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Introduction
Neural networks are progressively deployed where the misclassification cost is higher 
when obtaining higher accuracy across various issues, including medical decision-mak-
ing systems [1]. On the contrary, there is an authentic emphasis on predictability and 
trust in the test time performance for neural networks to achieve widespread popularity 
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Introduction:  Detecting failure cases is critical to ensure a secure self-driving system. 
Any flaw in the system directly results in an accident. In genuine class, the model’s 
probability reflects better-reflected model confidence. As a result, the confidence 
distributions of failed predictions were changed to lower values. In contrast, accurate 
predictions were remained associated with high values, allowing for considerably 
more excellent separability between such prediction types. The study investigates the 
association of ramifications with computational color constancy that can negatively 
influence CNN’s image classification and semantic segmentation.

Methodology:  Image datasets were used to conduct different scales and complexity 
experiments. For instance, minimal and straightforward images of digits were compara‑
tively provided through MNIST and SVHN datasets. The dataset’s standard validation 
set was employed to test and compute additional metrics because ground truth that is 
not publicly available for some test sets.

Results:  The results depicted that baseline methods were outperformed through the 
proposed approach with a considerable variant on minimal datasets or models in every 
context. Therefore, Transmission Control Protocol (TCP) is appropriate in failure predic‑
tion, and ConfidNet is competent to be fulfilled as confidence criterion. Further, one of 
the solutions would be to elevate the validation set size, but this would influence the 
prediction performance of a failure model. On the contrary, the confidence estimation 
was based on models with test predictive performance levels, similar to baselines.

Conclusions:  The gap between validation accuracy and training accuracy was signifi‑
cant on CIFAR-100, which indicates the modest enhancement for failure detection via 
the validation set.
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in these domains. Most high-risk applications have developed legacy procedures that 
can perform the task, such as human professionals making a classification [2]. A criti-
cal element to maintain trust in a model’s performance is developing estimates in the 
prediction confidence that emphasize the accurately anticipated accuracy of that sample 
[3]. This would facilitate a practitioner to not better comprehend the opportunity of the 
model forecasting incorrectly on a per-sample basis but also likely utilize that estimate 
for determining when to default to the legacy procedure. There are two core uses for 
estimating the prediction confidence [4]. Some applications require the confidence esti-
mate directly as a model output, which is utilized in the next phase of the decision-mak-
ing procedure [5]. Such applications need to represent the expected sample accuracy 
through confidence estimate and confirm the probability’s natural interpretation [6].

Deep neural networks have observed a greater acceptance, led by their significant 
performance in different tasks such as object recognition, natural language process-
ing, speech recognition, and image classification [7–11]. Despite their growing success, 
safety is a significant issue in integrating such models in real-world circumstances [11]. 
Estimating a model error in applications where failure leads to extreme repercussions 
becomes more crucial, including nuclear power plant monitoring, medical diagnosis, 
or autonomous driving [12]. In this regard, failure prediction was addressed with deep 
neural networks [13–15]. From a classification viewpoint, a widely used benchmark had 
taken the value of the forecasted class’s probability, such as the Maximum Class Prob-
ability (MCP). MCP for failure prediction still experiences different conceptual limi-
tations even though recent assessments indicate significant performances with deep 
models [16].

Indeed, SoftMax probabilities are classified as non-calibrated, inadequate to detect 
distribution examples, and sensitive to adversarial attacks [17]. Another critical con-
cern associated with MCP is based on confidence scores ranking, which is unrealistic 
for the failure prediction task [18]. The issue must arise because MCP drives by design-
ing toward high confidence values, even for flawed ones. However, the likelihood of the 
model shows a better-reflected model confidence in terms of true class. This drives to 
fails’ confidence distributions transformed to lesser values, whereas accurate predic-
tions were still related with high values, which allows a much better separability between 
such prediction types. Therefore, this paper presents a failure prediction model with 
deep neural networks by introducing a new confidence criterion based on using the 
Transmission Control Protocol (TCP) in terms of failure prediction to offer theoretical 
confirmations.

