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Introduction
Knowledge graph question answering (KGQA) systems enable users to retrieve data 
from a knowledge graph (KG) using a natural language question (NLQ). In KG, data is 
modeled as a collection of triples that conform to a schema. Those triples are expressed 
in a particular language, such as Resource Description Framework (RDF) [1].

One approach taken by many KGQA systems is through the so-called semantic-based 
parsing [2]. In this approach, a given NLQ is translated into an equivalent logical query 
appropriate for the language representing the KG. For example, if the KG is expressed 
using RDF, then the NLQ is translated into a SPARQL query as SPARQL is the standard 
query language for RDF data. This query can then be used to obtain an answer from the 
KG directly.

Such a translation is non-trivial as it requires the system to accomplish several tasks. 
At the start, it needs to detect the occurrences (i.e., mentions) of entities and relations 
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in the given NLQ. Then, once the entities and relations are known, it needs to link them 
to the appropriate entities and relations in the KG. Finally, it has to form a correct query 
using the linked entities and relations. Thus, a good translation should yield a query that 
not only captures the intent of the input NLQ, but is also correctly composed of entities 
and relations in the KG that accurately correspond to entities and relations in the input 
NLQ.

Yani and Krisnadhi [3] surveyed a number of challenges and approaches in developing 
simple KGQA systems, i.e., KGQA systems that are capable of answering simple ques-
tions, which correspond to queries containing only a single triple pattern. They cate-
gorized the challenges according to the tasks the systems need to accomplish, namely, 
entity detection, entity linking, relation prediction, relation linking, answer matching 
(by query construction or embedding-based methods), and subgraph selection. KGQA 
systems are typically composed of solutions to these tasks arranged sequentially as a 
pipeline. Obviously, the performance of the earliest task, i.e., entity detection, may sig-
nificantly influence the performance of the subsequent tasks. Accordingly, addressing 
the entity detection task is a key step to realize a powerful KGQA system.

Entity detection aims to determine which N-gram mentions in the given NLQ actually 
represent entities. To accomplish this task, one sometimes takes an “easy” approach by 
using Named Entity Recognition (NER) libraries, such as Stanza.1 The output of such 
a NER tool is a labeling of all tokens occurring in the input NLQ. One then proceeds 
by classifying the N-grams from those tokens into entities resulting in a set of detected 
entities. Based on this set, one then searches for all of these entities in the subsequent 
entity linking step to obtain matching entities in the KG.

However, there are three issues in this approach. First, the input NLQ may have more 
than one named entities even when it actually corresponds to a single factoid fact. For 
example, the question “Where in the United States was John Morris Russell born?” from 
the SimpleQuestions dataset [4] contains two entities detected by NER, namely “the 
United States” and “John Morris Russell”. If one stops at entity detection only, then this 
is a non-issue. But in a KGQA system, one wishes to use the detected entities in the sub-
sequent entity linking and query construction phases. Meanwhile, as exemplified by the 
SimpleQuestions dataset, such a question may correspond to a query that contains the 
occurrence of only a single entity. Thus, if NER detects two entities, one needs to choose 
which of the two is the appropriate one to pass to the subsequent phases.

Second, the input NLQ may contain an entity, but NER may not recognize it. Consider 
the question “What player plays the position midfielder?” from the SimpleQuestions 
dataset. In this question, NER returns an empty set of named entities. Thus, the system 
needs to find an alternative way, e.g., using an additional corpus, to extract the entities 
from the question before linking them to KG entities.

Third, a complex NLQ translates to a complex query composed of a set of simpler 
queries involving many functions and operators [5]. For a KG in RDF, a complex ques-
tion corresponds to a SPARQL query with more than one triples. This leads to three 

1  Stanza is based on StanfordCoreNLP - online version is at http://​stanza.​run/.

http://stanza.run/
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challenges: how do we determine the required triple number? In which triple do enti-
ties exist? Do those entities exist as a head or a tail in a triple?

For example, the question “What is the birthday of Abigail Adams who has a child 
named Abigail Adams Smith?” from LC-QuAD  2.0 dataset [6] corresponds to a 
ground truth query with four triple patterns as depicted in Fig. 1. In the query, the 
entity Abigail Adams appears as the head of the first triple, while the entity Abigail 
Adams Smith appears as the tail of the second triple. In addition, no entity appears in 
the remaining two triples. Given an NLQ, the number of triples in the corresponding 
query is unknown beforehand. We also do not know both in which triple(s) do enti-
ties mentioned in the question appear and whether they appear at the head or tail 
position.

The three aforementioned issues motivate us in this paper to focus on the entity 
detection task. Specifically, given an NLQ, we intend to detect the occurrences of 
entities—named or otherwise—in the NLQ, and simultaneously determines in which 
triples do these entities appear and whether these entities appear as the head or the 
tail of the triples. Note that this goes beyond detecting whether an N-gram mention 
in the NLQ is an entity as we also indirectly predict how the KG query corresponding 
to the NLQ could be constructed.

Existing works on entity detection mainly addressed the multiple-named-entities 
issue (the first issue), and to a certain extent, the undetected-entity issue (the second 
issue). The first issue is tackled by performing n-gram and sequence labeling approach 
[7–12]. The second issue is tackled by using a dictionary that contains pairs of men-
tions and entities in the KG [13, 14]. Embedding-based approaches are also used to 
address this issue [15, 16].

Meanwhile, the third issue is typically not tackled during entity detection phase. For 
example, Evseev and Arkhipov [11] employs SPARQL templates created at the query 
construction phase. In this work, a fixed number of SPARQL templates is manually 
formulated, each of which is intended to represent a certain type of query. A classifier 
is then trained to categorize input NLQs into one of those templates. However, the 
problem with this approach is that one still needs to fill the slots in the templates with 
the appropriate entity from the input NLQ to derive the correct answer. Evseev and 
Arkhipov’s solution requires ranking the matching score of all possible permutations 
of entities in the NLQ against the ground truth queries of each template.

Fig. 1  Ground truth SPARQL query for the question “What is the birthday of Abigail Adams who has a child 
named Abigail Adams Smith?” from the Lc-QuAD 2.0 dataset
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In contrast, our work addresses all three issues at once during entity detection by 
employing the so-called position-based patterns. The premise of this idea is that each 
NLQ can be viewed as an instance of some question type. Instead of manually formulat-
ing the question types, we make use of ground truth triples in the SPARQL queries that 
correspond to NLQs from the training dataset to generate those question types. More 
precisely, given the ground truth query of an NLQ in the dataset, we can obtain all enti-
ties appearing in any triple patterns of the query. Then, for each of those entities, we 
encode three information in a position-based pattern: (i)  the (index of ) the triple pat-
tern of the query (first, second, etc.) in which the entity appears, (ii) whether the entity 
appear in the head or tail position, and (iii) the token position of the entity in the NLQ. 
This token position is obtained by a simple string matching between the entity’s label 
according to the KG and the N-gram mentions in the NLQ. Thus, from the ground truth 
query of an NLQ, we obtain a set of such position-based patterns, which can be used as 
a representation of the question type of the NLQ. The solution to entity detection task 
is then derived by training a classifier that categorizes the input NLQs into a position-
based pattern set that represents the appropriate question type.

