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Introduction
Due to the massive amount of data generated by social media [1], public health [2], 
industry and natural language processing [3], data storing and processing becomes a 
challenging task for organisations [4]. The organisations require a fast processing and 

Abstract 

Due to the rapid growth of available data, various platforms offer parallel infrastruc-
ture that efficiently processes big data. One of the critical issues is how to use these 
platforms to optimise resources, and for this reason, performance prediction has 
been an important topic in the last few years. There are two main approaches to the 
problem of predicting performance. One is to fit data into an equation based on a 
analytical models. The other is to use machine learning (ML) in the form of regression 
algorithms. In this paper, we have investigated the difference in accuracy for these 
two approaches. While our experiments used an open-source platform called Apache 
Spark, the results obtained by this research are applicable to any parallel platform and 
are not constrained to this technology. We found that gradient boost, an ML regressor, 
is more accurate than any of the existing analytical models as long as the range of the 
prediction follows that of the training. We have investigated analytical and ML models 
based on interpolation and extrapolation methods with k-fold cross-validation tech-
niques. Using the interpolation method, two analytical models, namely 2D-plate and 
fully-connected models, outperform older analytical models and kernel ridge regres-
sion algorithm but not the gradient boost regression algorithm. We found the average 
accuracy of 2D-plate and fully-connected models using interpolation are 0.962 and 
0.961. However, when using the extrapolation method, the analytical models are much 
more accurate than the ML regressors, particularly two of the most recently proposed 
models (2D-plate and fully-connected). Both models are based on the communication 
patterns between the nodes. We found that using extrapolation, kernel ridge, gradient 
boost and two proposed analytical models average accuracy is 0.466, 0.677, 0.975, and 
0.981, respectively. This study shows that practitioners can benefit from analytical mod-
els by being able to accurately predict the runtime outside of the range of the training 
data using only a few experimental operations.
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intelligent system that can quickly process and present the insights of the data. Big data 
applications have become an ultimate choice in every organisation. There is a number of 
big data applications available, either in the form of physical clusters or cloud comput-
ing. In recent times cloud computing such as Amazon EC2, Google Cloud, Microsoft 
Azure has attracted tremendous attention. All these platforms allow the users to deploy 
their cluster virtually where they can choose and allocate resources according to their 
requirements. This virtualised platform also offers resources at very minimal prices. 
However, the enterprise needs to consider some data security concerns before select-
ing cloud computing services. On the other hand, the deployment of the physical Spark 
cluster is complex and expensive [5]. The physical cluster infrastructures offer numerous 
benefits and mitigate security concerns.

The deployment of these types of cluster infrastructures heavily depends on distrib-
uted parallel computing such as Apache Hadoop and Apache Spark. Due to the open-
source, real-time data processing, and fault tolerance [6], Apache Spark has become an 
attractive framework after Hadoop. Spark supports various components, namely, MLliB 
for machine learning (ML), GraphX for image processing and Spark SQL [7] for struc-
tured data processing. More than 180 configurable Spark parameters play an essential 
role to support various types of jobs. Though the primary deployment of this cluster 
depends on the default parameters, however; Spark’s performance heavily depends on 
its correct parameter selection and their configurations. The user must understand the 
relationship between the parameters and the cluster hardware availability and require-
ments because the parameter configuration and achieving optimum performance are 
always challenging and complex. The cluster parameter configuration is tedious work for 
the users because it requires a vast amount of time to configure and process data.

Due to this limitation, the performance prediction of this system is very challenging. 
In order to mitigate these challenges, several prediction models such as trial-end-error 
[8, 9], analytical [10], machine learning [11–14] were proposed by researchers but all 
these models have limitations; hence, in order to predict runtime for a certain job to run 
in a Hadoop cluster, one can use machine learning regression algorithms or equation 
fitting. Both methods need a certain amount of empirical data because there is no gen-
eral analytic method that would cover different hardware and different configurations 
for a given cluster. In general, ML regression methods need more data to be accurate, 
specially if the predictions are made by extrapolation. On the other hand, equation fit-
ting can be very accurate with very little data, but only if the equation reflects the true 
patterns of inter-node communication that emerges from the job execution. It is diffi-
cult to find a generic equation for a cluster because even specific algorithm implementa-
tions can influence the communication between nodes, and therefore a given forecasting 
equation can completely break down for a certain application.

In our previous works [15, 16], we have concluded that two parameters are crucial 
when determining the runtime: the size of the workload, and the number of executors 
available to run the job. We have tested two main models to generate equations that 
can fit empirical data. The first model assumed that limited communication happens 
between the nodes, working only with a certain number of neighbouring nodes. The sec-
ond model assumed that a fully-connected graph between the nodes reflects the com-
munication pattern. Also, in these models the complexity of the algorithm was taken 
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into consideration. Only two types of workloads were tested in terms of complexity of 
the algorithms, either they were linear or quadratic when considering the growth of the 
runtime as a function of the workload size.

The motivation and the key contribution of this paper are as follows:

•	 We accomplished extensive performance prediction accuracy comparison based on 
machine learning and existing analytical models. We achieved very good accuracy 
when only limited empirical data is available. Our underlying intention is that prac-
titioners would run a few jobs, preferably with short runtimes, and be able to predict 
the runtime of longer untested dataset sizes.

•	 We investigated KRR regression parameter relationship between alpha and degree. 
Our analysis found that, for most of the workloads, the best R-squared can be 
achieved by selecting the small degree with alpha. Our analysis also found higher 
degrees can produce best R-squared but the data overfitting can be a major limita-
tion. For the GBR regression, we kept all the parameters default.

•	 We extensively measured the analytical and ML regression models accuracy based 
on interpolation and extrapolation methods using k-fold cross validation. ML meth-
ods are not accurate when one tries to extrapolate predictions from small amounts of 
data. However, ML methods are much better at making adjustments to existing data, 
and can do interpolation very well [17]. The equations are derived to fit data well, and 
using the correct one can yield more accurate extrapolations of runtime forecasts 
than ML methods.

The remainder of the paper is organised as follows: “Apache Spark architecture” section 
provides a brief overview of the Apache Spark architecture. “Related work” section dis-
cusses some notable recent advances on Spark performance prediction using machine 
learning algorithms. “Prediction methods” section explains evaluation methods of both 
the analytical models and the ML regressors. “Experimental setup” section discusses the 
experimental setup while “Performance evaluations and analysis” section presents the 
performance analysis for the two approaches using interpolation method with cross-val-
idation technique. “Performance analysis using extrapolation” section shows a detailed 
analysis of the extrapolation method, splitting the data into two categories, size and 
number of executors. “Discussion” section discusses the limitations of each approach, 
and the consequences of extrapolating data with a small number of experiments. Finally, 
“Conclusion” section concludes the paper with hints for extending the work in future.

Apache Spark architecture
Apache Spark is a parallel data processing framework that can rapidly process large 
amounts of data, often in real-time [18]. It can also perform data processing in the dis-
tributed cluster platform. Apache Spark has become an open access [6] project, and a 
popular data processing engine in many organisations. Its development has centred at 
the University of California, Berkeley’s AMPLAB by the group of researchers that Matei 
Zahari led in 2009 [19]. The Spark codebase is donated to the Apache foundation as an 
open-source tool and has been maintained since then. In 2010, Spark proposed a Resil-
ient Distributed Dataset (RDD) [20] that mitigates the limitation of the MapReduce 
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cluster computing paradigm. It works as an immutable collector of the objects. RDD 
splits the input data set into logical partitions and the partition data stored in the mem-
ory where worker nodes compute parallel operations. Spark RDD has two operations: 
transformation and actions. The transformation function uses the existing RDD as input 
and produces the new RDD from the existing one. Whenever the transformation func-
tion becomes active, it creates a new RDD. The action operation activates when it works 
on the actual dataset. A typical Apache Spark architecture representation is shown in 
Fig. 1.