Related work
Learning model confidence for failure prediction

Deep neural networks were used to define appropriate confidence criteria for predict-
ing failed cases, specifically in the case of classification. Semantic image segmentation 
was further considered, which can be observed as a pixel-wise classification issue, where 
a dense segmentation mask was reported through a predicted class model allocated to 
each pixel. In particular, all the following material was developed for classification, and 
integration details were provided where needed.
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Consider a dataset D comprising Ni.i.d training samples D =
{(

xi, yi
)}Ni=1 where 

xi ∈ R
d is a d-dimensional characteristic and y∗i ∈ γ = {1, . . . .,K } is its actual class. A 

classification neural network was viewed as a probabilistic model undertaking an input 
x , parameters of the network w , and the network allocating a probabilistic predictive dis-
tribution for each class k . The model can predict the class as ŷ = argmaxp(Y = k|w, x).

Network parameters were obtained following a maximum likelihood estimation model 
throughout training, where one reduces the Kullback-Leibler (KL) divergence between 
the actual and predictive distribution. This is comparative to minimize the cross-entropy 
loss, in classification, concerning w , which is the negative sum of the log-probabilities 
over positive labels:

Using confidence estimates

Well-calibrated confidence estimates become progressively important since deep learn-
ing models get integrated with real-world decision-making systems where the cost of 
misclassification is high. A confidence estimate is well-calibrated if a sufficiently closer 
estimate to the probability of that input being accurately classified. For accurate classifi-
cation, a probability estimate was obtained by obtaining the sample average preciseness 
of all data points with similar attributes. A grouping can be done on similar inputs in cir-
cumstances where there are few data points with similar characteristics. The confidence 
estimate uses particular applications from a discriminative model as an input to the next 
phase of the decision-making process.

By learning mapping to a well-calibrated probability from prediction scores. T-scaling, 
short for temperature scaling, is a specific example of Platt calibration in which the logit 
score of a classifier is divided by a scalar T. [12] discovered T-scaling to be the most 
successful and most straightforward calibration approach in a thorough examination of 
calibration methods. Because T-scaling does not influence prediction rank-order, it only 
affects the Brier error, anticipated calibration error, instead of the label error. Calibration 
parameters are fitted to the validation set, identical to the training set. Calibration does 
not directly address unfamiliar samples, but our studies indicate that calibration is criti-
cal for providing appropriate confidence estimates on both known and unfamiliar data.

Jiang et al. [19] determines the continuity of various types of therapy using ICU mor-
tality calculators for confidence estimates. It becomes essential to obtain the similar 
intuitive meaning individuals would anticipate because the next step is often determined 
on that assumption. The overall estimated probability distribution can be utilized as an 
input for another model across all possible classes instead of comparing the confidence 
estimate of the predicted class to a threshold. An interpretable probability estimate is 
needed if a human expert recommends that value. However, confidence estimates can be 
used to determine whether for trusting the predictions of a model in link with a thresh-
old. This can effortlessly be utilized in the example of automated medical diagnoses 
since the model can depend on a professional for inputs that cannot be estimated with 

LCE(w;D) =
1

N

N∑

i=1

y∗i logP(Y = y∗i |w, xi)
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adequate confidence [19]. The model should merely be used when the user can trust the 
accuracy of its prediction since the legacy process can be treated as the expert’s predic-
tion receiving a diagnosis from a doctor, and there might be a high cost for imprecise 
diagnoses. -In this regard, the confidence estimate doesn’t need to be interpretable as an 
autonomous quantity. Still, it can be utilized to develop a better predictor of trust while 
predicting the model.

Calibration of modern neural networks

A natural probability distribution is received by applying a SoftMax layer on the neural 
network’s output for classification problems. On the contrary, recent work has indicated 
that modern neural networks are adversely calibrated despite higher generalization esti-
mates [17]. Several changes were studied to neural network design and training recently 
and consequently associate this pattern with increases in model capacity and a type of 
overfitting. A certain increase was noted in the negative log-likelihood (NLL) after a 
specific point, indicating that the model exceeds the NLL loss irrespective of test accu-
racy overfitting [17]. This is particularly possible with the NLL loss. The loss can also be 
reduced by pushing the anticipated probability distribution across output classes even 
after the correctly classified train points. In particular, the probability anticipates from 
modern neural networks can be overconfident. These findings are supported with [20], 
which indicates that deep neural networks can witness the conventionally reinforced 
idea that large models are poorly generalized irrespective of regularization. Guo et  al. 
[17] have recommended that the overfitting observed during training does not show 
in the generalization error but rather in the accuracy of confidence estimates. Previous 
studies have explored confidence estimate calibration through neural networks but need 
an ensemble model for the objective of calibration becomes expensive [21].

