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Introduction
In recent years, Big Data has ushered in a new era of data. It recognizes highly varied 
and complicated data that is defined by the amount of data recorded, distinct data for-
mats, speed of data generation, and veracity. The latter suggests a decline in confidence 
as the volume of data increases. Computer vision remains a critical research topic in the 
era of Big Data to enable a machine to analyze a large amount of data that represents dis-
tinct features of each image to predict with very good accuracy whether or not an area 

Abstract 

Because retinal hemorrhage is one of the earliest symptoms of diabetic retinopathy, 
its accurate identification is essential for early diagnosis. One of the major obstacles 
ophthalmologists face in making a quick and effective diagnosis is viewing too many 
images to manually identify lesions of different shapes and sizes. To this end, research‑
ers are working to develop an automated method for screening for diabetic retin‑
opathy. This paper presents a modified CNN UNet architecture for identifying retinal 
hemorrhages in fundus images. Using the graphics processing unit (GPU) and the 
IDRiD dataset, the proposed UNet was trained to segment and detect potential areas 
that may harbor retinal hemorrhages. The experiment was also tested using the IDRiD 
and DIARETDB1 datasets, both freely available on the Internet. We applied preproc‑
essing to improve the image quality and increase the data, which play an important 
role in defining the complex features involved in the segmentation task. A significant 
improvement was then observed in the learning neural network that was able to 
effectively segment the bleeding and achieve sensitivity, specificity and accuracy of 
80.49%, 99.68%, and 98.68%, respectively. The experimental results also yielded an IoU 
of 76.61% and a Dice value of 86.51%, showing that the predictions obtained by the 
network are effective and can significantly reduce the efforts of ophthalmologists. The 
results revealed a significant increase in the diagnostic performance of one of the most 
important retinal disorders caused by diabetes.
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belongs to the lesion. The challenges that Big Data can solve are two. The first is stor-
age, as we are working with very large datasets containing very high resolution images. 
This has been quite well solved in terms of storage thanks to the availability of powerful 
machines. On the other hand, our main objective will be the challenge of analyzing the 
different images in real time. This can be done by an intelligent system that works in 
the same way as humans in order to extract value from the data by interpreting a large 
number of pixels of each image. With the help of artificial intelligence a machine can be 
enabled to mimic this type of behavior that we see in humans. So, finally the AI with the 
help of big data should be able to store, compute and then learn from the data.

Diabetes is a chronic disease caused by high blood sugar levels. In the short or long 
term, diabetes can damage nerves and blood vessels in many organs, such as the eyes 
and kidneys. There are two main types of diabetes: type 1 and type 2. Type 1 diabetes is 
caused by lack of insulin secretion by the pancreas [1]. The second type is caused by an 
increase in insulin consumption by the body’s cells [2]. According to statistics, the num-
ber of diabetic patients has increased significantly for people over 18 years of age; their 
percentage has increased from 4.7 to 8.5% of patients [3]. The World Health Organi-
zation (WHO) predicts that diabetes ranks seventh in the world in terms of mortality 
rate. People with diabetes are more likely to develop diabetic retinopathy, as they are at 
greater risk of permanent vision loss if not treated in time. The retina, a sensitive organ 
of vision, is a thin membrane that lines the back of the eyeball and contains cells that 
receive light signals and then the information is transmitted by the optic nerve to the 
brain, which reconstructs the image. Figure 1 shows a normal fundus image.

Diabetic retinopathy is a serious complication of diabetes that affects 50% of patients 
with type 2 diabetes. High blood sugar levels weaken the capillary walls of the retina and 
make certain areas of the retina insufficiently oxygenated, causing blood vessels to burst, 
which can lead to permanent vision loss. At first, symptoms are not apparent, this is 
why regular check-ups and early detection by specialists are so important. Furthermore, 
retinopathy accelerates the onset of other eye diseases such as glaucoma [4] or cataracts. 
Most epidemiological studies have shown that diabetic retinopathy is the leading cause 
of blindness in people aged 20 to 74 years [5]. For this reason, the patient’s retina should 

Fig. 1 Normal fundus image
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be checked regularly by an ophthalmologist. The ophthalmologist performs several tests 
to determine the patency of the retinal vessels: measurement of visual acuity, measure-
ment of eye tension, measurement by dilation of the pupil and the practice of retinal 
angiography.

These numerous maneuvers require a trip by the patient or the attending physician, a 
considerable amount of time and the intervention of a large number of human resources 
(optometrists, nurses, technicians, ophthalmologists, orthoptists...). In addition, this is 
only the beginning of a long series of analyzes leading to the morphological and physi-
ological study of the eye and finally to the detection and estimation of lesions. Despite 
all this work, the results and diagnoses lack clarity and precision due to the very min-
ute nature of the lesions and the complexity of their aspects (variations in size, color, 
morphology and shape). Today, artificial intelligence (AI) methods have already largely 
penetrated the fields of medical research, diabetes is no exception. The methods and 
algorithms that are particularly adapted to imaging data are very promising. It is the 
implementation of a set of techniques and computer theories aimed at simulating or 
reproducing human reasoning and learning in machines: (Deep Learning, convolutional 
neural networks). This alternative is beneficial for diabetic patients because computer 
assistance significantly improves the early diagnosis of advanced eye diseases, with relia-
bility beyond the expert consensus. Over the past two decades, computer-aided diagno-
sis (CAD) has fueled the development of medicine in general [6, 7]. The innovative and 
effective uses of artificial intelligence have one goal: to improve the quality of care and 
provide benefits and facilities that have enabled: predict advanced eye diseases, auto-
mate disease detection in less time, measure their growth rates, reach a larger popula-
tion, reduce costs and treat patients on time.

