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Introduction
The variety feature of Big Data inciting the so-called multi-model data has opened a 
challenging direction of data management.

Example 1.1  An example of a multi-model scenario is provided in Fig.  1. The rela-
tional model (violet) contains general information about customers, whereas the graph 
model (blue) captures their mutual friendship. The document model (green) maintains 
orders bounded with particular customers using the wide-column model (red). The key/
value model (yellow) bears information about customers’ shopping carts. A cross-model 
query over such data might, e.g., be “For each customer who lives in Prague, find a friend 
who ordered the most expensive product among all customer’s friends.” [1]�  �

In general, there are two approaches to ensure the storage and processing of multi-
model data in their most native and thus most efficient environment. The (primar-
ily) academia-driven approaches, currently represented mainly by polystores [2], are 
based on the idea of polyglot persistence, i.e., the usage of a mediator to manage a set 
of underlying database management systems (DBMSs), each being the best suitable 
candidate for a particular data model. On the other hand, there are (industry-driven) 
multi-model DBMSs [3] that offer the support of multiple models under the hood of 
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a single system, treating all the data models as first-class citizens [4]. Currently, more 
than 20 representatives of multi-model DBMSs exist, involving well-known tradi-
tional, relational and novel NoSQL systems. In contrast, more vendors decide to fol-
low the Gartner predictions [5] of supporting multiple data models.

On the other hand, such a situation is difficult for users who want to develop a 
multi-model database application. The standard recommendations would be to first 
create a conceptual schema (e.g., using ER or UML modelling languages).

Example 1.2  In Fig.  2, we depict an ER schema of the multi-model scenario from 
Fig. 1. � �

There are verified means of transforming such a schema into, e.g., the relational 
model schema. (More-or-less) according to its well-defined standard, the existing 
relational DBMSs support this model. However, the step from an ER/UML conceptual 
model to virtually any possible (yet not standardized) combination of multiple logical 
models is not straightforward, mainly because the combined models (or respective 
systems) often have contradictory features. For example, there are structured, semi-
structured, and unstructured formats; there are systems based on strong or eventual 
consistency; there are schema-less, schema-full, and schema-mixed storage strate-
gies, etc.

For this purpose, we need a unifying representation that would allow us to: 
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1.	 Capture all the existing models, preferably in the same and definitely in a standard 
way;

2.	 Query across multiple interconnected models efficiently;
3.	 Perform correct and complete evolution management, i.e., propagation of changes;
4.	 Enable data migration without complex reorganizations; and
5.	 Permit integration of new data models.

Although both ER and UML (class diagrams in particular) are strong enough to cover 
some of these points, their primary purpose is different and not that wide. As stated 
in [6], we need “a theory that is the basis upon which a designer can build a consist-
ent schema that can be understood by other designers and consistently rebuilt during 
redesign or schema development”. Hence, in paper [7], we have proposed a solution 
based on category theory [8],  “the most general and abstract branch of pure mathe-
matics” [9] which has successfully been applied in computer science and namely data 
management, too. It is a theory sufficiently general for the multi-model situation. It 
provides a strong mathematical background for further data management, such as 
transformations between the models, cross-model querying, multi-model evolution 
management, etc. We have proposed a schema category and an instance category for 
the representation of multi-model data structures and their particular instances, as 
well as an algorithm for the transformation of an ER schema to a schema category.

In this paper, we further extend the idea and show how the currently popular data 
models (and their combinations) can be represented using category theory. The main 
contributions of the paper can be summed up as follows:

•	 We provide a more general definition of both schema and instance categories, 
which enable a unified and sufficiently general representation of schemas and 
instances of multi-model data.

•	 We introduce mapping between the input data and the categorical representation 
using the notion of an access path that bears information about the categorical 
representation of any object.

•	 We introduce transformation algorithms that transform the input data to the cat-
egorical representation and vice versa. The algorithms are sufficiently generic to 
cover all currently popular models and their combinations.

•	 We show how the proposed algorithms can be comfortably implemented using 
wrappers that hide the specifics of particular DBMSs.

•	 We discuss the applicability of the proposed approach in further data manage-
ment tasks, such as querying or data migration/evolution.

The rest of the paper is structured as follows: In "Unified view of multi-model data" 
section, we provide a unified view of multi-model data which enables the further gen-
eral description of the proposed ideas. We also recall the basic terms from the cat-
egory theory used in the rest of the text and we describe our proposal of the schema 
and instance categories, including their novel extensions. "Category-to-data mapping"   
section  introduces the mapping of constructs of particular models to their categori-
cal representation using access paths, i.e., a novel concept that enables the capture of 
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the necessary information for all considered models and their specifics universally. 
Next, in "Transformations" section  , we focus on the algorithms for the transforma-
tion of multi-model data to the categorical representation and vice versa. We pro-
vide pseudocodes of the algorithms and an explanatory description with examples. 
In "Framework MM-cat" section, we describe the specifics of the implementation of 
the proposed algorithms—a framework called MM-cat. We describe its architecture 
and implementation decisions and the performance of the implemented algorithms, 
including some technical tricks. In "Benefits of category theory" section   we dis-
cuss the general benefits of the application of category theory for multi-model data 
representation and we provide an example in the case of multi-model querying. In 
"Related work" section, we overview the related work and its drawbacks reflected in 
our approach. We conclude and outline future work in "Conclusion" section.

Unified view of multi‑model data
First of all, we need to be able to “grasp” the specifics of various data models in a unified 
way. In this section, we first unify the terminology. Next, we introduce the basic con-
cepts of category theory used in the rest of the proposal. We also introduce the idea of 
an extended categorical representation of multi-model data.

In the rest of our work, we consider the following popular data models: relational, key/
value, document, wide column, and graph, i.e., we support all currently popular struc-
tured and semistructured data to cover all combinations of models used in the existing 
popular multi-model systems1 Unstructured data can be treated in the same way as key/
value data, where the value part is considered as a black box.

Since the terminology within the considered models differs, first we provide a unifica-
tion used throughout the text in Table 1. (As we can see, we also incorporated the array 
and RDF models since the proposed approach applies to them, too.)

The terminology is apparent in most cases, but some specific situations need 
commentary:

•	 Probably the most protuberant is the graph model, whose features are the most spe-
cific. We assume that a kind is represented by a unique label that determines a set of 
related nodes or edges. A record is either a node or an edge.

•	 The document and column model can involve a hierarchical structure. Therefore, the 
properties (fields) can appear at various levels. In the case of the document model, 
it can be on any level. In the case of the column model, there can be a second level 
grouping the selected columns to a super column.2 In the other models, the struc-
tures are always single-level.

•	 We distinguish between homogeneous and heterogeneous arrays. In the former case, 
an array should contain fields of the same type. In the latter case, which is allowed 
only in the document model, an array can contain fields of multiple types. Only in 
the case of the document model, the type of an array item can be complex (i.e., rep-

1  https://​db-​engin​es.​com/​en/​ranki​ng.
2  Note that in some systems, e.g., Cassandra, even multiple levels of nesting are allowed. However, we can consider this 
case as a multi-model extension.

https://db-engines.com/en/ranking
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resent nested documents); in all other cases, only arrays of simple (scalar) types are 
allowed.

Despite this unification, we still have to bear in mind important differences between the 
models. One of the core classifications assumes the following cases:

•	 Aggregate-oriented models (key/value, document, column): These models primarily 
support the data structure of an aggregate, i.e., a collection of closely related (semi-)
structured objects we want to treat as a unit. In the traditional relational world, we 
would speak about de-normalization.

•	 Aggregate-ignorant models (graph, relational, RDF, array): These models are not pri-
marily oriented to the support of aggregates. The relational world strongly empha-
sizes the normalization of structured data, whereas the graph model is in principle a 
set of flat objects mutually linked by any number of edges.

We will show later on that these different perspectives will have an impact on the way 
how the algorithms we introduce will operate.

Basic concepts of category theory

Category theory is a branch of mathematics that attempts to formalize various (not 
only) mathematical structures and their mutual relationships. Formally, a category 
C = (O,M, ◦) consists of a set of objects O , also alternatively denoted as Obj(C) , a set 
of morphisms M , alternatively Hom(C)3, and a composition operation ◦ over the mor-
phisms.4 A category as a whole can be visualized in the form of a multigraph, where cat-
egory objects act as vertices and category morphisms as directed edges.

Each morphism is modeled and depicted as an arrow f : A → B , where A,B ∈ Obj(C) , 
and A is referenced to as a domain and B as a codomain, both denoted as f.dom and f.cod, 
respectively. Whenever f , g ∈ Hom(C) are two morphisms f : A → B and g : B → C , it 
must hold that g ◦ f ∈ Hom(C) , i.e., morphisms can be composed using the ◦ operation 
and the composite g ◦ f  must also be a morphism of the category. Besides this transitiv-
ity property, ◦ must also be associative, i.e., h ◦ (g ◦ f ) = (h ◦ g) ◦ f  for any suitable mor-
phisms f , g , h ∈ Hom(C) such that f : A → B, g : B → C , and h : C → D . Finally, for 
every object A, there must exist an identity morphism 1A such that f ◦ 1A = f = 1B ◦ f  
for any f : A → B , and so acts as a unit element with respect to the composition 
operation.

Example 2.1  In Fig. 4, we can see a graphical representation of a simple category hav-
ing three objects a, b, c, two morphisms f, g, their composition g ◦ f  , and identity mor-
phisms ida, idb, idc .�  �

3  The common notation Hom results from the fact that morphisms are often called homomorphisms.
4  A category, where Obj(C) and Hom(C) are sets, is denoted as small. There are also large categories, but we will not 
need them in our approach.
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Example 2.2  Set (as widely denoted) is a category where objects are arbitrary sets (not 
necessarily finite), and morphisms are functions between them (not necessarily injective 
nor surjective), together with the traditionally understood composition of functions and 
identities.

Similarly, Rel is a category where objects represent sets, and morphisms are binary 
relations over these sets. As for the composition g ◦ f  for morphisms f : A → B and 
g : B → C , it holds that (a, c) ∈ g ◦ f  for any a ∈ A and c ∈ C whenever there exists at 
least one value b ∈ B such that (a, b) ∈ f  and (b, c) ∈ g .�  �

Even though objects and morphisms in real-world categories tend to be sets of certain 
items and functions between them, both objects and morphisms may represent abstract 
entities of any kind and internal content. Not just in the context of our approach, it is 
worth focusing on categories derived from graphs, as well as categories built on top of 
other categories.

Example 2.3  Having a graph G = (V ,E) , where V is a set of vertices and E ⊆ V × V  is 
a set of directed edges, we could define another category where objects are the original 
vertices and morphisms simply the original edges. Composition ◦ produces a kind of col-
lapsed shortcut for concatenated directed paths consisting of individual edges, identity 
morphisms work as loops.

However, such a structure may not always define a category, since it may happen 
that for any two edges (morphisms) f = (a, b) and g = (b, c) ∈ E the composite 
g ◦ f = (a, c) /∈ E , i.e., the composed edge may not be in the graph. As a consequence, 
not every graph necessarily forms a category. � �

Categories themselves can also be mutually mapped via structure-preserving 
mappings called functors. A functor F is a mapping between categories C1 = (O1, 
M1, ◦1) and C2 = (O2,M2, ◦2) associating each object A ∈ Obj(C1) with an object 
F(A) ∈ Obj(C2) , and each morphism f : A → B ∈ Hom(C1) with a morphism 
F(f ) : F(A) → F(B) ∈ Hom(C2) . We must also ensure that identity morphisms and 
compositions are both preserved. In particular, F(1A) = 1F(A) for each A ∈ Obj(C1 ), 
and F(g ◦1 f ) = F(g) ◦2 F(f ) for any f , g ∈ Hom(C1) , f : A → B and g : B → C , 
respectively.