The Spark application has three important components: the spark driver program, 
Spark executor, and the resource manager, where the action operation is forwarded from 
the executor towards the driver. The driver converts the user code in most tasks, and 
the executors run the code among the nodes. In this operation, the cluster manager is 
responsible for the resource allocation in the cluster. The cluster manager allocates the 
resources whenever the Spark driver program [21] requests and shares the information 
with the worker nodes. In Spark, the workflow is managed by a directed acyclic graph 
(DAG) [22]. The DAG consists of sequences of vertices and edges. The vertices repre-
sent the RDDs, and the edges represent the operation of the RDD. The DAG forwards 
the new job towards the stage level. The task consists of the initial input data and the 
RDD partition at each stage level. Spark creates two stages with the submitted job; firstly, 
ShuffleMapStage and secondly, ResultStages. At the ShuffleStage, the output data is 
stored for the following stages in the DAG. At the ResultStage, either single or multiple 
partitions functions are targeted the RDD. Spark can operate with many programming 
languages, such as Java, Scala, Python and R, and supports Spark SQL, ML, GraphX pro-
cessing, and Spark Streaming. These programming language libraries offer comprehen-
sive benefits for the user to develop applications. Spark allows the integration of various 
tools from the Hadoop technology ecosystem, where the resource management and job 
scheduling is maintained by Apache YARN (Yet Another Resource Negotiator) [23]. A 
cluster monitoring tool like Ambari assists with the monitoring the workloads running 
in the cluster.

Fig. 1  A typical Apache Spark architecture modified from [21]
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Related work
The runtime performance prediction of big data processing on a cluster is a challenging 
task. In the recent past, many prediction techniques [8–10, 24], Gray-Box techniques 
[25–27] and auto tuning techniques [12, 13, 28–30] have been proposed by researchers. 
However, the ML approach has become very popular and has received significant atten-
tion. In the following section, we will present recently published works based on ML 
techniques.

Prediction using machine learning

Douglas de Oliveira et  al. [31] proposed an interpretable predictive ML model based 
on decision trees from which patterns are extracted. The decision tree model is used 
to classify the parameter performance by considering the training data. They used the 
extracted patterns and configured the system parameters for the workflow execution 
that significantly improved the system performance. Besides, they also considered two 
essential aspects: input data partitions and distributed data partitions through nodes. 
They found that the proposed predictive model can achieve 70% accuracy, and the accu-
rate data partitioning knowledge can help choose the workflow function.

Christoph Boden et  al. [32] presented an interesting work using ML algorithms for 
a large-scale distributed settings of Apache Spark and Flink performance. They imple-
mented analytical models which are similar to ML algorithms and tuned the parameters 
to assess the scalability of the system concerning the data size and dimensionality of the 
data. They carried out a comprehensive investigation based on a single-node implemen-
tation with data size and data dimensionality. They found that several ML algorithm 
problems exhibit high dimensionality due to data scaling and model size scaling. So, they 
employed both supervised learning algorithms (batch gradient descent and TreeAggre-
gate) for Flink and Spark, respectively. For the unsupervised learning algorithm, kmeans 
clustering was used. The proposed benchmark algorithm was placed on top of Apache 
Flink and Apache Spark and analysed the performance using non-representative work-
loads such as Wordcount, Grep, and Sort. They found that when the data size increased, 
the system behaviour exhibited a linear increment. They concluded that the system can 
perform robustly with the increasing data size of both Flink and Spark with 4.6 billion 
data points. Spark fails to train when the data size is beyond 6 million dimensions for 
scaling the model dimensionality. They concluded that current data flow systems could 
process an increased amount of data points but are incapable of coping with high dimen-
sional data, which is a key requirement for large scale ML algorithms.

Christoph Boden et al. [33] proposed a novel data processing system based on a ML 
algorithm in their second work. This work categorized the proposed data processing 
system into three major groups: Clustering, Classification, and Recommender Systems. 
The raw data is transformed into extracted features for the data pre-processing, and the 
training data set is represented by a numerical data matrix. For this implementation, they 
have used kmeans, Batch Gradient Descent, and Matrix Factorization algorithms. As per 
their suggestion, logistic regression is a compelling choice for the prediction problem 
that can easily handle many data sets. They concluded that the latest data processing sys-
tem requires more hardware resources to obtain a comparable prediction quality.
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Ali Mostafaeipour et  al. [34] presented an empirical analysis of the Hadoop and 
Spark frameworks that considers three criteria such as runtime, memory, and network 
usages. They implemented the K-nearest neighbour (KNN) algorithm on various data-
sets for both frameworks. This analysis demonstrated that with small data sets, Spark 
offers faster data processing than Hadoop. They also found that Spark is suitable for 
quick data processing because it processes the data in-memory. As for memory utili-
sation, Hadoop requires less memory than Spark, and Spark requires fewer network 
usages than Hadoop. Another empirical study of Apache Spark performance prediction 
based on ML algorithms is proposed by Mehdi Assefi et al. [35]. The authors have exam-
ined both qualitative and quantitative attributes of the framework. This study leverages 
the Apache ML library to handle big data analytics and evaluate the impact of multiple 
big data ML models such as classification and clustering on the different hardware and 
software configurations with big data analysis tasks. Some ML algorithms such as Sup-
port Vector Machine, Decision Tree, Naïve Bayes, Random Forest, kmeans are evaluated 
to analyse the ability of MLlib 2.0. They found that Apache Spark MLlib demonstrates 
better performance; in particular, this presented a noteworthy performance in terms of 
execution time.

Javaid [36] proposed a robust Spark performance prediction model based on ML 
algorithms. In this analysis, authors offered substantial experimental works and their 
applications with various data features. In order to build the performance model, they 
implemented four ML algorithms. They found that the gradient boost and Random For-
est algorithm showed a better performance than the other algorithms on their datasets. 
In [37], the authors proposed a tool to predict the Spark application runtime before the 
deployment of the cluster. They claimed that the tool can be used for extensive Spark job 
profiling, determining the prior execution time and the system bottleneck. They claimed 
that the tool could predict a 20% error bound for the selected workloads. In [38], the 
authors proposed a ML-based auto-tune model for cluster parameter selection based 
on the Support Vector Regression (SVR) model and a practical end-to-end auto-tuning 
model by combining existing models with a smart search algorithm. They found that the 
overall performance of ML is much better than the traditional models. In particular, the 
SVR displayed the best performance for Sort. They concluded that the proposed model 
is robust and flexible, and adaptable to any changes.

Guoli Cheng [12] proposed a model based on the Adaboost ML algorithm. Adaboost 
is implemented at the stage level, and the classic projective sampling, including the data 
mining technique was applied to predict the Spark performance accurately. They used 
six benchmark workloads and five different data sizes. They concluded that the pro-
posed model minimizes 9% runtime cost as compared to the previous model. In their 
recently published work [13], they stated that the performance trade-off heavily depends 
on the optimum configurations where the cost is an influential factor. So, they proposed 
a multi-object optimization algorithm model based on the Adaboost ML algorithm for 
Spark performance prediction. They applied six benchmark workloads and five different 
data sizes to evaluate the system performance. They claimed that the model can find the 
appropriate configuration setup and minimize the time and cost. They also concluded 
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that the proposed method can improve execution time performance by 30% and cost by 
40%.