Medical imaging is a modern diagnostic tool in medicine that is undergoing a great 
evolution, allowing for better diagnosis and new hope for the treatment of many eye dis-
eases. Thanks to advances in computer technology, it is possible to acquire images of the 
retina, to identify and visualize lesions indirectly. Moreover, these representations are 
subject to interpretation and facilitate the use of surgery. The eye is visualized using vari-
ous retinal imaging screening techniques to detect and diagnose the presence of lesions 
indicative of early diabetic retinopathy, namely hemorrhages, microaneurysms, soft exu-
dates and hard exudates [8]. There are several cross-sectional imaging techniques such 
as: Optical Coherence Tomography (OCT) [9], Fundus Fluorescein Angiography (FFA) 
and Color photography of the fundus of the eye (CF) [10].

In this article, we focus on diagnosis using fundus images. The identification of bleed-
ing is a common telltale symptom of diabetic retinopathy, as it corresponds to the leak-
age of blood from capillary networks or venous branches. Weakening of the vascular 
walls leads to disruption of the inner blood-retinal barrier during sudden changes in 
perfusion pressure [3]. The different retinal abnormalities of diabetic retinopathy are 
illustrated in Fig. 2.

Segmentation of retinal images is a very complex process due to low contrast, uneven 
shape and blurred edges of the lesions. In recent years, deep learning (DL) methods have 
advanced considerably and produced better results through a set of specific techniques 
based on the careful application of fine engineering research that uses the computational 
power of machines to understand, analyze and process one or more images. These high 
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definition techniques are used in various application areas such as: image classification 
[3, 11, 12], road mining [13], segmentation of brain tumors [14] and object detection 
[15].

Convolutional neural networks (CNNs), which are a branch of deep learning, have 
achieved the highest efficiency over traditional machine learning-based methods [10] 
for medical imaging segmentation using pixel-by-pixel labeling, due to their ability to 
extract and learn the most discriminative features at the pixel level. In this work, we use 
a convolutional neural network based on the U-Net architecture to develop a method 
for automatic segmentation of retinal hemorrhages in the fundus image. The neural net-
works we train on data sets that contain very high resolution images labeled pixel by 
pixel. The first step is to search the data to train the network to make decisions by pro-
viding correct information. Then it trains on this data set, we will give it a separate data 
set called the test data set. The validation data set to see how well it actually works after 
training.

The structure of our paper is as follows. The second part is a related work that mainly 
presents previous studies on bleeding segmentation and their obtained results. The third 
part describes semantic segmentation, deep learning and convolutional neural networks 
respectively and mainly explains our proposed method. The fourth part presents the 
datasets that were used to perform this experiment and the results of our experiment. 
Finally, the last part concludes and presents future work.

Related previous works
In recent years, machine vision has made dramatic progress, thanks in part to recent 
advances in optimization and the explosion of computer computing power. For exam-
ple, advances that have been made in facial recognition are being replicated by the 
research community in the medical field. AI can process thousands of images in sec-
onds and detect important information with great accuracy that would have taken 
radiologist months to find. For this reason, many computer-aided diagnostics have 
been developed to help physicians improve diagnostic results in many medical fields, 
such as breast cancer [16–20], brain cancer [21, 22], diabetic retinopathies [23, 24], 
etc. This section presents the different techniques that have been applied to segment 
retinal hemorrhages in fundus images of patients with diabetic retinopathy. There 
is an extensive literature on the detection of retinal hemorrhages. For example, the 

