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Introduction
Recently, Nigeria’s development agenda has been anchored in a vision that identifies 
energy as one of the vital infrastructural enablers for development. With the realisation 
that for them to successively make a significant positive transition in development, there 
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Component fault detection and inventory are one of the most significant bottlenecks 
facing the electricity transmission and distribution utility establishments especially in 
developing countries for delivery of efficient services to the customers and to ensure 
proper asset audit and management for network optimization and load forecasting. 
For lack of technology and data, insecurity, the complexity associated with traditional 
methods, untimeliness, and general human cost, electricity assets monitoring, and 
management have remained a big problem in many developing countries. In view 
of this, we explored the use of oblique UAV imagery with high spatial resolution and 
fine-tuned deep Convolutional Neural Networks (CNNs) for automatic faulty com-
ponent inspection and inventory in an Electric power transmission network (EPTN). 
This study investigated the capability of the Single Shot Multibox Detector (SSD), a 
one-stage object detection model on the electric transmission power line imagery 
to localize, detect and classify faults. Our proposed neural network model is a CNN 
based on a multiscale layer feature pyramid network (FPN) using aerial image patches 
and ground truth to localise and detect faults through a one-phase procedure. The 
SSD Rest50 architecture variation performed the best with a mean Average Precision 
(mAP) of 89.61%. All the developed SSD-based models achieve a high precision rate 
and low recall rate in detecting faulty components, thus achieving acceptable balance 
levels of F1-score and representation. We have established in this paper that com-
bined use of UAV imagery and computer vision presents a low-cost method for easy 
and timely electricity asset inventory, especially in developing countries. This study 
also provides the guide to various considerations when adopting this technology in 
terms of the choice of deep learning architecture, adequate training samples over 
multiple fault characteristics, effects of data augmentation, and balancing of intra-class 
heterogeneity.
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must be an efficient, reliable, vast, and environment-friendly energy source, transmis-
sion, and distribution. This means that majority of the burden of energy demand is on 
power companies to provide and transmit quality energy services to consumers. Against 
this backdrop, investors in their transmission lines need accurate, cost and time-efficient 
methods to carry out existing asset inventory of the transmission lines for well-informed 
decisions and investment. In view of this, our hypothesis is that deep learning on high-
resolution Aerial images should provide a cost and time-effective solution for power line 
assets inventory and studies, study fields.

Regular inspection of electric power lines has become an essential concern because 
virtually all human activities, infrastructure services, and businesses will collapse with-
out electricity [1]. Generally, in many developing countries, the available electricity is 
unreliably characterised by households and businesses experiencing long and frequent 
power outages resulting from electricity demand exceeding available electricity supply 
caused by load shedding and/or technical failures [2, 3]. For example, Electric Utilities 
in Nigeria claimed that: some sections of the grid are outdated with inadequate redun-
dancies; regular vandalization of the lines associated with a low level of surveillance and 
security on all electrical infrastructure, and the serious lack of required modern technol-
ogies for communication and monitoring is causing more and more power outages [4, 
5]. To tackle these challenges, there are different approaches that have been developed 
for fault detection on the power transmission lines. Among these methods is the use 
of Machine Learning techniques on Very High Resolution (VHR) satellite imagery. This 
method has proven to be more efficient and outperform manual inspection and tradi-
tional data analysis approaches for detecting faults in power transmission lines at large.

Remote sensing techniques have been very efficient in power line corrosion and 
mechanical loss detection. Inspection of the electricity power transmission network 
(EPTN) especially in remote areas using remote sensing techniques requires very high-
resolution images such as those obtained from aerial surveys, UAV images, and Lidar 
point clouds data. Unmanned Aerial Vehicle (UAV) surveillance has become the state-
of-the-art in power line inspection for defects and damage [6]. Many studies have also 
demonstrated the efficacy of high-resolution remote sensing techniques in power line 
inspection and monitoring. For example, Xue et al. [7], utilized SAR imagery to measure 
electricity towers’ damage caused by landslides. The use of high-resolution TerraSAR-
X imagery to track power line damages in natural disaster situations has also been dis-
cussed in [8–10].

Studies using optical remote sensing have focused on fault diagnosis for the differ-
ent EPTN components themselves because the ground sample data (GSD) is usually 
less than the individual components’ size, especially for those caused by the adjoin-
ing environment. As a result, most power line inspection studies using optical remote 
sensing are fixated on vegetation encroachment and minimum height and clearance 
distance [11–13]. Apart from vegetation encroachment, a variety of papers addressed 
automatic inspection of insulators’ condition. These techniques aimed to take images of 
the insulators periodically and use automated classification methods to identify dam-
aged insulators. Reddy et al. [14], for example, used fixed cameras on poles. Jiang et al. 
[15], using a photogrammetric method, addressed flashover faults—pollution-related 
flashes affecting insulators. In the experiment, a sensing camera placed on a tripod was 
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used. However, most remote optical sensing techniques are primarily restricted by the 
atmosphere.

Despite extensive studies on powerline inspection and fault detection, the advantages 
of using remote sensing in sub-Saharan Africa remain unseen due to the data unavail-
ability and peculiarity of the power line in this region. Many utility companies and 
investors rely on poorly collected data from ground-based surveys, multispectral visible 
colour images, and most recently video surveillance of transmission line fault inspection 
and monitoring [16]. UAV monitoring offers high-spatial multispectral images that deal 
with the limitation of other remote sensing methods because of the ability to capture 
accurate images of transmissions components at closer proximity [17]. UAVs are able to 
detect small-scale defects such as broken fittings and missing knobs and can be incor-
porated with other modes of remote sensing. In comparison to manual methods, with 
limited resources and man-hours, inspecting and monitoring long transmission line cor-
ridors for potential faults and damages becomes almost impossible.

For cost and time-effectiveness, electricity infrastructure inspection, and fault diag-
nosis especially in transmission lines, the combination of UAV data and deep-learning 
techniques is imperative [6]. The advent of deep learning, which uses not only spectral 
information but also spatial, topological, spectral, and geometric properties of objects 
in images, is at the forefront of these developments. Deep learning has demonstrated 
potential promising advances in power line extraction and other study fields. Currently, 
improved algorithms and multilayer networks such as Convolution Neural Networks 
(CNNs), Recurrent Neural Networks (RNNs), and reinforcement learning have dem-
onstrated more outstanding performance than standard approaches, particularly in 
power line identification, transmission components detection, as well as in, vegetation 
encroachment prevention [18]. Conversely, the traditional approach for pattern recogni-
tion depends on the continuous engineering of parameters that are well built by humans. 
Hence, making the manual extraction process inefficient, unfavourable, inadequate for 
generalization necessities, and time-consuming. With deep learning algorithms, visual 
perception to extract feature hierarchies and generalization ability is enhanced on sev-
eral levels [19]. These algorithms have demonstrated that conventional learning meth-
ods are sluggish and unreliable; they require substantial post-processing attempts to 
differentiate between transmission infrastructure [20]. Succinctly, power transmission 
network mapping and fault inspection require a more advanced adequate hybrid classi-
fier that is way beyond task-based approaches, promoting the improved performance of 
visual recognition tasks and successfully adapts learning from multimodal data sensors 
for object detection.

1. Taking all these considerations into account, the use of deep learning technologies, 
together with the advantages of Unmanned Aerial Vehicles (UAVs), can play a fun-
damental role in relieving the current limitations of traditional power transmission 
monitoring, which are mainly based on manual operations such as electricity pole 
climbing, foot patrols, vehicle inspections, and field verification reports [21, 22]. 
Nevertheless, the operational applicability of Deep learning techniques on UAV sur-
veillance has not yet been addressed in the context of power infrastructure inspec-
tion in developing countries, which is precisely the gap that motivates this work. This 



Page 4 of 34Maduako et al. Journal of Big Data            (2022) 9:81 

paper explores the use of deep learning techniques for power line fault detection 
and inspection from UAV imagery through the lens of a case study in Nigeria. The 
major contributions of this paper are: the development of a single-phase deep learn-
ing model for power line faulty component detection and classification pipeline for a 
series of faults (multiclass) that typically exists in power transmission components. 
Based on the comprehensive review work in [18], very little research has been car-
ried out in this area with the context of helping investors in a developing country like 
Nigeria for time and cost-effective EPTN inventor [18].

2. Exploring the feasibility of low-cost drone equipment to monitor electricity trans-
mission infrastructure for faulty-component detection.