Table 1 summarises some notable studies by considering the models used and their 
performance based on selected workloads. It can be noted that most of the works used 
ML and very few works proposed analytical models, but the workloads and model 
performance metrics are not similar in these works, which make it difficult to com-
pare the accuracy between them. To the best of the authors’ knowledge, the literature 
has not presented any comparative performance analysis based on standard perfor-
mance metrics because no standard performance metrics have been recommended.

Unlike the reviewed ML models described in the related work section, we compare 
analytical models [15] with ML (kernel ridge regression (KRR) [39] and Gradient 
Boost Regression (GBR) [40]), ERNEST [41], Amdahl [42] and Gustafson [43] models. 
The runtime prediction based on ML models shows satisfactory performance as per 
the published work, but all ML models require large input data. On the other hand, 
we have seen that our published models 2D-plate model (4) and fully-connected (5) 
model are very effective and can predict runtime accurately with limited data points.

Table 1  Various models on Spark performance prediction

Published work Workloads and data sets Models Metrics (error and accuracy)

Cheng [12] WordCount, Kmeans, Tera-
Sort, PageRank, Bayes, and 
Nweight

Adaboost, ensemble learners, 
multiple learners, and projec-
tive sampling

Average accuracy error: 
Adaboost (30 cases): 9.02%, 
ensemble learners: 18.63%, 
multiple learners: 21.98%, pro-
jective sampling: 14.09%

de Oliveria [31] Data sets: astronomy and 
bioinformatics
Data partitions: 3

Decision tree (DT) Prediction accuracy: best 3 
scenario out of 7: SC1: 90.4%, 
88.8%, and 86.5%

Boden [32] WordCount, Grep, and Sort Logistic regression (LR), and 
Kmeans

High data dimensionality

Boden [33] Data set: CriteoClick Logs and 
Netflix Prize Kmeans, logistic 
regression (LG), matrix fac-
torization (MF), and gradient 
boost regression (GBR)

Kmeans, logistic regression 
(LR), matrix factorization (MF), 
and gradient boost regres-
sion (GBR)

MF: required more time than 
single LibMF, LR: Spark MLlib 
required more hardware 
resources, GBR: better than LR

Assefi [35] Data sets: HEPMASS, SUSY, 
HIGGS, LIGHT, HETROACT I 
and II

Support vector machine 
(SVM), decision tree (DT), 
Kmeans, NaıveBayes (NB), 
Weka, and random forest (RF)

t-test: p < 0.01

Javaid [36] KMeans, PageRank, sorting, 
WordCount, binomial logistic 
regression, linear regression, 
groupby decision tree clas-
sifier, single source shortest 
path, and breadth first search

Linear regression (LR), 
random forest (RF) gradient 
boost machine (GBM), and 
neural networks (NN)

Average accuracy error: LR, 
GBM, RF, and NN 10% (approx)

Singhal [37] Wordcount, Terasort, Kmeans 
and SQL

Multi linear regression (MLR), 
MLR-quadratic (MLRQ), sup-
port vector machine (SVM), 
and analytical model

Prediction accuracy error: MLR, 
SVM, and, MLRQ: MAPE 22%, 
analytical models: 80%

Cheng [13] WordCount, Kmeans, Tera-
Sort, PageRank, Bayes, and 
Nweight

AB-MOEA/D, random forest 
(RF), and two-stage tree (TSt)

Prediction error: AB-MOEA/D: 
3.6%, RF: 8.97%, TSt:14.57%
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Prediction methods
Machine learning algorithms

Many studies have explored supervised ML models for runtime performance predic-
tion of large systems. These techniques are known as black box solutions because they 
can make predictions on previously collected data. In this supervised ML model, the 
training phase uses the experimental data that comes according to system configura-
tion parameters. Indeed, the collection of these data is tedious and requires significant 
time resources. In this paper, we used two regression algorithms, kernel ridge regression 
(KRR) and Gradient Boost Regression (GBR), and implemented them based on Sklearn 
implementation. We choose gradient boost algorithm because it is a popular method 
for a large cluster setup [44], whereas the kernel ridge regression can perform cross-
validation and predictive variance more efficiently on small and large data [45]. In this 
implementation, the Python programming language is used to evaluate the models’ per-
formance. We introduce the algorithms and their model operation principles in the fol-
lowing section.

1.	 Kernel ridge regression

	  In 2000, Cristianini and Shawe-Taylor [39] proposed the kernel ridge regression 
(KRR) algorithm. KRR combines ridge regression with the kernel trick. For the linear 
kernel, this communicates with the linear function in the space induced by the 
respective kernel and data but for the non-linear kernel, this communicates with the 
non-linear function. The KRR is a simplified version of the Supervised Vector Regres-
sion (SVR), and it is also known as the least square support vector machine (LS-
SVM). It uses different loss functions and twelve regularisations. Regularisation 
always uses positive floating point values, improves the problem complexity, and 
minimises the estimates’ variance. In KRR, the kernel mapping works internally, and 
the parameters are passed through the pairwise kernel. A kernel function expressed 
as: K : X xX → R , is a function that is symmetric to K (x1, x2) = K (x2, x1) and posi-
tive definite. In this study, we employed the Polynomial kernels from the Sklearn 
implementation [46]. In the Polynomial kernel [47], the assigned values and its dis-
tance calculate as per their assigned values where the parameter values must be posi-
tive. We can express the polynomial kernel expression as follows: Parameters : α, c, d 
and the kernel function: K (X1,X2) = (αXT

1
X2

+ c)d.

2.	 Gradient boost regression
	 The Gradient Boost Regression (GBR) algorithm is a popular algorithm used for 

building predictive models and for large cluster setups [44]. In 2002, Friedman [40] 
proposed a modified version of the GBR algorithm based on a regression tree of fixed 
sizes. At the regression problem, the boosting approach works as a form of “func-
tional gradient decent”. The boosting approach is an optimisation technique that 
minimises the loss function of the training data. In this case, the loss function meas-
ures the difference between the predicted values and training data. GBR algorithm 
generates the learners iteratively by combining the weak learners into a single strong 
learner. The fixed size of multiple decision trees is used as a weak learner to build 
the GBR. In this study, GBR is used the default parameters within the sklearn [48] 
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implementation to evaluate the results. The GBR can be used in two ways, either as a 
regressor or classifier, with the former used in this study to predict the system runt-
ime data.

Prediction models based on specific equations for parallel systems

For any parallel system, including Hadoop clusters running Spark, two parameters are 
the most influential in determining runtime: size and number of executors. In Spark, 
other parameters can deteriorate the performance. However, once these parameters 
relinquish enough resources for running a certain job, they do not have the ability to 
speed up the execution of that job. Therefore, while most parameters have a minimum 
threshold for the job to use the cluster’s resources appropriately, one cannot improve 
the performance of a job beyond a certain point, limited by other factors such as size 
and number of executors available [9].

Also, in any parallel system the runtime has two components: parallelisable and non-
parallelisable portions of time [49]. The parallelisable portion can be found as a function 
of the size of the job and the number of executors used. The non-parallelisable portion 
is more difficult as it depends on implementation and communication between nodes.

Since the early days of parallel systems, several models have been proposed for 
equations that can drive the runtime. Three important ones are Amdahl’s law, Gus-
tafson and Ernest. In our previous works, we have proposed two new models [15, 16] 
and have tested them against Amdahl [42], Gustafson [43] and ERNEST [41]. In order 
to compare the models, we adapted Amdahl’s law and Gustafson’s law as equations 
that determine runtime given the size and number of executors. These models use 
simple equations that can fit experimental data, and can be used to predict the runt-
ime of jobs for different clusters, with specific hardware.