Fig. 2 A fundus image of the affected eye
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regional growth-based technique described by The methodology published by Gard-
ner et al. [25] applies an artificial neural network to indicate the presence or absence 
of a hemorrhage, exudate or blood vessel from the squares obtained by non-over-
lapping slicing of a retinal image of size 700 × 700 pixels to several small squares of 
20 × 20 pixels. The network has a sensitivity of 73.8% for the detection of hemor-
rhages, which shows a high accuracy of detection compared with the results of the 
examination performed by an ophthalmologist. Another method presented by Sin-
thanayothin et al. [26] that automatically segments hemorrhages and exudates using 
the “Moat Operator” and increasing recursive segmentation of regions. Ophthal-
mologists noted hemorrhages and exudates in non-overlapping cut images of sev-
eral small 10 × 10 squares. The authors did not use pixel segmentation to evaluate 
their segmentation, but instead evaluated their segmentation using segments. The 
non-proliferative diabetic retinopathy feature detection (NPDR) technique achieved 
a sensitivity of 77.5% and a specificity of 88.7% for the group containing hemorrhages 
and micro-aneurysms. To classify red lesions, Kande et al. [27] detected microaneu-
rysms and hemorrhages by pixel classification and mathematical morphology. They 
used the red and green channels of the image to assess whether or not the image had 
red lesions. Then, the support vector machine (SVM) algorithm is used to classify 
candidate areas for red lesion containment. The proposed approach has a specificity 
of 91% and a sensitivity of 100%. Tang et al. [28] They detected hemorrhages using the 
k-Nearest Neighbors algorithm as a splat-based characteristic classifier selected by 
an envelope and filter method. This experiment yielded a receiver operating feature 
(ROC) curve score of 0.96 with the MESSIDOR data set. Grinsven et al. [29] created a 
CNN architecture to detect hemorrhage with nine layers formed by selective samples 
and 41 × 41 size patches labeled with or without evidence of hemorrhage. The results 
obtained are 84.8 and 90.4, respectively, for sensitivity and specificity to identify 
hemorrhages on images from the MESSIDOR and KAGGLE data sets. Tan et al. [30] 
developed a 10-layer multiclass neural network to segment hemorrhages, microaneu-
rysms and exudates in images of the retinal fundus. Hemorrhage segmentation had a 
sensitivity of 62.57% and a specificity of 98.93%. Quellec et al. [31] developed a CNN 
model have using the ConvNets network structure that generates heat maps to simul-
taneously detect four forms of diabetic retinopathy lesions: microaneurysms, hemor-
rhages, exudates and absorbent cotton spots. For hemorrhages detection, the model 
showed an AUC of 0.614. Karkuzhali and Manimegalai [32] includes two preprocess-
ing steps. The median filter is the initial preprocessing step, followed by the Sobel 
operator. After that, a slide segmentation is performed, which involves moving a ker-
nel window over the entire retinal image. This approach has an accuracy of 93.21%, a 
sensitivity of 90.02% and a specificity of 88.43%. Lam et al. [33] tested five CNN mod-
els, including AlexNet, VGG16, GoogLeNet, ResNet and Inception-v3 to locate dif-
ferent types of lesions in retinal images. The ophthalmologist examines the image of 
the fundus to produce patches containing hemorrhages, microaneurysms, exudates, 
retinal neovascularization, or normal-looking structures. These image patches are 
used to train convolutional neural networks to predict the existence of these five cat-
egories. To create a probability map for the entire image, the sliding window method 
is used. Badar et al. [34] proposed an encoder-decoder for simultaneous segmentation 
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of hemorrhages, soft exudates and exudates based on a CNN inspired by the semantic 
segmentation network Segnet. Using the Messidor dataset for training and testing, the 
proposal achieved 97.86% accuracy for semantic hemorrhages segmentation. Orlando 
et al. [35] constructed a CNN and combined it with a random forest to segment hem-
orrhages and microaneurysms. Probability maps of hemorrhages and microaneu-
rysms located at the image level are generated using the random forest algorithm that 
receives the green layer features from the patches extracted by the CNN architecture. 
In this experiment using the DIARETDB1 dataset, the approach has a sensitivity of 
48.83 for detecting microaneurysms and hemorrhages. Saha et al. [36] used a method 
based on a fully convolutional deep neural network trained end-to-end for automatic 
segmentation of multiple lesions at once, including microaneurysms, hemorrhages, 
hard exudates, soft exudates and optic disc. The network, called “SegNet”, includes an 
encoder in the form of a 13-layer convolutional VGGNet and a decoder that manages 
the classification on a pixel-by-pixel basis. Ananda et  al. [37] modified U-Net deep 
neural network by reducing the number of filters and coding layers to segment differ-
ent types of retinal diseases; each of the U-Net models is used to segment one of the 
disease types, such as hemorrhages, microaneurysms, hard exudates or soft exudates 
and optic disc. The modified version of the U-Net model yielded a dice coefficient of 
0.86 for bleeding segmentation. Guo et al. [38] wrote a paper using the L-Seg model, 
which is a modified version of the VGG16 architecture, to detect the presence of vari-
ous diseases such as hemorrhages, microaneurysms, soft exudates and hard exudates. 
It is a method that combines multiscale properties to solve the problem of segment-
ing small areas as efficiently as possible. The results obtained by the L-Seg architec-
ture are superior when the IDRiD dataset is utilised; this technique provided an AUC 
of 67.34 for hemorrhage. Yan et al. [39] proposed a study consisting of three parts: the 
first two are U-net models called GlobalNet and LocalNet. The third part is a fusion 
unit that integrates the outputs of two U-net models to segment the four types of reti-
nal lesions present in each image, including hemorrhage, microaneurysm, hard exu-
date or soft exudate. The combined model was successful in segmenting hard exudate 
and microaneurysms. The GlobalNet model, on the other hand, exhibited the greatest 
hemorrhage and soft exudate segmentation rates. For hemorrhage segmentation, this 
approach yielded a score of 0.711. Huang et al. [40] used a convolutional neural net-
work that combines BBR-Net, which can improve the accuracy of the annotations of 
training data and RetinaNet to identify the presence of hemorrhages. The system in 
question starts with a preprocessing step of the fundus image that uses CLAHE cor-
rection and adaptive gamma correction to adjust for irregular illumination and low 
contrast. The method outperformed the standard RetinaNet system, demonstrating 
its ability to refine manually traced hemorrhage annotations. A mean IoU value of 
0.8715 was recorded on the IDRiD data set.

The literature discussed above presents different methods of retinal image analy-
sis for computer-aided diagnosis of hemorrhages. The proposed work has resulted 
in considerable progress that is increasing daily. The types of methodologies dis-
cussed in this article have focused on: basic image processing methods and methods 
using mathematical approaches to morphology and region growth. These methods 
were effective at one time, but have been replaced by computer vision and machine 
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learning approaches that are characterized by the strength of feature extraction, 
selection and classification. This type of research has produced high performance 
measures. In addition, advances in deep learning and the application of CNN are 
leading to good results, especially in medical imaging which allows for more accurate 
localization compared to previous methods.

The related previous works shows that deep learning-based systems have become a 
popular research area due to their greater strength and ability to automatically extract 
features compared to machine learning-based methods. In addition, deep learning 
allows for accurate localization of the retinal boundaries. The only limitation is that 
its training is time consuming and remains difficult.