3. Empirical and comparative analysis of hyperparameters in CNN backbone archi-
tectures consisting of more than one electricity power line component-fault type to 
evaluate the effectiveness of our proposed approach.

Related work
Most widely used models in literature for fault detection in power line components pri-
marily involve clustering, mathematical-based techniques such as Hough transform, 
Gabon filters, knowledge-based techniques, and traditional pattern recognition tech-
niques or low-level filters. For instance, in detecting broken transmission line spacers, a 
Canny edge detector combined with Hough transform was used by Song et al. [23]. First, 
a scan window was formed in the path of the conductor and during the convolution pro-
cess, if there are a candidate’s spacers, they are recognized in all sliding windows. Finally, 
the shape configuration parameter is structured to decide whether the sensed spacer was 
broken based on the measurement of linked parts. A study by Zhai et al. [24] exploited 
a pattern descriptor (variable) using the Saliency Aggregating Faster Pixel-wise Image 
(FPISA) for insulator extraction. Based on the colour channel in the Lab colour space, 
the observed insulator’s flashover region was extracted. The system was tested using 100 
flashover fault insulating images and obtained a detection rate of 92.7%. Utilising a simi-
lar concept, Zhai et al. [25] and Han et al. [26] detected the faults associated with the 
missing cap of insulators based on saliency and adaptive morphology (S-AM), a combi-
nation of shape and pattern parameters. Concentrating on the merits of the preceding 
investigations, while demonstrably great accuracies were acquired, especially for single 
EPTN components; however, these approaches are cumbersome, time-consuming, and 
the processing of the data necessitates a certain degree of competence. Additionally, the 
methodology is insufficient for multi-class classification, individual location, and iden-
tification of faults, particularly in complicated natural environments, as is the case with 
EPTN components.

Alternatively, drones are becoming more prevalent, and their adoption enabling 
remote sensing is becoming increasingly desirable in places with technological lim-
its, owing to their low cost and rapid deployment in a variety of settings. UAVs can 
be equipped with increasingly sophisticated sensors such as hyperspectral (HS) and 
LiDAR to distinguish ETPN components from their associated faults, and the combina-
tion of these sensors has resulted in high accuracy. However, these sensors are typically 
quite expensive, and data processing requires a certain amount of skill and computing 
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capacity that is not always available. Recent advancements in drone technology and low-
cost sensors have cemented a critical role for UAV monitoring of EPTN components. 
Furthermore, experts express that the most challenging type of faults to detect in power 
transmission lines line are faults on EPTN components appearing as tiny aspect ratio in 
the captured images, for instance, power line fitting such as missing pin, nut, bolts, and a 
small degree of fault severity on some large components.

Since the majority of drones now include a standard high-resolution RGB camera, uti-
lising these cameras for minuscule EPTN fault identification is advantageous in places 
where EPTN component overloading is an issue but funding for more advanced sen-
sors is not easily available, and maintenance is heavily required. To detect such faults, 
aerial images are captured with the RGB cameras close to the exact components con-
taining the faults or the components (or faults) cropped from the original image manu-
ally [22], automatically, or via segmentation [27]. Fu et al. [28] implemented a dynamic 
model for the missing pin type of faults. The fitting is a combination of multiple sections, 
which include pin and nut. The haar-like attribute and Adaboost classifier was used to 
detect each part of the fitting. The methodology involved first extracting the segmented 
region and circles with LSD and Hough transform, respectively, to identify the missing 
pin. The missing pin fault was finally obtained and then observed based on the distance 
limit between the centre of the circle and the pin section. Other methods in particular 
machine learning methods majorly Adaboost [28], and SVM [29] have been applied to 
an abundance of imagery for the automatic identification and monitoring of the elec-
tric power transmission network (EPTN) component faults to augment and infer addi-
tional information in recent years. These techniques have contributed to the detection 
of EPTN components faults with successful results. However, since they often include 
additional feature engineering, they become less attractive, especially for the RGB drone 
imagery dataset.

With the introduction of computer vision, the limitations of RGB cameras and tra-
ditional approaches to detecting and classifying EPTN faults are gradually being 
addressed. One of the earliest works on fault detection using deep learning was detect-
ing surface discoloration due to flashover on an insulator using CNN classifier with 
pre-trained AlexNet published by Zhao et al. [30]. The experiments achieved a score of 
98.71% mean Average Precision (mAP) on 1000 samples. The proposed architecture out-
performed the conventional handcrafted approach but was limited to just insulator con-
dition inspection image classification, which demanded significant feature engineering. 
Additionally, Faster R-CNN was presented by Liu et al. [31] to identify insulators with 
missing caps. The system was tested for three different voltage transmission line levels 
with 1000 training samples and 500 research samples prepared for each level. About 120 
photographs (80 for training) were used to test the diagnosis of missing cap faults. The 
study also highlights the possibility of overfitting due to the small dataset and employs 
data augmentation to physically extend the dataset. To handle similar faults as in [31] 
across multi-scale level drone imagery, Jiang et al. [32] developed a novel approach using 
SSD as the meta-architecture for multi-level perception (low, mid, and high perception) 
based on ensemble learning to extract the missing insulator fault from the image resolu-
tion of 1920 × 1080-pixel. The middle and high-level perception images are made via the 
Region of Interests (ROIs) Union Extraction (RUE) image pre-processing. The proposed 



Page 6 of 34Maduako et al. Journal of Big Data            (2022) 9:81 

approach’s absolute precision and recall rates were 93.69% and 91.23% respectively on 
the test image dataset with various perception levels containing missing cap insulator 
problems. However, these papers considered the contextual characteristics of one type 
of fault inspection that affect the insulator component across the transmission cor-
ridor neglecting other defects that coexist. In most cases, the features derived by such 
methods may not adequately reflect the insulators, and these approaches may need the 
imagery modified.

Generally, convolutional layers have been shown to reliably predict specific EPTN 
component faults using more than just spectral indices. Deep learning successfully 
incorporates additional criteria such as shape and texture (semantic representations) 
to provide more accurate predictions about EPTN component faults. Nonetheless, one 
particular issue in power line fault detection using deep learning CNN is data insuffi-
ciency. This is because the DL model is required to generalize the solution at the end of 
the training. To achieve this, a robust and large amount of dataset is usually required. In 
the previous papers to circumvent potential data shortages and expedite the creation of 
a reliable predictive model, attempts were made to synthesize the images (e.g., in [33]) 
and data augmentation (e.g., in [31, 34]). Other researchers have examined the use of 
transfer learning and few-shot learning to identify fault types. For instance, for lack of 
sufficient training images, Bai et  al. [35] utilized a transfer learning process using the 
ImageNet data kit, which included a 1.2 million samples dataset. This model was then 
trained, i.e., fine-tuned by the limited data set acquired containing the surface fault of 
insulators based on the Spatial Pyramid Pooling networks (SPP-Net) with transfer learn-
ing approaches. This allowed the weight optimization to begin at the top layers (where 
there is a different feature complexity from the original training data utilized) in the 3D 
CNN of the SPP-Net adopted rather than for the whole model. The result showed the 
better performance of SPP-Net architecture with transfer learning over the RGB imagery 
in a short computation time. Although this model proved sufficient, the result was lim-
ited to a classification problem involving just the insulator fault.

In recent years, there have been few efforts to develop a deep learning approach, to 
identify several power lines faults simultaneously. Typically, a two-step object detec-
tion technique is commonly utilized: first, to identify the component, and second, to 
detect the fault in those components. In this light, Tao et al. [33] developed two separate 
backbone models, Defect Detector Network (DDN) DDN and Insulator localizer Net-
work (ILN) based on the Visual Geometry Group (VGG) model and Residual Network 
(ResNet) model respectively, on the domain knowledge of the EPTN component’s struc-
ture. To find a missing cap fault, a cascading architecture combining a custom-developed 
ILN and a DDN model was utilized. The ILN identifies all the insulators in the aerial 
image and then cuts the detected areas and feeds them into the DDN. A total of 900 reg-
ular images were collected from UAVs for this experiment and 60 defective images. Data 
insufficiency was tackled by segmenting the image using the U-net algorithm to divide 
the output of the ILN into insulator and background. The segmented insulator was then 
combined with distinct images of different backgrounds to mimic real-life background 
situations concerning insulator position. The result of this was then merged as input for 
the DDN model. Finally, about 1956 pictures for ILN (1186 for training) and 1056 images 
with missing caps (782 for training) were prepared. The DDN detection precision and 
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recall are 0.91and 0.96. The resulting accuracy outperformed the direct use of existing 
frameworks. However, most related studies do not consider a single-phase approach and 
do not detect more than one fault simultaneously, but rather focus on video surveillance 
and single class fault detection on the transmission lines. Exploring the performance of 
different object detection deep learning models, the SSD meta-architecture utilized by 
Jiang et al. [32] performed well considering the multiscale camera imagery perception 
and model characteristics.