For completion, we summarise each model and the corresponding equations. For all 
the equations in this section, the following notations apply:

•	 S is the size of the workload (usually in GB),
•	 f(S) is the function that expresses the runtime complexity of the algorithm,
•	 E is the number of executors, and
•	 a, b, c, d are the coefficients of the equations that need to be found via data fitting.

For f(S), all the workloads used in this work were either linear or quadratic. Therefore, 
either f (S) = S or f (S) = S2 . If the time complexity of the algorithm is known, its 
equation can replace f(S).

Amdahl’s law

In the early days of parallel systems, Amdahl proposed a performance model where 
the number of executors and the percentage of the non-parallelisable time drives the 
speedup of a job running with multiple executors when compared to the same job 
running on a single executor [42]. The equations can be modified to predict runtime 
given S and E:
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Gustafson’s law

Gustafson proposed an alternative model to that proposed by Amdahl [43]. The modi-
fied equation to predict runtime is:

ERNEST

More recently, Venkataraman et al. [41] proposed a model specifically for big data clus-
ters called ERNEST. Their equation to predict runtime is:

2D‑plate model

We proposed a 2D-plate model where the nodes communicate only with its direct 
neighbours [16] This model was based on insights by Wilkinson and Allen [49] that can 
be found in chapter 6, sections 6.3.2 and page 180. The details of how we derived equa-
tion (4) are in [16]. The equation is:

Fully‑connected node model

We also proposed an alternative model where the communication between nodes is 
assumed to work like a fully-connected graph. Both the 2D-plate and the fully-connected 
models were as accurate or more accurate than alternative models [15]. The equation for 
the fully-connected model is:

A special case of this equation was considered when the communication growth is lin-
ear in relation to the size S, i.e., c = 1:

Experimental setup
All our experiments have been conducted on a high-end Hadoop cluster. In 2016, the 
group of academicians and researchers designed and developed the cluster at Mas-
sey University, Auckland campus. This cluster is designed with a dedicated switch and 

(1)runtime = a f (S)

(

(1− b)

E
+ b

)

+ c

(2)runtime =
a f (S)

E + b (1− E)
+ c

(3)runtime =
a S

E
+ b log(E)+ c E + d

(4)runtime =
a f (S)

E
+ b S Ec

+ d

(5)runtime =
a f (S)

E
+ b Sc

(

E(E − 1)

2

)

+ d

(6)runtime =
a f (S)

E
+ b S

(

E(E − 1)

2

)

+ d



Page 11 of 31Ahmed et al. Journal of Big Data            (2022) 9:67 	

different network infrastructures, similar to a Beowulf cluster [50]. In order to reduce 
the network latency and unwanted network resource utilization, all other network 
machines were isolated from this infrastructure.

A schematic diagram of the cluster is presented in Fig. 2, and the specifications for the 
servers and nodes are presented in Table 2.

HiBench workloads

It is a challenging task to evaluate the performance of a cluster. In the recent past, 
researchers presented CloudSuite [51] and CloudStone [52] benchmarks for cluster per-
formance. Intel also proposed a Hibench suite under Apache Licence HiBench suite [53]. 
Since then, this has become a heavily used cluster performance testing tool, especially 
for Hadoop and Spark frameworks. The existing benchmark can be divided into three 
categories, such as Micro-Benchmarks, End-to-End benchmark, and Benchmark suite 
[54]. The Hibench suite has also been categorised into four categories: Micro-Bench-
mark, Web Search, SQL, and ML. In this experiment, there are five different workloads, 

Fig. 2  A schematic diagram of the Hadoop cluster master and slave nodes used in the experiment

Table 2  Experimental configuration of the Hadoop cluster

Server configuration

 Processor 2.9 GHz

 Main memory 64 GB

 Storage 10 TB

Node configuration

 CPU Intel (R) Xeon 
(R) CPU E3-1231 
v3@3.40 GHz

 Main memory 32 GB

 Number of nodes 9

 Storage 6 TB each, 54 TB total

 CPU cores 8 each, 72 total

Software

 Operating system Ubuntu 16.04.2 
(GNU/Linux 
4.13.0-37-generic 
x86 64)

 Hadoop 2.4.0

 Spark 2.1.0

 JDK 1.7.0
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comprising WordCount, kmeans, SVM, Pagerank, and NWeight. From four categories: 
Micro-Benchmark, ML, Web Search and Graph were taken into consideration. Table 3 
presents the Spark Hibench workloads while Table 4 presents the workload application 
characteristics.

Cluster parameters configuration

In this work, a set of configuration parameters are considered to evaluate the perfor-
mance of the system. Spark has more than 150 configurable parameters [8, 9] where the 
system performance heavily depends on the correct parameters selection. Therefore, we 
have judiciously selected only the parameters that are closely bound to system perfor-
mance for evaluation purposes. However, cluster performance depends not only on the 
right parameters selection but also on tuning the parameters to achieve optimum system 
performance. We have seen the configuration of these parameters heavily depends on 
the cluster hardware, workload characteristics and size of the workloads. Out of numer-
ous parameters, the most important parameters are the number of executors, execu-
tor memory, executor core size, and the driver memory. This experiment has therefore 
chosen a subset of only impactful parameters and tuned their values to achieve the best 
cluster performance.

Table 3  Spark HiBenchmark workload considered for this study

Benchmark 
categories

Application  Input data size Input samples

Multiple-Exec. Single-Exec.

 Micro benchmark WordCount 313 MB, 940 MB, 
5.9 GB, 8.8 GB, and 
19.2 GB

3 GB, 5 GB, 7 GB, 
10 GB, 12.8 GB, 
14.4 GB, 16 GB, 18 GB, 
and 21.6 GB

–

 Machine learning kmeans 19 GB, 56 GB, 94 GB, 
130 GB, and 168 GB

1 GB, 38 GB, 75 GB, 
113 GB, 149 GB, and 
187 GB

10, 30, 50, 70, and 90 
(million samples)

SVM 34 MB, 60 MB, 1.2 GB, 
1.8 GB and 2 GB

200 MB, 400 MB, 
600 MB, 800 MB, 
1.35 GB, 2 GB, 2.3 GB, 
and 2.5 GB

2100, 2600, 3600, 4100, 
and 5100 (samples)

Web search Pagerank 507 MB, 1.6 GB, 2.8 GB, 
4 GB, and 5 GB

100 MB, 250 MB, 
750 MB, 6 GB, 7 GB, 
8 GB, 9 GB, and 10 GB

1, 3, 5, 7, and 9 (million 
of pages)

Graph NWeight 37 MB, 70 MB, 129 MB, 
155 MB, and 211 MB

20 MB, 55 MB, 99 MB, 
141 MB, 175 MB, 
214 MB, 247 MB, 
262 MB, and 286 MB

1, 2, 4, 5, and 7 (million 
of edges)

Table 4  Workload application characteristics

Workloads Stages Parallel stages Collect Serialization Deserialization Shuffle Aggregate