Materials and methods
Semantic segmentation

Segmentation is an important procedure applied to medical images of the retina, as 
it can greatly assist in the diagnosis of diabetic retinopathy and thus in the identifica-
tion of areas of interest in retinal images that are often difficult to detect. It consists 
of dividing the medical image into a set of pixel groups or areas representing an ana-
tomical structure such as the fovea, optic disc, retinal blood vessels or lesions like 
hemorrhages, microaneurysms, soft and hard exudates [41]. In this work, we will use 
a semantic segmentation algorithm, also known as pixel segmentation. It associates 
each pixel with its class so that the result of semantic segmentation is an image in 
which each pixel belongs to a certain group. To distinguish these groups, they will 
be assigned a different color than the others. Classical machine learning algorithms 
quickly replaced the first semantic segmentation methods. They were then overtaken 
by the development of deep learning, which proved to be much more efficient, com-
parable to that of humans [42]. Unlike classifiers such as AlexNet and VGGNet, where 
there is only one classifier that generates an output vector, the semantic segmentation 
architecture essentially consists of the contracting path (encoder) and the expansive 
path (decoder). An encoder is a network that takes an input image and generates a 
feature vector. The decoder accepts an input feature vector and produces a semantic 
segmentation mask [43]. Semantic segmentation has several classifiers that operate 
simultaneously. The number of classifiers is equal to the number of pixels in the input 
image. Each classifier generates its own prediction vector and each pixel is classified 
with a vector whose size is equal to the number of categories [44]. Figure 3 illustrates 
semantic segmentation in fundus image.

Fig. 3 Semantic segmentation in fundus image
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Convolutional neural network

In this section, we discuss convolutional neural networks, also known as CNNs. They 
are a type of deep learning that has a great ability to automatically recognize the image 
content. It has proved that are very effective and more suitable for all computer vision 
applications such as autonomous driving, pattern recognition, facial recognition, robotic 
vision, satellite image segmentation and medical image diagnosis. These are probably 
the most successful AI models, which are inspired by biology and more precisely by the 
functioning of the brain [45], through these models machines can see and thus replace 
time-consuming and effort-consuming human work. To construct a CNN, primary and 
secondary layers are used. Among the most important primary layers are the convolu-
tional layers, which are the backbone of the construction of a CNN and play a major 
role in extracting features from the image using the convolution process [46]. Pooling 
layers are the second type and they are used to reduce the size of the input sample. The 
third type is the flat and dense layers. These layers are fully connected layers, which 
are the last layer of the network in which classification takes place using the flattening 
operation to convert the output of the convolutional part of the CNN into 1D feature 
vector. Each neuron must perform a non-linear transformation of its input. To do this, 
there are several activation functions, which allow each neuron to perform a non-linear 
transformation of its input [46]. Secondary, layers play an important role in improving 
network performance, for example, dropout layers that significantly improve model gen-
eralization while preventing overfitting, batch normalization layers and regularization 
layers [44]. As shown in Fig. 4, the combinations of convolution and pooling layers are 
performed iteratively to extract features, so that each time this process is applied, the 
depth of the content acquired by the CNN is increased so that it has an accurate under-
standing, facilitates the creation of sophisticated descriptors. Regarding the classifica-
tion process, fully connected layers are used to obtain an accurate classification of these 
descriptors [47].

CNN models such as VGGNet, ResNet and AlexNet have been very successful in 
image classification [48]. But they have failed to associate each pixel of an image with its 
class due to the propagation of feature maps through the different CNN stages, leading 
to relatively fuzzy boundaries due to the loss of information from the original image. To 
overcome these drawbacks, semantic segmentation is an interesting alternative that has 
achieved better results by dividing the retinal image into several distinct classes, each 

Fig. 4 Structure of a convolutional neural network
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corresponding to a particular retinal lesion or anatomical structure. There are many 
deep learning-based architectures that can solve the semantic segmentation task. Such 
as fully convolutional neural network (FCN), SegNet architecture, DeepLab architec-
ture, RefiNet architecture, PSPNet architecture, UNet architecture, etc. Since the UNet 
model is applicable to many biomedical segmentation problems and offers better per-
formance, we chose to use it in this work to create a segmentation-capable program to 
handle the problem of segmentation of retinal hemorrhage from fundus images. After 
observing the structure of UNet, it is easy to understand where the name comes from, 
because this architecture is more or less symmetrical and it organizes the layers of neu-
rons in the form of the letter “U”. The input to the neural network, also called the con-
traction path, is located on the left. It follows the architecture of a typical convolutional 
classification network but does not have fully connected layers; its role is to subsample 
the incoming image and create a feature vector. The output of the neural network, also 
known as the expansive path, is located on the right. Its function is to expand the size of 
the characterization maps and generate a mask of the same size as the incoming image, 
representing a semantic segmentation of retinal hemorrhages.

Proposed UNet architecture

To address the problem of segmentation of retinal hemorrhage, which is one of the most 
important indicators of the development of diabetic retinopathy produced by a vascular 
explosion due to the pressure given to it, we will use one of the most effective structures 
created by Ronneberger et  al. [49]. We will modify the UNet design and write a spe-
cial one to solve the retinal hemorrhage segmentation problem, because after testing, 
the architecture did not work with the original UNet network settings. Figure 5 shows 
a schematic representation of the main workflow used, which is divided into two steps. 
The first step is the training of the network using color images with three-dimensional 

Fig. 5 An overview of the main process of our method
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values, i.e., image width, length and depth, which refers to the number of RGB color 
channels. The second step is to examine the generalizability of the method by testing the 
network on two data sets.