Despite the capacity to exploit additional object attributes for object detection and 
classification prediction, [32] demonstrated how such approaches have limitations. They 
propose additional research into CNN models and their performance in landscapes 
with a variety of vegetation patterns, complex backgrounds, and barriers. The trade-
off for increasing the spatial resolution of UAV imagery is that the total region covered 
for EPTN fault monitoring decreases. As drones fly lower to capture higher-resolution 
images, the total area they can cover decreases. SSD was mentioned as a less laborious 
and rarely used model of object identification that is capable of detecting individuals 
within object classes. By extracting additional detail and using it for EPTN component 
monitoring, more detail may be extracted and employed. Additionally, the produced 
objects could be utilized to estimate the location of the major EPTN component defect 
on the ground. Accurate categorization maps can be constructed by combining raw RGB 
images with supplementary products such as elevation and Structure for Motion 3D 
data.

Given that this project’s objective is to investigate the use of drone RGB imagery for 
monitoring EPTN component defects, the recommended SSD model is appealing for a 
variety of reasons. To begin, it has been demonstrated that multiple CNN models work 
effectively in detecting EPTN components and single class faults. Most studies concen-
trate on classification methods that are applied to distinct components across multiple 
landscapes. A study of multi-class fault detection is offered to detect numerous EPTN 
component faults in a single image. SSD is one of the few one-phase models that sup-
ports object detection, which is distinct from classification in that individual items are 
denoted clearly. This is advantageous for monitoring EPTN component faults because it 
enables the generation of approximated counts.

Table 1 summarises the various features of some of the related works and their pros 
and cons with respect to our study. Our major contribution is that we developed a multi-
class Electricity Transmission Line fault detection model. Existing literature as summa-
rized in Table 1 were mainly focused on mono class fault detection models except Zhao 
et al. and Li et al. that extended theirs to two distinct faults classes. However, our model 
was developed and trained to detect multi-classes of faults beyond just 2 classes. Also, 
many of these existing models required rigorous and complex feature engineering which 
is made very simple with our SSD model for scalability purposes.

Study area and dataset
The “Study area” section provides background into the study area chosen for this 
research. The second section (“Datasets” section) describes the electricity transmission 
line dataset generated for this study. Finally, the four types of electricity transmission 
line faults considered, are described in “Taxonomy of faults” section.
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Study area

The study area is made up of four different transmission line corridors in Nigeria. Differ-
ent transmission line corridors were explored for feasibility in this study with the help of 
power-line engineers and photographs from reconnaissance surveys. Six transmission 
line corridors were investigated in total, and four corridors were selected after recon-
naissance by the ground truth team. This decision was made based on the sites’ usability 
for field experiments and based on the spatial resolution of the acquired imagery. These 
transmission corridors virtually have a connection with all the 36 states in Nigeria and 
the Federal Capital Territory. Nigeria lies between latitudes 4° and 14° N, and longitudes 
2° and 15° E. The Nigerian power transmission network called the Transmission Com-
pany of Nigeria (TCN) is responsible for the transmission of power in two phases, the 
330–132 kV and the 132–33 kV through the transmission lines (otherwise referred to as 
conductors) [36]. In general, all transmission corridors in Nigeria share a similar struc-
ture, their infrastructure is radial and thus causes inherent problems without redundan-
cies [37].

Datasets

The DJI Phantom (DJI FC330) fitted with high-resolution cameras was flown across the 
four transmission corridors namely, Shiroro-Kaduna, Lagos, Abuja, and Enugu overhead 
transmission lines to capture pylons, conductors, other components of power line/pylon 
accessories (e.g., insulators, fittings, cross arms) as well as the surrounding features (e.g., 
vegetation) from varying angles. The imagery is in three spectral bands (visible RGB) 
with high spatial resolution. The aerial survey was conducted from October 12, 2020, to 
October 22, 2020. Thousands of large images tiles of the study area can be characterised 
as high-resolution oblique RGB images of dimension 4000 × 3000 pixels (72  dpi). The 
mean pixel sensor resolution is 0.00124 m. Generally, within the images, the most prom-
inent objects are located and systematically distributed transmission conductors and 
pylons with dirt roads, small patches of natural forest, and grasslands. We worked with 
the Nigerian Transmission Company for this drone mission. Also, the dataset collection 
was acquired in such a way that the different angle, distance, and depth adds to the dis-
tinctiveness, volume, and variety of the ‘Felect’ dataset. Although each inspection trans-
mission network location has its own photographic identity, the photographs all have a 
comparable original pixel size of 4000 × 3000 pixels. Moreover, since the natural images 
that contain all the transmission components’ faults are scarce, we create simulated 
insulator missing faults images as a key step under the supervision of a power expert. 
The simulated transmission components’ faults samples were achieved using Photoshop 
software since a large amount of the fault taxonomy in aerial images is scarce. We next 
develop a novel transmission component faults dataset, which is referred to as ‘Felect’ in 
this study, and analyze it. The acquired images were explored for viability through visual 
inspection. Blurred images, noisy images, and those with obstructions were discarded 
during the visual inspection of the images and data annotation.

Taxonomy of faults

The main purpose of this process is to classify the faults found in the transmission 
components. Each transmission line component like pylons, conductors, and pylon 
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accessories or fittings (e.g., insulators, dampers, and fixtures), has different and unique 
faults.

Transmission line pylons are used to extend the conductors over long distances, sup-
porting lightning safety cables and other transmission elements. They ensure the proper 
electrical transmission process of the other components by preserving the original 
design positioning and providing sufficient grounding against adjoining objects. Insula-
tors are critical elements in a transmission line as they protect conductors by allowing 
lines to retain their expected electrical insulation strength [38]. As seen in Fig.  2, the 
insulator has a repetitive, stacked cap structure. The colour, size, and string numbers of 
the insulators vary based on the transmission capacity and manufacturing design (e.g., 
single string and double strings). The pylon accessories, also called fittings, are the con-
nectors of major components or elements seen in the electricity transmission lines. They 
mainly serve as support, inhibitors, connectors to the other transmission components. 
These include conductor clamps, dampers, splicing fitting, protective fittings, and guy 
wire fittings.

Consequently, most of these individual components have many different types of 
faults. For this research, the defects were divided taxonomically into four categories: 
missing insulator, broken insulator, rusty clamp, and broken dampers according to the 
contents of the captured aerial photographs. The detailed fault taxonomy discussed in 
this study is as follow:

 i. Missing insulator: these are glass insulators with a missing insulator cap (plate); see 
Fig. 1.

Fig. 1 Missing glass insulator faults

Fig. 2 Broken insulator faults prominent with the porcelain or composite plate type insulator
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 ii. Broken insulator: this applies to those insulators that are made of porcelain or 
composite polymer plate or cap materials. In this case, the plate is incompletely 
destroyed by pressure exerted by external forces such as weather, especially thun-
der-strike and thaw (Fig. 2).

 iii. Rusty clamp: the conductor clamp (strain or suspension clamp) helps to hold all 
components, especially the insulator, to the tower architecture based on its design. 
A faulty clamp can lead to the insulator’s total malfunction, hence leading to trans-
mission collapse (Fig. 3).

 iv. Broken fitting: broken fittings such as shown below in Fig. 4 where the vibration 
damper is broken could cause conductor fatigue and strand breakage.

Methodology
This section outlines the approaches and considerations for developing the predictive 
model for our case study transmission line fault detection from high-resolution imagery. 
This section also provides the algorithm description and architecture workflow of the 
single-shot detection models developed and designed for this study.