WC 2 No Yes – – Yes –

SVM 209 No Yes No Yes Yes Yes

Nweight 9 Yes – No Yes Yes –

kmeans 20 No Yes Yes Yes Yes –

Pagerank 5 No – No Yes Yes –
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Recently, several notable studies [26, 55] presented the importance and effective-
ness of the outlined tunable parameters. Our study revealed that the right param-
eters selection is the primary requirement to get the best cluster performance. In our 
work, the chosen parameters are listed in Table 5. It can be seen from Table 5 that the 
default column presents the system default parameters, we tuned several parameters 
values including the default values that are listed in the range columns. Our investi-
gation found that in most of the cases, the default values are not appropriate for our 
cluster performance. In some cases, for example Spark.memory.fraction and Spark.
memory.storageFraction, there is no performance difference even if we use lower than 
the default values. On the other side, for example, Spark.driver.memory, Spark.driver.
cores, Spark.shuffle.file.buffer, Spark.reducer.maxSizeFlight, the higher values showed 
better performance than the default values. Therefore, we have considered only those 
tuned values that are listed in the column of value used in the experiment column. 
The description of the parameters is presented in the description column. Our insight 
on the cluster performance, the selection of these parameters and their values are 
firstly based on the fact that the spark performance heavily depends on the available 
resources of the hardware. Secondly, these parameters and their values were chosen 

Table 5  Description of selected Spark configuration parameters selected as the input of the 
proposed model

Parameters Default Range Value used 
in the 
experiment

Description

Spark.executor.memory 1 1–12 12 Amount of memory to use per 
executor process, in GB

Spark.executor.cores 1 2–14 2–14 The number of cores to use on 
each executor

Spark.driver.memory 1 1–4 4 Amount of memory to use for the 
driver process, in GB

Spark.driver.cores 1 1–3 3 The number of cores to u for the 
driver process

Spark.shuffle.file.buffer 32 32–48 48 Size of the in-memory buffer for 
each shuffle file output stream, 
in KB

Spark.reducer. maxSizeInFlight 48 48–96 96 Maximum size of map outputs to 
fetch simultaneously from each 
reduce task, in MB

Spark.memory.fraction 0.6 0.1–0.4 0.4 Fraction of heap space used for 
execution and storage

Spark.memory. storageFraction 0.5 0.1–0.4 0.4 Amount of storage memory 
immune to eviction expressed as 
a fraction of the size of the region

Spark.task.maxFailures 4 4–5 5 Number of failures of any par-
ticular task before giving up on 
the job

Spark.speculation False True/false – If set to “true”, performs specula-
tive execution of tasks

Spark.rpc.message. maxSize 128 128–256 256 Maximum message size to allow 
in “control plane” communication, 
in MB

Spark.io.compression. codec Snappy lz4/lzf/snappy Snappy Compress map output files

Spark.io.compression. snappy.
blockSize

32 32–128 32 Block size in snappy compression, 
in KB
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since they control pivotal resources such as CPU, disk read and write, and memory. 
[56].

Performance evaluations and analysis
In this section, we present the comparative results between the analytical and ML 
models. To validate the system performance, we used five HiBench workloads with 
various data sizes. The system runtime characteristics are obtained by running jobs 
for five workloads using different number of executors and data sizes.

The proposed work is categorised into six stages: loading runtime data, data pre-
processing, cross-validation and extrapolation methods, proposed models, ML mod-
els, and lastly, performance measurements (Fig. 3). To avoid overfitting and selection 
bias, a threefold cross validation process was used. The workload execution time is 
extracted from the Ambari history server log files, where a Python script is used to 
calculate the workload execution times. For the final graph presentation, each experi-
ment was repeated at least three times, and the average time is considered as a final 
result.

We calculate the job execution time based on the job log files. We have collected 
all job log files from the Ambari history server and used a Python script to calcu-
late the execution time. We found a fraction of time difference between the Python 
script and the Ambari server. One of the possible reasons for this time difference, 
Python scripts calculate log files independently while Ambari saves the execution 
time into the server, where the network latency can play an important role. In stage 
two of Fig. 3, data prepossessing is an essential step to achieve the best results from 
the models. Therefore, well-structured data is required to get the best performance 
from the models.

In stage three of Fig. 3 two types of data split were used. For the threefold cross-
validation, a balanced split was used, where in both training and test data all sizes and 
number of executors are present in the data. For the extrapolation split, the training 
data receives all measured points in the middle of the range for either size or number 
of executors, also using the same proportion of data for the training set, with 66% of 
the data, and the test set, which uses the remaining 34% of the data.

In stage four, we applied the fitting to the equations of the analytical models (pro-
posed and from the literature), and use two ML regression algorithms, namely KRR 

Fig. 3  The workflow of the performance analysis
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and GBR. Finally, the performance of the models and ML regression is measured 
based on R-squared and Residual Relative Square Error (RRSE). Only the most accu-
rate results have been used to present the graphs in Figs. 6, 7, 8, 9, 10.

Evaluation metrics

The choice of model evaluation metrics is an important factor for conducting compara-
tive analysis. To verify performance in literature, researchers lean on a variety of metrics. 
In this study, the R-squared (R2) and relative residual standard error (RRSE) are used. 
R-squared is used as a dominant index in regression algorithm to verify the predicted 
results accuracy, and RSE is used to determine the goodness-of-fit. The R2 values (also 
known as Correlation Coefficient(R)) are presented as follows.

where SSrs is the sum of the squares of the residuals and and SStot is the sum of the 
squares relative to the mean of the data. R-squared value is between 0 and 1. Higher 
values indicate a more optimal fit. The residual standard error is represented as follows:

where (yi − ȳi) is the difference between the observed data and the predicted value using 
the model, and df is the degrees of freedom given by the number of sample size minus 
and the number of parameters being fitted. The relative standard error (RSE) is:

The Residual Relative Standard Error (RRSE) metric allows us to distinguish the error 
between the observed points and the ones generated by the model. The smaller the 
RRSE, the better the fit accuracy.

Kernel ridge models

We used KRR from scikit-learn [46] implementation where only the polynomial kernel is 
considered, and others are ignored. For the model simplicity, we kept the coefficient and 
gamma parameter as a default = 1 , and no other parameters but the different degrees 
and alpha values are examined to improve the model’s accuracy. It can be noted that the 
proposed model produced the best R-squared results when degree = 70 . Table 6 presents 
the best results of the individual workloads by measuring R2 , standard deviation and rel-
ative residual standard values (RRSE). Our study found that except for the Kmeans and 
Graph workloads, all three workloads produce the best results with degree 70 and alpha 
1. In contrast, the Kmeans and Graph show the best results with degree = 30 and alpha 
value always achieves a better performance with alpha = 1 . Our study also revealed that 
the small values of alpha improves the model performance and reduces the variant of the 
estimates for three workloads. We noticed that the model performance for the individual 
workloads is satisfactory. The R-squared comparison of KRR algorithm across different 

(7)R2
= 1−

SSRegression

SSTotal

(8)RSE =

√

∑n
i=1(Yi − Ŷi)2

df

(9)RRSE =
RSE

µ
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degrees and alphas on the performance of selected HiBench workloads are shown in 
Fig. 4.

Despite showing a better R-squared value for higher degrees, polynomial regression 
has a known issue related to over fitting [57]. We showed the results of higher degrees 
to make the point that ML approaches using polynomials and easily overfit. One can 
see that the fitting follows the experimental data very well, and it can encompass the 
full range of the parameters. However, when showing an example of fitting, one can see 
that the higher degree polynomial can create instability in the model. In Fig. 5 four KRR 
fittings show values interpolated between the experimental data for different sizes. The 
interpolation points are in the middle of the measured data points. What can be clearly 
seen in the higher degree polynomials is that the interpolated data extends out of the 
value range of the plot, even though the training and test data are still well within the 
model prediction. This means that even with a high R-squared value, the prediction of 
new sizes can be very inaccurate. For this reason, we kept the degree to a maximum of 4 
in the experiments in “Performance comparison of ML and analytical models” and “Per-
formance analysis using extrapolation” sections.