A preprocessing step is necessary to obtain better data to facilitate subsequent opera-
tions. This step begins with the removal of the black border from the original data, fol-
lowed by separation of the RGB color channels to extract the green channel, which has 
a strong contrast between hemorrhages and background in the fundus image compared 
to the red or blue channel [50, 51] and ends with resizing of the image. The results of the 
preprocessing step are shown in Fig. 6.

To be able to solve the data scarcity problem that deep learning requires training a 
convolutional neural network, we use data augmentation techniques to increase the 
amount of data available in the dataset. The data obtained through the data augmenta-
tion process is then normalized and separated into two parts, one for training and one 
for testing. We will feed the neural network with the training portion containing the 
green channel of the fundus images that provide finer and greater detail on the retinal 
hemorrhage in the input image. We will also need to provide the neural network with 
labeled data that is in the form of a training mask. This consists of black images with 
white spots that will mark the regions of interest to teach the neural network to recog-
nize and identify retinal hemorrhages.

The encoder path on the left is composed of four blocks; the first one receives the 
green channel of the background image, while the following blocks receive the output 
of the previous block as subsampled images with a lower resolution than the previous 
layer. The first block consists of three convolutional layers, with 32 feature maps on the 
first and second layers and 64 feature maps on the third. The second block also consists 
of three convolutional layers, with 64 feature maps in the first two layers and 128 in the 
third. Only the third and fourth blocks comprise two convolutional layers and the num-
ber of feature maps is doubled at each subsampling step to 128 and 256, respectively. 
The last feature map is divided by four at the end of each block, using the most com-
mon form of pooling operation, Maxpooling. This layer is used to reduce the size of the 
input sample. While retaining the most critical information from the input layer. Then, 
an intermediate copy of the feature map is kept before each Maxpooling layer, which will 
be used to connect the contraction path to the expansion path. This duplicate of the fea-
ture map will help produce a more accurate segmentation result.

The decoder path on the right side of the design consists of four blocks that are sym-
metric in terms of the feature map layer configuration with the encoder path. Each block 

Fig. 6 (left) Input RGB fundus image with black border (middle) Input RGB fundus image after extracting the 
black border and (right) RGB color space green channel
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ends with an operation that oversamples the feature map using the “UpSampling2D” 
layer with Step 2, which takes the number of feature maps from the previous block and 
divides it by two to reduce the number of feature maps in each sampling phase. In addi-
tion, the important procedure indicated by the blue horizontal arrows in Fig. 7 recovers 
the mirrored feature maps that were previously held before each maximum clustering 
layer in each of the four encoder path blocks and correlates them with the oversampling 
results drawn using the “UpSampling2D” layer of the decoder path. We added an addi-
tional subsampling step after the last block of the decoder path and then concatenation 
between the network result and the initial input image to achieve better segmentation 
of retinal hemorrhages. Finally, we need to perform a last convolution processing using 
a 1 × 1 kernel followed by a sigmoid activation function to compute the results of both 
maps. This function offers the final result of the pixel segmentation and decides whether 
the pixel belongs to the lesion or not.

The bottleneck is located in the middle of the contraction and expansion paths, allowing 
them to connect. It has two convolution layers, the first of which enhances the feature 
maps and the second of which reduces them. Each convolution layer has a 3 × 3 kernel 
and all Maxpooling operations have a 2 × 2 kernel with a stride of 2. The size of the input 
image is slightly reduced when the convolution processing is performed. To avoid this 
reduction, generate an image with the same resolution as the input image. We surround 

(1)g(z) =
1

1+ ̺−z

Fig. 7 Modified UNet architecture for hemorrhage segmentation in fundus images for the diagnosis of 
diabetic rethinopathy
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the original image with one or more rows and columns of zero. As a result, we will have 
a feature map with the same input and output layers. To put it another way, the padding 
is equal to the same. The convolutional layer is followed by the RELU activation function 
and the batch normalization layer. The rectified linear unit (RELU) activation function 
replaces all negative activations with 0 by applying the following function:

The batch normalization layer normalizes the output of the activation function and scales 
it down to a zero-to-one scale. This prevents the network weights from becoming unbal-
anced due to very high or low values. Since the batch normalization layer is included in the 
gradient process, gradient deterioration is avoided. The inclusion of batch normalization 
in our model can significantly improve training speeds while reducing the possibility of 
exceeding high weights that would significantly impact the training process.

Experience and results
In this section, we detail the platform used to simulate the experimentation of this 
method, the datasets used, the approach taken to extend the amount of existing data and 
finally, we discuss the various results recorded. GPU (graphics processing unit) provided 
by Google’s collaborative service (googlecolaboratory), as well as the Python Keras deep 
learning library and the TensorFlow backend, were adopted to simulate the experiment.

Dataset description

The data for this experiment are from the IDRID [52] and DiaretDB1 [53] datasets that are 
freely available to the public [52, 53]. Currently, these are the only datasets with manual 
hemorrhage annotation [40]. The IDRiD dataset consists of 516 retinal fundus images with 
a resolution of 4288 × 2848 pixels, 80% of which are used for training and 20% for testing. 
To measure the degree of diabetic retinopathy and macular edema, IDRiD provides image-
level annotations. It is the only dataset that also provides ground truths manually obtained 
from pixel-level annotations provided by retinal specialists for diabetic retinopathy-related 
lesions such as microaneurysms, hemorrhages, soft exudates and hard exudates. Ground 
truth is used to evaluate the performance of lesion segmentation techniques. The final 
function of the IDRiD database is to provide information on the location of the central 
pixel of the optic discs and the center of the fovea. Figure 8a shows a fundus image with 
hemorrhages from the IDRiD database, whereas Fig. 8b shows the accompanying labels.