As an example, consider the NLQ “Who is the mother and husband of Candice 
Bergen?” from the LC-QuAD  2.0 dataset. This NLQ corresponds to the ground truth 
SPARQL query as listed in Fig. 2 where wd:Q106942 is the Wikidata instance for “Can-
dice Bergen”, wdt:P25 is the Wikidata property “mother”, and wdt:P26 is the Wikidata 
property “spouse”. Position-based patterns for the above NLQ are 0:(head, [7, 8]) and 
1:(head, [7, 8]) indicating that the entity formed by the 7th and 8th token of the NLQ is 
a head entity of both the 0th and 1st triple pattern in the SPARQL query. Note that if the 
NLQ contains other N-gram mentions that could be considered an entity, but they do 
not appear in the ground truth query, then those N-gram mentions are ignored.

The two position-based patterns above form a position-based pattern set for the afore-
mentioned NLQ. One such position-based pattern set represents one particular ques-
tion type to which many NLQs may be belong. Now, if an arbitrary input question is 
correctly classified by the trained classifier into that question type, then in the subse-
quent entity linking and query construction steps, one can simply extract the entity from 
the question and match it with a KG entity, and then construct a query containing a sin-
gle triple pattern with the matched KG entity appearing as a subject.

The encoding above captures all necessary information to solve the third issue we dis-
cussed earlier. Meanwhile, multiple named entities in the input NLQ are taken care of 
since position-based patterns capture the token position of the entities that are actually 
needed for the query associated with the NLQ. Furthermore, the undetected entity issue 

Fig. 2  Ground truth SPARQL query for the question “Who is the mother and husband of Candice Bergen?” 
from the LC-QuAD 2.0 dataset
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is handled because position-based patterns rely on entities that actually occur in the tri-
ple patterns of the query regardless whether or not they are named entities detectable by 
NER.

On the other hand, we do not encode the entity label or identifier in the position-based 
patterns. Hence, different questions with completely different set of entities may gener-
ate the same set of position-based patterns if their ground truth queries have the same 
form and the N-gram length of their entity labels is similar. In our formulation, these 
questions belong to the same question type.

Note that we do not address the challenges concerning the entity linking task, which 
follows immediately after entity detection. In particular, we do not focus on solving the 
ambiguity challenge. This refers to the situation in which the same N-gram mention may 
have multiple meanings and thus can refer to different entities in the KG [5, 17]. This 
challenge, however, is out of scope for this paper because such a situation does not occur 
during entity detection task.

Contribution

As the main contribution, we present a solution to entity detection using position-based 
patterns that allows us to bypass the need to employ NER in the pipeline. More pre-
cisely, we directly train a transformer model that recognizes the token-based positions 
of some or all entities that appear in the input NLQ and whether the recognized entities 
are a subject (head) or an object (tail) of some triples in the KG. The target labels for this 
classification problem are generated based on the dataset’s corresponding ground truth 
triple patterns.

Although this paper only proposes a solution to the entity detection task, the perfor-
mance of entity detection can significantly influence the performance of subsequent 
tasks. Furthermore, the previous work such as Türe and Jojic [18] with a hybrid tech-
nique used; namely, GRU, Bi-GRU, LSTM, and Bi-LSTM can contribute to achieving the 
best performance of end-to-end performance on simple KGQA systems. In this paper, 
we demonstrate that our proposed approach can improve the downstream task of entity 
linking empirically through experiments with Falcon 2.0 [19], which is a tool for entity 
and relation linking over Wikidata.

In addition to the technical contribution of position-based patterns, we also intro-
duce an expansion to benchmark datasets for the challenges in the Question Answering 
over Linked Data (QALD) series [20–28], which is a series of benchmarks for evaluating 
KGQA systems. Specifically, we introduce a Wikidata-version of the benchmark data-
sets for 8 of 9 QALD challenges. An exception is QALD-7 whose dataset already uses 
Wikidata2 as an underlying KG. Note that all nine QALD challenges already use DBPe-
dia3 as an underlying KG. Since both DBPedia and Wikidata are originated from Wikipe-
dia corpus, our Wikidata version is obtained by translating existing DBPedia queries in 
the benchmark datasets into Wikidata queries.

The rest of this paper is structured as follows. The Related Works section overviews 
previous approaches that address and evaluate the entity detection task. The Proposed 

2  https://​wikid​ata.​org/.
3  https://​www.​dbped​ia.​org.

https://wikidata.org/
https://www.dbpedia.org
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Method section presents our proposed approach to address entity detection tasks. 
This section also explains a procedure for translating DBPedia based QALD query into 
Wikidata based QALD query, which allows us to expand the QALD series datasets. In 
the Experimental Setup and Results section, we present our experimental setup and 
detail the evaluation we conducted over our system. For the latter, we specifically com-
pare our results with four state-of-the-art works that explicitly assess the performance 
of entity detection tasks. The final section concludes our work and introduces the future 
work.

Related works
There are two kinds of approaches in answering questions over knowledge graphs, 
namely, SPARQL query-based and embedding-based approaches. SPARQL query-based 
approaches first extract entities and relations of the input question. Then, from the 
extracted entities and relations, it constructs the SPARQL query. The work by Song et al. 
[29] and Zou et al. [30] belong to this type of approaches. Meanwhile, the embedding-
based approaches employ neural embedding methods to transform the extracted terms 
and structures as well as the KG into (numerical) vectors in a vector space. The answer 
to the input question is then obtained through the use of vector operations. Huang et al. 
[31] and Bordes et al. [4] proposed KGQA systems that belong to the embedding-based 
approaches.

In SPARQL query-based approaches, particularly those using NER, entity detection 
faces two main issues: multiple named entities in factoid questions and entities unde-
tected by NER. Dai et al. [7] addressed the first issue by finding a pair of a named entities 
with a corresponding relation in the question. A named entity linked by the relation is 
assumed as the entity mentioned in the question. He and Golub [8] performed a detec-
tion of multiple named entities in a question by finding the closest similarity score 
between the KG and the input question. However, finding all possible relations that cor-
respond to an entity is computationally expensive.

Chao and Li [9] used unigram, bigram, and trigram fragments of the text representa-
tion of entities to be matched to entities in the input question. Their approach takes the 
longest n-grams as entity candidates to solve the issue of entities undetected by NER. 
However, this approach has not solved the first issue, i.e., multiple named entities in the 
input question.