Categorical representation of multi‑model data

The idea to define a unified structure for the representation of multi-model data based 
on category theory was already introduced in paper [7]. In particular, notions of a schema 
category describing the conceptual structure (schema) of the data and an instance cat-
egory encompassing a particular data instance conforming to a given schema category 
were described. We also introduced an algorithm for transforming an ER schema to a 
corresponding schema category so that users can easily understand the categorical 
approach in terms of a well-known conceptual modeling strategy. Nevertheless, schema 
categories can also be designed directly from scratch without creating ER schemas first.
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This section provides an extended version of the definitions of both the schema and 
instance categories. The core idea remains the same, but several changes were intro-
duced to increase their expressive power.

Schema category

Schema category S is defined as a tuple (OS,MS, ◦S) . Borrowing the ER terminology, 
objects in OS correspond to individual entity types, attributes, and relationship types. 
Hence, if S is derived from an ER schema (but it does not have to be), we can distinguish 
entity, attribute, and relationship objects, and, analogously, attribute, relationship, and 
hierarchy morphisms. This distinction is introduced solely to increase comprehensibil-
ity since objects and morphisms of all kinds are always treated and processed the same 
way. Morphisms in MS connect appropriate pairs of objects. The explicitly defined mor-
phisms are denoted as base, those obtained via the composition ◦ as composite.

Each object o ∈ OS is internally modeled as a tuple (key, label, superid, ids), where 
key ∈ O is an automatically assigned internal identity ( O ⊆ N being their domain5), label 
is an optional user-defined name (e.g., name of the corresponding entity type) or ⊥ when 
missing, superid  = ∅ is a set of attributes (each corresponding to a signature of a base 
or composite morphism as they are introduced later on)6 forming the actual data con-
tents a given object is expected to have, and ids ⊆ P(superid) , ids  = ∅ is a set of particu-
lar identifiers (each modeled as a set of attributes) allowing us to uniquely distinguish 
such individual data instances. It holds that superid ⊇

⋃
id∈ids id . In the case of entity or 

attribute objects, equality holds.
Each morphism m ∈ MS is a tuple (signature, dom, cod, min, max). signature ∈ M

∗ 
allows us to mutually distinguish all morphisms except the identity ones. M∗ is a set of all 
the possible strings over the alphabet M , i.e., all possible sequences of symbols from M 
connected using the · operation (e.g., 15, 3.7.5, or ε being a metasymbol representing an 
empty string). signature ∈ M is used for the base morphisms. signature ∈ M

∗ \ (M ∪ {ε}) 
is used for the composite morphisms allowing their decomposition to base morphisms, 
which is directly related to the definition of the ◦ operation itself. signature = ε is used 
for identity. dom and cod represent the domain and codomain of the morphism, whereas 
the triple (signature, dom, cod) enables one to distinguish also the identity morphisms. 
Finally, min ∈ {0,1} and max ∈ {1,*} allow us to express constraints on minimal/maxi-
mal numbers of occurrences, analogously as we can do in the traditional ER modeling7.

Identity morphism for an object o ∈ OS is defined as 1o = (ε , o, o, 1 , 1) . When-
ever m1 = (signature1 , dom1 , cod1 , min1 , max1) and m2 = (signature2 , dom2 , cod2 , 
min2 , max2) are two morphisms m1,m2 ∈ MS , their composite is evaluated as 
m2 ◦S m1 = (signature , dom1 , cod2 , min, max), where signature = signature2 ·signature1 
except the case when a non-identity morphism is composed with an identity one (in any 

5  We assume that these keys are assigned automatically, e.g., by a tool supporting the process of creation of schema cat-
egories or their transformation from ER schemas. Though we have chosen natural numbers, this particular decision has 
no impact on the definitions.
6  Not necessarily corresponding to attributes from ER, though in some cases they may coalesce and mutually corre-
spond to each other.
7  For the sake of easier explanation, we only use these basic types of cardinalities. The proposed algorithms can be 
extended to other commonly used ones too.
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order). As for the cardinalities, min = min(min1,min2) and max = max(max1,max2) , 
i.e., the lowest of limits for the lower bound and the highest for the upper one are chosen.

Finally, for technical reasons, whenever m : X → Y  is a non-identity morphism 
between two particular objects, there must also exist its dual morphism m−1 : Y → X . 
Its purpose is to restrain the opposite direction of the same relationship between a given 
pair of objects since morphisms are always directed. Therefore, both directions need to 
be treated separately.

The algorithm that transforms an input ER schema to schema category [7] creates 
an object for each entity type, relationship type, and attribute (one for an attribute as 
a whole, additional objects for its subattributes in the case of structured attributes). 
Labels, identifiers, and cardinalities are taken over from the respective ER constructs. 
ISA hierarchies and weak entity types are processed in the correct order, i.e., starting 
from the root/strong entity types and following the rules for inheriting identifiers. As 
we have mentioned, the schema category can be created directly, and thus there may 
exist morphisms between any kind of objects, depending on the respective data model 
it represents. If a schema category S is derived from an ER schema, the morphisms cor-
respond to its structure. Hence, there are morphisms, e.g., between entity and attribute 
objects, but not between two attribute objects.

Example 2.4  The schema category of ER model in Fig.  2 is depicted in Fig.  3. Each 
object is represented as a node labeled with key and label. Morphisms are represented 
as directed edges labeled with signature at its beginning. To simplify the figure, we do 
not depict the identity and composite morphisms and the cardinalities of the morphisms 
(which correspond to those in the ER schema). We also do not depict superid and ids of 
objects. And, for the sake of clarity of further examples, the keys of objects are ≥ 100 , 
whereas signatures of base morphisms are < 100.8
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8  In general, the identifiers can be assigned randomly. To speed up the access, we assigned each two mutually dual mor-
phisms with respective positive and negative integers in the implementation.
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Let us look closely at the structure of the selected objects. For example, object Product 
has a simple identifier id. Thus its full categorical representation is:

{121, “Product ′′, {47}, {{47}}}

Considering object Order with a mixed weak identifier, its categorical representation is:

{111, “Order′′, {25, 1.21.24}, {{25, 1.21.24}}}

Object Customer having simple identifier id, and two composed and even overlapping 
identifiers (name, tag) and (surname, tag). Therefore, its categorical representation is:

{100, “Customer′′, {1, 3, 5, 7}, {{1}, {3, 5}, {7, 5}}}

Relationship object Publishes has the following categorical representation:

{129, “Publishes′′, {47.58.62, 65.53}, {{65.53}}}

Signature 47.58.62 leads to object Id identifying object Book (see the ISA hierarchy in 
the ER model), while signature 65.53 points to object Name identifying object Publisher. 
Due to cardinalities in relationship Book-Publishes-Publisher, the minimal identifier 
required to identify the relationship Publishes is {65.53} , meaning that a single publisher 
may publish many books. However, a particular book is published only by a single pub-
lisher.�  �

Instance category

While the purpose of the schema category S is to describe the structure of the data at 
the conceptual layer, instance category I is a data structure capable of holding the actual 
data stored within a (set of ) DBMS(s). Each instance category I = (OI,MI, ◦I) repre-
sents a particular data instance conforming to a particular schema category S . It permits 
us to encompass all data valid against S stored in the database at a selected moment. 
When the data is modified (within the restrictions given by S ), a new instance category 
is obtained.

Objects OI as well as morphisms MI directly correspond to the objects OS and mor-
phisms MS in schema category S , respectively. Hence, both categories intention-
ally have the same structure, they only differ in what their objects and morphisms 
represent. Assuming that V is the domain of all possible values of attributes, object 
oI = {t1, t2, . . . , tn} ∈ OI for some n ∈ N is modeled as a set of tuples, each represented 
as a function ti : superid → V for any i ∈ N, 0 < i ≤ n . The tuples are unordered, 
unique, and with all attributes specified. The particular set of tuples that are used for 
object oI ∈ OI is called active domain of oI.

Since ids is a set of identifiers defined in the corresponding schema category object oS , 
it must hold that each identifier id ∈ ids has its identification ability, i.e., the cardinal-
ity of oI must not change when unique tuples projected only to the attributes of a given 
identifier would be retrieved.
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Example 2.5  An instance object CustomerI for CustomerS from Fig. 3 can, for example, 
be:

CustomerI = {

{(1, 1), (3,Mary), (5, 13), (7, Smith)},

{(1, 2), (3,Anne), (5, 17), (7,Maxwell)},

{(1, 3), (3, John), (5, 19), (7,Newlin)}}

The tuples form the active domain of CustomerI.� �

Morphisms act as binary relations, i.e., they abide by the principles of the Rel category 
(see Example  1.4). In particular, having a morphism mI ∈ MI , mI : o1 → o2 for some 
objects o1, o2 ∈ OI , it must then hold that mI ⊆ o1 × o2 . Moreover, the cardinality restric-
tions min and max imposed by the corresponding schema category morphism mS must 
also be satisfied. It means that ∀ t1 ∈ o1 it must hold that |{t2 | t2 ∈ o2, (t1, t2) ∈ mI)}| = c 
must be within the cardinality boundaries. Identity morphism 1o for each object o ∈ OI 
is defined as a function (i.e., a special case of a more generic relation) 1o = {(t, t) | t ∈ o} . 
The composition operation ◦I corresponds to the composition in Rel.

Example 2.6  Consider object CustomerI from Example 1.7 and object SurnameI with 
the following active domain:

SurnameI = {

{(ǫ, Smith)},

{(ǫ,Maxwell)},

{(ǫ,Newlin)}}

Note that since CustomerI is attribute object, its superid = {ǫ} , i.e., ǫ represents the iden-
tity morphism.

Morphism 7I : CustomerI → SurnameI has the following set of relations9:

7I = {

({(1, 1), (3,Mary), (5, 13), (7, Smith)}, {(ǫ, Smith)}),

({(1, 2), (3,Anne), (5, 17), (7,Maxwell)}, {(ǫ,Maxwell)}),

9  Note that the morphisms are internally implemented as pairs of pointers to the respective objects representing data. 
So, there is no data duplication as might be indicated by the example.
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({(1, 3), (3, John), (5, 19), (7,Newlin)}, {(ǫ,Newlin)})} � �

Having a schema category S and a particular instance category I , we can introduce a 
pair of functors SchmI : I → S and InstI : S → I using which we will be able to retrieve 
the corresponding counterparties.

Category‑to‑data mapping
Having defined a schema category, in this section we specify its mapping to the underly-
ing (set of ) DBMS(s), i.e., we describe how the actual data permitted by a given schema 
category are supposed to be stored within the data structures provided by the underly-
ing database(s). Although this mapping can also be described directly, we assume that 
the whole decomposition process is aided by a tool that enables us to visualize and pro-
cess schema categories, e.g., using a tool called MM-cat which we introduce in "Frame-
work MM-cat" section.

This section aims to describe how the mappings are intended to be created and for-
malized. After an informal outline of the basic principles, we provide a formal definition 
of these mappings ("Formal Definitions" section), and we introduce an alternative way 
that these mappings can be visualized or even directly created by users using a textual 
representation ("JSON-like Representation’ section).

The decomposition (which can be both partial and overlapping) is defined via a set 
of mappings, each describing where and how data instances of one schema category 
object or base morphism—possibly together with other data from neighboring or 

Table 1  Unification of terms in popular models

Unifying 
term

Relational Array Graph RDF Key/value Document Column

Kind Table Matrix Label Set of triples Bucket Collection Column 
family

Record Tuple Cell Node/edge Triple Pair (key, 
value)

Document Row

Property Attribute Attribute Property Predicate Value Field Column

Domain Data type Data type Data type IRI/literal/
blank node

– Data type Data type

Value Value Value Value Object Value Value Value

Identifier Key Coordinates Identifier Subject Key Identifier Row key

Reference Foreign key – – – – Reference –

Array – – Array – Array Array Array

Structure – – – – Set/ZSet/
Hash

Nested 
document

Super column

Fig. 4  An example of a category
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even more remote objects or morphisms—are stored as individual records within a 
given kind (recall Table  1) in a particular underlying DBMS (i.e., as rows within a 
table in the traditional relational model, JSON documents within a collection in the 
document model, etc.).

During the decomposition process, the user is expected to create individual map-
pings (i.e., create individual kinds and define the internal structure of their records) 
iteratively, one by one. This means a particular DBMS needs to be selected first, so 
that a new kind can be introduced and all its characteristics specified. Besides the 
name of a given kind, one object or base morphism from the schema category is 
selected and appointed as the root object/morphism for a given kind, representing its 
initial context. Next, the user specifies the internal structure of the records, starting 
with the top-level properties and, optionally, continuing with their recursively nested 
properties.