The proposed method is designed to detect four-class EPTN faults in a complex 
aerial imagery. In order to achieve a multi-level perception taking account, the 
small-scale problem and the depth of the convolutional neural network, the Single 
shot detector with FPN architecture was adapted for this purpose. The Single shot 

Fig. 3 Rusty strain (a) and suspension (b) clamp

Fig. 4 Broken fitting (vibration dampers)
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detector with FPN architecture aimed to identify electric power transmission net-
work faults based on an RGB drone imagery. The model analyzed the preprocessed 
images together with its corresponding annotated ground truth layer to categorize 
and detect the EPTN datasets into one of the four fault types: missing knob, miss-
ing insulator, broken insulator and rusty clamp. The output detection is a probable 
detected EPTN components’ faults with an associated loss values and prediction 
error. The model presents a multi-scale pyramidal space network in combination with 
spatially informed aerial inputs to produce the detections. The development workflow 
and algorithm from data preparation to fault detection are described in Fig.  5 and 
Table 2 below.

Figure  5 describes the workflow to build the model to detect faults during EPTN 
inspection. First, the input RGB image which is subsequently processed are used to gen-
erate the input dataset layers. At the same time, a ground truth bounding box is cre-
ated, in which the various EPTN component faults are identified in the images at pixel 
level. Both the preprocessed EPTN datasets and the annotated bounding box are split 
into training, validation, and test datasets. The SSD-FPN model uses the training dataset 
as its input. The model (see “Network training” section) uses the created bounding box 
to forecast if the current image frame contains a defective EPTN component in these 
terms. At the same time, utilizing higher level semantic visual representations based on 
contours extraction and subsequent size filtering, the bounding box and input image 
are utilized to extract the Region Of Interest (ROI) of every fault region in the image. 
This study selected three predefined backbone architectures. The three models were put 
to test to see which architecture best generalizes, identifies, and detects EPTN compo-
nent failures, as well as to see how the spatially informed input affected the results. The 
training and inference output is a distribution over the model coefficients that is then 
engineered to determine the position of possible detections for each fault class for a par-
ticular processed image frame. The predictions are summed up to determine the final 
detection and performance metrics (precision, recall and F1-score). The feature pyrami-
dal space is an approach designed to enhance the recall, multi-level perception, and 

Fig. 5 Methodology overview
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overcome small-scale problem, which will be detailed later. The model implementation 
procedure is captured in an algorithmic workflow described in Table 2 below.

Convolutional neural networks

Convolutional Neural Networks (CNNs), which are specialized neural networks 
developed to exploit the two-dimensional nature of images, have in recent years 
advanced deep learning tasks (high-level vision) such as image classification, object 
detection, and image segmentation, as well as low-level vision tasks such as edge 
detection [39]. The deep learning task (deep convNet) was first developed for image 
classification problems based on the performance of convolution layers to recognize 
edges, patterns, context, and shapes resulting in a convolution feature map having 

Table 2 Algorithmic workflow for the model development
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spatial dimensions smaller and deeper than the original [40]. The progenitor of image 
classification architecture otherwise known as feature extractor in object detection 
problems is AlexNet with an 8-layer CNN, i.e., 5 convolutional layers + 3 fully con-
nected layers developed by Krizhevsky et al. [41] in Imagenet challenge of 2012. Many 
improvements have been made to the architecture of Krizhevsky et al. [41] over the 
years. These include using a narrower receptive window and increasing the network 
depth.

Similarly, from the 2014 ImageNet contest, VGGNet metamorphosed intending to 
improve the work developed by Krizhevsky et al. [41]. This CNN architecture took first 
place in the localisation task and second place in the classification task. VGGNet’s break-
through is the mixture of kernel filters (3 × 3 filters) and deep neural networks (16–19 
layers). The authors believed that 3 × 3 convolution layers have the same efficient recep-
tive area as the 7 × 7 convolution layer, however, VGGNet’s architecture is wider, with 
larger non-linearities, and fewer parameters to update [42]. This solidifies the concept 
that the best way to maximize the performance of CNNs is by increasing the depth and 
width of the CNNs.

The complexity of image classification problems increasingly calls for larger CNNs. 
However, deep CNNs with several layers can be difficult to train because of the prob-
lem of vanishing and exploding gradients. To handle this problem, the residual network 
learning called ResNet gained traction. Residual networks were built with shortcuts to 
whole networks inspired by VGG networks by the subject of skipping [43]. To dissociate 
with the concept of increasing depth when creating CNN architecture, ResNet proposed 
a shallower network using shortcut connections, i.e., directly connecting the early layer’s 
input to a later layer. The significant ability to train very deep CNNs in 50, 101, and 152 
layers with great successful connections are attributed to the regular cut-off connection 
(skipping) among the Deep CNN blocks [43].

The general tendency for network speeds has been to go deeper and more complex. 
This results in extended preparation and higher computing costs [44]. The aim of mak-
ing low-latency models for mobile and embedded devices led Howard and Wang [45] 
to develop a lightweight deep neural network model referred to as Mobile networks 
(MobileNets). MobileNets and their derivatives were implemented to substitute a much 
deeper network constrained by the speed in achieving satisfactory output and real-time 
applications. This design’s idea is that the regular neural network convolution layer is 
broken down into two filters, depth-wise convolution, and pointwise convolution [45]. 
The usual convolutional filter is more computationally complicated than depth-wise and 
pointwise convolutions. To achieve this model implementation, each channel is con-
volved with its kernel, called a depthwise convolution. Next, the pointwise (1 × 1) convo-
lution is processed to abstract and integrate the individual intermediate output from the 
depth-wise convolution into a single feature layer.

Inspired by the success of CNNs in image classification and the need to adapt CNNs 
for more complex tasks other than classification problems, the object detection approach 
was conceived, which comprises the classification of objects and finding objects of inter-
est positions in the image via regression. In line with this thought, the Faster R-CNN 
was developed utilizing a region-based CNN. Faster R-CNN performs object detec-
tion using two major modules: a Regional Proposal Network (RPN) proposing regions, 
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and a Region-CNN (R-CNN) detector classifying regions and refining boundary boxes. 
The model involves first the use of a base network, i.e., CNN architecture pretrained for 
classification to generate the necessary activation feature map [46]. Then, the extracted 
feature maps are passed through the RPN to generate an object proposal. Each object 
proposal from the RPN, is then applied in the network by overlapping them over the 
existing convolutional feature map. This extracts various fixed feature maps of the field 
of interest for each proposal. The final Region-based CNNs (R-CNN) incorporate the 
preceding output with class details based on the region’s proposal. Using the object pro-
posals extracted via RPN and the extracted features for any one of the proposals (via 
ROI pooling), a final class and object localisation is achieved [46]. R-CNN is a model 
which attempts to simulate the final phases of CNN classification where a flattened layer 
is applied to generate a score for each conceivable object form [34]. R-CNN has two 
separate objectives: classify the proposal and modify the bounding box for the proposal 
according to the predicted class. Although faster R-CNN is extremely reliable, it is very 
slow.

In the same vein, the Region-based Fully Convolutional Network (R-FCN) was devel-
oped by Dai et al. [47] to tackle the shortcomings of the initially designed Faster R-CNN 
frameworks. Instead of using an inefficient sub-network for each region hundreds of 
times, R-FCN adopts an entirely convolutional architecture over the whole image. In a 
way that allows network convolutions to carry out one calculation in detail and accu-
rately, the R-FCN provides new location-sensitive scoring maps. Also, the issue between 
translation invariance and translation difference in recognising objects is addressed 
more effectively. Therefore, R-FCN integrates feature maps and applies convolution to 
construct position-sensitive score maps, which enable convolutional networks to suc-
cessfully perform both classification and detection in a single evaluation. The position-
sensitive ROI pooling is used to produce a vote array of the output size for any ROI to 
achieve a 2D score map of each class. For regression of the boundary box, another con-
volution filter is used to construct a 3D output map on the final feature maps. Then, the 
ROI-pooling is used to measure a 2D array with each element that includes a boundary. 
The sum of these elements is the final bounding box estimate [47]. RFCN presents new 
position-invariant spatial scores which enable convolutional networks to successfully 
perform both classification and detection in a single evaluation. R-FCN incorporating 
these enhancements allows the framework to run faster about 2 to 20 times the speed 
and have better accuracy; therefore, the frameworks are quick and precise but have com-
plicated pipelines.