Image improvement techniques

Different techniques can be adopted to improve image quality, such as adjusting con-
trast and brightness, dodging, and burning (adjusting the brightness in an area), color 
balance, and cropping [22]. These methodologies are considered traditional techniques. 
The contrast, colors, and brightness depend on the scene’s characteristics, the settings of 
the devices, and the quality of the components [23]. The non-traditional image enhance-
ment techniques are: filtering linear (linear filtering), non-linear contrast adjustments 
(non-linear contrast adjustments), random-noise reduction, filter models for noise 
reduction (pattern noise reduction filters), and color processing [24]. Linear filtering 
techniques, such as sharpening, deblurring (anti-blur), edge enhancement, and decon-
volution (correction technique based on an algorithm that allows reconstruction of the 
missing elements on a statistical basis, remove the disturbing factors and make it pos-
sible to create a higher quality image), they are used to increase the contrast of small 
details in an image [25].

Non-linear contrast adjustment techniques include gamma corrections, scale transfor-
mations of gray, and curves and lookup tables. These techniques are used to adjust the 
contrast in selected brightness ranges in an image [26]. Random-noise reduction tech-
niques include low pass filters, blurring filters, median, and speckling (creating images 
from spots). Instead, the patterns of filters for noise reduction (Pattern noise reduction 
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filters) identify patterns that replicate in the image and allow users to remove them 
selectively. Color processing includes transformations of the color space, pseudo-color-
ing (pseudo coloring, also called color level coding) of hue, and finally, the adjustment of 
saturation [27]. These techniques can change the characteristics of objects in an image.

Other approaches further determined the concern of MCP about high confidence 
predictions in tasks closely associated with failure prediction [17, 21]. Previously, the 
temperature scaling method was used for mitigating confidence values for out-of-dis-
tribution detection and confidence calibration. On the contrary, this does not influence 
the confidence score ranking and; thereby, the variance between correct predictions 
and errors exists. A similar objective of learning confidence in neural networks was pre-
sented by [4]. The work varies by mutually emphasizing out-of-distribution detection 
and learning classification probabilities and distribution confidence scores.

Additionally, the predicted confidence score was used for interpolating output prob-
abilities and target, while TCP was defined as an appropriate metric for failure predic-
tion. An adjunct to the Bayesian neural network was proposed by [21] by allowing neural 
networks to produce well-calibrated uncertainty measures. A proper scoring rule was 
used as a training criterion for corresponding to a model prediction’s exponential cross-
entropy loss value.

Many tools are used to enhance images, and these tools are further divided into two 
techniques: Point Technique and Spatial Technique. The method, called point, has 
some methods such as contrast, stretching, clipping the noise, modification, and color-
ing it, which is called pseudo [28]. Most of the time-image processing is used, which is 
also used in many operations. Another Spatial technique is also used in processing the 
image. All of the operations used in this technique are called linear operations, which 
are mainly used today [29]. The main reason for using this technique is that these opera-
tions are very easy and straightforward. Their implementation is also not too complex 
compared to non-linear operations used in the point technique [30]. Non-linear meth-
ods are used primarily at the edges of images and to find the complete details, but lin-
ear techniques are mainly used to blur and distort. Also, non-linear methods cannot 
remove noise from those images because they always contain noise due to their random-
ness [31]. For instance, in the past, many people used images to capture films with some 
voice which can cause recording the noise, and this noise needed to be removed. When 
images’ signals are generated, the digitization process is also used, which mostly cap-
tures the noise [32].

Digital images produce large amounts of data to be stored. Therefore image com-
pression techniques reduce memory requirements by limiting the data to be recorded. 
Lossless compression (without loss of information) minimizes the size file eliminating 
redundant information [33]. Therefore, the content of an image is not altered when it is 
decompressed. Lossy compression (with data loss) achieves a more significant reduction 
in file size by removing both redundant and irrelevant information. Since the irrelevant 
ones cannot be reconstructed when viewing an image, this type of compression causes 
an inevitable loss of image content and the introduction of artifacts [34]. The higher the 
compression rates, the greater the loss of information.