The specification of a property (at any level) consists of its name and structure, which 
must follow the rules and limitations imposed by the particular model. For example, in 
the case of the relational model, the level of nesting cannot be greater than 1, proper-
ties cannot be multi-valued, as well as the names of the properties (columns) must be 
unique. Finally, at least one root object identifier must be covered by the involved prop-
erties. Similarly, suppose a given kind also has a root morphism. In that case, it must 
involve at least one identifier of both its domain and its codomain, i.e., both objects par-
ticipating in the relationship given by the morphism.

When specifying a child property, there can occur three situations where the property 
can occur:

•	 A child property is a direct neighbor in the graph of the schema category, i.e., it is 
accessible via a base morphism.

•	 A child property is inlined from a more distant position, i.e., it is accessible via a 
composite morphism. Since more than one path may exist between two objects, the 
particular path, i.e., the composition of morphisms, must be denoted.

•	 A child property is defined as auxiliary, e.g., for grouping related properties. Hence, 
the respective object does not exist in the schema category.

When choosing a name of a property, there can also occur several situations:

•	 Inherited: The name of a schema category object is reused.
•	 User-defined: A completely new name is explicitly specified by the user.
•	 Anonymous: The name is entirely omitted in case no name is needed or permitted 

(e.g., for elements of an array in JSON).
•	 Dynamically derived: The name is derived from a particular instance of a schema 

category object.

Example 3.1  Consider the document collection Order in Fig. 1. For example, proper-
ties customer or price have user-defined names (different from the ones used in the ER 
schema and schema category in Figs. 2 and 3). Child property of property items has an 
anonymous name.
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A dynamically derived name of a property can be seen in the case of child properties of 
property contact. Name and value of the contact are specified in respective attributes 
Name of entity type Type and Value of relationship type Contact. In schema category 
this can be done via a composite morphism which corresponds to the composition of 
respective morphisms on the path from node Contact to nodes Name and Value. � �

Finally, the value of a property can be of the following two possible types:

•	 Simple, i.e., a single atomic value.
•	 Complex which encompasses a list or a set of child properties, i.e., an array or a 

structure.

Example 3.2  A sample decomposition is presented in Figs. 2 and 3 using the colors 
from Fig. 1.�  �

Formal definitions

More formally, the intended database decomposition is a set M of mappings in a form 
of a tuple (D, nameκ , rootκ ,morphκ , pkeyκ , refκ ,Pκ ) , each introducing one particular kind 
κ and describing the expected internal structure and contents of its records as follows:

•	 D denotes a particular DBMS, e.g., using a connection string.
•	 nameκ is a name of kind κ.
•	 rootκ ∈ OS is a root object associated with κ.
•	 morphκ ∈ MS ∪ {null} is an optional root morphism associated with κ . It cannot be 

an identity morphism. If morphκ  = null , then morphκ .dom = rootκ.
•	 pkeyκ is an (eventually ordered10) collection of signatures of morphisms whose codo-

mains correspond to properties forming the primary identifier of kind κ.
•	 refκ is a set of references from κ , i.e., a set of pairs (nameκ ′ ,Rκ ′) , where nameκ ′ is the 

name of the referenced kind κ ′ and Rκ ′ is a set of referenced properties of kind κ ′ . It 
must hold that access path Pκ contains mapping of properties in Rκ ′ to enable recon-
struction of the relationship between referring and referenced properties of both κ 
and κ ′.

•	 Pκ is an access path, i.e., a description of the internal structure of κ.

In the case of references, there can occur three cases: 

1	 null: The model does not support references at all (but we can still keep them in the 
categorical framework and check externally).

2	 ∅ : The model supports references, but none of them is used.
3	 The set has at least one input, because there is at least one reference in the model.

10  If required by the respective model.
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Example 3.3  In the case of the relational model, e.g., in PostgreSQL, examples of 
pkeyκ can be {1} , (1), or {3, 5} . In the case of Cassandra pkeyκ can be ((3.21, 5.21), 25.23) 
since the system allows the grouping of parts of the key.�  �

Access path Pκ is represented as a tree, where each node corresponds to one prop-
erty of kind κ and the edges represent the mutual nesting of properties if supported 
by the respective model. Furthermore, the sibling properties may be ordered in some 
models. The root of the tree is an auxiliary node, its child nodes correspond to top-
level properties of κ . Each node is simultaneously a root of an access subpath, describ-
ing the structure of the respective nested property.

Each node (property) φ of the tree is represented as a tuple (nameφ , contextφ , valueφ) . 
In the case of the auxiliary root node nameφ = ǫ , contextφ = null , and valueφ repre-
sents the structure consisting of top-level properties of κ . If property φ′ is the par-
ent of property φ , there exists a (base/composite) morphism mchild : oφ′ → oφ ∈ MS , 
where oφ , oφ′ ∈ OS are objects representing properties φ , φ′.
nameφ represents the name of property φ and can be of the following types:

•	 A static name corresponding to a fixed value, either inherited from schema cat-
egory or user-defined.

•	 An anonymous (empty) name.
•	 A dynamically derived name corresponding to signature of (base/composite) mor-

phism mname : oφ → oname , where oname is the object representing dynamically 
derived names. (Cardinality of the respective base morphism(s) must be (1, 1).)

In addition, there are specific features of the properties of particular data models that 
need to be reflected too: First, since the XML document model allows two kinds of 
properties, i.e., an XML element and an XML attribute, we distinguish between them 
using the prefix @ used for attributes. Second, edges in the graph model are mapped 
using properties with pre-defined (reserved) names _src for the source and _tgt for 
the target of the edge, respectively.

Optional contextφ represents the context of property φ within parent property φ′ , 
i.e., it denotes the root object oφ , if any, associated with φ . We distinguish the follow-
ing cases:

•	 If contextφ is a signature of base morphism mchild , it represents the case when oφ is 
a direct neighbour of oφ′ in the graph of S.

•	 If contextφ is a signature of composite morphism mchild , it represents inlining of 
property φ to φ′ from a more distant position in the graph of S.

•	 If contextφ is undefined, there exists no oφ ∈ OS , but its content ( valueφ ) does 
exist. It corresponds to the case when the property φ is a simple property (i.e., 
a leaf of the access path) or when the user adds an auxiliary property φ , e.g., to 
group a set of selected related properties.

Finally, valueφ represents the particular (simple or complex) value of property φ . We 
distinguish three cases:
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•	 A simple value is a signature of morphism mvalue : oφ → ovalue , where ovalue is the 
object representing the simple values.

•	 An array is as an ordered list of recursively defined nested properties φ1, ...,φl , for 
some l ∈ N

+.
•	 A nested structure is an unordered set of recursively defined nested properties 

φ1, ...,φk , for some k ∈ N
+.

The latter two are denoted as a complex value of a property.

JSON‑like representation

For the sake of easier processing and understanding, we introduce a textual JSON-like 
representation of an access path. It is defined by the grammar depicted in Fig. 5. STRU​
CTU​RE is the start nonterminal. Terminal static-name represents an inherited or 
user-defined name of a property. Terminal _ (underscore) represents the anonymous 
name of a property. Terminal epsilon represents an empty value. Terminal m_id rep-
resents the signature of a base morphism and terminal . (dot) represents their concat-
enation. Terminals { and } (curly brackets), [ and ] (square brackets), , (comma), and : 
(colon) serve as delimiters.

As we can see, there are three positions, where the signatures of morphisms (SIG-
NATURE) occur—in the case of dynamically derived names, specification of the context 
of a property, and specification of simple value of a property. Adding another level of 
nesting of properties (STRU​CTU​RE) can occur at two positions—as a complex value of a 
property or as an element of an array. (Also note that for simplicity we do not consider 
data types. This information could however be added between CONTEXT and VALUE as 
a system-specific TYPE.)

Example 3.4  Fig.  6 illustrates the access path of collection Order from Fig.  1. We 
remind the collection itself on the left and the respective part of schema category S on 
the right. In the middle we can see the respective access path. The colors denote the cor-
responding parts in all three data representations.

As we can see in the figure, the description starts from the value part of the auxiliary 
root node, i.e., its empty name and context are omitted. It consists of top-level properties 
_id, contact, and items.

The first one corresponds to a nested document having an auxiliary user-defined name 
_id that is not present in schema category S and two nested (leaf ) properties customer 
and number.

Fig. 5  Grammar of the JSON-like representation of access paths
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The second one is a map contact having the context specified by a morphism with 
signature = 27 and containing a set of pairs (name : value) distinguishable using dynami-
cally derived names and corresponding values. Note, that the corresponding object from 
schema category S has superid = {31.29, 33} , making them related.

The third one is a homogeneous array items of an anonymous complex type. Note that 
the cardinality of morphism determines the fact that it is an array with signature = 35 . 
The anonymous nested complex property (document) corresponds to a set of four prop-
erties. Properties id, name, and price are related to object Product. Property quantity is 
related to object Items. In other words, the mapping allows collocating properties that 
are not directly mutually related in the schema category. � �

Note that there is a difference between aggregate-ignorant and aggregate-oriented 
models. For aggregate-ignorant ones, there is no need to consider ARRAY​ or STRU​
CTU​RE in VALUE. Moreover, specifying of CONTEXT is mandatory. In the relational 
model, only morphisms having cardinality (0,  1) or (1,  1) are allowed to connect a 
property (i.e., attribute) with a kind (i.e., relational table). In addition, the graph model 
allows a homogeneous array of a simple type, i.e., other cardinalities are allowed.

Aggregate-oriented models allow more complex structures. Among others, the 
following commonly used data structures that the grammar can describe are thus 
supported:

•	 Heterogeneous array: In the most general situation, a heterogeneous array can have 
a morphism specifying its context with cardinality (0, N), or it has no morphism. 
Items of the array also can have the morphism specifying their context within the 
array with cardinality (0, N). In general, any cardinalities which allow an array of 
at least two items with distinct types are allowed.

{ 
_id : { 

customer : 1, 
number : 2

  }, 
contact : { 

cellphone : +420123456789, 
email : mary@smith.cz

  }, 
items : [ 

    { 
id : B1, 
name : Pyramids, 
price : 200, 
quantity: 2

    }, { 
id : A7, 
name : Sourcery, 
price : 200, 
quantity : 1

    } 
  ] 
}

collection Order

{
_id : {

customer : 1.21.24,
number : 25

  },
contact : 27 {
31.29 : 33

  },
items : 35 {

id : 47.39,
name : 49.39,
price : 51.39,
quantity : 37

  }
}

kind name: Order

Orders 
110

Type 
114

Id 
101

Customer
100

Items 
117

Order 
111

Contact 
113

Quantity 
118

_id

items

contact

Price 
124

Id 
122 Name 

123

Product 
121

Number 
112

Value 
116

Name 
115

23
24

26

25

21

22

1

2

27
28

29
30

31

32

33

34

35

36

38

40

39

37

47

48

49

50

51

52

(0,*)

(1,*)(0,*)

(0,*)(1,*)

(1,1)

(0,*)

(0,*)

(0,*)(0,*)

(0,*)(0,*)

(1,1)
(1,1)

(1,1)(1,1)

(0,*)(1,1)

(0,*) (0,*)

(1,*) (1,1)

(0,*) (1,*) (0,*) (1,*) (1,1) (1,1)

Fig. 6  Collection Order, an access path for kind Order, and the corresponding part of schema category S
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•	 Tuple: A tuple is a special kind of a heterogeneous array. The morphism specify-
ing the context of a tuple has an arbitrary cardinality, or it has no specifying mor-
phism. Items of the tuple have the morphism specifying their context within the 
tuple with cardinality (1, 1) (or even (0, 1) in case, e.g., Cassandra).

•	 Nested document: In the case of nested documents, the same rules are applied as to 
the top-level document.

•	 Map: A map is a special kind of nested document, having dynamically derived names 
of properties.

