithm to calculate the risk score as the 
target variable for each feature set and the wGRS + GF algorithm as the baseline. Each 
feature set is split into two independent datasets (Test-1 and Test-2). For each feature 

Fig. 6  Deep learning model for malaria risk prediction
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set in the Test-1 dataset, GA is used to optimize the hyperparameter values of the three 
machine learning models: LightGBM, Ridge Regression, and SVR. Meanwhile, grid 
search is used to optimize the hyperparameter values of the deep learning model. Then, 
we use the Test-2 dataset to train the model with the optimal hyperparameter values. 
The performance evaluation of the experiment is shown below.

Optimizing LightGBM, Ridge regression, and SVR hyperparameters

Based on our experiments, for all three machine learning models, the optimal popula-
tion size is 5, and the generation size is 4. Our results indicated that the performance 
degrades when population size increases to 10, 15, and 20. On the other hand, there is 
little difference in performance when the generation size is 1 or 2.

We implemented two selection methods for the GA to observe the difference in select-
ing parents for breeding. Our results indicated that a machine learning model is affected 
by the selection method used in the GA. Some models perform better in tournament 
selection, while others perform better with the rank-based selection instead. Generally, 
LightGBM and SVR performed better in tournament selection, while Ridge Regression 
performed better in rank-based selection. These results will be used for further analysis: 
hyperparameter optimization benchmark comparisons and model training. The optimal 
hyperparameter values obtained for LightGBM, Ridge Regression, and SVR are summa-
rized in Additional file 3.

Following this, Table  2 shows a performance comparison between four methods: 
proposed GA, grid search, random search, and Bayesian optimization, in optimizing 
hyperparameter values. The proposed GA only showed marginal differences compared 
to other methods in terms of MAE scores. All methods obtained almost similar MAE 
scores on all feature sets. However, the LightGBM and SVR models performed bet-
ter with the proposed GA in execution times. In contrast, the grid search and random 
search methods optimize the Ridge Regression in slightly less time than the proposed 
GA. This may probably be because the LightGBM and SVR models have several hyper-
parameters compared to the Ridge Regression model, which only has a single parameter. 
Nevertheless, the proposed GA always performed better than the Bayesian optimization 
method. Besides that, the proposed GA also consumed the least amount of peak RAM 
usage. However, as expected, the Bayesian optimization method consumed the most 
memory for all the feature sets. On the other hand, the peak memory usage of the grid 
search and random search methods is between the proposed GA and Bayesian optimi-
zation methods. Generally, the proposed GA performed significantly better in execu-
tion times and peak memory usage. Thus, we can conclude that the proposed GA can 
be considered an alternative approach for optimizing genetic variation data or models 
with multiple hyperparameter values as it can overcome the curse of dimensionality and 
improve resource efficiency.

Malaria risk prediction via machine learning model

Figure 7 shows a graph containing the MAE scores against the number of features based 
on wGRS + GF + POS as the target variable. The baseline models based on wGRS + GF 
are presented in Fig. 8.
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Interestingly, the results in Fig.  7 show that compared to Fig.  8, the MAE scores 
obtained with different feature sets are much lower by incorporating mutation location 
information. The MAE scores in Fig.  7 are between 8.00E−06 and 2.18E−04, indicat-
ing that the wGRS + GF + POS-based models outperform the baseline models shown 
in Fig.  8, with MAE scores only ranging between 3.38E−03 and 6.71E-01. Recall that 
a lower MAE score indicates higher prediction accuracy, as MAE is a negatively-ori-
ented score. The best performing model is LightGBM, which achieves an MAE score of 

Fig. 7  Performance analysis of the wGRS + GF + POS-based model with respect to MAE scores and feature 
sets

Fig. 8  Performance analysis of the baseline model with respect to MAE scores and feature sets
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8.00E−06 when training on a single feature, i.e., rs334, and an MAE score of 5.50E−05 
when training on all 104 features. Thus, compared with the baseline models, there is a 
significant improvement in prediction accuracy. As for the baseline model, the best per-
forming model is also LightGBM, which achieves an MAE score of 3.38E-03 on a single 
feature, i.e., rs334, and an MAE score of 6.39E-01 on all the 104 features. The difference 
in MAE scores further highlights the contribution of mutation location in predicting 
malaria risk. A summary of the MAE scores obtained for each feature set based on the 
wGRS + GF + POS-based models and the baseline models are given in Additional file 4.