The objective of the reconstruction is to eliminate a sort of interference present in the 
image, called noise, understood as the superposition of unwanted signals on the signal 
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of interest [35]. In the presence of noise, the image typically has a grainy appearance. 
Still, it may contain real “gaps” in the case of salt and pepper noise in which, randomly, 
a percentage of information in the image is completely lost [36]. Typically, this is caused 
by problems in signal transmission (as in the case of medical images) or by poor lighting 
in the scene. The purpose of denoising is to remove interference in the signal, resulting 
in a defined, noise-cleaned version of the image. All fundamental structures have been 
maintained, and the noise eliminated [37].

The human body is a complex system, and data acquisition on its static and dynamic 
properties produces large amounts of information. One of the biggest challenges is 
acquiring, processing, and displaying data about the body so that that information can 
be viewed, interpreted, and used to allow its analysis in diagnostic procedures and assist 
in therapies [38]. In many cases, the presentation of information about the human body 
in images is the most efficient approach to address this challenge. Medical images are 
produced by the interaction of some kind of energy with the human body’s tissues, 
organs, or systems [39]. Producing medical images is always related to specific power 
(electromagnetic, mechanical) interaction with the matter. The image is visualized using 
a contrast parameter, determined by some physical characteristic that differentiates the 
different tissues, organs, or systems [40]. Except for ultrasound, which uses mechanical 
energy, most images interact with electromagnetic energy and the human body.

Study gap

Therefore, this paper presents a failure prediction model with deep neural networks. A 
new confidence criterion was introduced based on using the TCP for offering theoretical 
confirmations in terms of failure prediction. A new method was introduced for learning 
a predefined target confidence criterion from data as the true class was unidentified at 
test time. Bayesian deep learning and collaborative approaches discussed connections 
and differences associated with failure prediction work.

The study is significant as it proposes a specific method for learning failure prediction 
models with deep neural networks with a confidence neural network based on a clas-
sification model. The experimental results validate substantial enhancement from strong 
benchmarks on different semantic and classification segmentation datasets considering 
the efficacy of the proposed approach.

Methodology
Figure 1 shows the approach presented in this section was assessed for predicting fail-
ure in image segmentation and classification. Initially, comparative experiments were 
performed alongside Bayesian uncertainty estimation and state-of-the-art confidence 
estimation methods on different datasets. These findings were then conducted by a com-
prehensive investigation of the impact of the confidence criterion, learning scheme, and 
training loss in this approach. Lastly, a few portrayals were provided for obtaining fur-
ther insight into the behavioral approach.
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Experimental data

Data sets

Image datasets were used to conduct experiments on different scales and complexity. 
For instance, minimal and straightforward images of digits were comparatively provided 
through MNIST and SVHN datasets [41, 42]. Similarly, additional details were pre-
sented regarding object recognition tasks on low-resolution images through CIFAR-10 
and CIFAR-100 [43]. Moreover, CamVid [44] was used to report semantic segmentation 
experiments using a contemporary road scene dataset. The study employed the dataset’s 
standard validation set for testing in some circumstances to compute additional metrics 
because ground truth is not publicly available for some test sets.

Network architectures

This study has followed the classification of deep architectures as presented by [45] for 
an appropriate comparison. They vary from minimal convolutional networks for SVHN 
and MNIST to greater VGG-16 architecture for the CIFAR datasets. The study con-
ducts an investigation to several design architectures of the MLP neural network, which 
relates to different quality results. Such that, a multi-layer perceptron (MLP) was added 
with one hidden layer for MNIST to investigate small models’ performances. The pro-
posed design structure is likely to be expandable to different hardware specifications and 
accuracy constraints. Therefore, a SegNet semantic segmentation model was applied for 
CamVid based on the proposition of [46]. The penultimate classification network layer 

Fig. 1  Schematic diagram
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was connected with ConfidNet, the prediction network model integrated into this study. 
It is comprised of a succession of five dense layers. Such architecture variants have been 
investigated, which lead to similar performances. ConfidNet layers were trained before 
fine-tune the duplicate ConvNet encoder committed for estimating confidence following 
the learning scheme. ConfidNet was adapted for semantic segmentation by preparing it 
entirely convolutional.

Assessment parameters

The evaluation of failure prediction was done through predefined parameters as pro-
posed in [17]: AUROC, FPR at 95%, AUPR-Error, and AUPR-Success. In this regard, the 
core emphasis will be shifted toward AUPR-Error for computing the area under the Pre-
cision-Recall curve through the positive class errors.