Transformations
Having defined the schema category S , instance category I , and mapping M between 
the categorical representation and particular models, in this section, we can introduce 
the algorithms for mutual transformation between categorical and logical data represen-
tations. We aim to provide a generic approach applicable to all data models (and their 
combinations). After we define the transformation process for both directions, we dis-
cuss how it can be used, e.g., for data migration.

Model‑to‑category transformation

First of all, we describe the process of data transformation from a particular logical 
model to the categorical representation. It consists of two steps: 1) we fetch data from an 
input logical model and 2) we insert selected records, one-by-one, to instance category I.

Forest of records

To be able to uniformly manipulate records from different data models (recall Table 1), 
both aggregate-oriented and aggregate-ignorant, we first propose their tree-based 
representation. Each record r is represented as a directed (eventually ordered11) tree 
r = (V ,E) . V contains a node vi for each (eventually nested) property φi , i = 1, . . . , n , in 
record r (only if property φi appears in access path as a mapping of a categorical object) 
and an auxiliary root node v0 ∈ V  representing the whole record denoted as φ0 . Each 
node v ∈ V  contains an array of name/value pairs (namev , valuev) , where namev rep-
resents the name of the property and valuev represents its value. Nodes vj , vk ∈ V  are 
connected using a directed edge e = (vj , vk) , e ∈ E if the corresponding properties φj ,φk 
in record r are in a parent/child relationship, i.e., property φk is nested in property φj . 
Hence, a property with a simple type or a property representing an array of a simple type 
is represented as a leaf node, while other types of properties are represented as an inner 
node.

Records of the same kind κ are grouped to form a forest of records Fκ = (Tκ ,Mκ) , 
where Tκ is a set of trees representing the records of κ and Mκ is a mapping that 
maps a categorical identifier of each property φ occurring in kind κ to the list of 
the respective nodes in trees in Tκ . The categorical identifiers correspond to a pair 
nameφ : contextφ for inner nodes and nameφ : valueφ for leaf nodes. The mapping 

11  Depending on the particular model.
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allows a quick access to all properties corresponding to the same instance category 
object at the same level of trees in Tκ . Hence, there is no need to traverse the whole 
tree to access a particular property. (Note that we do not materialize the whole for-
est for all input trees. Only the currently processed data fragments are constructed 
for further processing.)

Example 4.1  Fig. 7 illustrates the representation of document Order corresponding to 
the access path depicted in Fig. 6 as a tree (in a forest of size 1). On the left we can see 
the categorical identifiers, on the right the particular tree, whereas the levels represent 
the mapping. (Note that to simplify the figure, we do not depict valuev of node v if namev 
is user-defined and thus it is a part of the categorical identifier.) The root of the tree cor-
responds to the document itself. All leaves correspond to properties with a simple type 
or an array of a simple type. Other nodes represent more complex structures. For exam-
ple, node items corresponds to a complex-type array. Anonymous node _ corresponds 
to a nested document. Node contact corresponds to the map of contacts having dynami-
cally derived names of properties. (Note that node _id does not appear in the forest of 
records, since the corresponding object is not in the schema category). � �

Example 4.2  As illustrated in Fig. 9, the representation of records in relational table 
Customer is significantly simpler, since there are no hierarchical structures. In the figure, 

customer : 1.21.24

number : 25

items : 35

2

1

31.29 : 33 email

mary@smith.cz

cellphone

+420123456789

contact : 27

id : 47.39

name : 49.39

price : 51.39

quantity : 37

B1

Pyramids

200

2

A7

Sourcery

200

1

Fig. 7  Forest containing a single record corresponding to a document
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we can see the mapping of each categorical identifier (on the left) to all respective prop-
erties in all trees depicted at the same level (on the right).�  �

Transformation algorithm

The input of the algorithm is formed of schema category S , (possibly non-empty) 
instance category I corresponding to S , the forest of input records Fκ = (Tκ ,Mκ) of 
kind κ , access path Pκ of kind κ , root object rootκ and root morphism morphκ associ-
ated with κ . A model-specific command creates the forest of records (expressed in 
pseudocode, e.g., like SELECT * FROM KIND κ ), followed by model-specific trans-
formation of its result to the forest structure Fκ . In "Framework MM-cat" section  we 
show the respective implementation for particular models using wrappers.

The algorithm processes one-by-one every input record (tree) r ∈ Tκ . Based on the 
DFS traversal, it traverses the access path Pκ which describes the required mapping 
and fills instance category I with appropriate data fragments. The pseudocode of the 
transformation algorithm is provided in Algorithm 1.

As we can see, processing one record r consists of two phases—preparation and 
processing of the rest of the tree.

Preparation Phase In the preparation phase, we distinguish two situations—if kind 
κ is associated with a root object or a root morphism. In the former case (line 8), 
we first gain object qI corresponding to rootκ using functor InstI : S → I . Next, using 
function fetchSids() we acquire a set S which consists of sets of pairs (name, value), 
where name corresponds to a particular superid attribute of rootκ and value corre-
sponds to the respective value in r, if it exists. (In the case of rootκ , every record r 
is identified using a single (super)identifier, i.e., |S| = 1 .) Note that we work with the 
keys of schema category objects used both in the access path Pκ and in the mapping 
Fκ used in the input forest of records.

Example 4.3  Consider again Figs. 7 and 6. Object oκ corresponding to Order is identi-
fied by a superid = {1.21.24, 25} corresponding to objects Id (with key = 101 ) and Num-
ber (with key = 112 ). Function fetchSids() exploits mapping Mκ to quickly navigate to 
specific values of properties customer and number, matches them to corresponding keys 
of objects representing these properties in S and returns set S that contains a single set 
{(1.21.24, 1), (25, 2)} . � �

Then, the algorithm iterates through the set S. Each sid ∈ S internally modifies 
object qI and participates in further traversing of access path Pκ . Internal modification 
of qI is done in function modifyActiveDomain() (line 12), where four cases may occur:

•	 If sid ∈ qI , nothing has to be done.
•	 If sid is a part of an already existing sidI ∈ qI , sid is replaced by sidI.
•	 If sid corresponds to an already existing SI ⊆ qI , sid replaces SI.



Page 20 of 49Koupil and Holubová ﻿Journal of Big Data            (2022) 9:61 

•	 If sid /∈ qI , it is added.

Further traversing is ensured by function children() (line 13) which determines the 
new context and value to be processed in the same way. (We describe its body in 
detail in paragraph Function children() on page 21.) The result of the function asso-
ciated with a particular sid is then pushed to the top of auxiliary stack M as a tri-
ple (sid,  context,  value). The reason for also involving sid is that we need to know 
the associated parent in the next steps to appropriately fill the morphisms context 
between corresponding parent and child objects in I.

In the second option, i.e., if κ is associated with a root morphism (line 15), we gain 
both the domain and codomain of the root morphism morphκ . Next, for both of them, 
we also fetch the sets of corresponding superidentifiers using function fetchSids() and 
we apply function modifyActiveDomain() respectively. In lines 22 and 23 we fill rela-
tions corresponding to the root morphism and its dual morphism. Using function 
getSubpathBySignature() we get an access subpath t ′ of access path t provided in the 
first parameter corresponding to the signature of morphism m provided in the second 
parameter. In particular, it is a subpath t ′ such that every leaf l of t ′ has l.context = m 
or l.value = m or any ancestor a of l has a.context = m . If there are more such sub-
paths, the one closest to t is returned. If m is null, then l such that l.value = ǫ is 
returned.

Finally, we acquire all new pairs (context, value) to be processed regarding the root 
morphism’s domain and codomain to ensure further traversing. These pairs, except 
for the one representing the already processed root morphism, are then pushed to the 
auxiliary stack M together with respective sids.

Processing of the Tree After having completed the initial phase, the algorithm one-
by-one releases and processes the top of the stack M until it is empty. The released tri-
ple (pid,mS, t) forms the new context of the algorithm, i.e., context morphism mS and 
access (sub)path t associated with parent superidentifier pid. Morphism mI : pI → oI 
and object qI are then computed using functor InstI (line 32 and 34).

Once again, we fetch S as a set of superidentifiers corresponding to oS (being codo-
main of mS ) from record r associated with currently processed pid (i.e., there is an 
edge (pid, sid) ∈ r ). This time size of S is not limited by 1 since the cardinalities of the 
properties allow multiplicity. S being fetched, the algorithm iterates through sid ∈ S 
and processes each of them in order: 

1	 to internally modify the active domain of object qI (line 37),
2	 to add relations for mI (lines 38, 39), and
3	 to participate in the further traversing of access path t (lines 40, 41).

Note that function fetchSids() returns only superid sets that are constructed from 
properties having as an ancestor value pid in the currently processed record r. In the 
preparation phase, the same function returns superid values related to null, e.g., hav-
ing no ancestor.
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Also note that the function fetchSids() returns an empty set if the data correspond-
ing to the fragment of the access path does not occur in the record. As a consequence 
of an empty set of sids, the (possible) traversing of corresponding access subpath 
stops, since there is no data in the record to be traversed (applies for both simple and 
complex properties).

As for adding of relations, we distinguish two situations. If mI is a base morphism, 
we only add pair (pid, sid) to morphism mI and mapping (sid, pid) to dual morphism 
m−1

I
 . If mI is a composite morphism, we add relations to all base morphisms form-

ing the composite morphism mI . Thus we need to extend also the active domains 
of the affected objects, respectively. To do so, the algorithm either determines 
the superidentifier of such objects from r, or computes a technical identifier (i.e., 
autoincrement).

The algorithm ends when the stack M is empty meaning that all the data are trans-
formed into instance category I , i.e., internal structures of objects and morphisms in I 
are appropriately extended.

Example 4.4  Suppose that we have an access path depicted in Fig. 6 and a correspond-
ing forest of records depicted in Fig. 7. The intended transformation should convert the 
data represented in the document model to the categorical representation correspond-
ing to the schema category S depicted in Fig. 3 and non-empty instance category I.

The algorithm processes each record r as follows: First, properties customer and num-
ber corresponding to the superidentifier of object Order are fetched from record r, and 
as a set of tuples, i.e., {(1.21.24, 1), (25, 2)} , added to set S as the document identifier, 
i.e., a part of the superidentifier of object Order from schema category S . Next, instance 
category I is extended using sid, i.e., the active domain of corresponding object qI is 
extended with the value of sid. And access path Pκ (depicted in Fig. 6) is traversed, creat-
ing triples for stack M for property Customer, Number, Items, and Contact related to sid, 
as depicted in Fig. 10. In the figure on the right we can also see the current content of 
instance category I , i.e., a particular order was added.

Next, the top of the stack is released, i.e., the triple describing the access subpath leading 
to property items, i.e.:

{ id : 47.39, 
    name : 49.39, 
    price : 51.39, 
    quantity : 37 }
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Fig. 8  Part of instance category I  after the insertion of single Order
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Newlin

Fig. 9  Forest containing three records corresponding to a row of a relational table

1, 2

351, 2
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27
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1, 2

1, 2

1, 2

{ id : 47.39,
  name : 49.39,
  price : 51.39,
  quantity : 37 }

{ 31.29 : 33 }

Fig. 10  Stack M and instance category I  when the preparation phase for data from Fig. 7 is completed
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associated with pid (customer  :  2,  number  :  1) and morphism 35I : OrderI → ItemsI 
of instance category I . Within this context, the active domain of object ItemsI is filled 
with the following tuple:
{(1.21.24.36, 1), (25.36, 2), (47.39, “A7′′)}

Relation:

({(1.21.24.36, 1), (25.36, 2), (47.39, “A7′′)},

{(1.21.24, 1), (25, 2)})

is added to morphism mI and dual morphism m−1
I

 is extended with relation:

({(1.21.24, 1), (25, 2)},

{(1.21.24.36, 1), (25.36, 2), (47.39, “A7′′)})

Finally, the access path leading to property items is further traversed to the access paths 
corresponding to leaves, i.e., 47.39, 49.39, 51.39, and 37.