Fig. 4  Performance comparison of KRR algorithm across different degrees and alphas on the performance of 
selected HiBench workloads
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Gradient boost models

GBR algorithm is a popular technique used for building prediction models. GBR uses 
the forward stage-wise fashion technique with the optimization of arbitrary differen-
tiable loss functions. In this experiment, we used GBR from scikit-learn [48] with the 
default parameters. We obtained the best results with default random state 1 for all 
five workloads. However, we further investigated the model by increasing the random 
state, but the results were unsatisfactory and out of scope for inclusion in this study. 
In Table 7, the statistical results are shown based on R2 , standard deviation, and RRSE 
scores.

Performance comparison of ML and analytical models

This section illustrates the proposed model accuracy in terms of R2 , standard deviation 
and the RRSE values. It shows the performance comparison results between well-known 
parallelisation models (Amdahl’s and Gustafson, ERNEST) and ML algorithms such as 
KRR and GBR where KRR algorithm parameters were optimised. The KRR optimised 
parameters assist the model to maximise the performance accuracy of the model. The 
k-fold cross-validation technique was applied with all the models to achieve highest pre-
diction accuracy. We obtained all the table results and figures using cross-validation with 
k = 3. The individual workload’s best results obtained by the proposed models against 
the ML models are described in the following section.

Wordcount

The wordcount workload comparative statistical results between ML and analytical 
models with cross validation, are presented in Table  8. From this analysis we can see 
that except ERNEST, all analytical models’ accuracy is 0.995, which is better than the 
KRR algorithm of 0.974. The GBR algorithm shows better performance as compared to 
others, where the accuracy is 0.998. The best analytical results and GBR results are pre-
sented in Fig. 6. The RRSE results in Table 9 show very low accuracy of GBR algorithm 
presenting the best fit in the results.

SVM

The comparison between ML and analytical models with cross validation for SVM 
workloads runtime prediction results are shown in Table 8. In this workload, both ML 
algorithms show significantly better results than the analytical models where the GBR 
algorithm completely outperforms the KRR algorithm. It may be noted that the GBR 
accuracy and RRSE is 0.995 and 0.064 respectively with corresponding standard devia-
tions of 0.001 and 0.010. The comparative best results are plotted in Fig. 7.

Pagerank

The Pagerank performance evaluated in terms of ML algorithms and analytical models 
with cross-validation approach in Tables 8 and 9. Our results revealed that the model 
(Eq. 4) either outperforms or equal to all analytical models and KRR algorithms, but the 
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GBR algorithm achieves the best results among models. In Fig.  8, the best results are 
plotted from GBR and Eq. (4).

Kmeans

The comparative performance measurement results of ML algorithm and analytical 
model for kmeans workload are presented in Table 8. The GBR algorithm is the most 
effective model that shows the best accuracy and produces low RRSE among all the 
models. It can be noted that analytical models outperform KRR algorithms where the 
accuracy is 0.981, but analytical models are better with a higher margin of accuracy of 
0.992. Among the analytical models, their performance is either equal or slightly dif-
ferent. For example, the Gustafson accuracy is equal among analytical models, but the 
RRSE is slightly better, as shown in Table 9. The best-obtained results among models are 
shown in Fig. 9.

Graph

The ML algorithms (KRR and GBR) show excellent results using Graph workload. From 
the statistical results shown in the Tables 8 and 9, the GBR algorithm records the best 
results among analytical models and outperforms KRR. Equation (4) indicates a sig-
nificant performance improvement among the analytical models where other equations 
previously proposed by us clearly defeat ERNEST, Amdahl and Gustafson models. The 
best results from the ML model and an analytical model is shown in Fig. 10.

In summary, the above results demonstrate model performances for the selected work-
loads. The GBR algorithm achieves an excellent performance in comparison to all mod-
els. On the other side, Eqs. (4) and (5) show excellent results among analytical models 
and both equations are better than KRR for WordCount, SVM, PageRank and Kmeans 
workload. For the graph workload, both ML algorithms demonstrated the best results. 
The above analysis shows the effectiveness of the analytical models over ML approaches.

Performance analysis using extrapolation
Data obtained from the results in “Performance comparison of ML and analytical mod-
els” section is used for the performance analysis using extrapolation in this section. 
However, rather than carrying out cross validation on the entire dataset, we reserved 
part of the data set to test how well each model can deal with extrapolation. This is a 
very important aspect of the prediction models, as extrapolation would allow practition-
ers to make accurate predictions with a very small number of experiments when using 
a specific cluster and workload. Our hypothesis was that despite the better results for 
the models using ML presented in “Performance comparison of ML and analytical mod-
els” section, equations that can represent the cluster behaviours could be more accurate 
for extrapolation. In other words, ML is an effective approach for predictions that fall 
within the range of values captured in the existing data, but can yield poor results if not 
enough data is available to describe runtimes beyond a given range. In these scenarios, 
ML methods may not be able to predict the actual pattern of communication that drives 
the runtime.

Due to limited data points, we employed the linear extrapolation approach to esti-
mate the data values that are close to the existing data. Generally, it has been proven 
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that nonlinear model accuracy is higher than the linear models because it is more likely 
to overfit the training data set, which shows the poor performance of the models [58]. 
In contrast, the linear models fit the data more accurately; thus, better fitting can be 
achieved from the unseen data. We observe from the presented results in Table 10 that 
the performance of the linear workloads is better than the quadratic workloads. Two 
extrapolation scenarios were considered: extrapolation by size, and extrapolation by 
number of executors.

Extrapolation by size

Wordcount

Figure  11 presents the Wordcount workload results using the extrapolation approach. 
In this case, the extrapolation by size yielded the best results among analytical and ML 
models. The model accuracy is measured by finding the accuracy of the models. The 
comparative results are presented in Table 10, and it can be noted that Eq. (1) shows the 
best fit of the data compared to other models. By using the ML algorithm, the data fit-
ting accuracy decreases. Our analysis concludes that the performance of the proposed 
equations are better than ML when the data are extrapolated.

SVM

For SVM workloads, the extrapolation by size found the best results using Eq. (5), where 
the model accuracy is 0.981, but the KRR and GBR accuracy is lower than that of all the 
analytical equations. We used 3D charts to illustrate the relationship between size, num-
ber of executors and runtime. We chose the 3D charts because it is easier to show their 
relationship more accurately. We select the best analytical and ML results that are plot-
ted in Fig. 12. In this case, we found that KRR shows better performance as compared to 
the GBR algorithm.

Pagerank

In the case of Pagerank workload, analytical models completely outperform KRR and 
GBR. Equations (5) and (6) have low accuracy and prove the models’ effectiveness over 
ML when the data is extrapolated by size. The maximum accuracy of the analytical mod-
els is 0.996, whereas ML is 0.875. The influence of the extrapolation is less effective for 
KRR and GBR. For the comparison, Fig. 13 shows the fitting for Eq. (5) and for GBR.

Kmeans

In the case of the Kmeans workload, when the data is extrapolated by size, Eq. (6) and 
ERNEST show an equally excellent performance, and other analytical models demon-
strate better performance over ML models. As shown in Table 10, Eq. (6) achieved nota-
ble accuracy at 0.998, but KRR and GBR accuracy proved to be relatively poor at 0.836 
and 0.875 respectively. We can conclude from these results that Eq. (6) is a very effective 
model on the unseen data points. For comparison, Fig. 14 shows the fitting for Eq. (6) 
and for GBR.
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Graph

In the case of Graph workload when data is extrapolated by size, Eq. (4) is either at 
par or higher among the analytical models, and both ML algorithms appear to be less 
effective. We found that equation 4 and KRR performance is better than other models 
where the Eq. (4) and KRR accuracy is 0.940 and 0.904, respectively. For comparison, 
Fig. 15 shows the fitting for Eq. (4) and for KRR.