Results
Comparative findings on failure prediction

Uncertainty estimation and competitive confidence approaches were encompassed for 
demonstrating the method’s effectiveness. These approaches encompass Monte-Carlo 
Dropout (MCDropout) [10], Maximum Class Probability (MCP) [17], Trust Score [20]. 
Table 1 summarizes comparative results. Initially, it was observed that baseline methods 
were outperformed through the proposed approach in every context with a considerable 
variant on minimal datasets or models. This shows the adequacy and appropriateness 
of TCP in failure prediction, and ConfidNet is competent to be fulfilled as confidence 
criterion.

Better results were also presented on minimal datasets or models through the Trust-
Score method, including MNIST, enhanced baseline. On the contrary, the effectiveness 
of ConfidNet was majorly seen on larger and complicated datasets, whereas the perfor-
mance declines for TrustScore due to high dimensionality issues with distances. The 
number of training neighbors and test samples was drastically reduced through compu-
tational complexity, where each training pixel was a neighbor in semantic segmentation.

Random samples were conducted in each train and test image classification for 
computing a minimal percentage of pixels in TrustScore. On the contrary, Confid-
Net showed efficacy in its durability, speed, and output. State-of-art performances 
were further enhanced, considering confidence measures on dropout layers. Figure 2 

Table 1  Comparison of Failure Prediction Model using Different Datasets

Dataset AUPR-Success AUPR-Error AUC​ FPR-95%-TPR

MNIST
MLP

36.62 35.33 98.04 21.60

MNIST
Small ConvNet

43.26 31.03 93.44 75.63

SVHN 63.89 30.04 93.40 58.92

CIFAR-10 151.22 32.05 86.77 51.87

CIFAR-100 90.64 43.51 89.19 38.73

ConfidNet 28.36 61.54 86.84 76.21
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showed side-by-side two samples with a similar distribution entropy. A misclassified 
clustering sample is presented in the left image, whereas an accurate prediction can 
be shown in the right one. The image confidence was represented from a correct pre-
diction with [0.60, 0.40] distribution, while false confidence was presented with one 
[0.40, 0.60] distribution. Based on this discussion, an incorrect image can be differ-
entiated from an accurate prediction despite having similar clustering distributions.

Figure 3 portrays the performance of ConfidNet and other metrics for SHVN and 
CIFAR10 datasets as depicted in risk-coverage curves [8, 11]. A threshold was used 
as a selection function for corresponding the probability mass of the non-rejected 
region. From the performance of both datasets, a better coverage was presented by 

Fig. 2  Large image performances

Fig. 3  Texture filters for SHVN and CIFAR10 datasets



Page 10 of 14Al‑Dmour ﻿Journal of Big Data            (2022) 9:71 

both datasets for each selective risk that can be selected beforehand by a user. Addi-
tionally, the improvement was more pronounced at high coverage rates such as SHVN 
[0.80, 0.90] and CIFAR-10 [0.7, 0.85] for emphasizing the potential of ConfidNet in 
identifying critical failures successfully.

Effect of learning variants

The impact of fine-tuned ConvNet was assessed initially in this study. Significant 
enhancements were fulfilled regardless of fine-tuning in terms of baseline, as presented 
in Table 2. The performance of ConfidNet was improved in every context by almost 2% 
after allowing corresponding fine-tuning. It was noted that no significant improvement 
was brought under consideration regardless of deactivating dropout layers. Training 
ConfidNet was experimented on a hold-out dataset undertaking the small number of 
errors available because of deep neural network over-fitting.

Table 3 presents findings for all datasets based on validation sets with 15% of samples. 
A reduction was observed in a general performance when utilizing a validation set for 
training TCP confidence. The decline was particularly pronounced for small datasets, 
where models achieve validated and ≥ 95% trained accuracies. In particular, no more 
significant absolute number of errors was obtained with a minor validation set and a 
high accuracy for the validation set compared to the train set. On the contrary, the con-
fidence estimation was based on models with test predictive performance levels, similar 
to baselines. The gap between validation accuracy and training accuracy was significant 
on CIFAR-100, which indicates the modest enhancement for failure detection via the 
validation set. One of the solutions would be to elevate the validation set size, but this 
would influence the prediction performance of a failure model. It was observed that the 
approach could be improved by training ConfidNet on the validation set with models 
reporting low or middle test accuracies.