The same applies to the other sid, i.e.,

(1.21.24.36, 1), (25.36, 2), (47.39, “B1′′)

as can be seen in Fig. 11. The algorithm continues in the same way until stack M is empty. 
The resulting part of the instance category I corresponding to kind Order is depicted in 
Fig. 8.�  �

1.21.24

27

25

1, 2

1, 2

1, 2

1, 2

1, 2, A7

1, 2, B147.391, 2, A7

47.391, 2, B1

49.391, 2, A7

49.391, 2, B1

51.391, 2, A7

51.391, 2, B1

371, 2, A7

371, 2, B1

{ 31.29 : 33 }

Fig. 11  Stack M and instance category I  when the first iteration of tree processing completed
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Function children() Having the whole algorithm built on the DFS principle, the main pur-
pose of function children() is to determine the access subpaths to be traversed from the 
input access path t. The function (see Algorithm 2) returns a set C of pairs (context, value), 
each consisting of possibly non-empty access sub-path value and morphism context, both 
corresponding to currently traversed access path t.
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For each top-level property of access path t modeled as a triple (name,  context,  value) 
we traverse its name separately. Its context and value are traversed together to deter-
mine the body of the property. Both cases are ensured by calling function traverseAccess-
Path()—see Algorithm 3. While the context may contain a base/composite morphism, 
the value may contain a base/composite morphism or a complex structure. As we can 
see in the algorithm, multiple cases may occur:

•	 If a name is static or anonymous, nothing has to be done. There is nothing to trav-
erse, so an empty set is returned.

•	 If a name is a signature of a base/composite morphism, its dynamic name must be 
computed and further traversed. Thus, the name and an empty access sub path are 
added (corresponding to the fact that it represents a leaf ).

•	 If the value is a signature or empty, i.e., a simple value, the concatenation of context 
and value is returned together with an empty set to be further traversed.

•	 If the context is a signature and the value is complex, the pair (context,  value) is 
returned.

•	 Else, i.e., if there is no specified context, we must further traverse value to determine 
context. Hence, the function children() is recursively called.
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Category‑to‑model transformation

Having an instance category I and mapping M , the opposite direction of transforma-
tion allows extraction of data from I and storing it into a particular logical model. The 
whole algorithm consists of three parts: 

1	 DDL Algorithm: Definition of the schema of the data including names of properties 
that are dynamically derived (see "DL algorithm" section).

2	 DML Algorithm: Transformation of data instances from instance category I to a par-
ticular logical model (see "DML algorithm" section).

3	 IC Algorithm: Finalization of schema definition with integrity constraints, i.e., adding 
of identifiers and references to other kinds (see "IC algorithm" section).

DDL algorithm

Having a schema category S , instance category I , access path Pκ , kind name nameκ , 
and particular database wrapper WD working over database D, the first algorithm cre-
ates a DDL statement to define a schema of kind κ in database D, i.e., a statement of 
type CREATE KIND. The algorithm proceeds “lazily”. First, it provides all the infor-
mation about the structure of the currently processed kind κ to wrapper WD . Second, 
it calls the method for constructing the output database-specific command. The com-
mand can be sent to D for execution or just visualized to the user, e.g., for checking.

The processing is again based on the DFS approach. The traversal of Pκ is imple-
mented using stack M that contains the context of the traversing (Np, t) , i.e., set of 
names Np that correspond to the property represented by access sub-path t. There 
can be more than one name in Np if the property’s name is dynamically derived. In 
addition, since the structure of κ can be hierarchical, for easier construction of the 
resulting command, the names in the context are constructed using their concatena-
tion expressing the path from the root of the hierarchy (e.g., /Order/Items/_/
Name)—we denote them as hierarchical names.

As we can see in Algorithm 4, we begin the processing with the setting of kind name 
nameκ to wrapper WD and we check whether the schema is applicable, i.e., whether data-
base D is not schema-less. If D is schema-less, only a trivial DDL statement is returned, 
i.e., kind κ is created without specification of its structure (for example, in MongoDB this 
would be command db.createCollection(“orders”)). Otherwise, traversing of 
the access path Pκ is carried out using stack M. It is initialized by pushing the initial 
context, i.e., set N0 containing only trivial name ǫ (since the whole kind κ does not have a 
parent name) and the whole access path Pκ associated with kind κ.

We iterate through the body of while cycle until the stack M is empty. First, we release 
from the top of the stack M the currently processed context (Np, t) , i.e. a set of hierarchi-
cal property names Np corresponding to parent property p of the property represented 
by access sub-path t. Next, using function determinePropertyName() we construct the 
set of names Nt of the current property. And we construct the set of new hierarchical 
names N as a concatenation of pairs resulting from Cartesian product Np × Nt.
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Depending on whether t describes a simple property (i.e., t.value corresponds to a 
SIGNATURE or it is empty) or a complex property we add new properties to wrapper 
WD . If t describes a simple property (line 14), we create a new property for each name 
n ∈ N  within kind κ.12 Exploiting the cardinalities in schema category S , we further spec-
ify whether the new property is an array or optional. If t describes a complex property 
(line 21), the processing is similar, but the wrapper is informed about a complex prop-
erty or an array of complex properties. In addition, we push all child properties to stack 
M (line 28) to be processed as well.

Finally, using the wrapper WD the algorithm constructs and returns the particular DDL 
statement. If D already contains a kind of the same name, the statement can be of type 
ALTER KIND, otherwise statement of type CREATE KIND is created.

Function determinePropertyName() This function returns the resulting name (or a set 
of names) depending on the way it was specified by the user. If the name is statically 
determined (user-defined, anonymous, or inherited from schema category S ), it directly 
forms the output of the function. If the name is dynamically derived, the function 
acquires all values stored in the active domain of the object specified using a signature of 
its input morphism. The set of values forms the output of the function.

12  If there are multiple names in N, their processing can in some systems differ. For example, while the wrapper for Post-
greSQL would create separate properties, the wrapper for Cassandra would create a map of properties.
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DML algorithm

Having the schema category S , instance category I , kind name nameκ , access path Pκ , 
root object rootκ and root morphism morphκ , both associated with kind κ , and particular 
database wrapper WD working over database D, the second algorithm creates a list of 
DML statements which store data into the schema of kind κ in database D, i.e., state-
ments of type INSERT INTO KIND. If the resulting commands are sent for execution 
to database D, they can fill in the kind created using Algorithm 4 with data from instance 
category I.

As we can see in Algorithm 5, we first initialize an empty name n0 = ǫ , empty list dml, 
and empty stack M. The rest of the processing depends on whether κ has a root object 
or a root morphism. In the former case, we first acquire object qI ∈ I corresponding to 
rootκ using functor InstI . In the next step, we get the active domain S of qI . We push each 
sid ∈ S together with empty name n0 and Pκ to auxiliary stack M and we call function 
buidStatement() (see below) which creates the respective INSERT command that is then 
added to list dml.

In the latter case, i.e., κ with the root morphism, we first acquire the respective mor-
phism mI using the functor InstI . Next, using function fetchRelations() we get a set of all 
pairs (o1, o2) , where o1, o2 ∈ OI such that mI(o1) = o2 . Then we get access subpath tcod 
of codomain morphκ .cod using function getSubpathBySignature(). For each s ∈ S we ini-
tialize stack M with two values—one for the domain (line 22) and one for the codomain 
(line 23). In the former case, we use the original access path Pκ without subpath tcod cor-
responding to the codomain. In the latter case we use the so-far unprocessed subpath 
tcod . Then we call function buildStatement() and add its result to the list dml.

Function buildStatement() As stated in Algorithm 6, function buildStatement() itera-
tively processes the initialized stack M until it is empty. First, the top of M is released 
as a triple consisting of an identifier of parent property pid, hierarchical property name 
np , and respective access (sub)path t. Using function collectNameValuePairs() we acquire 
a set of pairs (name, value)13 of data from I relative to pid as specified by t. Each pair 
(name, value) is then processed as follows: If t describes a simple property (line 11), the 
algorithm calls the wrapper to extend the current INSERT statement by adding value to 
kind κ as an attribute named np++name . It is up to the wrapper to determine how the 
empty data (null) will be inserted. It is a model-dependent feature if the missing data 
leads to a missing property or a null metavalue. If t describes a complex property (line 
15), the algorithm iterates through the set of nested properties within the complex prop-
erty and for every such property it pushes to stack M the respective new triple, i.e., it 
moves the processing to the next level. After processing of whole stack M, the wrapper is 
invoked to create and return the final INSERT statement.

13  Note that if we acquire multiple values by traversing a morphism having the upper bound cardinality set to many (i.e., 
∗ ), the name part is distinguished by an index in a form name[i], i ∈ N . Also note that if the value for a particular name 
is missing (in the categorical approach we represent missing values (null) as a missing relation in a morphism), the 
resulting pair contains value set to ǫ.
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IC algorithm

This algorithm aims to modify the created kinds to add integrity constraints ensuring 
the respective identifiers and references. These parts of schema definition are the most 
system-specific ones; however, the proposed approach is general enough to cover all 
known cases. The intra-model references are propagated to the respective DBMS by the 
system-specific wrapper. In the case of inter-model references, the propagation differs 
depending on the underlying combination of systems. A traditional polystore, as well as 
a multi-model DBMS is considered a separate system having its single wrapper, so the 
system itself handles the inter-model reference. In the case of a polystore-like combina-
tion of systems, where each has its wrapper, the DBMSs (naturally) cannot handle the 
references, because they are not aware of each other. However, the proposed categorical 
framework keeps this information and, thus, the integrity constraints can be checked 
externally. And, in general, this external checking of integrity constrains can also be used 
for a single-model DBMS lacking a support for references.

The whole process is described in Algorithm 7 which extracts all primary identifiers 
and references related to a particular mapping m and ensures their application at the 
logical level of D using a command of type ALTER KIND. Its input is formed of mapping 
m ∈ M , and respective wrapper WD . First, we process the identifier of κ . Using function 
collectNames() we get ordered collection N which contains attributes of the identifier of 
κ . The result is added to the wrapper WD for system-specific processing. Note that we 
use names from m.Pκ which are, contrary to user-defined names, unique.

Next, we process the set of references by iterating through set m.refκ . First, using func-
tion collectSigNamePairs() we get set O of pairs (signature,  name), i.e., signature and 
name of referencing attributes. We get the mapping of the referenced kind r.nameκ ′ and 
similarly set R of pairs of signatures and names of referenced attributes. Function mak-
eReferencingPairs() processes sets O and R and creates set S of pairs (referencing-name, 
referenced-name) which is added to wrapper WD . Finally, using function createICState-
ment() the respective command of type ALTER KIND is created.

Multi‑model‑to‑multi‑model migration

Having both directions of transformation, i.e., to and from the categorical representa-
tion, we can now easily perform the migration between any combination of models. 
Instead of mutually mapping n models, i.e., to create O(n2) mappings, we only need to 
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map each model to the categorical representation, i.e., to create O(n) mappings. This 
idea is not new; however, the categorical representation is sufficiently general that it cov-
ers all currently popular models (and probably many, if not all, coming in the future) and 
in particular their mutual combinations, i.e., inter-model references. Hence, we do not 
consider only model-to-model migration but more general multi-model-to-multi-model 
migrations. The level of abstraction enables us to “hide” many system-specific features, 
such as, e.g., different types of complex structures (e.g., arrays, maps, or lists), differ-
ent types of links (e.g., foreign keys, references, or pointers), etc. At the same time, the 
abstract representation bears information that is not supported by particular underlying 
systems (e.g., the schema of schema-less systems or integrity constraints for inter-model 
links).

In the middle of Fig. 12, we can see a part of the schema category of the sample data. 
The colors represent mappings between the categorical representation and particular 
kinds (green for kind Order in the document model, blue for kind Customer in the graph 
model, yellow for kind Orders in the graph model, violet for kind Order in the graph 
model, and red for kind Items in the column model). For each model, we can see both 
the access path and the respectively highlighted part of the schema category.

For example, we may want to perform migration from the document model to a com-
bination of the other four models. In the figure on the left, we can see the sample source 
(green) JSON document stored in the document model. On the bottom right we can see 
the target (red) column family; on the right up we can see (blue, yellow, and violet) graph 
data.