To aid in real-time object detection maintaining a balance between time, speed, and 
accuracy, many single-phase deep learning-based approaches, which detect multiple 
objects in a single scan, have been proposed. The two most popular single-shot mod-
els are the ‘You Only Look Once’ (YOLO) and Single-shot detector (SSD) frameworks. 
YOLO is a network that classifies bounding boxes in real-time [48]. To fulfil this, YOLO 
combines area proposal and region classification to form a single network and does this 
as the frame is simply regressing on box localization and related probabilities. YOLO 
uses a grid that separates the input image. The grids evaluate the bounding box position, 
assign confidence ratings, and conditional class probabilities. YOLO is incredibly fast 
because it is single-threaded; however, YOLO lacks the precision seen in the two-phase 
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frameworks such as R-FCN and Faster R-CNN previously discussed. The SSD is a bet-
ter approach as it is focused on a feed-forward-based convolution network generating 
a fixed-size bounding box set and scores of object instances present in these boxes, and 
a final detection process based on a Non-maximum Suppression (NMS) criterion [49]. 
The early network layers are constructed on a standard image-classification architecture 
known as the base network (i.e., the classification layer without the flattened fully con-
nected layer).

SSD supersedes its counterpart, YOLO, by introducing several modifications: (i) 
multi-feature maps from subsequent networking stage are predicted to allow multiscale 
detection; (ii) object classes and offsets at bounding box locations are predicted using 
regular sized small convolutional filter; and (iii) after deriving final feature map, different 
predictors (classifiers) are used to identify objects at varying aspect ratios in the form of 
feature pyramids [50]. SSDs comprise two main parts: a feature map extractor and the 
convolution filter for object detection. SSD attaches additional convolutional layers (fea-
ture layers), i.e., multiscale features and default boxes, which causes a steady decrease 
in size up to the end of the primary network [49]. Hence, the predictions of detected 
objects are produced at multiple levels. Unlike YOLO, which uses a fully connected layer 
to make predictions, the SSD adds a series of small convolutional filters to each added 
feature layer (or an existing one in the base network optionally) and uses them in bound-
ary box positions to predict classes and offsets of objects [51]. These changes improve 
both the speed and the accuracy of SSD over YOLO.

Undoubtedly, convolutional network tasks typically have a significant role in image 
classification and object identification. One of how CNN achieves this high perfor-
mance is via the gradient-based learning process, more specifically loss computation and 
the loss function [39, 52, 53]. This is believed to be the object’s real value, versus the 
expected value. For instance, if the expected value ends up being 0.75, and the actual 
value is 1, the loss would be 0.25. As iterations continue, the model will better approxi-
mate the object’s true value. In this respect, the optimisation process is employed so that 
the prediction capacity can be maximized. Mathematically, this implies that for neural 
networks, the loss is normally the sum of negative log probability and residual sum of 
squares for the classification and regression part, respectively [54, 55]. After that, the key 
goal is to mitigate the loss with respect to model parameters by modifying the weight 
vector values using neural networks. For all object detection models, the loss function 
is a combination of the localization (bounding box regression) and the confidence loss 
(object classification).

Data pre‑processing and labelling

Most of these individual components have many different types of faults. As this study 
aims to identify common electrical faults in relation to common transmission compo-
nents, the dominant transmission components’ faults were established to be (1) miss-
ing insulator, (2) broken insulator, (3) rusty clamp, and (4) broken fittings. Although this 
project undertakes to detect these four transmission components’ faults, the ability of 
the model to also classify commonly occurring faults was investigated.

Ground truth collection consisted of field visits to the sites and convenient sampling 
where there are no forest trees touching transmission networks were chosen and areas 
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with obstruction were excluded. Identifying the most common transmission compo-
nents’ faults was determined and later analysed by power technicians and electrical engi-
neers working in the Transmission Company of Nigeria (TCN), who assisted to perform 
a visual inspection of the aerial images to determine powerline components faults from 
drone imagery. The labelling tool is used to label the locations of transmission compo-
nent faults, scanning through thousands of image tiles in order to establish the ground 
truth of all faults recognized by the power specialist.

Further pre-processing of the dataset entailed a series of steps aimed at cleaning and 
standardizing the raw data prior to modelling. Pre-processing is critical for increasing 
the sensitivity of the model and validating any model that uses aerial imagery for trans-
mission line fault detection. The entire dataset is made up of 294 images. Due to the 
small-scale problem identified in some research [56], the dataset (132 kV) was split into 
about 817 tiles centred on at least one components’ fault of interest. For the other data-
set representing the other 33 kV transmission line, the non-destructive resize, i.e., resize 
and pad approach, is applied to preserve the image aspect ratio to preserve the geomet-
ric and spatial information. Moreover, the split and resized RGB images were normal-
ized to the same size of 600 × 600 pixels following Huang et al. [50], combined to form 
a total of 1027 ‘Felect’ dataset sample imagery. The data is divided into train, test, and 
validation sets. It was assured that 17% of the original dataset was allocated for the test 
dataset, and 83% of the dataset was reserved for training and validation. About 80% of 
training was used as the training samples, while the remaining 20% was dedicated to val-
idation samples 2 displays the data slicing information. The drone captured the ‘Felect’ 
dataset with numerous characteristics, including diverse perspectives, sizes, occlusion, 
background clutter, and intra-class variance.

Thus, a “stratified” data division is used, making the proportion of the faulty compo-
nents for the dataset similar to the number of images, as well as the average number of 
components and the intraclass variation shared equally for samples with different types 
of difficulties to be learnt and appropriately located and classified.

Data annotation was carried out to identify and label the training dataset for model 
training. The bounding box approach and pixel-wise object segmentation are two 
approaches that can be used to annotate the main object on the image manually [55]. To 
annotate the faults, the ground truth annotation of actual components’ fault types was 
generated as a rectangular bounding box was used. A tool called ‘LabelImg’ was used to 
label the different component faults as shown in the taxonomy of faults. The details of 
the image, bounding box, and object class, along with shared characteristics, were stored 
as a VOC2007/extensible mark-up language (.xml) file. After annotating all the frames, 
the whole split dataset containing image patches tensor and their output label were con-
verted into a TF record-oriented binary as depicted in Fig. 5 to help dataset initialization 
and ease network architecture using the TFRecordWriter function.

Network training

As stated in “Data pre-processing and labelling” section, input patch images are first 
translated to tensors (TF records) with a [600 × 600 × 3] form before feeding it into the 
backbone architecture and are distributed by the action of the convolution layer to an 
intermediate layer consisting of a convolutional activation map. The head of the network 
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architecture (backbone network) typically follows the patch-based CNN architecture. 
Therefore, image patches that contain either a single class of faults or a combination of 
different components’ faults centred in the pixel of interest, also termed valid patches, 
were extracted. For, backbone neural network ResNet50, MobileNet, or ResNet101 are 
utilized for the first part of the SSD network as the head to develop three models.

This head is made of CNN that detects smaller characteristics (patterns and corners), 
and later layers detect higher characteristics successively. The image was resized first 
into 640  px × 640  px × 3 (RGB) and then translated into a 38 × 38 × 512 characteristic 
mapping through the backbone network passed to the Conv7 denoted as SSD 1 (auxil-
iary layer) in Fig. 6. In all experimentation cases, the input patch tensor was abstracted 
into multi-level representations to classify the different faults after going through the 
backbone architecture (Fig.  7: without a fully connected layer). As a deep neural net-
work, the backbone algorithm derives semantic significance from the image while main-
taining its spatial structure.

The series of auxiliary convolutional layers (SSD layers) introduced after the SSD 
model’s backbone allows the extraction of features at different scales as the input feature 
map decreases at each successive layer. This ensures the certainty of boundary variance 
and class prediction of targets at various scales. For each decreasing successive auxiliary 
layer (multi-scale feature maps), SSD networks grids the image and assign each grid with 
the task of detecting objects (Fig. 8). After this, 3 × 3 convolution filters are applied to 
each cell to make predictions. If no object appears, the context class is not considered, 
and the location is ignored. Each cell in the grid will decide the location and shape of the 
object inside it.

Fig. 6 TFrecord (a) reading and (b) writing principle

Fig. 7 Model architecture [59]
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Immediately after gridding the auxiliary layer, i.e., feature map at multi-level, default 
boxes are generated at each grid cell for each convolution layer level using a defined 
scale value (Fig. 9).