ConfidNet was trained and then compared with MSE loss to binary classification 
cross-entropy loss. It was observed that lower performances were accomplished on 
CIFAR-10 and CamVid datasets, although BCE mainly addresses the failure prediction 
task. Similar outcomes were also tested and presented through focal loss and ranking 
loss. It was intuitively observed that training was regularized in TCP by offering addi-
tional fine-grained evidence regarding the classifier quality about a sample’s prediction. 

Table 2  Learning Scheme Effects

CIFAR-100 MNIST

Confidence training 67.86% 43.49%

Detection performance 68.12% 44.98%

Table 3  ConfidNet comparison on validation and training dataset

AUPR-Error (%) MNIST (MLP) MNIST 
SmallConvNet

SVHN CIFAR-10 CIFAR-100 CamVid

ConfidNet (Train set) 52.25 48.20 41.32 45.80 35.33 80.95

ConfidNet (validation set) 50.58 59.34 77.15 90.09 31.03 63.00
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This was particularly essential in the complex learning configuration where very few 
error samples were available because of better classifier performance. The effect of 
regression was further assessed to the normalized criterion. The finding shows the dif-
ficulty of correct or incorrect classification training since T CPr was lower than the TCP 
for small datasets, including CIFAR-10.

Qualitative assessments

A portrayal is represented on CamVid to understand the approach for failure predic-
tion better. Higher confidence scores were produced in this approach for accurate pixel 
predictions and lower ones on mistakenly forecasted pixels, allowing the user to detect 
errors effectively in semantic segmentation (Fig. 4).

Discussion
According to the experimental results, the level set approach may obtain an accurate 
segmentation result with adequate information. When the scene in the photo is more 
complicated, however, the level set approach cannot produce the necessary segmenta-
tion result. As a result, specific pattern recognition algorithms are developed to provide 
additional information about the target. For example, the target’s areas and each pixel’s 
likelihood corresponds to the target category. The level set approach depends on statis-
tics of pixels within and outside the contour throughout the contour evolution process, 
such as the mean, weighted mean, and probability model regarding areas [47]. The level 
set approach is more akin to an information integration method in that it employs the 
energy functional minimization principle to generate a potential function. Furthermore, 
this possible function can be designated as the probability function, determined using 
probabilities and Bayesian approaches.

Even though the pixels are relatively similar, the inaccurate probability map and the 
adjusted prior shape significantly influence, leading comparable pixels to be separated. 
However, we may use the concept of superpixels [48]. The majority of image segmenta-
tion approaches may be summarized as extracting and using information from pictures. 
As a result, the most significant challenge is to create a dynamic hierarchical organized 
picture representation.

Fig. 4  Inverse confidence patterns
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The explicit representation of spatial changes and picture noise in our mathematical for-
mulation of test-time augmentation is based on an image acquisition model. It may, how-
ever, be simply adapted to accommodate more generic transformations such as elastic 
deformations [49] or to include a simulated bias field. In addition to the range of possible 
model parameter values, the prediction result is also affected by the input data, such as pic-
ture noise and object modifications. As a result, a proper uncertainty assessment should 
consider these elements. For regression problems when the outputs are not discretized cat-
egory labels, the variance of the output distribution may be more appropriate for estimating 
uncertainty than entropy.

Conclusions
A new confidence criterion was proposed for the failure prediction model with deep neu-
ral networks to offer both empirical pieces of evidence and theoretical guarantees for 
addressing failure prediction. A specific method was presented with a confidence neural 
network and application of ConfidNet based on a classification model for learning this 
criterion. Findings indicated a substantial enhancement from strong benchmarks on dif-
ferent semantic and classification segmentation datasets for validating the efficacy of the 
proposed approach. The application of ConfidNet can be integrated for estimating uncer-
tainties in multi-task learning and domain adaptation. The majority of image segmentation 
approaches may be summarized as extracting and using information from pictures. As a 
result, the most significant challenge is to create a dynamic hierarchical organized picture 
representation. Furthermore, building a multi-objective matching approach would allow 
the proposed system to handle more complicated situations.

Additional work is required to refine the offered approach and implement the supplied 
prototype in the actual circumstance of segmenting the brain tumor. To begin with, just 
the grey level is used as the deep network’s input in this research; in the future, we may 
use other features, such as texture features, as the deep network’s input. Furthermore, addi-
tional brain tumor MRI data must be obtained on an ongoing basis. More data will help our 
suggested technique and other tumor classification systems.
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