Lukovnivov et al. [10] employed a BERT model to detect the span s in the input ques-
tion q that mentions an entity. Here, a pre-trained BERT model contains a rich amount 
of information as it has been trained from the underlying large corpus. This allows BERT 
to identify the span in the question that mentions an entity but at the risk of having a 
large number of candidate entities to match. This introduces a difficult ambiguity prob-
lem in the subsequent entity linking task.

Evseev and Arkhipov [11] proposed a solution to entity detection by training a BERT-
based sequence labeling model on a corpus of questions. Unlike our multiclass classifi-
cation model, this is a multilabel classification model where the input are the tokens of 
the questions and the target are taken from entity labels in the KG that may match the 
token. For training the model, target labels are taken by fuzzy matching between the 
token and the KG entity labels.
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Kuo and Lu [12] proposed a combined of BiLSTM-CRF model, which takes a joint 
embedding of question tokens and their POS tags. Here, every token in the question 
is associated with a label for entity detection problem, namely whether it is an entity, a 
relation, a question word, etc. These labels are obtained from the SPARQL query that 
corresponds to the question (as given by the dataset) by matching entities and relations 
in the query with the question tokens. The model then predicts the most appropriate 
label sequence that matches the true label sequence associated with the question tokens. 
Note, however, that this model does not capture the information regarding head and tail 
position of the entities.

Bakhshi et  al. [32] use DBPedia Spotlight to annotate the mentions of resources in 
DBPedia. The tool is also used to create a dictionary containing a phrase in the NLQ 
and the corresponding entity in the KG. The dictionary is used by the downstream task, 
namely entity linking. However, the use of DBPedia tool will constraint to only the enti-
ties that appear in DBPedia.

With regards to the issue of undetected entities by NER, Hu et  al. [13] borrowed a 
dictionary-based entity linking proposed by Deng et al. [33] to address the problem of 
questions without named entity at all positions. Words or phrases mentioned in the 
question are matched in words or phrases in the dictionary using various similarity 
functions. Similarly, Bakhshi et al. [14] addressed the problem of an NLQ containing no 
named entity by implementing a dictionary to store English lexicon and the correspond-
ing resources in a KG. Mentions in the NLQ is matched with an entry in the dictionary. 
However, since the dictionary is built manually, adapting the approach to other data is 
not easy.

Cui et  al. [15] proposed a pipeline of KGQA systems that consists of entity detec-
tion, entity linking, and relation prediction. They proposed a solution to entity detec-
tion by training a sequence labeling model based on a combination of BiGRU and CRF. 
This approach is similar to Kuo and Lu [12] where the aim is to predict the most appro-
priate label sequence for the question tokens. But unlike Kuo and Lu’s work, Cui et al. 
employed Viterbi algorithm to compute the optimal label sequence, which is rather 
costly in both memory usage and computation time.

Azmy et al. [16] tackled the problem of entities not explicitly mentioned in an NLQ 
using a hybrid approach of BiLSTM and CRFs. N-grams and Levenshtein distance are 
used to exact-match mentions in the NLQ with mentions that are actually considered 
as entities according to the ground truth. If no matching entity is found in the NLQ, 
it searches the corresponding tokens mentioned in the NLQ by choosing the longest 
matching n-gram. However, this approach does not provide the position of entities in 
the triple patterns of the SPARQL query.

Proposed method
In this section, we present our solution to the entity detection task. In essence, it con-
sists of a transformer model trained to recognize the token-based positions of entities in 
a given NLQ and whether those entities are head or tail entities.

We use Transformer since the model uses an attention mechanism. Transformer dif-
fers from the encoder-decoder architecture based on vanilla Recurrent Neural Net-
works (RNNs) in that the latter only pays attention to the last encoder state. Transformer 



Page 8 of 26Yani et al. Journal of Big Data            (2022) 9:80 

looks at all the encoder states for each decoder step and computes the most appropri-
ate encoder state to use as the underlying context to generate the decoder’s output at 
that particular step. This allows the model to keep relevant information of the earlier 
elements of the sequence, which is beneficial for understanding long sequences such as 
text-based paragraphs. In the context of KGQA, such long sequences could appear in 
complex questions that are associated with multiple triple patterns in the corresponding 
queries.

We start with an overview of the Transformer model we use. Next, we describe how 
we construct the target labels for the model by employing both the training questions 
and their corresponding ground truth triples. At the end, we describe how we train the 
model to predict those labels. Meanwhile, our second contribution in which we provide 
an expansion to the current benchmark QALD datasets is discussed in the Experimental 
Evaluation section.

Transformer

Transformer is an encoder-decoder network that relies on attention mechanisms rather 
than recurrence and convolutions [34]. Figure 3 shows the transformer architecture. In 
its most basic form, a transformer learns to generate an output sequence from a given 
input sequence. The encoding component works on an embedding of the input sequence 
through a series of encoder networks, each of which consists of a self-attention layer 
and a feed-forward neural network. It results in a representation of the input sequence 
in the form of a set of attention vectors. Meanwhile, the decoding component operates 
on an embedding of the output sequence via a series of decoder networks. Each decoder 
also has a self-attention layer and a feed-forward neural network, but with an additional 
encoder-decoder attention layer in between. This additional layer makes use of the 

Fig. 3  Transformer model architecture
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attention vectors from the encoding component to guide the decode to relevant parts of 
the input. At the end, the decoding component is stacked with a linear and softmax layer 
that returns a set of probability values for each word in the context of other words in the 
sentence.

Transformer can be used for a variety of NLP tasks. For text classification, both the 
input and output to the transformer are actually the same input sentence. Thus, the 
transformer’s weights form a feature representation of the data. The classification is 
then achieved by adding another classification layer on top of the transformer where the 
actual target labels of the task come into play. In essence, entity detection in this paper 
is a text classification task. Our implementation makes use of BERT, a pre-trained trans-
former obtained from HuggingFace’s Transformers library [35] with the help of a wrap-
per library from SimpleTransformers.4

Position‑based pattern

We describe in this section the notion of position-based pattern and position-based pat-
tern set as motivated by the Candice Bergen example in the Introduction section. Recall 
that a position-based pattern needs to contain three types of information: (i)  in which 
triple pattern of the query (first, second, etc.) the entity appears, (ii) whether the entity 
appear in the head or tail position, and (iii) the token position of the entity in the NLQ. 
Note that the token position allows us to locate the occurrence of entities in the input 
NLQ. We use each set of such patterns to represent a particular question type to which 
the Transformer model learns to classify the questions.

Definition 1  A triple pattern is of the form p = (h, r, t) where h = head(p) and 
t = tail(p) are respectively called the head and the tail of p, r is the predicate of p. All 
of h, r, and t can be a word or a phrase in a natural language or an entity/relation identi-
fier with respect to a KG. In addition, h and t can be a variable. A triple pattern (h, r, t) 
is called a head pattern if h is not a variable, and a tail pattern if t is not a variable. Note 
that a triple pattern can be both a head and a tail pattern.