Extrapolation by number of executors

Wordcount

The results of extrapolation by a number of executors based on Wordcount workload 
are presented in Table 11. As expected, ML performance is considerably lower than 
that of the analytical model. The performances of the Eqs. (4), (6), and (1) (Amdahl) 
are equal or the same as the other models. The best accuracy achieved by both the 
equations is 0.997, whereas the accuracies for ML algorithms KRR and GBR are 0.786 
and 0.535, respectively. We compared all the results and plotted the best results in 
Fig. 16 and (6). These results demonstrate that the extrapolation by a number of exec-
utors yielded the best results using equations while the results for ML algorithms 
were less accurate.

SVM

In the case of SVM, the extrapolation by the number of executors yielded the best results 
using Eq. (4). The KRR and GBR regression performance is poor as expected. The effec-
tiveness of Eq. (4) is excellent, where the accuracy is 0.893. The best comparative per-
formance in Fig. 17 shows the fitting for Eq. (4) and for KRR. These results demonstrate 
that the extrapolation by a number of executors yielded the best results using equations 
while the results were less accurate for the ML algorithms..

Pagerank

Equations (4), (5), (6) and Amdahl (1) show remarkable performance improvement for 
the Pagerank workload where the number of executors extrapolates the data. All four 
equations obtained the accuracy of 0.994 while KRR and GBR regression showed rela-
tively demonstrated a poor accuracy which was 0.619 and 0.408 respectively. We exam-
ined (5) and compared the models’ performance and plotted the best performance in 
Fig. 18.

Kmeans

In the case of the Kmeans workload, Eqs. (5) and (6) produce better fit than all the mod-
els and show a significant performance improvement when the data is extrapolated 
considering the number of executors. As shown in Table 11 both equations performed 
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Table 6  Kernel ridge regression algorithm statistical parameters using set of different workloads

Workload Degree Alpha R-squared RRSE

WordCount 70 1 0.999 ± 0.000 0.097 ± 0.000

3 (default) 0.935 ± 0.002 2.039 ± 0.046

SVM 70 1 0.999 ± 0.000 0.083 ± 0.003

3 (default) 0.860 ± 0.001 2.434 ± 0.010

Pagerank 70 1 0.999 ± 0.000 6.507 ± 0.025

3 (default) 0.932 ± 0.001 53.885 ± 0.376

Kmeans 30 1 0.999 ± 0.000 7.868 ± 0.290

3 (default) 0.947 ± 0.008 119.551 ± 8.875

Graph (NWeight) 30 1 0.996 ± 0.000 0.239 ± 0.010

3 (default) 0.900 ± 0.015 1.242 ± 0.0411

Fig. 5  Kernel ridge regression models for Kmeans with increasing degrees. Despite better R-squared, 
interpolation is very inaccurate for higher degrees

Table 7  GBR algorithm statistical parameters using set of different workloads

Workload Random state R-squared RRSE

WordCount 1 0.998 ± 0.000 0.348 ± 0.018

SVM 1 0.994 ± 0.001 0.465 ± 0.075

Pagerank 1 0.999 ± 0.000 6.132 ± 0.550

Kmeans 1 0.997 ± 0.000 28.086 ± 3.760

Graph (NWeight) 1 0.986 ± 0.003 0.452 ± 0.015
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Fig. 6  Comparison of ML (GBR) and analytical models Eq. (5) showing best R-Squared for Wordcount

Fig. 7  Comparison of ML (GBR) and analytical models Eq. (5) showing best R-Squared for SVM

Fig. 8  Comparison of ML (GBR) and analytical models Eq. (4) showing best R-Squared for Pagerank

Fig. 9  Comparison of ML (GBR) and analytical models Eq. (5) showing best R-Squared for Kmeans
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Fig. 10  Comparison of ML (GBR) and analytical models Eq. (4) showing best R-Squared for Graph

Table 8  R-squared values for a different set of workloads and models

The bold data in each column indicates the largest R-squared value in the corresponding column

Workload f(S) Wordcount linear SVM quadratic Pagerank linear Kmeans linear Graph 
(NWeight) 
quadratic

Amdhal equation (1) 0.995 ± 0.000 0.908 ± 0.005 0.990 ± 0.000 0.992 ± 0.002 0.901  ± 0.012

Gustafson equation 
(2)

0.995 ± 0.000 0.888 ± 0.002 0.988 ± 0.000 0.992 ± 0.000 0.898 ± 0.013

ERNEST equation (3) 0.994 ± 0.000 0.848 ± 0.001 0.987 ± 0.000 0.992 ± 0.002 0.916 ± 0.003

2D plate equation 
(4)

0.995 ± 0.000 0.916 ± 0.005 0.990 ± 0.000 0.992 ± 0.002 0.918 ± 0.009

Connected graph 
equation (5)

0.995 ± 0.001 0.918 ± 0.005 0.989 ± 0.000 0.992 ± 0.002 0.911 ± 0.005

Con. graph c = 1 
equation (6)

0.995 ± 0.001 0.914 ± 0.005 0.989 ± 0.000 0.992 ± 0.002 0.911 ± 0.005

Kernel ridge regres-
sion

0.974 ± 0.002 0.934 ± 0.001 0.977 ± 0.000 0.981 ± 0.005 0.945 ± 0.009

Gradient boost 
regression

0.998 ± 0.000 0.995 ± 0.001 0.999 ± 0.000 0.997 ± 0.001 0.986 ± 0.003

Table 9  Relative mean standard error (RRSE) values for a different set of workloads and models

The bold data in each column indicates the smallest RRSE value in the corresponding column

Workload f(S) Wordcount linear SVM quadratic Pagerank linear Kmeans linear Graph 
(NWeight) 
quadratic

Amdhal equation (1) 0.085 ± 0.005 0.282 ± 0.009 0.113 ± 0.000 0.140 ± 0.019 0.252 ± 0.009

Gustafson equation 
(2)

0.091 ± 0.004 0.311 ± 0.003 0.120 ± 0.000 0.134 ± 0.009 0.254 ± 0.008

ERNEST equation (3) 0.100 ± 0.006 0.366 ± 0.001 0.127 ± 0.000 0.142 ± 0.017 0.231 ± 0.009

2D plate equation 
(4)

0.086 ± 0.005 0.272 ± 0.009 0.113 ± 0.000 0.141 ± 0.019 0.226 ± 0.007

Connected graph 
equation (5)

0.091 ± 0.009 0.268 ± 0.009 0.116 ± 0.000 0.141 ± 0.018 0.244 ± 0.008

Con. graph c = 1 
equation (6)

0.091 ± 0.009 0.273 ± 0.008 0.118 ± 0.000 0.140 ± 0.018 0.243 ± 0.008

Kernel ridge regres-
sion

0.203 ± 0.009 0.234 ± 0.002 0.173 ± 0.001 0.207 ± 0.024 0.178 ± 0.003

Gradient boost 
regression

0.058 ± 0.003 0.064 ± 0.010 0.033 ± 0.002 0.062 ± 0.038 0.087 ± 0.004
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well where the equation achieved the accuracy of 0.995. The KRR and GBR achieved 
poor accuracy of 0.917 and 0.510 respectively. These results indicate that the ML per-
formance is less accurate when training on limited data and when having to extrapolate 

Table 10  R-squared values for extrapolation on size

The bold data in each column indicates the largest R-squared values in the corresponding column

Workload f(S) Wordcount linear SVM quadratic Pagerank linear Kmeans linear Graph 
(NWeight) 
quadratic