The migration process works as follows: Having defined all access paths, we first run 
the model-to-categorical transformation (see "Model-to-category transformation" sec-
tion) whose result is provided in Fig. 8, i.e., we get an instance category filled with data 
from the underlying document DBMS (MongoDB). Next we run the categorical-to-
model transformation (see "Category-to-model transformation" section). First, it creates 
the respective schemas (see "DDL algorithm" section). In the case of the schema-less 
graph model of neo4j, it does not define the structure, in the case of the column model 
of Cassandra it defines the schema of the table. Next, it stores the data instances in the 
DBMSs (see "DML algorithm" section) and in the last step it adds the respective integrity 
constraints (see "IC algorithm" section), namely command ALTER TABLE for Cassan-
dra and no commands for neo4j.

All these steps were performed automatically, only with the mapping between the cat-
egorical representation and the particular DBMSs based on the idea of access paths. This 
is the only manual work required from the user. In addition, in the following section we 
introduce a user-friendly tool that enables us to specify them comfortably.

Framework MM‑cat
As we have already mentioned, while the categorical representation and the respective 
mapping can be expressed manually, we do not assume that the user would do so. In this 
section, we show how the process can be made user-friendly using an appropriate tool.

To demonstrate the applicability of the proposed approach, we have implemented an 
extensible framework called MM-cat [10]. Its primary purpose is user-friendly modeling 
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of a multi-model schema and its mapping to a respective polystore, multi-model data-
base, or a set of databases. Using the proposed transformation algorithms the user can 
then transform the data to/from the categorical representation. At the same time MM-
cat serves as a basis for further possible extensions and application of the core idea in 
advanced data processing tasks forming our current and near-future work as discussed 
in Section .

The basic work with MM-cat assumes that the user creates a new schema from scratch. 
The following steps are expected to be carried out: 

1	 An ER schema of the target problem domain is created using usual approaches and 
recommendations.

2	 The input ER schema is automatically transformed to schema category S using the 
algorithm proposed in [7].14

3	 S is manually mapped to a selected combination of models. In particular, for each 
kind κ the following steps are performed: 

(a)	 A particular DBMS and if needed15 a particular model is specified. Either it is 
already know to MM-cat or the user specifies the respective parameters (i.e., a 
connect string).

(b)	 A root object of kind κ in S is selected and its name is specified.
(c)	 The structure of κ is defined, i.e., its levels and respective properties are speci-

fied. In particular, for each property its context, name, and value is specified. 
The continuously evolving commands of type CREATE KIND and ALTER 
KIND are visualized to the user to check the correctness of the mapping.

4	 The scripts with resulting commands of type CREATE KIND and ALTER KIND are 
generated. They can be also sent to the respective DBMS(s) to be executed. Then, 

{ 
  _id : { 
    customer : 1, 
    number : 2 
  }, 
  contact : { 
    cellphone : +420123456789, 
    email : mary@smith.cz 
  }, 
  items : [ 
    { 
      id : B1, 
      name : Pyramids, 
      price : 200, 
      quantity: 2 
    }, { 
      id : A7, 
      name : Sourcery, 
      price : 200, 
      quantity : 1 
    } 
  ] 
}

collection Order

{
  _id : {
    customer : 1.21.24,
    number : 25
  },
  contact : 27 {
    31.29 : 33
  },
  items : 35 {
    id : 47.39,
    name : 49.39,
    price : 51.39,
    quantity : 37 
  }
}

kind name: Order

Type 
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{ 
  number : 25 
}

{ 
  customer : 1, 
  31.29.27.23.22 : 33.27.23.22 
}

{ 
  _src : 1.21, 
  _tgt : 25.23 
}

kind name: Customer

kind name: Orders

kind name: Order

{ 
  customer : 1.21.24.36, 
  number : 25.36, 
  item : 47.39, 
  quantity : 37 
  detail : [ 
    49.39, 
    51.39 
  ] 
}

kind name: Items

1
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detail
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email: mary@smith.cz 
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2
Order

Orders
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graph Customer-Orders-Order

Fig. 12  Example of transformation from document model to graph and column models

14  An advanced user can create S directly, without the need to create the ER schema. We add this auxiliary step for easier 
understanding through a well-known approach.
15  The combined models can be a part of separate DBMSs or a single multi-model DBMS.
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the database structures (i.e., tables, collections etc.) in particular DBMS(s) as well as 
instance category I in MM-cat are empty.

5	 The user stores data to the created database structures (using an external tool).
6	 The content of the instance category I is created, e.g., imported from a CSV file or a 

particular DBMS filled with respective data.

As depicted in Fig. 13, MM-cat enables us to visualize and modify the current status of 
the multi-model modeling process. We can interactively work with the graphical repre-
sentation of the ER model as well as the respective schema category. We can choose the 
level of detail we want to see, i.e., the amount of information provided. We can also see 
the JSON-like expression of the access paths and the resulting commands of type CRE-
ATE KIND.

For a demonstration of the key contributions of the proposed categorical approach, 
MM-cat supports two DBMSs selected to cover most of the distinct features related 
to multi-model data modeling—MongoDB16 and PostgreSQL17. The versatility of the 
approach can be demonstrated from different viewpoints: 

1	 Schema-less (MongoDB)18 vs. schema-full/schema-mixed (PostgreSQL): MM-cat 
supports different approaches to the propagation of information about the speci-
fied structures to the particular DBMS. In both cases the user specifies the required 
structures using MM-cat; however, only in the case of schema-full (or schema-
mixed) DBMS is the information propagated to DDL commands. In addition, 
dynamically derived names of properties are also not allowed, e.g., in a schema-full 
relational DBMS. Besides, MM-cat supports two cases of a schema-mixed approach: 

(a)	 With a modeled schema: The user specifies the schema, even if it is not fully 
propagated to the DBMS. This happens when the features of a particular 
DBMS do not support schema-on-write approach for some models (in Post-
greSQL, it is represented by schema-less data type JSONB for JSON documents 
which can be used in a schema-full relational table). But the whole schema 
remains defined in the categorical representation. It can be used, e.g., for exter-
nal checking of data validity of the schema-less parts, conceptual cross-model 
querying, etc. (This approach can also be used for a schema-less DBMS, where 
we want to specify the schema externally.)

(b)	 Without a modeled schema: During the modeling phase, the user decides to 
leave a part of the schema unspecified, i.e., only a general data type (e.g., a 
BLOB) is assigned to a (part of a) kind. When the data stored in the DBMS 
is transformed to an instance category, the missing part of the schema can be 
inferred from the data instances. In other words, the schema-on-read approach 
is used for further processing of the data now with a known structure.

16  https://​www.​mongo​db.​com/.
17  https://​www.​postg​resql.​org/.
18  For the demonstration we consider MongoDB as schema-less, i.e., we do not exploit its ability to define a JSON 
schema.

https://www.mongodb.com/
https://www.postgresql.org/
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2	 Aggregate-oriented (MongoDB) vs. aggregate-ignorant (PostgreSQL): MM-cat sup-
ports differences in the mapping process regarding the complexity of structures 
allowed by the particular type of a system. Both complex hierarchical structures 
allowing nesting and repetitions (arrays) and flat relations with only simple data 
types (or their combination in the case of multi-model PostgreSQL) can be created.

3	 Polystore vs. multi-model DBMS: MM-cat can handle modeling of a schema in the 
case of a polystore-like approach, i.e., combining models from several DBMSs, and in 
the case of a single multi-model DBMS which is capable of storing multiple models 
in a single system.

Architecture and implementation

MM-cat was implemented using Java SE 16, graphical library JavaFX19, and Apache 
Maven20. For communication with MongoDB and PostgreSQL we use the respective Java 
(JDBC) drivers21,22.

The architecture of the framework is depicted in Fig. 14. At the bottom we can see n 
(green) DBMSs which represent all possible combinations of usage of multiple models, 
i.e.: 

1	 a multi-model DBMS,
2	 a set of single-model DBMSs, or
3	 a combination of the previous two cases.

Fig. 13  Sample screen shot of MM-cat 

19  https://​openj​fx.​io/.
20  https://​maven.​apache.​org/.
21  https://​mongo​db.​github.​io/​mongo-​java-​driver/.
22  https://​jdbc.​postg​resql.​org.

https://openjfx.io/
https://maven.apache.org/
https://mongodb.github.io/mongo-java-driver/
https://jdbc.postgresql.org
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For a unified access, each of the DBMSs is wrapped using a unified interface providing 
functions for defining a schema and integrity constraints, defining mapping to categori-
cal representations, and storing/extracting data. Each system-specific (green) wrapper 
implements an interface of the respective abstract (grey) wrapper. The yellow boxes 
represent the core categorical data structures defined in "Categorical representation of 
multi-model data" and "Category-to-data mapping" sections   and  , i.e. the schema cat-
egory, the instance category, and the access paths representing the core of the mapping. 
The transformation between the categorical structures and the wrappers representing 
the DBMSs (described in "Transformation" section) is ensured by the two blue transfor-
mation modules.

Finally, we also depict the red modules which represent the advanced functionality 
that we are currently implementing on top of the categorical data structures and trans-
formation modules, i.e. 

1	 conceptual querying over the categorical representation,
2	 inference of a categorical schema from data instances,
3	 migration of data between different DBMSs (having the same or distinct model), and
4	 evolution management, i.e., propagation of user-specified changes in the categorical 

schema to affected parts (i.e., primarily data instances and operations).

The unified representation of the data enables us to work with any combination of the 
underlying models regardless of implementation-specific details of particular systems.

Wrappers

A wrapper represents a bridge between a particular DBMS and the unified categorical 
layer. Each wrapper implements a selected interface of an abstract wrapper, namely: 

1	 AbstractPullWrapper for extracting data from a DBMS (i.e., calling queries of 
type SELECT * FROM KIND ...),

2	 AbstractPushWrapper for storing data into a DBMS (i.e., calling commands of 
type INSERT VALUES (...) INTO KIND ...),

3	 AbstractICWrapper for adding integrity constraints (i.e., calling commands of 
type ALTER KIND ... ADD CONSTRAINT ...),

4	 AbstractDDLWrapper for the definition of a schema (i.e., calling DDL com-
mands of type CREATE KIND ... without integrity constraints), and

5	 AbstractPathWrapper for the definition of mapping to categorical structures 
which differ in the particular DBMSs (models), e.g., in the (dis)allowed nesting of 
properties.

On top of the wrappers, we primarily implement the proposed transformation algo-
rithms (but other functionalities can be implemented on top of them too) in a unified 
way, i.e., regardless the specifics of the underlying DBMS. Moreover, adding new DBMS 
does not require changes in the higher-level modules, only the new wrappers need to be 
implemented. The underlying system does not need to be a particular existing DBMS, 
but it can be, e.g., a file manager ensuring the functionality of the unified interface.
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AbstractPathWrapper From the point of view of the proposed categorical rep-
resentation, the most interesting wrapper is AbstractPathWrapper. As we can see 
in Table 2, it returns information about the allowed complexity of the mapping in the 
particular DBMS.

For example, in the case of MongoDB its MongoDBPathWrapper23 enables to inline 
properties without any restrictions. When a morphism with the upper bound of a car-
dinality > 1 occurs on the path to the inlined property, an array of the inlined properties 
is created. The wrapper also enables the grouping of selected properties into an auxiliary 
property not defined in schema category S.

For PostgreSQL, its PostgreSQLPathWrapper[23] enables inlining only when 
the upper bounds of morphisms have cardinality = 1 (since arrays are not allowed). It 
also does not allow grouping or complex nested structures (since relational tables are 
flat). Dynamically derived names and anonymous names are not allowed too, due to 
the features of the relational model.

The abstract wrapper also predefines the following methods:

•	 Method addProperty(String hierarchy) adds a new property to the 
currently constructed access path. Parameter hierarchy contains its hierarchi-
cal name (e.g., /Order/Items/_/Name).

•	 Method check() enables to check whether the currently constructed access 
path follows requirements of the particular DBMS. For example, in the case of 
MongoDB it checks whether compulsory property _id being the identifier is pre-
sent.