Definition 2  We write an NL sentence q consisting of n words/tokens as a list with 
non-negative integer index q = [w0,w1, . . . ,wn−1] . A token-based position is a list of 
consecutive non-negative integers.

Given a phrase s = [v0, v1, . . . , vk−1] containing k words/tokens and an NL sentence q, 
one can associate POS(s, q) of token-based position at which s occurs first in q. That is, 
POS(s, q) is a list of the form [m,m+ 1, . . . ,m+ k − 1] where m is the smallest index 
such that v0 ≡ wm, v1 ≡ wm+1, . . . , vk−1 ≡ wm+k−1 where ≡ denotes case-insensitive 
string equality. If s does not occur in q, POS(s, q) is undefined.

POS(s,  q) provides the leftmost occurrence of s in q. For example, in the question 
“Where in the United States was John Morris Russell born?”, the token-based position of 
the phrase “John Morris Russell” with respect to the question is the list “[6,7,8]”.

4  https://​simpl​etran​sform​ers.​ai.

https://simpletransformers.ai
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Our aim is to classify a given question according to whether all of its anchor enti-
ties, i.e., those that are necessary for obtaining a correct answer, potentially occurs 
in the KG as a head or a tail of a triple. Moreover, questions for which their anchor 
entities occur at different positions should be distinguished from each other. Thus, 
different combination of token-based positions with a head/tail tag form the dif-
ferent target class labels. Such a head/tail tag for a question in the training set can 
be constructed based on the ground truth triples for that question. Assuming train-
ing questions sufficiently represent all types of questions, all those combinations of 
head/tail tag and token-based positions capture any type of unseen questions.

Definition 3  A position-based pattern is a pair (x, ℓ) where x is either head or tail 
and ℓ is a token-based position.

Let (q,Tq) be a pair of a question q and a non-empty list of triple patterns 
Tq = [p0, p1, . . . , pm−1] . We call such a pair a question-answer pair and a KGQA data-
set can be viewed as a finite set of such pairs. The triple patterns represent the ground 
truth answer for q and can either be given explicitly as triples or as a part of a logical 
query (e.g., SPARQL) that gives an answer to q when executed on the KG.

Definition 4  Given a question-answer pair (q,Tq) with respect to a KG G where 
Tq = [p0, p1, . . . , pm−1] , the position-based pattern set for q is a set Cq of indexed posi-
tion-based patterns such that for each i = 0, 1, . . . ,m− 1 : 

	(i)	 if pi is a head pattern and head(pi) has si as its NL label in G , then 
i:(head,POS(si, q)) ∈ Cq provided that POS(si, q) is defined; and

	(ii)	 if pi is a tail pattern and tail(pi) has si as its NL label in G , then 
i:(tail,POS(si, q)) ∈ Cq provided that POS(si, q) is defined.

Each unique position-based pattern set forms a class label for the question classifi-
cation task. The head/tail tag is based on the ground truth triple patterns, not on 
the occurrence(s) of s in q. Note that even if s appears more than once in q, we only 
use the leftmost occurrence of s in q for POS(s, q) because once s at POS(s, q) is linked 
to a KG entity (in the subsequent step after entity detection), all occurrences of s in q 
will also be linked to it.

To illustrate the definition of position-based pattern set, consider the question q = 
“Is Amedeo Maiuri and Ettore Pais excavation directors of Pompeii?” from the LC-
QuAD 2.0 dataset. The ground truth triple patterns Tq for q are given inside the fol-
lowing query that can be executed over Wikidata:

Thus, Tq = [p0, p1] where p0 = (wd:Q43332, wdt:P4345, wd:Q442340) and 
p1 = (wd:Q43332, wdt:P4345, wd:Q981427) . Note that p0 and p1 are both head 

ASK WHERE { wd:Q43332 wdt:P4345 wd:Q442340 .

wd:Q43332 wdt:P4345 wd:Q981427 . }
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and tail patterns. Moreover, “Amedeo Maiuri”, “Ettore Pais”, and “Pompeii” are 
labels of wd:Q442340, wd:Q981427, and wd:Q43332 in Wikidata and all of them 
appear in q. That is, the token-based positions are POS(Amedeo Maiuri, q) = [1, 2] , 
POS(Ettore Pais, [4, 5]) , and POS(Pompeii, q) = [9] . Thus, the class label of the question 
q is:
Cq = {0:(head, [9]), 0:(tail, [1, 2]), 1:(head, [9]), 1:(tail, [4, 5]}.

Position‑based pattern set construction

Our proposed approach for entity detection based on position-based pattern consists of 
two main phases, as shown in Fig. 4. The first phase is the position-based pattern set con-
struction, which is discussed in this section. The second phase is the classification of the 
input question into one of the position-based pattern sets using a transformer-based multi-
class classifier, which will be discussed in the subsequent section.

The position-based pattern set construction is described in Fig. 4. The input is a question-
answer pair in the dataset. Note that the answer component of the pair is either a SPARQL 
query or a ground triple without variables. In both cases, we can obtain a set of triple pat-
terns expressing the answer. Next, we perform diacritics removal and case normalization 
over the input question as a part of data pre-processing step.

Let (q,Tq) be the question-answer pair with q already pre-processed. We construct the 
position-based pattern set for q by following the steps in Algorithm 1. We illustrate the pro-
cess via a running example given in Fig. 5.

Fig. 4  The proposed of entity detection via position-based pattern
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The first part of the algorithm is described between line 1 and line 14. In this part, 
we go through all triple patterns in Tq and extract any occurrence of entities either in 
the head or tail position of the triple pattern. For a triple pattern (s, p, o), s and o can be 
an entity or a variable. If s is not a variable, then we encounter a head entity, and if o is 
not a variable, we obtain a tail entity. In both cases, we mark the occurrence by adding 
i:{pos:ℓ} to the set ps where i is the index of the triple pattern (0th, 1st, etc.), pos is either 

Fig. 5  Running example of position-based pattern set construction
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head or tail depending on whether we encounter a head or tail entity, and ℓ is a text 
representation of the entity obtained by querying its label or description in the KG. For 
example, using an NLQ in Fig. 5, we first obtain “empire of japan” and “sovereign state” 
as the entity label of ’Q188712’ in the first triple and ’Q3624078’ in the second triple, 
respectively. By the algorithm (line 7 and 12), we add 0:{head : ‘empire of japan’} and 
1:{tail : ‘sovereign state’} to ps.