The DIARETDB1 dataset contains 89 retinal fundus images with a resolution of 
1500 × 1152 pixels, including 5 normal retina images and 84 abnormal retina images 
that were manually classified by experts. Microaneurysms, hemorrhages, hard and soft 
exudates are the four types of lesions identified by DIARETDB1. The DiaretDB1 data-
set is an effective standard in screening for diabetic retinopathy as accurately as possi-
ble. It offers annotations to validate the results obtained by an encircling or delineating 
approach. Pixels are considered as ground truth only if the confidence level of the labe-
ling is higher than the average of 75% of experts. Figure 9a shows a fundus image with 
hemorrhages from the DIARETDB1 database, whereas Fig. 9b shows the accompanying 
ground truth.

(2)g(z) = max{0, z}
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IDRID subset of data, that provides pixel-level annotations for segmentation, is used 
for training testing and validation in this study. We took 80 fundus images with bleeding 
symptoms and separated them into two parts: 70 images for training and testing and 10 
images for validation. To facilitate the calculations, the images have been resized to a size 
of 560 × 576 pixels. The chosen geometry will allow us to avoid falling into odd numbers 
when dividing and multiplying by two when encoding and decoding the images. The size 
of the dedicated training and test dataset is relatively small for our convolutional net-
work to work successfully. As a result, we will need to create more images using data 
augmentation technology, as 70 images is a relatively small number.

The DiaretDB1 dataset is only used in the validation stage and not in the learning 
phase. The bounding circles or frames are often incorrect, which could directly influence 
the performance of the CNN.

Data augmentation

A major difficulty in using deep learning is the amount of data, which must be huge. 
Increasing the amount of data is a critical component for the network to acquire the 
desired invariance and robustness characteristics to improve segmentation accuracy. It 
also avoids overfitting the network and provides a more representative image base, which 

Fig. 8 a Examples of a fundus image with retinal hemorrhages from the IDRiD database and b ground‑truth 
examples of retinal hemorrhages from the IDRiD database

Fig. 9 a Examples of a fundus image with retinal hemorrhages from the DIARETDB1 database and b ground 
truth examples of retinal hemorrhages from the DIARETDB1 database
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greatly improves the learning of the neural network. Convolutional neural networks are 
robust to changes in the original images due to the data augmentation approach, such 
as changes in image shape, brightness and other factors that generate more data. Both 
the original image and the generated images are used as training images. In the orig-
inal images, the degree of similarity between the hemorrhages, blood vessels and the 
background is very high [7]. Through the transformations that occur in the images as 
a result of the data augmentation process, it is possible to provide the CNN with a set 
of features that allows it to distinguish between the hemorrhages, the blood vessels and 
the background in the original image. We will multiply the number of images by per-
forming transformations on each original image. First, we will perform a 90° rotation 
from 0° to 360°. For each image generated by the rotation process, we will apply random 
manipulations. These manipulations are adding noise, changing the gamma (for bright-
ness changes) and changing the colorimetry. We also perform vertical and horizontal 
flipping, as well as horizontal and vertical flipping of the image. The example of data 
augmentation is shown in Fig. 10. The final dataset consists of 1190 images, which will 
be divided into two subsets: training and test. We will randomly extract 90% of the total 
images for training and the remaining 10% will be reserved for testing. This gives 1071 
training images and 119 test images. Not counting the 10 images that were recorded 
before the data augmentation process and will be used in the validation step. Finally, 
using the training dataset, we can begin teaching our network. We can use the network 
to generate predictions and create images once the training phase is complete.

Results

Experimental settings

Before the learning process begins, the next step is to experimentally adjust the 
hyper-parameter values by performing different permutations to find the parameters 
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that provide the best segmentation results. We used the Adam optimizer [54] with 
default parameters to train the classifier on the training data. Since our pixel classi-
fication problem is a binary classification, we will use the binary cross-entropy func-
tion as the loss function. The batch size that we adopted in our experiment is four 
images per batch and our model training was adapted for 100 epochs.

The metrics that were used to evaluate the reliability of the suggested technique are 
presented in this section; these measures are often used in the process of evaluating 
the effectiveness of semantic segmentation. We describe their computational formu-
las for determining the success rate and demonstrate the level of similarity between 
the segmentation performed by the algorithm and the ground truth. The calculations 
are performed in terms of accuracy, precision, dice similarity coefficient, Intersection 
over Union (IoU), sensitivity and specificity.

The scoring values of the true positive (TP), true negative (TN), false positive (FP) 
and false negative (FN) pixels were used to generate these metrics. True positives 
(TP) correspond to pixels correctly identified as retinal hemorrhages. Pixels correctly 
classified as non-retinal hemorrhage are true negatives (TN). False positives (FP) 
refer to pixels that do not belong to the retinal hemorrhage and are classified as reti-
nal hemorrhages, whereas false negatives (FN) refer to pixels of retinal hemorrhages 
classified as not belonging to retinal hemorrhages.