AbstractDDLWrapper The methods that are used in Algorithm  4 (DDL Algo-
rithm) are predefined by the AbstractDDLWrapper. In particular they involve the 
following ones:

AbstractDDLWrapper

AbstractICWrapper

AbstractPushWrapper

AbstractPullWrapper

Schema Inference

Database n

DDLWrapper 
Impl n 

ICWrapper 
Impl n 

PushWrapper 
Impl n

PullWrapper 
Impl n

AbstractPathWrapper

PathWrapper 
Impl n

Querying

Model-To-Category Transformation

Data MigrationEvolution Management

Schema Category

Instance Category

Category-To-Model Transformation

...
Database 1

PullWrapper 
Impl 1 

PushWrapper 
Impl 1 

ICWrapper 
Impl 1

DDLWrapper 
Impl 1

PathWrapper 
Impl 1 

Access
Path

Database
Component

Mapping

Fig. 14  Architecture of MM-cat 

23  Which implements AbstractPathWrapper.
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•	 Method setKindName(String name) denotes the name of a kind (i.e., table, 
collection, etc.) for which the schema is created.

•	 Method isSchemaLess() determines whether the creation of a schema is (not) 
required, i.e., the database implements a schema-less or a schema-full approach.

•	 Method addSimpleProperty(Set<String> names, boolean 

optional) throws UnsupportedOperationException enables the 
creation of a property with a simple data type. Usually a separate property is cre-
ated for each value in parameter names. But, for example, in the case of Cas-
sandra the wrapper-specific behaviour ensures that a multi-value property is 
transformed to a map which influences the parent property as well. Parameter 
optional denotes whether value null is allowed.

•	 Method addSimpleArrayProperty(Set<String> names, boolean 

optio-nal) throws UnsupportedOperationException creates an 
array of simple data types.24

•	 Method addComplexProperty(Set<String> names, boolean 

optional) throws UnsupportedOperationException creates a prop-
erty with a complex type (structure).

•	 Method addComplexArrayProperty(Set<String> names, boolean 

optio-nal) throws NotAllowedException creates a property with an 
array of complex types. (Note that we distinguish an array of simple types and an 
array of complex types, because in some systems, e.g., neo4j, only the former one is 
allowed.)

•	 Method createDDLStatement() creates and returns the resulting DDL com-
mand for a particular DBMS.

For example, MongoDBDDLWrapper25 implements only method setKind-

Name(), whereas the remaining ones are empty (because MongoDB is schema-less) 
and do not throw any exception (because MongoDB is aggregate-oriented). Method 

Table 2  Allowed complexity of mapping in MongoDB and PostgreSQL 

MongoDB PostgreSQL

isRootObjectAllowed() True True

isRootMorphismAllowed() True True

isPropertyToOneAllowed() True True

isPropertyToManyAllowed() True False

isInliningToOneAllowed() True True

isInliningToManyAllowed() True False

isGrouppingAllowed() True False

isDynamicNamingAllowed() True False

isAnonymousNamingAllowed() True False

isReferenceAllowed() True True

24  Parameters names and optional have the same behaviour as in the previous case.
25  Which implements AbstractDDLWrapper.
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createDDLStatement() then returns only command createCollection with 
the respective name of the collection.
PostgreSQLDDLWrapper implemented purely for the relational model in Post-

greSQL implements methods setKindName(), addSimpleProperty() (add-
ing a simple property with kardinality (1,1)), and addSimpleArrayProperty() 
(PostgreSQL supports arrays of simple types). However, in case of the other methods 
the wrapper throws an exception UnsupportedOperationException, since it is 
aggregate-ignorant. (Note that the wrapper, e.g., for neo4j would have similar behaviour.) 
Method createDDLStatement() returns the respective command CREATE TABLE 
without integrity constraints.
AbstractPushWrapper Methods used in Algorithm 4 (DML Algorithm) are pre-

defined by the AbstractPushWrapper. In particular they involve the following ones:

•	 Method setKindName(String name) denotes the name of the kind (i.e., table, 
collection, etc.) where the instances are stored.

•	 Method append(String name, Object value) appends value associated 
with the name to the currently created DML command.

•	 Method createDMLStatement() returns the resulting DML command.
•	 Method clear() removes all the data previously added to create a DML com-

mand, i.e., the name of the kind and (name, value) pairs from the currently created 
DML command.

Wrappers for all types of DBMS implement methods setKindName(), append(), 
and removePairs() in the same way. Naturally the key difference is in method 
createDMLStatement() which is strongly system-dependent. For example, Post-
greSQL wrapper transforms pairs (name_1, value_1), ..., (name_n, value_n) of 
kind κ to command INSERT INTO KIND κ (name_1, ..., name_n) VALUES 
(value_1, ..., value_n). On the other hand, MongoDB wrapper creates com-
mand db.collections.insert(...), where name_i, i = 1, ...n denote names of 
fields in the hierarchy and value_i denote their respective values.
AbstractICWrapper Methods used in Algorithm 7 (IC Algorithm) are predefined 

by the AbstractICWrapper. In particular they involve the following ones:

•	 Method appendIdentifier(String name, IdentifierStructure pid) 
enables the addition of an integrity constraint representing an identifier to kind spec-
ified using parameter name. The structure of the identifier is provided in parameter 
pid. The structure defines not only the set of properties forming the identifier, but 
also their order and nesting, depending on the requirements of the particular DBMS.

•	 Method appendReference(String name, String name2, 

Set<Pair<String, String>> atts) enables adding of a reference from ref-
erencing kind specified using parameter name to referenced kind specified using 
parameter name2. Parameter atts contains a set of pairs (name of referencing prop-
erty, name of referenced property).

•	 Method createICStatement() creates a set of commands of type ALTER 
KIND for adding specified integrity constraints.
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•	 Method createICRemoveStatement() creates a set of commands of type 
ALTER KIND for (temporary) removal of specified integrity constraints.

The system-dependent processing of integrity constraints strongly differs. For exam-
ple in MongoDB there is a compulsory property _id which is checked by MongoDB-
PathWrapper in function check(). In PostgreSQL the selected properties forming the 
primary key or the foreign key are denoted in the command ALTER TABLE. In schema-
less MongoDB the references do not modify the schema at all.
AbstractPullWrapper Last but not least, AbstractPullWrapper predefines 

the methods used in Algorithm 1 (Model-to-Category Transformation) for the construc-
tion of the forest of records. In particular:

•	 Method pullForest(String selectAll, AccessPath path) first 
extracts all records using a database-specific command selectAll. Then, using 
the information from the access path path, it transforms each of the records to a 
respective tree and adds it to the resulting forest.

•	 Method pullForest(String selectAll, AccessPath path, int 

limit, int offset) has the same behavior. In addition, it enables the ability to 
set limit and offset for pagination in case the particular system supports this fea-
ture.

Performance

The algorithm’s complexity depends on whether we need to index the identifiers of the 
records of particular kinds. If not, it is linear regarding the number of records in the 
input data set, i.e., all kinds. If so, the respective records need to be indexed for each 
kind. In other words, for each kind κ with Nκ records we get O(Nκ .log(Nκ )) instead of 
O(Nκ) without an index. None of the steps require complex modifications of the existing 
instance category in both cases. In addition, the algorithms are designed to be simply 
transformed into a parallel version and thus scalable.

•	 Model-to-category transformation (Algorithm 1) can be parallelized to process very 
large collections of data or very large data files.

–	 A large collection of input records to be transformed can be split into subsets 
processed by multiple threads, each applying the algorithm on a particular sub-
set individually. The only requirement is to avoid conflicts in method modifyAc-
tiveDomain(), where, e.g., Java Atomic Classes26 and a lock-free approach can be 
used.

–	 A single large document can also be split to be processed in parallel by multiple 
threads exploiting the stack M and a parallelized DFS algorithm as every subtree 
of the access path is independent of its sibling subtrees.

26  https://​docs.​oracle.​com/​en/​java/​javase/​17/​docs/​api/​java.​base/​java/​util/​concu​rrent/​atomic/​packa​ge-​summa​ry.​html.

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
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•	 DDL algorithm 4 only defines and creates a schema of the data (i.e., its structure), 
therefore a scalable implementation is not considered due to the nature of the 
schema, i.e., a small set of possibly nested simple or complex properties comparable 
in size to a single record.

•	 DML algorithm 5 is parallelizable depending on whether morphκ is null or not. If it 
is null, then line 13 can be parallelized, i.e., the active domain of qI can be distributed 
across multiple threads to be processed by the foreach cycle. Otherwise, similarly, 
relations from line 19 can be distributed across multiple threads to be processed in 
parallel at line 21.

•	 IC algorithm 7 only generates statements of type ALTER KIND, therefore it is not 
considered being parallelized.

The still gradually improved implementation of the approach, MM-cat, contains various 
technical tricks enabling further optimization. For example, in the case of entries in the 
active domain of objects, we assume an optimistic approach and, therefore, a lock-free 
approach (i.e., no synchronization, no locks), implemented using Java Atomic Classes. 
The probability that we will work with the same memory space simultaneously is mini-
mal, so there is no need to synchronize larger sections of code (i.e., to lock them). This 
can only happen in the case of method modifyActiveDomain(), where we can merge 
existing mappings (rows of active domains).

Or, we assume that only the active domains of some objects need to be indexed—e.g., 
identifiers of complex structures or attributes influencing querying efficiency.

Or, composite morphisms do not have to be explicitly materialized into a mapping. We 
use a lazy strategy, where only a repeatedly used composite morphism is materialized.

Benefits of category theory
To conclude the description of the proposed approach, we discuss the main benefits 
of the utilization of category theory. At first sight, it may seem that the existing mod-
els are rich enough to be used as a mediator for the representation of multi-model 
data. Unfortunately and naturally, none of the popular models covers all specifics of 
the others and such a transformation would lead to complex or unnatural and thus 
inefficient constructs. For example, we can consider the well-known issue of repre-
senting graph data in the relational model or the large difference between aggregate-
oriented and aggregate-ignorant models and the respective (de)normalization of data. 
More abstract data representations also exist, however, their expressive power is still 
limited as we discuss in [11].

The next important aspect is the further exploitation of the categorical representa-
tion. Our aim is not only to find a “tool” for representing multiple interconnected 
models. As we have discussed in [12], this unified representation enables one to per-
form further data management tasks, such as cross-model querying or evolution 
management, uniformly, correctly, and efficiently. Although these extensions form 
our (near) future fork, in the following section we provide an example that demon-
strates the indicated advantages, namely, in the case of querying.
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Application—querying

To demonstrate how the categorical querying over the proposed categorical frame-
work could work, let us again consider the following sample multi-model query [1]: 
“For each customer who lives in Prague, find a friend who ordered the most expensive 
product among all customer’s friends.” As for the result and its representation, Fig. 15 
depicts a possible schema of the projected properties including its mapping to the 
output graph model representation (hence depicted in the blue color). In addition, the 
figure illustrates the multiple logical models incorporated in the query:

•	 The relational model represents the data about customers and their addresses, i.e., 
kinds Customer and Address. (Note that the exploitation of a composite morphism 
enables us to directly “access” object City.)

•	 The graph model represents the data about customers and their friends, i.e., kinds 
Customer and Friend.

•	 The column model represents the relationships between customers and their 
orders, i.e., kinds Customer and Order.

•	 The document model represents the order that (possibly) consists of multiple 
ordered products, i.e., kinds Order and Product.

Note that for clarity and simplicity, the objects of the projection schema are labeled with 
the same signatures as the corresponding objects of the schema category. The apostro-
phe “’” is added to distinguish unique labels in the case of duplicity caused by morphism 
friend with the same source and target object Customer. The same applies to morphisms.

Finally, during the evaluation of the query, one may exploit the fact that the iden-
tifier of kind Customer is a part of the identifier of kind Order, therefore the query 
evaluation does not have to consider data from the column model. In other words, 
there is an opportunity to exploit overlapping data for different evaluation strategies.

Query execution

The execution of the sample query would consist of multiple stages:
I. Query Pattern and its Mapping First, a pattern describing the query is created. As 

proposed in our previous work [12], a query pattern could be represented in the form 
of a query category structurally corresponding to a part of the schema category. In other 
words, there is a functor between the query category and schema category.