In the second part of the algorithm, described between line 16 and 32, we perform 
N-gram matching of ‘empire of japan’ and ‘sovereign state’ in the question string q. That 
is, we determine whether ‘empire of japan’ and ‘sovereign state’ or any of their n-gram 
substrings occurs in q. Line 17 starts a loop over elements of ps. That is, for the element 
of ps containing the KG label ‘empire of japan’, line 20-30 determines whether ‘empire of 
japan’ or any of its n-gram substring occurs in q. If so, tokenpos stores the token posi-
tion where it occurs, which is [8, 9, 10] for ‘empire of japan’. When this is found, we add 
0:{head, [8, 9, 10]} to Cq as ‘empire of japan’ is the head entity of the 0th triple pattern. 
Similarly, in case of ‘sovereign state’, we add 1:{tail, [1, 2]} to Cq . Thus, in the end, we 
obtain the resulting Cq = {0:{head, [8, 9, 10]}, 1:{tail, [1, 2]}}.

As illustrated in Fig. 4, we store Cq in a dictionary of position-based pattern sets using 
an ad-hoc syntax, which could ease the downstream task of query construction. The 
syntax uses the following simple rules: 

(1)	 A list of integers [x1, . . . , xn] is written as x_1_x_2_..._x_n. For example, 
[8, 9, 10] becomes 8_9_10.

(2)	 A position-based pattern of the form i:{head:tokenpos} is written in a syn-
tax of the form i:head:ent:L where L is the representation of tokenpos 
according to the previous rule. For example, 0:{head, [8, 9, 10]} is encoded as 
0:head:ent:8_9_10.

(3)	 A position-based pattern of the form i:{head:tokenpos} is written in a syntax of the 
form i:head:ent:L similar to (2). For example, 1:{tail, [1, 2]} is encoded as 
1:tail:ent:1_2.

(4)	 If Cq contains two position-based patterns of the form i:{head:tokenposh} and 
i:{tail:tokenpost} , then the two position-based patterns are encoded as a single 
representation i:head:ent:Lh[AND]i:tail:ent:Lt where Lh and Lt are 
representations of tokenposh and tokenpost , respectively according to (1). For exam-
ple, if Cq contains both 1:{tail, [1, 2]} and 1:{head, [5, 6]} , then we have a single 
encoding 1:head:ent:5_6[AND]1:tail:ent:1_2.

(5)	 The representation of Cq is E1[SEP]E2[SEP] ...[SEP]Em where each Ej is the 
representation of the position-based patterns according to (2) and (3) sorted by 
their indices. Thus, if Cq = {0:{head, [8, 9, 10]}, 1:{tail, [1, 2]}} , then its encoding 
is 0:head:ent:8_9_10[SEP]1:tail:ent:1_2 as seen in Fig. 5.

Question classification using position‑based pattern set

Having constructed position-based pattern sets according to the previous section, we 
can now use those sets as distinct class labels for our multi-class classification problem. 
This section describes the step we take to train the model.
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Data augmentation

To improve our model to recognize other words used in a question, we augment data 
using the synonyms approach. Wordnet is a database containing lexical in English. Each 
word in the form of nouns, verbs, adjectives, and adverbs are grouped into synonyms 
(synset).5 We prefer to use a Wordnet-based approach to preserve the position of words 
in a question. We borrow Wordnet-based augmentation proposed by Marivate and 
Sefara [36] to augment data. Figure  6 illustrates how data augmentation proposed by 
Marivate and Sefara [36] works.

For the augmentation step, we focus on exploring the synonym of verb and noun POS 
tags in a question. Meanwhile, words with other POS tags are kept as the original. This 
approach enriches other verb expressions that people use to construct a query. To gener-
ate synonym questions that have the same attention as the original question, we replace 
nouns and verbs that have the same POS tags type; for instance, word “film” and “movie” 
in Fig. 6 have the same POS tags noun, namely, NN. Word “produce” is replaced by other 
words with the same POS tags (VB), such as “lead”. Figure 7 illustrates how word selec-
tion works.

Fig. 6  Synonym based data augmentation

Fig. 7  Synonym selection

5  https://​www.​dbped​ia.​org.

https://www.dbpedia.org
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Position‑based pattern set prediction

To predict the position-based patterns of a question, we employ a multi-class classifier 
with an underlying transformer model. For the transformer model, we use a pre-trained 
BERT-base model, and on top of it, a classification layer with n output neurons is placed.

As in Fig. 4, Position-based pattern set construction phase outputs a list that contains a 
pair of questions and their position-based pattern. As in Fig. 5, the pair contains “which 
sovereign state is in diplomatic relation of empire of japan, 1861”. The left (0) and right (1) 
columns represent a question and ID. of position-based pattern of the question, respec-
tively. In this example, ID 1861 refers to 0 : head : ent : 8_9_10[SEP]1 : tail : ent : 1_2 
pattern in a pattern dictionary. The column we use as the input of this model is the first 
one.

To predict the position-based pattern set of a question, we use the pre-trained BERT-
base-cased model coupled with a simple softmax layer. This model is fine-tuned for a 
multiclass classification task with our data. The actual implementation of the model is 
taken from the Simple Transformers6 library that simplifies the Transformer API from 
the HuggingFace library. This implementation allows us to train and evaluate the model 
quickly.

Experimental evaluation
Experiment setup

Machines used

The experiments were conducted in an NVIDIA GPU GeForce GTX with 24 GB total 
memory for training using GPU driver version 384.130. For data pre-processing, we use 
128GB memory. The machine itself is a sever with 3.0 GHz CPU Intel(R) i7-5960X.

Question benchmark datasets

We use 11 different datasets to evaluate our model, namely, SimpleQuestions, LC-
QuAD 2.0, and QALD series (there exists nine QALD versions at the moment). How-
ever, since QALD series does not provide the Wikidata-based ground truth (exclude 
QALD-7), we first create Wikidata-based ground truth for all QALD series (except 
QALD-7). To construct it, we explore entities and relations that appear in the ground 
truth by manually searching the correspondence entities label into Wikidata. If we do 
not find any information on Wikidata, we use Google7 to reveal related information to a 
keyword that refers to Wikipedia.8 We use a link that exists on Wikipedia that refers to 
Wikidata item to find an item mentioned in a question. More details on the construction 
are explained in the Expansion of QALD benchmark datasets to Wikidata based query 
section.

In this experiment, we employ the SimpleQuestions dataset for the simple questions as 
it is the largest dataset for simple questions. The dataset contains 100k questions written 
by human annotators and associated with Freebase facts [4]. However, since Freebase 
was terminated on August 31, 2016, and it implies the resource of Freebase is no longer 

6  https://​github.​com/​Thili​naRaj​apakse/​simpl​etran​sform​ers.
7  https://​www.​google.​com/.
8  https://​www.​wikip​edia.​org.

https://github.com/ThilinaRajapakse/simpletransformers
https://www.google.com/
https://www.wikipedia.org
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available for free, we use a translated version in Wikidata KG [37]. The dataset provides 
the corresponding facts of each question. The SimpleQuestions dataset also already pro-
vides separate training, validation, and testing sets.