• Accuracy: First, we use the accuracy, which is defined by the number of correctly 
predicted predictions divided by the total number of predictions. In semantic seg-
mentation, the accuracy is formally computed as follows:

• Precision: Corresponds to the percentage of positive samples correctly classified 
among all positive instances. Determined by dividing the number of true positives 
by the number of positive predictions. The precision is calculated using the following 
formula:

(3)Accuracy =
TP + TN

TP + TN + FP + FN

(4)Precision =
TP

TP + FP

Fig. 10 Example of data augmentation
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• Similarity coefficient (Dice): Third, we will use the dice coefficient, or overlap index, 
to evaluate the similarity of two data sets. This is equivalent to the intersection of two 
data sets divided by the total size of the first set added to the second set. In semantic 
segmentation, the dice index is formally defined as follows:

We can use the Dice index as a metric to evaluate the accuracy of our neural network 
once we have discovered it. The Dice index is a number between 0 and 1. The two data 
sets are not identical if the Dice index is close to zero; otherwise, the two data sets are 
identical if the Dice index is close to one.

• Intersection over Union (IoU): Is a measure frequently used in most image segmen-
tation algorithms to make a quantitative evaluation of performance. It is determined 
by dividing the intersection of the two data sets, which are the ground truth and the 
result of the algorithm, by the union of these same two sets. The following equation 
is used to calculate the IoU.

• Sensitivity: Is the percentage of predictions correctly identified as retinal hemor-
rhages. It is determined by dividing the sum of correctly segmented positive cases 
by the sum of all positive cases in the ground truth. It is calculated with the following 
equation:

• Specificity: Is the percentage of predictors correctly identified as not belonging to 
retinal hemorrhages. It is determined by dividing the sum of correctly classified neg-
ative cases by the sum of all ground truth negative cases. It is calculated with the fol-
lowing equation:

Results and discussion

In this paper, a modified U-Net architecture proposed for the purpose of segmentation 
of suspicious hemorrhages in retinal images without first removing the blood vessels, 
optic disc, macula and fovea. U-Net architecture allows the reuse of features extracted 

(5)Dice(X ,Y ) =
2 | X ∩ Y |

| X | + | Y |

(6)IoU =
| X ∩ Y |

| X ∪ Y |
=

| X ∩ Y |

| X | + | Y | − | X ∩ Y |

(7)Sensitivity =
TP

TP + FN

(8)Specificity =
TN

TN + FP
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by the encoder network and correlates them with the results of the decoder path. This 
technique alleviates the degradation problem, allowing a faster convergence of the net-
work and producing high resolution images.

The objective of this section is to discuss the obtained results and compared it with 
the similar published method in the literature of recent publications, which have used 
retinal hemorrhage segmentation approaches. We have trained and tested the model 
using the IDRID dataset and the DIARETDB1 dataset. We have built a model and test-
ing it with two different datasets to confirm the stability of our proposed approach. In 
the testing phase, we have used different datasets, to ensure that the result of the hemor-
rhages assessment is not biased due to the change of the dataset in the training and test-
ing phases. Many similar studies on CAD system for hemorrhage diagnosis has recently 
been published [30, 34, 35, 37] these studies allow us make a comparison in order to 
assess the performance of the proposed approch.

To do so, we use a variety of performance measures that simplify the determination 
of the degree of effectiveness. Table  1 shows the performance obtained and Tables  2 
and 3 show the results of the quantitative comparison of the different algorithms. Com-
pared to previous techniques, we think that the results of our method are quite intrigu-
ing. The suggested model had an accuracy of 98.68%, a precision of 99.98%, a similarity 
coefficient (Dice) of 86.51%, an intersection over union (IoU) of 76.61%, a sensitivity 
of 80.49%, a specificity of 99.68%, and a loss to training data not exceeding 0.0038. Tan 
et al. [30] published a study using the CLEOPATRA database on a strategy for simulta-
neous segmentation of retinal diseases using a 10-layer convolutional neural network. 
For retinal hemorrhage segmentation, the proposed solution has a sensitivity of 62.57% 
and a specificity of 98.93%. Compared to our method, the approach has a lower sensitiv-
ity and a higher specificity. A technique for semantic segmentation of various retinal dis-
orders was developed by [34]. The Messidor dataset is used in their technique, which is 
based on the Segnet architecture. Their technique had higher sensitivity and specificity 
than ours, with a sensitivity of 80.93% and specificity of 98.54%, respectively. Regarding 
accuracy, their method achieved a lower value than ours with a value of 97.86%. Orlando 
et  al. [35] developed a method for detecting red lesions (micro-aneurysms or hemor-
rhages). Features are retrieved using a six-layer CNN architecture and manually devel-
oped procedures. Hemorrhage features collected from the DIARETDB1 database are 
fed into the random forest method, which creates a probability map to identify hemor-
rhages. The sensitivity obtained was lower than the sensitivity of the proposed system 
with a value of 48.83. Ananda et al. [37] suggested a methodology based on CNN by seg-
mentation. They used the IDRiD and MESSIDOR databases, as well as a modified U-Net 
and a modified SegNet. They had a gain of 0.02% in the similarity index (Dice) compared 
to our approach, which had a value of 86.53%, and a higher training data loss, with a 
value of 0.1461, than our method.

Figure 11 shows the learning curve of the retinal hemorrhage segmentation algorithm 
as a function of the number of periods using the IDRiD dataset. We can observe that 
the accuracy value increases rapidly in the first few rounds and continues to increase 
with each subsequent iteration, showing that the learning process produces interesting 
results. The learning loss rate curve for the retinal hemorrhage segmentation algorithm 
as a function of the number of periods using the IDRiD dataset is shown in Fig. 12. The 
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curve shows a substantial reduction in the learning loss rate in the first few iterations, 
which continues as the remaining iterations progress, giving us a modest loss value for 
the training data. Figure 13 represents the last part of the proposed model training pro-
cedure with 100 epochs.