This scale increases progressively towards the least spatial resolution feature map 
level (SSD 5). Next, bounding boxes are generated via a process called default box 
generation (prior). Default boundary boxes generated by feature maps are selected 
explicitly, which are pre-computed, fixed-size boxes that closely fit the ground truth 
boxes. The size of the default bounding boxes depends on the input size (W, H), scale 
s_k of the kth layer, and aspect ratio, a_r ∈ {≥ 1}. With the different experiment scale 
value, s_k, and the aspect ratio, a_r ϵ {1.0, 2.0, 0.5}, the default boxes sizes are built. 
The size of default boxes (W_d, H_d) can be computed as:

To detect larger objects, SSD uses lower resolution layers such as the SSD 4 and 
SSD 5 layers in Fig.  5. Each grid prediction composition includes a boundary box 
defined by c_x, c_y, w, h, and four scores for each class, i.e., components faults, in 
the prediction, with the highest-class score associated with the positioned default 
bounding box. The class score, (c_1, 〖c〗_2, c_3, c_4, c_background) corresponds 
to object classification labelled in this research as “broken insulator,” “missing insula-
tor,” “missing knob,” and “rusty clamp.” Having these several forecasts at once and 

Wd = Wsk
√
ar , Hd = Hsk

√
ar .

Fig. 8 Input image patch and corresponding feature map generated by the feature extractor (backbone 
architecture)

Fig. 9 The default boxes generation for one cell over the backbone network feature map
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awarding class scores to each is referred to as the Multibox. There are four predic-
tions for every cell, regardless of the feature map’s spatial resolution, and an extra one 
prediction to represent objectless.

To improve the SSD to detect small-scale faults type, the feature pyramid network 
(FPN) training structure is used in conjunction with the most immediate output fea-
ture map activated from the base network architecture. This method also imbues 
low-level CNN layers with more assertive semantic representation, such as layers 
near its head to detect small-scale object labels. In particular, the default boxes are 
chosen so that their Intersection over Union (IoU) is greater than 0.6.

The Sigmoid function is then performed on the output feature map generated by 
the last CNN to obtain a class prediction score. Thereafter, the total loss is achieved 
by combining the two losses obtained for backpropagation. The two new losses 
measured by the network for each bounding box include:

a. The localisation loss is achieved using the weighted smooth-L1 loss, calculated by 
comparing the generated default boxes (prior) against GT labels.

where l refers to the predicted box, g meaning the ground-truth box, and d refers to 
the default box, the 4 shape offsets m ∈

{

cx, cy,w, h
}

 are defined as the center 
(

cx, cy
)

 
of the bounding box and its width (w) and height (h) . Note that the predicted box and 
the default box are corresponding one by one. The SmoothL1 is denoted as:

b. The confidence loss is achieved using a similar method applied in image classifica-
tion, in this case, the weighted sigmoid focal.

Lloc
(

x, l, g
)

=
N
∑

i∈Pos

∑

m∈Box
xkijsmoothL1

(

lmi − ĝmj

)

.

ĝ cxj =
(

gcxj − dcxi

)

/dwi , ĝ
cy
j =

(

g
cy
j − d

cy
i

)

/dhi ,

ĝwj = log

(

gwj

dwi

)

, ĝhj = log

(

ghj

dhi

)

,

SmoothL1(X) =
{

0.5(X)2 if |X | < 1
|X| − 0.5 otherwise

}

,

where X = lmi − ĝmj .

Lconf = FL(pt) = −αt(1− pt)
γ log (pt),

pt =
{

p if y = 1
1− p otherwise

}

,
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where γ is 2.0 and α equals 0.25. p ∈ [0, 1] is the model’s estimated probability for 
the class with label y ∈ [0, 1]. (1− pt)

γ is the modulating factor for the cross-entropy 
loss. α is the balanced variant of the focal loss.

The default boxes that did not get scored against any ground truth boxes are 
viewed as negatively matchboxes and are applied to only the confidence loss, while 
the positive box is applied to the overall loss. This loss value is back propagated to 
update the network parameters using different optimizers during experimentation.

The feature pyramid network

Feature pyramid network (FPN) integrates strong semantics with weak semantics, i.e., 
it takes the single-scale aerial images as inputs, generating proportionally sized feature 
maps at multiple levels in a fully convolutional paradigm [57]. In this case, from the 
initial output feature maps the architecture consists of two pathways: Bottom-up and 
Top-down pathways. The input images, i.e., the output multi-scale feature maps (conv.) 
derived from several layers as inputs first go through the bottom-up pathway (using 
1 × 1 convolutions) and produce a feature map at each stage. The outputs from the con-
volutional network from the bottom-up pathways are combined with convolutional lay-
ers to produce inputs, which are then used for the top-down pathway. The convolution 
from the bottom-up and that of the top-down are combined using a lateral link, they 
have similar filter sizes/channels in their feature maps. This finally helps us merge low-
resolution features with high-resolution features so that we can upsample the feature of 
improved resolution.

We naturally depict the higher-level employing lower-level pixel visual attributes. In 
the convolution layer, the revised feature maps are concatenated with the original maps 
and scaled to the accurate filters. Higher-resolution features are upsampled from coarser 
but semantically more robust feature maps. The spatial resolution is doubled during 
upsampling, and the nearest neighbour is utilized for simplicity. The bottom-up is con-
structed using two convolutional blocks consisting of 3 convolutional units (3 alternat-
ing convolutional and pooling layers in 3 units). The top-down pathway is composed of 
six alternating layers of convolutional and pooling blocks, three of which are for pro-
jection and the remaining three for smoothing the combined lateral link and top-down 
path to create the final feature map to mitigate the aliasing effect of upsampling. Finally, 
the outputs of the two chunks are concatenated and fed to adjacent fully connected lay-
ers. The output of the last fully connected layer holds the box predictor and class predic-
tor and is compared to the associated labels to calculate the performance metrics.

Experimental design

 i. The current projects’ fundamental problems were related to the number of com-
puting resources required and the dataset’s limited size. In this study, the experi-
ments—backbone architecture and meta-architecture were built on top of the deep 
learning framework of TensorFlow Object Detection API (TF 1) Model Zoo. Two 
separate outlets were utilized for execution, they include A physical computer with 
AMD Ryzen 5 3550H with Radeon Vega Mobile Rfx processor CPU with 7.81 GB 
for data processing, preparation, and model testing.
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 ii. Google Colab environment on the Google cloud server with 2 Intel(R) Xeon(R) @ 
2.20 GHz processor CPU with 13 GB RAM (200 GB free space disk) and 1 GPU 
(Tesla K80) with 12.6 GB RAM for parallel processing for experimentation.

To ensure optimal experimentation with the data available, the validation dataset was 
utilized for evaluating the trained network. Due to computation cost and speed, the k 
fold cross-validation was not implemented. Hence, a hold-out validation with shuffling 
was used to generate an average detection result for all the models.

The training and test sets were used for the network training and testing, while the 
validation set  as described in Table  3 below, was used to tune the hyperparameters. 
In the NMS process, 100 detections and an IoU threshold of 0.6 were maintained for 
each class. The momentum and the batch size were set as 0.9 and 8. The regularization 
value was set to 0.0004 as shown in Table 4. The warm-up learning rate of 0.0001333 
was used to assist in the weight optimization after 5000 training steps and at the end of 
the training, the period decayed to zero. Batch normalization (BN) [60, 61] is used after 
the convolution layer and before nonlinearity layers to avoid overfitting and to save time 
during hyperparameter tuning [62]. During training, the data augmentation technique 
was used to increase samples’ diversity because of insufficient training data. Six meth-
ods were employed for this data augmentation in the training phase: jitter boxes, hori-
zontal flip, vertical flip, crop, pixel value, and rotation. To ensure guaranteed detection, 
the IOU confidence level is set at 0.6. Five measurements, including recall, precision,  f1 
score, average accuracy, and mAP, are applied to evaluate the components’ faults model 
performance.

Result and discussion
According to previous research, a popular approach that is gaining popularity for EPTN 
fault inspection and maintenance via remote sensing is the application of Deep Learning. 
Most deep learning methods utilize the two-stage object detection architecture and are 

Table 3 Data partition

Dataset #Components’ 
faults

%Components’ 
faults

#Images %Images Missing 
knob

Broken 
ins.

Missing 
ins.