Amdhal equation (1) 0.998 ± 0.000 0.965 ± 0.001 0.994 ± 0.000 0.997 ± 0.001 0.937 ± 0.006

Gustafson equation 
(2)

0.996 ± 0.001 0.949 ± 0.004 0.994 ± 0.000 0.996 ± 0.001 0.913 ± 0.008

ERNEST equation (3) 0.996 ± 0.001 0.958 ± 0.002 0.990 ± 0.000 0.998 ± 0.001 0.921 ± 0.008

2D plate equation 
(4)

0.997 ± 0.001 0.951 ± 0.003 0.993 ± 0.000 0.997 ± 0.001 0.940 ± 0.005

Connected graph 
equation (5)

0.257 ± 0.061 0.981 ± 0.001 0.996 ± 0.000 0.996 ± 0.001 0.940 ± 0.006

Con. graph c = 1 
equation (6)

0.997 ± 0.001 0.978 ± 0.001 0.996 ± 0.000 0.998 ± 0.001 0.940 ± 0.006

Kernel ridge regres-
sion

0.836 ± 0.011 0.745 ± 0.004 0.836 ± 0.011 0.836 ± 0.011 0.904 ± 0.043

Gradient boost 
regression

0.875 ± 0.005 0.690 ± 0.003 0.875 ± 0.005 0.875 ± 0.005 0.775 ± 0.009

Fig. 11  Extrapolation relationship showing Wordcount workload by size using Eq. (1) and GBR

Fig. 12  Extrapolation relationship showing SVM workload by Size using Eq. (5) and KRR
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results beyond the values seen in the training data. We examined and compared the per-
formance of the models and plotted the best performance in Fig. 19 and (6).

Graph

In the case of the Graph workload, the data were extrapolated by size. Equation (4) 
shows the best performance among all the models. In this case, the KRR and GBR 
performances were inferior. As shown in Table 11, the Eq. (4) accuracy is 0.945, while 

Fig. 13  Extrapolation relationship showing Pagerank workload by Size using Eq. (5) and GBR

Fig. 14  Extrapolation relationship showing Kmeans workload by Size using Eq. (6) and GBR

Fig. 15  Extrapolation relationship showing Graph workload by Size using Eq. (4) and Kernel Ridge
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the KRR and GBR accuracies are 0.150 and 0.371 respectively. These results indicate 
that the selected ML algorithms are not suitable when the extrapolation is required. 
Fig. 20 shows this performance comparison results for Eq. (4) and GBR.

Discussion
To evaluate the performance of the prediction models, this paper used the analyti-
cal and ML models and depicted the comparative analysis between them. To predict 
Spark runtime performance, several experiments have been performed to evaluate the 

Fig. 16  Extrapolation for Wordcount by Nexec using Eq. (6) and KRR

Fig. 17  Extrapolation for SVM by Nexec using Eq. (4) and KRR

Fig. 18  Extrapolation for Pagerank by Nexec using Eq. (5) and KRR
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performance. The comprehensive comparative study of the results presented in Tables 6, 
7, 8, 9, 10, and 11 inspires us to the following three steps analysis.

Firstly, we present the KRR regression parameter relationship between alpha and 
degree. This study found, for most of the workloads, the best R-squared can be 

Fig. 19  Extrapolation for Kmeans by Nexec using Eq. (6) and KRR

Fig. 20  Extrapolation for Graph by Nexec using Eq. (4) and GBR

Table 11  R-squared values for Extrapolation on Number of Executors

The bold data in each column indicates the largest R-squared values in the corresponding column

Workload f(S) Wordcount linear SVM quadratic Pagerank linear Kmeans linear Graph 
(NWeight) 
quadratic

Amdhal equation (1) 0.997 ± 0.000 0.878 ± 0.002 0.994 ± 0.000 0.994 ± 0.001 0.932 ± 0.001

Gustafson equation 
(2)

0.995 ± 0.000 0.728 ± 0.000 0.988 ± 0.000 0.921 ± 0.001 0.922 ± 0.000

ERNEST equation (3) 0.996 ± 0.000 0.822 ± 0.002 0.991 ± 0.000 0.992 ± 0.001 0.930 ± 0.007

2D plate equation 
(4)

0.997 ± 0.000 0.893 ± 0.004 0.994 ± 0.000 0.992 ± 0.002 0.945 ± 0.004

Connected graph 
equation (5)

0.996 ± 0.000 0.853 ± 0.072 0.994 ± 0.000 0.995 ± 0.001 0.917 ± 0.002

Con. graph c = 1 
equation (6)

0.997 ± 0.000 0.850 ± 0.072 0.994 ± 0.000 0.995 ± 0.001 0.916 ± 0.002

Kernel ridge regres-
sion

0.786 ± 0.012 0.619 ± 0.012 0.917 ± 0.014 0.917 ± 0.014 0.150 ± 0.060

Gradient boost 
regression

0.535 ± 0.001 0.408 ± 0.007 0.510 ± 0.011 0.510 ± 0.011 0.371 ± 0.015
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achieved by selecting the small degree with alpha. Our analysis found higher degree 
can produce best R-squared but the data overfitting can be a major limitation. For 
the GBR, we kept all the parameters default. However, we have examined different 
random states, but there are no effects on the accuracy improvement. The detailed 
results are presented in “Performance evaluations and analysis” and “Performance 
analysis using extrapolation” sections.

Secondly, interpolation experiments were carried out. The data split for the cross-val-
idation used data points for all the available sizes and number of executors for both test 
and training sets. The presented results showed that analytical models are better than 
KRR regression and produce similar accuracy as ERNEST, Amdahl or Gustafson. How-
ever, the GBR model was the most accurate when compared to all other models.

Finally, we used the extrapolation method with the cross-validation technique, and the 
analysis was carried out using size and executors. We noticed the performance of ML 
models are poor in both cases, but the analytical models are more accurate and effective. 
The presented results in Tables  10 and 11 showed that the linear workloads are more 
accurate among the ML models than the quadratic workloads; in fact, the accuracy is 
significantly poorer. The KRR, GBR, 2D-plate (Eq. 4) or fully-connected (Eq. 5) models 
average accuracies are 0.466, 0.677 and 0.950. These results indicate that both 2D-plate 
model and the fully-connected models are more effective and accurate when using 
extrapolation of data, either over size or number of executors.

Conclusion
This work aimed to compare five analytical models against ML regression algorithms for 
Spark performance prediction. We investigated two ML algorithms, namely KRR and 
GBR algorithms, and five analytical models, namely, 2D-plate, fully-connected, ERNEST, 
Amdahl, Gustafson models. The key challenges were how to use limited data points for 
generating models that fit the data accurately and generalise well when extrapolating.

To address these challenges, we used interpolation and extrapolation methods with 
k-fold cross-validation technique for both ML and analytical models. Using the interpo-
lation method, 2D-plate and fully-connected models outperformed the KRR algorithm, 
ERNEST, Amdahl and Gustafson, but the GBR showed a better fitting accuracy (R2) than 
all other models.

Due to the limited available input data when using the extrapolation method, ML algo-
rithms proved not to be as accurate as 2D-plate, and fully-connected models. Our exper-
imental findings confirm that both 2D-plate and fully-connected models reduce the 
percentage error significantly and can accurately fit the data for prediction purposes. For 
this reason, 2D-plate and fully-connected models stand out as very effective approaches 
in the presence of limited input data for predicting Spark performance as well as parallel 
system performance.

For future work, we plan to study different ML algorithms for comparative analysis 
as well as perform more robust experimentations with different HiBench workloads in 
order to yield further conclusive findings.
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