However, it is insufficient to train with a single feature as recent research has shown 
that the complex interaction between the features increases the model’s predictive 
ability [3]. Therefore, it is important to determine the optimal number of features for 
malaria prediction. Further analysing the wGRS + GF + POS-based models indicated 
that when the model is trained with LightGBM and Ridge Regression, the model’s per-
formance decreases when the number of features used for training increases. However, 
when trained with SVR, the model’s performance increases when the number of features 
is increased.

Moreover, we also noticed that for LightGBM, 52 features are typically optimal suf-
ficient to train the model with an MAE score of 5.10E−05. This is because no signifi-
cant changes were observed in the MAE scores when the number of features increased. 
Likewise, for Ridge Regression, the optimal number of features is 53 with an MAE score 
of 6.00E−05. In contrast, for SVR, the optimal number of features is 103 with an MAE 
score of 6.70E−05. Thus, we can conclude that generally, the LightGBM performs best 
in predicting malaria risk based on genetic variation data in terms of the number of fea-
tures required and the MAE score obtained, i.e., LightGBM achieves better performance 
with fewer features. This is a conclusion drawn from a computer science perspective 
based on the obtained MAE scores using 20,817 samples.

Malaria risk prediction via deep learning model

The MAE scores obtained for each feature set of the wGRS + GF + POS-based models 
and the baseline models are summarized in Additional file  5. Moreover, the optimal 
hyperparameters used are presented in Additional file 6.

The MAE scores of the models based on wGRS + GF + POS range from 6.00E-05 to 
3.94E-03; the best performing model used 13 features in contrast to the worst-perform-
ing model, which used 22 features. However, generally, regardless of the number of fea-
tures employed, all wGRS + GF + POS-based models obtained much lower MAE scores 
than baseline models. The MAE scores of the baseline models range from 3.51E−03 to 
6.30E−01, with the best performing model trained on a single feature while the worst 
performing model trained on 98 features. Moreover, when trained with 104 features, the 
wGRS + GF + POS-based model outperformed the baseline model with an MAE score 
of 5.71E−04 instead of 6.16E−01. This further confirms that prediction accuracy can be 
significantly improved when mutation location information is provided.

However, regarding finding the optimal number of features, we observed that the pre-
diction accuracy did not improve significantly when the number of features increased 
or decreased. In other words, lower MAE scores were obtained with fewer or more fea-
tures. Thus, we hardly determined the optimal number of SNPs required for malaria 
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prediction. This observation is different than the observation of the previous machine 
learning models, where prediction accuracy was affected by the number of SNPs used as 
features. Another noticeable observation is that there is only a slight difference in MAE 
scores obtained between the machine learning and deep learning models. Thus, we can 
conclude that the deep learning model can serve as an alternative approach for predict-
ing individual malaria risk based on genetic variation data.

Conclusions
This study developed a novel GA that optimizes the hyperparameters of three machine 
learning models: LightGBM, Ridge Regression, and SVR in this domain. The leading 
idea takes advantage of GA in parallel searching from a population of points, providing 
higher efficiency, significant running time, and more robustness. Based on the statisti-
cal analysis results that evaluate the association between mutation location and malaria 
genetic marker, generally, we obtained significant correlation coefficients and p-values 
for all feature sets. Therefore, as expected, the machine learning and deep learning mod-
els showed substantial performance improvement when mutation location was incorpo-
rated to predict the risk of malaria.

The potential application of this study is to provide relevant knowledge of genetic and 
technical deliberations, which can enhance state-of-the-art methods or as an alternative 
to quantify individual malaria risk, conduct risk score analysis, and facilitate personal-
ized prevention and treatment. Moreover, this study utilizes large-scale genetic variation 
data obtained from the MalariaGEN dataset. This dataset provides a good generalization 
for malaria risk prediction in different populations. This is because a large amount of 
genotyping data from diverse populations is usually required to obtain reasonable pre-
diction generalization. In terms of future work, it would be interesting to see the ability 
of our proposed method with populations from different continents. Besides that, we 
did not include phenotype data as the focus of our study was on genetic variation data. 
We plan to investigate the model with different types of biological data, such as protein 
interaction, phenotype, and gene expression data.

To summarize, the novelties of this study are as follows (i) proposed a novel GA with 
optimal crossover, mutation, and parameter mutation probabilities, as well as population 
and generation sizes, for three machine learning models: LightGBM, Ridge Regression, 
and SVR, in this domain (ii) proposed a formula that incorporates mutation location 
information that improved the wGRS-based score, (iii) proposed a deep learning model 
as an alternative approach to predict individual malaria risk, (iv) evaluated the experi-
mental results, and (v) proposed an optimal number of SNPs for malaria prediction.
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