Rusty 
clamp

Train 1198 62.7 646 62.9 490 223 259 225

Validation 372 19.5 207 20 151 70 82 68

Test 340 17.8 154 16.8 142 75 49 73

Total 1910 100 1007 99.7 783 368 390 366

Table 4 Training hyperparameters settings for CNN models

Hyperparameters Values

Momentum 0.9

L2 regularization 0.0004

Batch size 8

IoU-threshold 0.6

Min and max scale 3–7
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utilized for unary classification. While data augmentation has been used to alleviate the 
data deficit, pre-trained models and unsupervised learning have also been tested. To pick 
the suitable methodological components in this investigation, we considered the type of 
input imagery (oblique optical imagery) and the intended number of detection (four EPTN 
component faults). According to the literature review, we addressed the data shortage in 
two unique ways: (1) enriching the dataset to make it acceptable for training a Deep Archi-
tecture, and (2) transfer learning with a benchmark dataset. Three distinct models were 
then developed and compared. Through the introduction of FPN, faults that are predomi-
nantly seen as minute in EPTN components and captured as small aspect ratios on images 
with low perception were appropriately recognized in the same way as those found in large 
aspect ratios. To start with, a train, validation, and test set from the ‘Felect’ dataset were 
utilized to determine the time required to run on a smaller dataset. The default hyper-
parameters were employed, with the learning rate, backbone, and pretrained weights from 
benchmark datasets being the most critical. The model can be trained completely from 
scratch, updating the weights for all layers in the process. However, other comparable 
studies discovered that by freezing the training layers and using pre-trained MS Coco or 
ImageNet weights, which are large-scale image datasets, the model’s ability to learn and 
detect objects improved significantly [41, 43]. As a result, the term "transfer learning" was 
coined and widely adopted. Transfer learning is the process of transferring knowledge 
from a previously trained model to a new dataset [20, 31]. This also helps the model run 
faster, as it makes inferences using weights from previously learnt objects. Both of these 
benchmark datasets enable the model to start learning from an established machine learn-
ing checkpoint rather than from the beginning. Initial training with training images took 
about 50 h to complete on a local CPU. This was found to be excessively time-consuming, 
and a more suitable strategy for training the model was investigated.

The three different pretrained models (backbone architecture) were trained with the 
same parameters and the same training, validation, and testing datasets and improved 
using hyperparameters tuning (see “Data pre-processing and labelling” section). After 
running hyperparameter refinement simulations, the most optimum value was recorded 
and incorporated into each model to achieve the localisation and classification of the 
different EPTN component faults. Using these proposed SSD models with different 
backbones called SSD MobNet, SSD Rest101, and SSD Rest50, a four-class ETPN fault 
object detection was performed on our testing dataset containing 142 missing knobs, 
75 broken insulators, 73 rusty clamps, and 45 missing insulator plate faults. The mod-
els were tested using three separate metrics, including F1-score and mAP. As previously 
mentioned in “The feature pyramid network” section, a holdout validation scheme was 
employed to produce an average detection result for all the utilized models in the study 
area. As observed, the CNN-based networks tested perform considerably well (regard-
less of the experimental setting considered), indicating CNN’s superior capability to 
accurately detect faults on transmission assets in Nigeria using drone imagery. On the 
one hand, CNNs’ remarkable ability to extract incredibly feature vectors from a neigh-
bouring region enables the generation of more precise detections for a given pixel. On 
the other hand, the spatial resolution of drone imagery (in comparison to other conven-
tional -space-borne sensors, for example, Landsat and sentinel) may make these con-
volutional features even more informative for identifying and diagnosing faults in the 
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context of this work. This finding is consistent with previous research utilizing the SSD 
meta-architecture for model training and evaluation. Jiang et al. [32] examined various 
deep meta-architectures with their proposed ensemble model produced using SSD (one-
stage object detection model), concluding that the latter is more effective in monitoring 
the condition of insulators via the detection network.

In this work, we have utilized three different optimizers (RMSprop, momentum, 
Adam) and the best average results were always achieved with the momentum optimizer. 
In general, it was observed that the momentum optimizer gave the best mAP across the 
different models using the default hyperparameter settings. SSD Rest50, SSD Rest101, 
and SSD MobNet achieved an mAP of 82.85%, 80.42%, 79.61%, respectively, using the 
momentum optimizer. The SSD Rest50 gained the highest accuracy when compared to 
the other two models. Also, the experiment showed that for the momentum optimizer, 
the validation, and total loss converge optimally. Furthermore, it has been expressively 
proven that the model’s convergence is affected by the optimizer utilized. We observed 
that all the optimizers attain acceptable rates of accuracy, but one of the most glaring dif-
ferences is the value of training loss and validation loss as well as the model convergence, 
i.e., the degree of loss range from zero. It can be inferred that the optimizer momentum 
with cosine learning rate is the one that provides the best results and the quickest to 
converge.

Using Momentum as the ideal learning algorithm, numerous learning rate settings 
were checked to improve the model performance. After several preliminary evaluations, 
it was confirmed that the best initial Learning rate (Lr) was 0.09. The first model, SSD 
MobNet, reached an mAP of 73.94%, 71.56%, 79.61%, and 82.52%, with the learning 
rate was 0.001, 0.01, 0.05, and 0.09, respectively, better performance of the model with 
increasing learning rate value. Similarly, the remaining two models: SSD Rest50 and SSD 
Rest101, demonstrated the greatest average mAP of 86.29% and 83.14%, with a learning 
rate of 0.09, which is 3.44% and 2.72% higher than those obtained when set to 0.05. The 
learning rate plays a significant role in the network’s performance and how easily it can 
generalize [58]. Specifically, decreasing the learning rate beneath this value (0.09), which 
gives the fastest convergence outcomes, will improve the mAP to generalize, particularly 

Table 5 Assessment of SSD Rest101, SSD Rest50, and SSD MobNet on the test dataset

Models ETPN classes Precision Recall F1‑score Avg F1 mAP Models

SSD Rest101 Broken insulator 98.33 78.67 87.41 81.93 88.7 SSD Rest101

Missing insulator 100 67.34 80.49 SSD Rest101

Missing knob 96.51 58.45 72.8 SSD Rest101

Rusty clamp 98.27 78.08 87.02 SSD Rest101

SSD Rest50 Broken insulator 100 72 83.72 82.54 89.61 SSD Rest50

Missing insulator 100 57.14 72.73 SSD Rest50

Missing knob 97.22 73.94 84 SSD Rest50

Rusty clamp 96.82 83.56 89.71 SSD Rest50

SSD MobNet Broken insulator 100 68 80.95 76.8825 82.98 SSD MobNet

Missing insulator 95.83 46.93 63.01 SSD MobNet

Missing knob 95.83 65.24 77.64 SSD MobNet

Rusty clamp 93.55 79.45 85.93 SSD MobNet
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for large, dynamic cases. The learning rate used for all models was 0.09 as they all per-
formed better with this value.

The test results of the proposed single-phase components’ faults identification and 
classification pipeline are shown in Table 5. It illustrates the precision, recall, f1 score, 
and accuracy of the three models, respectively. As can be seen from Table 5, the SSD 
ResNet holds the maximum overall mAP score of about 89.61% for the components’ 
faults detected and properly classified. Low precision rates suggest that a significant 
number of false-positive samples of the different EPTN component faults are gener-
ated when using the models for fault classification [22, 32], which is not the case here 
as the model generated fewer false-positive samples of EPTN faults; hence the reason 
for the general precision rate being above 90.9%. By delving deeper into these results, 
we can develop a greater understanding of the contextual factors between the models 
and the various exploratory scenarios considered.

With regards to the research studies under consideration, there are more compo-
nent faults not identified than misclassified, causing a lower recall rate, especially for 
the missing knob fault type as shown in Fig. 10. From Fig. 10, the recall rate of the SSD 
Rest50 is 57.14%, 73.94%, and 83.56% for missing knob and rusty clamp fault classes, 
respectively, which varies from about 15.50%, and 5.48% to that detected and classi-
fied by SSD Rest101. Alternatively, the recall rate for the SSD Rest 101 is the greatest 
in identifying the broken and missing insulator faults. The SSD Rest50 achieved a bet-
ter recall rate for broken insulator cap, missing insulator cap, missing knob, and rusty 
clamp component fault classes compared to SSD MobNet by 4.00%, 10.21%, 8.70%, 
and 4.11%. The SSD MobNet performs the least in detecting and classifying the miss-
ing insulator fault class compared to that the SSD Rest101 and SSD Rest50 models. 
Generally, all models had a satisfactory recall in detecting and classifying each fault 
class, especially when identifying missing knob and rusty clamp faults. This reveals 
that the experimental single-stage components’ fault detection and classification 
pipeline can solve this identified problem by substantially increasing the model’s per-
formance in identifying and classifying the EPTN faults.