We verified the proposed model using a portion of the images in the IDRID and 
DIARETDB1 datasets for the model validation step. 51 of 89 fundus images in the 
DIARETDB1 dataset showed evidence of retinal hemorrhages according to independ-
ent labeling by four medical experts. The first column in Fig. 14 represents the original 
image from the validation set, the second column represents the hemorrhage label asso-
ciated with the original image and the third column represents the retinal hemorrhage 
segmentation result obtained by the method using IDRiD as validation and test training 
data set.

In the validation step, we use the second dataset to demonstrate the generalizabil-
ity of the model. The original DIARETDB1 dataset image is displayed in the first col-
umn of Fig. 15, the associated hemorrhage mask is displayed in the second column and 
the retinal hemorrhage segmentation result is displayed in the third column using the 
DIARETDB1 dataset as the validation set and IDRID as the training and test set.

Fig. 11 Plots of the accuracy curve for the proposed method with 100 epochs

Fig. 12 Plots of the loss curve for the proposed method with 100 epochs
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In summary, the proposed method allows efficient reuse of network features, removes 
overfitting and mitigates the gradient phenomenon. The method will have a huge impact 
in avoiding future complexity of some patients. In the end, the experimental results illus-
trate a good advance over the state-of-the-art methods.

Fig. 13 Illustration of the last part of the training process using the suggested technique with 100 epochs

Fig. 14 Results of hemorrhages segmentation: a original image, b hemorrhages label and c segmented 
image
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Fig. 15 Results of hemorrhages segmentation a original image, b hemorrhages label and c segmented 
image

Table 1 Performance obtained using the proposed method

Sen sensitivity, Spe specificity, Acc accuracy, IoU Intersection over Union, Prec precision, LT loss for training data, Avg average

Performance Sen Spe Acc Dice IoU Prec LT

Avg (%) 80.49 99.68 98.68 86.51 76.61 99.98 0.0038

Table 2 Comparison of the results of the proposed method for retinal hemorrhage segmentation 
to the latest current methods in terms of accuracy, sensitivity and specificity

Authors and Refs. Dataset Sensitivity (%) Specificity (%) Accuracy (%)

Ten et al. [30] CLEOPATRA 62.57 98.93 _

Badar et al. [34] MESSIDOR 80.93 98.54 97.86

Orlando et al. [35] DIARETDB1 and E‑Ophta 48.83 _ _

Proposed IDRID and DIARETDB1 80.49 99.68 98.68
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Conclusions and future work
Due to the high degree of similarity between blood vessels, retinal hemorrhage and 
background in the original images, most of the methods presented in the literature do 
not separately address the problem of segmentation of the retinal hemorrhage. The dif-
ficulty of detecting diabetic retinopathy was addressed in this concept by segmenting 
the hemorrhages using digital fundus images. The goal is to automate diagnosis using 
the suggested approach and only digital fundus images, thus eliminating the need for 
additional tests. The framework of our method is to implement a modified UNet algo-
rithm to segment the suspect region of interest. The proposal showed robustness despite 
the diversity of the dataset used for either training or validation. The results obtained 
were also compared to other results recently published in the literature and showed a 
significant improvement in diagnostic performance. The suggested architecture for reti-
nal hemorrhage segmentation yields a sensitivity of 80.49%, specificity of 99.68%, accu-
racy of 98.68%, IoU of 76.61%, and Dice score of 86.51% when trained on the IDRiD data 
set and validated and tested on IDRiD and DIARETDB1. In future work, we will use 
the result of retinal hemorrhage segmentation to grade diabetic retinopathy. The appear-
ance of retinal hemorrhages indicates a transition in the severity of retinopathy from 
minimal (grade 1) to moderate (grade 2) nonproliferative diabetic retinopathy. When 
retinal hemorrhages increase in all four quadrants of the retina, the classification of dia-
betic retinopathy becomes severe nonproliferative (grade 3). If the hemorrhages become 
more complex, it means that diabetic retinopathy becomes proliferative (grade 4). We 
also wish to extend our architecture or create a new convolutional neural network in the 
future, with the aim of obtaining more accurate results in automated and simultaneous 
segmentation tasks for various retinal disorders, such as hard and soft exudates, hemor-
rhages and micro-aneurysms.

Abbreviations
AI  Artificial intelligence
CAD  Computer‑aided diagnosis
CLAHE  Contrast limited adaptive histogram equalization
CNN  Convolutional neural network
DL  Deep learning
FCNN  Fully convolutional neural network
FN  False negative
FP  False positive
GPU  Graphics processing unit
IDRiD  Indian diabetic retinopathy image dataset
IoU  Intersection over Union
NPDR  Non‑proliferative diabetic retinopathy
ROC  Receiver operating characteristic
ReLU  Rectified linear unit

Table 3 Comparison of the results of the proposed method for retinal hemorrhage segmentation 
to the latest current methods in terms of similarity coefficient (Dice), intersection over union (IoU), 
precision and loss for training data

Authors and Refs. Dataset Dice (%) IOU (%) Precision (%) Loss for 
training 
data

Ananda et al. [37] IDRID and MESSIDOR 86.53 _ _ 0.1461

Proposed IDRID and DIARETDB1 86.51 76.61 99.98 0.0038
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RGB  Red Green Blue
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TP  True positive
VGG  Visual Geometry Group
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FFA  Fundus Fluorescein Angiography
CF  Color photography of the fundus
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