In addition, we use experiment on complex questions from the LC-QuAD 2.0 dataset. 
The dataset provides 30,000 questions and their paraphrases with varying complexity. 
The dataset contains 21,258 distinct entities and 1,310 unique relations with ten types of 
questions such as boolean, dual intentions, facts with qualifiers, and others spread over 
22 unique templates. The dataset also provides the SPARQL query corresponding to the 
questions to answer questions over Wikidata, and DBPedia [6].

Furthermore, we also evaluate our model on benchmark datasets from the QALD 
series to analyze its performance on non-synthetic questions. Each QALD version pre-
sents challenges in solving the questions over related data. We only take QALD chal-
lenges using KGs as the data in this experiment.

Knowledge graph

We use a dump of Wikidata for the underlying knowledge graph.9 The dump contains 
two billion facts consisting of 49M and 6K items and properties, respectively.

Data and parameter setup

Other than SimpleQuestions, each dataset consists of two-part of data, namely, train-
ing and testing data. We randomly separate training data into two folds, namely 80% for 
training and 20% for validation. Meanwhile, for the SimpleQuestions dataset, we merge 
training and validation data into a file, and separate it into 80% and 20% for training and 
validation data, respectively.

Due to the limitation of our machine, we use the pre-trained BERT-base model, which 
is smaller than the BERT-large model. As noted in the previous section, we make use 
of the simpler interface from the Simple Transformers library to train and evaluate 

Table 1  Parameter setup

Argument Type Value Description

pretrained_model – bert-base-cased A small BERT pre-trained model

framework - PyTorch Machine learning framework

num_train_epochs int 5 The number of epochs

max_seq_length int 128 Maximum sequence length the 
model support

train_batch_size int 8 Training batch size

eval_batch_size int 8 Evaluation batch size

fp16 bool False fp16 mode used

dataloader_num_workers int 0 Number of worker processed

learning_rate float 4e−5 Learning rate for training

n_gpu int 1 Number of GPU used

optimizer str “AdamW” Optimizer used

save_eval_checkpoints bool False Save model for each epcoh

9  “latest-truthy.nt.bz” from https://​dumps.​wikim​edia.​org.

https://dumps.wikimedia.org
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our model. Table  1 shows parameters used in this work. The rest of the parameters 
are set according to their default values from the Simple Transformers configuration.
simplet rans

Expansion of QALD benchmark datasets to Wikidata based query

Each QALD version consists of two parts of data, namely, training and testing data, 
respectively. Each QALD version provides challenges to solve over KGs or hybrid data, 
i.e., a combination of KGs and unstructured data (text) as corpus. Some KGs used in 
QALD are DBPedia,10 MusicBrainz,11 Drugbank,12 SIDER,13 and Diseasome.14 QALD 
series introduce a different challenge from other datasets as it leverages SPARQL opera-
tors in the query instead of simple UNION. This challenge is not exploited in the other 
datasets [5]. Therefore, we believe that the construction of Wikidata-based QALD series 
can enrich the challenges of a KGQA benchmark dataset.15

In this work, we only translate DBPedia based queries in the QALD series into 
Wikidata based queries, i.e., not queries to other KGs. Table 2 presents the distribu-
tion of Wikidata based query we translate. “Total” column in Table 2 represents the 
total question of a QALD. “DBP,” and “WD” columns display the number of available 
queries of the dataset (i.e., DBPedia and Wikidata, respectively). Out of scope states 
that nothing facts are found on Wikidata after exploring some related routes. For 
example, the question “Which airports does Air China serve?”, “Air China” is identi-
fied as a head entity of the question. While “dbo:targetAirPort” is used as the property 
of the question over DBPedia. However, “Air China” item on Wikidata does not have 

Table 2  Query distribution of QALD series and its translation over Wikidata

DBP DBPedia, WD Wikidata, OOS out of scope, PQ pseudo query. * Wikidata based query is already exist at the QALD version

QALD 
version

Training Testing

Total DBP WD Caption Total DBP WD Caption

QALD-1 50 50 47 OOS= 3 50 50 48 OOS= 2

QALD-2 100 93 89 OOS= 4 99 95 86 OOS= 9

QALD-3 100 93 89 OOS= 4 99 95 89 OOS= 6

QALD-4 200 188 185 OOS= 3 50 48 46 OOS= 2

QALD-5 340 326 276 OOS= 10, 
PQ= 40

59 58 43 OOS= 5, 
PQ= 10

QALD-6 350 350 313 OOS= 37 100 100 88 OOS= 
12

QALD-7* 214 214 99 OOS= 115 42 42 99 -

QALD-8 219 219 205 OOS= 14 41 41 37 OOS= 4

QALD-9 408 408 381 OOS= 27 150 150 139 OOS= 
11

10  https://​www.​dbped​ia.​org.
11  https://​music​brainz.​org.
12  http://​www.​drugb​ank.​ca/.
13  http://​sidee​ffects.​embl.​de.
14  http://​wifo5-​03.​infor​matik.​uni-​mannh​eim.​de/​disea​some/.
15  Expansion of QALD benchmark datasets to Wikidata based query can be found at https://​github.​com/​moh-​yani/​
abet-​kgqa/​tree/​main/​wikid​ata_​qald_​series/.

https://www.dbpedia.org
https://musicbrainz.org
http://www.drugbank.ca/
http://sideeffects.embl.de
http://wifo5-03.informatik.uni-mannheim.de/diseasome/
https://github.com/moh-yani/abet-kgqa/tree/main/wikidata_qald_series/
https://github.com/moh-yani/abet-kgqa/tree/main/wikidata_qald_series/
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any statement that refers to the property. The different data availability on different 
KGs may happen. Even the original QALD-7 has a significant gap in number between 
DBPedia based query and Wikidata based query constructed by Usbeck et  al. [26], 
namely 116%. In contrast to Wikidata based query of QALD-7 proposed by Usbeck 
et  al. [26]. The gap of our translation version is lesser, namely 8%. In addition, the 
question types of untranslated one have been represented by other translated ques-
tions. Therefore, our translation version of Wikidata can be reasonable to evaluate a 
KGQA system that addresses QALD series challenges.

Meanwhile, pseudo queries constructed using unstructured data (text) are excluded 
from our work because the data is explored through non-KG sources. For instance, a 
question on QALD-5 [24] “Which anti-apartheid activist was born in Mvezo?” que-
ries information from text resources as below:

The first triple of the query above uses text:“anti-apartheid activist” 
as a tail entity. However, it does not refer to an item on a KG but a text instead. Since 
we focus on only query over KGs, we exclude such a query form in our work.

Evaluation method

Our model receives inputs in the form of NL questions and then classifies them into 
an appropriate position-based pattern set. However, we were not completely con-
vinced that feeding the questions (after pre-processing) to the model in a plain text 
form is the most appropriate way. To ensure this, we first explore a few different ways 
of feeding them to the model. Specifically, we consider four ways of feeding an input 
question to the model, namely (i)  in plain text form (as a sequence of words); (ii) as 
a sequence of features from the corresponding universal dependency tree; (iii) in a 
hybrid form, mixing case (i) and (ii); and (iv) as a sequence of POS tags.