The SSD Rest101 is the second-best model with an overall mAP of 88.70%. Of the 
object detection methods tested, the one that delivered the least prediction (82.98%) 
was SSD MobNet. While the ResNet 101 derived model termed the SSD Rest101 has 
been noted to be the best in principle [33, 43]; however, in this case, the SSD model 
based on ResNet 50 contrasts conventional assumptions by revealing an improved 
result. The complexity of the network architecture can indeed justify the explana-
tion behind the persistent lower results by the ResNet 101 model, which is made of 
much deeper layers in contrast to the size of the training dataset; making the model 

Fig. 10 Multiscale downscaling layer (auxiliary layer) concept
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characteristics over subsample and learns features; thus, affecting the performance 
in detecting different components’ faults optimally. Furthermore, to intuitively reflect 
the proposed model’s detection performance, the loss value graph was evaluated to 
understand, rationalize, and justify the proposed models’ generalization ability. In 
general, we can assess the proposed model’s performance using the loss graphs and 
examine the group of classification, localisation, and regularization loss [53, 58]. Fig-
ure  11 gives snapshots of the loss value sensitivity over the training and validation 
phase through the network trajectory.

A good performance is established based on the total and validation loss decrease 
until it becomes stable and the difference between both loss values reaches a mini-
mum [58]. If the prediction errors are unbiased, the validation error should be near 
zero, and the validation loss decreases with a decrease in training loss. This can be 
seen distinctively by the loss graph of SSD Rest50, SSD Rest101, and SSD MobNet 
model. The Rest50 model represents a Deep network, the SSD Rest 101 serves as a 
super Deep Network, while the SSD MobNet is a shallow network.

The various weight optimizations associated with the training and validation of 
the dataset based on the model architecture show that the loss value remained rela-
tively stable. In the experiments, the base and top CNN layers used the Rectified Lin-
ear Units (ReLUs) as activation functions over shuffled mini-batch gradient descent 
(batch size of 8) with the Adam optimization algorithm. The final output uses a sig-
moid function for each decision node. Using the sigmoid activation, the final achieved 
pair losses, i.e., [validation loss, training loss] for the SSD MobNet, SSD Rest50, and 
SSD Rest101, were approximately equal to [0.281, 0.309], [0.378, 0.385] and [0.356, 
0.342] respectively. In contrast to the SSD MobNet, SSD Rest50 and SSD Rest101 
have higher orders of magnitude as they have more parameters due to having more 
layers and more filters per layer. This allowed the model to learn more complex 

Fig. 11 A comparative view of the performance metrics
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Fig. 12 Epoch vs. loss graphs over time

features than the shallow network can provide. In the SSD Rest101, it is observable 
that the dataset was not sufficient to train the deeper network. The ResNet 50 back-
bone architecture, which represents the Deep Network, performs much better in 
minimizing the loss values than either previous network, achieving train and valida-
tion losses of 0.378 and 0.385, respectively, after 15 epochs. To better understand the 
algorithms proposed, some of the networks’ training and development images out-
put were examined. Finally, there is a strong link between training loss and validation 
loss. They both decrease and then become stable at a constant value. This suggests 
that the model is correctly trained and has a high probability of working well on any 
dataset within this use case.

Overall, the proposed network consistently performs well in all tested scenarios, indi-
cating that it is suitable for detecting faults on power lines in Nigeria using UAV imagery. 
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The primary advantage of the proposed architecture over alternative methods is the SSD 
characteristic, which is based on its ability to effectively utilize a single-phase method 
for fault diagnosis of electricity transmission tasks and on its ability to effectively bal-
ance contextual constraints. Figure  12 provides an example of all the output images 
produced by all the models implemented. The sky-blue box denotes the missing insula-
tor; the green box denotes the broken insulator, the turquoise box denotes the missing 
knob faults, while the white box bounds the rusty clamp defects. Each box is marked by 
the components’ faults and its confidence score. The first column to the third column 
depicts the implemented method’s performance, SSD MobNet, SSD Rest101, and SSD 
Rest50, respectively (Fig. 13).

In the first row, the SSD MobNet (leftmost) gives an accurate detection of the miss-
ing insulator plate with a false positive identification of a broken insulator, SSD Rest101 
(middle) gives no result even with the presence of a missing insulator plate and the SSD 
Rest50 (rightmost) achieves the best result with no false prediction. In the second row of 
Fig. 6, the SSD Rest50 method detects the broken insulator fault, while the other imple-
mented model leads to a wrong judgment with a false rate. In the third row, the mod-
el’s performance behaves similarly to what is observed in the first row as the model is 
affected by the convoluted background interferences. The fourth row shows that all the 
implemented models had depicted the missing knob near perfectly with just one false 

Fig. 13 Experimental results of the four components’ faults. The first column to the third column depicts the 
proposed method’s performance in each row, SSD MobNet, SSD Rest50, and SSD Rest101
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positive of the missing knob faults for SSD MobNet (leftmost) and one false negative 
(rightmost).

Conclusion and future work
This study has expounded the incredible potential of combining UAV surveillance 
imagery and deep learning for automatic power transmission line inspection and fault 
detection, especially in developing countries. To approximate a real-world situation in 
which available RGB imageries are scarce, if not non-existent, the various explored pos-
sibilities address data scarcity and imbalance through the use of transfer learning strate-
gies, paving the way for a novel approach to the difficult problem of multi-class EPTN 
fault identification based on limited data. The experimentation design of this study vali-
dates our proposed utilization of the deep learning model on UAV imagery for power 
line fault detection. A comparative analysis of different state-of-the-art manual and deep 
learning-based power line fault detection techniques was carried out.

The findings of this study allow for the drawing of several significant conclusions about 
the general use of deep learning and UAV imagery for this application. First, transfer 
learning provided a better strategy to achieve a robust performance for all fault classes, 
being able to predict correctly more than half of their instances. Also, the adaptive 
optimizer, momentum with mini-batch SGD, allowed for the faster convergence of the 
proposed model and automatically predict the optimum learning rate. Second, it was 
observed that a higher learning rate achieved better mAP values across all the models 
implemented. When examined more closely, each of the three approaches has a unique 
effect on each class, with SSDRest50 achieving the best performance. One could argue 
that training a multi-class detection model on such a massive image dataset and the 
egregiously skewed dataset is difficult and a ‘big data’ problem. Based on the practical 
insight derived from comparing the detections of the models to the ground truth, we 
may assume that additional work is required to build a generalized classifier utilizing the 
SSD FPN meta-architecture that is faster and with higher precision and recall values.

With these considerations in mind, the presented modelling approach addresses the 
challenges of using accessible UAV imagery in conjunction with data from develop-
ing countries to automate the monitoring of electrical power transmission faults in the 
future, thereby contributing to more reliable and formative transmission companies and 
power industry practices. In the future, the single-stage component identification and 
classification pipeline should be expanded to account for faults in different components’ 
shapes and severity levels. Also, to measure the magnitude of the detected defects’ scale, 
applying instance segmentation and using this knowledge to measure the scale and mag-
nitude of the faults might suffice. In the future, given the limited data available for the 
fault inspection process, there are two methods to solve this problem. These include 
foreground and background superposition using segmentation networks and image pro-
cessing techniques, and Generative Adversarial Networks (GANs) to create synthetic 
images. Additionally, extending this work to cover real-time autonomous vision detec-
tion in the field incorporated with GPS-INS navigation.

The effect of increasing the training sample through data augmentation for a large 
dataset to increase recall and precision has been identified as one of the future directions 
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for this study, as there are various data configuration and severity levels associated with 
EPTN components that can be incorporated to provide a more accurate benchmark for 
EPTN faults object detection libraries. And because this involves a massive, large drone 
image dataset, our future work also includes developing a process to automatically label 
millions of image tiles in a systematic way other than the manual labelling process that 
we went through in this study. The site inspection will also substantially benefit from 
automatic professional labelling of publicly available drone imagery for use in future 
deep learning object detection projects. Perhaps in the future, an image library of rel-
evant faults will be available for improved computer vision techniques incorporating 
EPTN component maintenance. Natural habitat and generalizing flaws in varied ecosys-
tems remain a challenge in terms of taxonomy, cause and effect, and severity levels, SSD 
FPN deep learning models in combination with more complicated data could potentially 
offer solutions.

Abbreviations
CNNs  Convolutional neural networks
EPTN  Electric power transmission network
SSD  Single Shot Multibox Detector
FPN  Feature pyramid network
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