As an example, consider the question “who is a musician born in detroit”, which 
has been pre-processed as usual. We conduct four experiments, one for each of (i) 
until (iv) over the Lc-QuAD 2.0 and SimpleQuestions datasets, which represent com-
plex and simple question types. We call experiments for case (i) as text-based feature 
experiments. Here, the question text is directly fed to the model, yielding a perfor-
mance listed in Table 3.

Fig. 8  Example of UDP extraction of a question
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Case (ii) corresponds to the universal dependency feature experiment. In this experi-
ment, we use the universal dependency parsing (UDP) of the questions as data input. 
Although the input is also in text-based form, it is not in natural language forms. The 
UDP of the question example above is as illustrated in Fig. 8. UDP in Fig. 8 is encoded 
into a text-based graph-like.stanza The text-based graph contains subject, predicate, 
object, and complements. For instance, the word “musician” is encoded into “id:4 
word:NOUN deprel:nsubj id:1 word:PRON”. The subject, predicate, object, and comple-
ments are represented by “id:4”, “word:NOUN”, “deprel:nsubj”, “id:1” and “word:PRON”, 
respectively. All words of the question are encoded in a text-based graph. So, the com-
plete input of the question is “id:1 word:PRON deprel:root id:0 word:PROPN. id:2 
word:AUX deprel:cop id:1 word:PRON. id:3 word:DET deprel:det id:4 word:NOUN. 
id:4 word:NOUN deprel:nsubj id:1 word:PRON. id:5 word:VERB deprel:acl id:4 
word:NOUN. id:6 word:ADP deprel:case id:7 word:PROPN. id:7 word:PROPN deprel:obl 
id:5 word:VERB”. Table 4 shows the performance of this experiment.

Case (iii) corresponds to the hybrid-based feature experiment. The experiment 
tries to hybrid natural language-based text and non-natural language-based text 
as the input of our model. From the previous question example, the input is “id:1 
word:PRON deprel:root id:0 word:PROPN. id:2 word:AUX deprel:cop id:1 word:PRON. 
id:3 word:DET deprel:det id:4 word:NOUN. id:4 word:NOUN deprel:nsubj id:1 
word:PRON. id:5 word:VERB deprel:acl id:4 word:NOUN. id:6 word:ADP deprel:case 
id:7 word:PROPN. id:7 word:PROPN deprel:obl id:5 word:VERB who is a musician born 
in detroit”. This experiment yields a performance shown in Table 5.

Case (iv) corresponds to the POS tags-based feature experiment. Here, OS tags are 
formed in a string format by concatenating POS tags of each token to be a sequence of 
POS tags. For the question example above, we convert POS tags of the question such as 
shown in Fig. 9 to be “WP VBZ DT NN VBN IN NNP”.stanza. Table 6 shows the perfor-
mance of this experiment.

Experiment Results

We use testing data to evaluate our work. We match the predicted classes obtained by 
the classification model with entity ground truth on testing data. For example, the pre-
dicted pattern of a question “Which sovereign state is in diplomatic relation of Empire 
of Japan?” is taken as a correct prediction if both ground truth and its prediction have 
the same pattern, namely: 0:head:ent:1_2[AND]tail:ent:5_6_7 . We use a confusion 
matrix to compute accuracy, precision, recall, and F1. Jurafsky and Martin [38, chapter 4] 
presented the precision, recall, and F1 as shown in Equation (2), (3), and (4), respectively.

(1)Accuracy =
TP + TN

TP + FP + TN + FN

Fig. 9  Example of POS tagging of a question
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Tables 3,  4,  5, and 6 show the best model obtained by each experiment.
For the measurement, since we want to assign greater contributions to classes that 

have a bigger number than others, we use a weighted average for the datasets used in 
this experiment (Tables 3, 4,  5, 6, 7). The tables measure the performance of entity 
detection tasks only, not the end-to-end performance of a KGQA system. Although 
there are query ground truth in datasets, we do not check the accuracy of the whole 
query but only check if the predicted entity matches the entity of ground truth.

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN

(4)F1 = 2×
Precision× Recall

Precision+ Recall

Table 3  The performance of entity detection task using text-based feature (in percent)

Dataset #Class Accuracy Precision Recall F1 Training 
duration 
(hour)

SimpleQuestions 1,014 99.15 99.25 99.15 99.17 164

LC-QuAD 2.0 4,296 74.09 75.72 74.09 73.87 211

Table 4  The performance of entity detection task using UDP-based feature (in percent)

Dataset #Class Accuracy Precision Recall F1 Training 
duration 
(hour)

SimpleQuestions 1,014 43.69 73.31 43.69 49.03 167

LC-QuAD 2.0 4,296 51.18 74.54 51.18 56.43 215

Table 5  The performance of entity detection task using UDP-based feature (in percent)

Dataset #Class Accuracy Precision Recall F1 Training 
duration 
(hour)

SimpleQuestions 1,014 50.86 78.3 50.86 56.37 164

LC-QuAD 2.0 4,296 52.41 75.49 52.41 57.74 212

Table 6  The performance of entity detection task using POS tagging-based feature (in percent)

Dataset #Class Accuracy Precision Recall F1 Training 
duration 
(hour)

SimpleQuestions 1,014 98.5 98.5 98.5 98.5 168

LC-QuAD 2.0 4,296 59.6 63.9 59.6 59.1 216
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According to the experiments, entity detection on SimpleQuestions dataset can be sat-
isfactorily addressed by using both text-based features and POS tagging-based features 
(Tables 3 and 6). However, entity detection on LC-QuAD 2.0 is hard to solve by POS 
tagging-based features as those features cannot distinguish two questions with the same 
POS tags but different subgraphs. For instance, the question “Who is the leader of Qan-
tas” and the question “Who is the opposite of Superhero” have the same sequence of 
POS tags, namely “WP VBZ DT NN IN NNP”. However, although both questions have 
the same POS tags, they correspond to different kinds of graph patterns. The first ques-
tion corresponds to a graph pattern containing two triple patterns where the answer 
variable is located at the head position of both triple patterns (note that there is only a 
single answer variable as implied by the question). Meanwhile, the second question cor-
responds to a graph pattern containing two triple patterns where the answer variable is 
located at the tail position of the first triple pattern and at the head position of the sec-
ond triple pattern. Figure 10 lists the ground truth query for both questions.

Meanwhile, the first experiment (Table 3) demonstrates a better performance on the 
entity detection task than the other two for both the SimpleQuestions and LC-QuAD 2.0 
datasets. It shows that Transformer works better with plain text-based features. Based 
on these results, we decided to extend our experiments using only plain text-based fea-
tures over other datasets, namely, the QALD series. In the fourth experiment, we include 
QALD series dataset as training data. We merge training data of SimpleQuestions, LC-
QuAD  2.0, and QALD series into training data, and separate it into 80% and 20% for 
training and validation data, respectively. Meanwhile, each testing data of each dataset is 
used to evaluate our model.

According to Table 7 our model trained and tested on SimpleQuestions outperforms 
the previous works for about 99.15% of accuracy. Our model trained and tested on 
LC-QuAD 2.0 is slightly lower than Evseev and Arkhipov [11] in F1 score, but it can 
be improved by merging with other datasets. Our model achieves 97.4% of accuracy for 
LC-QuAD 2.0. In contrast to the performance on LC-QuAD 2.0, our model trained in 
the merged dataset has slightly decreased on SimpleQuestions as it is influenced by the 
training data of LC-QuAD 2.0 that has a high variation of SPARQL. Our model yields a 
satisfactory performance on QALD series and outperforms Hu, Zou, Yu et al. [13] and 
Bakhshi et al. [14] on QALD-6, and QALD-9, respectively. Note that Hu, Zou, Yu et al. 

Fig. 10  Two questions with the same POS tags but different kinds of graph pattern example
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Table 7  Comparison of entity detection performance on testing dataset (in percent). SQ and LQ 
refer to SimpleQuestions and LC-QuAD 2.0 dataset, respectively

* Used a rule-based approach, so no training data is used. ** Kuo and Lu’s performance is not comparable as they used a 
different training dataset than ours

Approach and the dataset(s) used Acc. P R F1

A. Tested on SQ:

 Dai et al. [7] 75.7 - - -

 He and Golub [8] 96.8 - - -

 Chao and Li [9] 82.2 - - -

 Lukovnikov et al. [10] 82.7 - - -

 Azmy et al. [16] - - - 90.3

 Cui et al. [15] - 97.4 96.1 96.1

 Our approach trained on SQ 99.15 99.25 99.15 99.17

 Our approach trained on SQ, LQ, and QALD 97.1 97.9 97.1 97.4

B. Tested on LQ:

 Evseev and Arkhipov [11] - - - 87

 Our approach trained on LQ 74.09 75.72 74.09 73.87

 Our approach trained on SQ, LQ, and QALD 97.4 98 97.4 97.6

C. Tested on QALD

 Hu, Zou, Yu et al. [13] (QALD 6) 92 – – –

 Bakhshi et al. [14] (tested on QALD 9) 78 – – –

 *Kuo and Lu [12] (tested on QALD 7) 91 – – –

 Our approach: (trained on SQ, LQ, and QALD)

  Tested on QALD-1 95.4 – – –

  Tested on QALD-2 100 – – –

  Tested on QALD-3 100 – – –

   Tested on QALD-4 97.5 – – –

   Tested on QALD-5 95.1 – – –

  Tested on QALD-6 96.4 – – –

  Tested on QALD-7 95.4 – – –

  Tested on QALD-8 88.2 – – –

  Tested on QALD-9 96 – – –

Table 8  Model evaluation on entity linking compared with Falcon 2.0 on SimpleQuestions dataset 
(in percent)

Approach SimpleQuestions

Acc P R F1

Original 
Falcon 2.0 
[19]

– 56 64 60

Original Fal-
con 2.0 for 
Uppercase 
Entities [19]

– 66 75 70

Falcon 2.0 
with our 
approach 
input

73.9 73.9 73.9 73.8
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[13] and Bakhshi et al. [14] used a rule-based approach for the entity detection task. In 
this experiment, we do not compare with Kuo and Lu [12] as they used different datasets 
for training.

To prove the effectiveness of our model, we evaluate our model’s performance in the 
subsequent task of KGQA systems, namely, entity linking. We compare our model with 
Falcon 2.0 [19]. Falcon 2.0 is a tool used to link entities over Wikidata.

In this evaluation, we use the output of our model (list of the prediction of entities 
mentioned in questions) as the input of Falcon 2.0. Falcon 2.0 then outputs the entities 
corresponding to the input that exists in a KG, namely, Wikidata. We use testing data of 
SimpleQuestions dataset for this evaluation.

Table 8 shows the effectiveness of our model if it is used as the feeder input of Falcon 
2.0. Compared with the original Falcon 2.0 input, namely, a list of prediction of entities 
mentioned in questions obtained by Falcon 2.0, overall, our approach can be better in 
performance of accuracy, precision, recall, and F1, namely, 73.9% and 73.8% for preci-
sion and F1, respectively.

Conclusion
This paper presents an approach for entity detection in a question in the context of 
knowledge graph question answering. Our contribution is on the construction of posi-
tion-based patterns as target labels for a question classification task. The patterns include 
the exact position of anchor entities in the question and explicitly indicate whether the 
entities are a head or a tail entity. Our approach can also determine the number of tri-
ples forming a question. It is hoped that this information can better assist the subse-
quent query construction task.

In addition, this paper has demonstrated four experiments on classification tasks using 
Transformer, namely, text-based feature, UDP-based feature, hybrid-based feature, and 
POS tags-based feature. According to the results of the experiments, text-based features 
reached the best performance on the accuracy, precision, recall, and F1 for both Sim-
pleQuestions, LC-QuAD  2.0, and QALD series. The experiment result demonstrates 
that our model outperforms the previous works on SimpleQuestions and QALD series. 
It yields 99.15% of accuracy for SimpleQuestions and 96.15% accuracy on average for 
QALD series. Meanwhile, our model trained and tested on LC-QuAD 2.0 is slightly 
lower than Evseev and Arkhipov [11] in F1 score. The experiment also shows that our 
model trained and tested on a merged dataset (SimpleQuestions, LC-QuAD 2.0, and 
QALD) outperforms all previous works for SimpleQuestions, LC-QuAD 2.0, and QALD 
series. Our model achieves 97.4% of accuracy on LC-QuAD 2.0.

Our proposed approach has also been evaluated in Falcon 2.0 to show the effectiveness 
of our work on the downstream task, namely, entity linking. The result demonstrates 
that our proposed method can improve the accuracy, precision, recall, and F1 of Falcon 
2.0 (an entity and relation linking tool over Wikidata).

Furthermore, this paper presents a Wikidata-based version of QALD series as an 
expansion of the original DBPedia-based QALD series. For translating the entities, we 
first search manually for an entity that corresponds to DBPedia entity on Wikidata. If 
we do not find any proper entities from Wikidata page, we use the Wikidata link from 
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Wikipedia page to obtain the appropriate entity. This translated version is the first work 
to the best of our knowledge. Therefore, the dataset will be valuable for other research-
ers who focus on Wikidata as the KG to evaluate the KGQA systems they developed.

In future work, the result of this work can be used to predict relations in a question. A 
combination of position-based patterns and the predicted relations can help in address-
ing the entity ambiguity problem in the entity linking task. Specifically, an appropriate 
pairing of position-based patterns and predicted relations can reduce a large number of 
candidate entities to be matched during the linking phase.
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