In general, the query pattern could be similar to the projection schema from Fig. 15, 
but additionally enriched by query operators (e.g., union, aggregation, or filtering condi-
tion), all represented in the form of additional categorical objects or morphisms.

The idea of a categorical query language is not new [13]. In comparison to, e.g., 
Cypher [14] the advantage of categorical representation is the possibility to exploit 
composite morphisms which simplify the structure of a query. Hence, a com-
plex graph traversal can be represented by a single composed morphism—e.g., 
39.35.23.22 : Customer → Product can be used to express the traversal from Customer 
to Product, corresponding to the composition of morphisms 22, 23, 35, and 39. (Note 



Page 42 of 49Koupil and Holubová ﻿Journal of Big Data            (2022) 9:61 

that we use two morphisms in the example, namely, 23.22 : Customer → Order and 
39.35 : Order → Product to represent the same path.)

II. Query Decomposition The decomposition of a query into so-called query parts [12] 
exploits the functor between the query pattern and the schema category and the map-
ping of the schema category to particular databases (or their specific models) to deter-
mine which query parts will be executed under which logical data model. As denoted in 
Fig. 16, a possible decomposition of the sample query could be done as follows:

•	 Customers living in Prague will be evaluated in the relational model, i.e., the query 
part will be translated into an SQL statement.

•	 Friends of the customers will be evaluated in the graph model, i.e., the query part will 
be translated, e.g., into Cypher statement.

•	 The most expensive product ordered by a customer will be evaluated in the docu-
ment model, i.e., an aggregation query will be translated into, e.g., the MongoDB 
query language [15].

Note that the column database in our sample scenario can be exploited in an alternative 
query plan to simplify the query evaluation in the document database to match a par-
ticular customer with all his/her orders. Moreover, note that the projection of attributes 
in each query part forms a subset of objects of the query pattern category.

III. Evaluation of Query Parts If independent of each other, the evaluation of query 
parts can be executed in parallel and the partial results are then joined and merged. Dur-
ing the execution of each query part (translated into a particular query language or at 
least constructs specific for the corresponding logical data model), we can utilize exist-
ing approaches and exploit all benefits of its logical representation, including single-
model query execution plans and management.

IV. Unification and Joining of Intermediate Results Each query part produces a result 
translated to appropriate objects and morphisms in the query pattern using the model-
to-category transformation. The main benefit of unifying categorical representation is 
the simple joining of partial results. Considering other models, having all partial results 
represented in the relational model, its joining could be expensive, e.g., without having 
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Fig. 15  Projection of the result corresponding to the graph pattern Customer−knows→Friend−ordered→
Product and its mapping to the graph model
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respective indices. Similarly, the joining of aggregates can also be expensive due to pos-
sibly denormalized and redundant data. Or, joining in the graph model may require a 
special edge that connects two objects that are otherwise not connected.

On the contrary, the unifying categorical approach allows us to join the correspond-
ing parts of the intermediate results of cross-model queries easily using so-called 
pullbacks [16, 17], i.e., a generalization of the Cartesian square and intersection. As illus-
trated in Fig. 17 using the respective colors, there will be two pullbacks to join partial 
results between the relational and graph model (i.e., P1 = resultREL ⊲⊳100 resultGRAPH ) 
and between the result of the first pullback and document model (i.e., 
P2 = P1 ⊲⊳100′ resultDOC).

In general, the joining of the intermediate results may be processed in an arbitrary 
order. However, the selected strategies and joining execution plan should be considered 
to reduce the time complexity. Nevertheless, multi-model joins add a new level of com-
plexity to querying [18] and form a largely open research area.

V. Transformation to the Desired Representation Finally, we transform the categorical 
representation to the requested logical model representation. In the sample query, the 
result is transformed into a graph representation as illustrated in Fig. 18.

Alternative Multi-Model Query Plan Alternatively, since we have overlapping data in 
the document and column model, we could use a different query evaluation strategy. It 
would simplify the aggregate query in the document model, but at the cost of one more 
join of results from different data models, i.e., an additional pullback and possibly a large 
amount of data to be joined at the level of the unifying model.

In general, the strong point of categorical querying over the categorical representa-
tion is that the user does not explicitly have to know the logical representation of the 
data. E.g., having a query over multi-model PostgreSQL, the user still has to be aware of 
the data logical representation, thus (s)he must decompose the query into the relational, 

SELECT customerId 
FROM Customer 
WHERE city = "Prague"; 

MATCH
    (c:CUSTOMER)
        -[:KNOWS]->
            (f:CUSTOMER)
RETURN
    c.id, c.name, c.surname,
    f.name, f.surname, f.id; 

db.orders.aggregate( [
    { $unwind : "$items" },
    { $sort : { "items.price" : -1 } },
    { $group : {
 _id : "$_id.customerId",
 items : { $push : { name : "$items.name", price : "$items.price" }}
 } },
    { $project: {
 _id : 1,
 name : { $arrayElemAt : [ "$items.name", 0 ] },
 price : { $arrayElemAt : [ "$items.price", 0 ] } } 
    } ] );

Friend 
109

Customer 
100

Name 
102

City 
107

Surname 
104

Customer 
100'

Name 
102'

Surname 
104'

Name 
123

Price 
124

Product 
121

Order 
11119

20
10.14

13.9
18

17
39.35

36.40
23.22

21.24

4'

3'

7'

8'

52

51

49

50

4

3

7

8

Fig. 16  The decomposition of projection pattern and examples of translations of corresponding query parts 
into particular statements
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JSON, and XML parts and use model-specific query constructs for them. Categorical 
representation allows one to use unified query constructs across all models, then inter-
nally translated to model-specific constructs.

The graph representation of the categories is natural and enables one to cover all pop-
ular data models. In addition to the graph model, the categorical representation involves 
several extensions, such as complex or overlapping identifiers, required in other models. 
And what is most important, the theory behind enables us to process the data easily, e.g., 
using composite morphisms.

Related work
Each of the existing multi-model DBMSs [3] naturally (and more or less painfully) pro-
vides an extension of the original data structures used for a single core model. There 
also exist proposals of more general approaches. E.g., the NoSQL Abstract Model [19] 
represents the data as named collections, each containing a set of blocks consisting of a 
non-empty set of entries. Associative arrays [20] are defined as mappings from pairs of 
unique (column and row) keys to values. Or, the Tensor Data Model [21] introduces the 
idea of generalized matrices. However, we need to target a more abstract level for a truly 
universal approach covering the specifics of various common data models and especially 
their combinations.

In the context of polystores, TyphonML [22] enables us to specify conceptual enti-
ties, their attributes, relations, and datatypes, and map them to different single-model 
DBMSs of a polystore. Similarly, in paper [23], an ER schema is partitioned and then 
mapped to different data models. However, none of these approaches provides a detailed 
specification of how the respective inter-model references should be managed, whether 
overlapping is supported, how cross-model querying will be handled, etc. There also 
exist older proposals which, however, consider only earlier database systems and respec-
tive models [24–26]. Recently, paper [27] introduced the notion of U-Schema, involving 
entity type, simple and multivalued attributes, key attribute, and three kinds of relation-
ships between entity types: aggregation, reference, and inheritance. In addition, there are 
relationship types and structural variations of entity and relationship types. The authors 
show the mapping between U-Schemas and common data models in both directions. 
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Fig. 17  Joining of intermediate results by pullbacks
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However, in this case, the consideration of inter-model links and related aspects is lim-
ited. In addition, despite the authors trying to ensure unification of the models, they 
involve special constructs that cover specific features of particular models. On the con-
trary, we provide a general abstract representation of popular models based on the natu-
ral notion of a graph that covers all the indicated issues.

The idea of exploiting category theory to represent data models is not new. Most of 
the approaches, denoted as bottom-up, start from a single logical model (namely, rela-
tional [16, 28], or object-relational, i.e., hierarchies of classes [29]) and define a respec-
tive schema category and operations using standard categorical approaches (such as 
functors). Paper [30] proposes a categorical approach for relational (CSV), document, 
and graph (RDF) models, but only with intra-model data migrations and querying. A 
top-down approach from [31] defines a schema category covering various conceptual 
modeling approaches, but unfortunately only concerning the most common model of 
that time—relational. The exploitation of category theory for multi-model data is so far 
quite limited. On the contrary, in our proposal we cover all the currently popular models 
together with respective inter-model links, i.e. a truly multi-model solution.

Conclusion
In this paper, we continue to build a general framework for unified modeling and man-
agement of multi-model data. We believe that category theory is the right “tool” for rep-
resenting various data models using a rigorously defined and sufficiently general theory. 
This text shows that it enables us to grasp and process the varying nonstandardized 
multi-model world uniformly and precisely.

The proposed approach, implemented in MM-cat, has several important advantages 
for multi-model data modeling: 

1	 It enables us to model the multi-model schema using a data structure which: 

(a)	 can be automatically extracted from a well-known conceptual model (e.g., ER),
(b)	 is enough general to cover all known models, and
(c)	 is based on a well-known notion of a graph.

name : Mary
surname : Smith

name : Anne
surname : Maxwell

name : John
surname : Newlin

Customer FriendCustomer

Friend

name : Biology
price : 550

name : Cars
price : 450

Product

Product

knows ordered

ordered

knowsknows

Fig. 18  The result of the query represented in a graph model
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2	 It enables us to map the conceptual model of the data to any (combination of ) 
DBMSs and respective models, whereas the user does not need to deal with imple-
mentation specifics.

3	 Besides the schema category which describes the schema of the data, the instance 
category serves as a mediator which enables the unified representation of an instance 
of the data. It is expected to be materialized only to the necessary extent, e.g., to rep-
resent intermediate results of queries.

The core categorical approach also provides a range of applications simplifying and opti-
mizing various aspects of multi-model data management:

•	 Conceptual Query Language: The level of abstraction of the proposed categorical 
approach enables one to define a conceptual query language that can be mapped 
to any multi-model query language. In addition, since a graph backs the categori-
cal model, the query language might be inspired by graph query languages like, e.g., 
Cypher [14] or SPARQL [32] and thus naturally adopted by the users. The conceptual 
queries can be translated to expressions required by a particular DBMS using a simi-
lar strategy.

•	 Data Migration: Migration of data between various DBMSs (with the same or dis-
tinct data models) can be done much easier with the unified categorical representa-
tion of any (combination of ) data models. The user only specifies another mapping 
between the schema category and the target model.

•	 Evolution Management: Having the unified categorical representation, both intra and 
inter model modifications of the schema are reduced to the same task—modification 
of a graph representing the schema category and a respective propagation of changes 
to all affected parts. Again, the key issues are related to the mapping between the 
categorical and logical representation which needs to be extended by the user when 
needed.

•	 Extensibility: Since the categorical model is defined universally for any data model, it 
can then be applied to any multi-model DBMSs. We do not define special constructs 
for particular models (such as, e.g., the relationship type in [27]). In addition, the 
idea enables one to cover even data models that are not currently known; the only 
requirement is that they can be described using the same categorical structures.

Finally, note that the approach is also applicable for single-model systems. Thanks to the 
unification of the models, it can be applied to both NoSQL databases and traditional 
relational databases. A single-model system can be managed separately; however, a more 
probable approach can reflect the idea of polyglot persistence, where multi-model data 
is stored in several single-model systems, each suitable for a particular part of the data.

Future work

As indicated before, in the (current and) future work, we will primarily aim at correct 
and efficient evolution management and data migration. Our second target is a con-
ceptual query language that would enable us to query across the distinct data models 
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without knowing their specifics. In both cases, we can directly exploit the features of the 
proposed framework.

On the other hand, even the core idea can be further extended. Some of the extensions 
may involve:

•	 Simple types: In the current proposal, we consider a basic set of simple types, i.e., 
string and numeric. However, the existing DBMSs support various simple types, 
even with distinct features.

•	 Cardinalities: The set of supported cardinalities can be extended with other types, 
such as, e.g., numeric specification of the bounds, a set of bounds, etc. The respective 
composition of morphisms then needs to be extended and special cases for particu-
lar models must be reflected in the wrappers.

•	 Aliasing: The dynamically derived names could have also cardinality (1, N) and thus 
enable a kind of aliases, i.e., naming the same data differently for different purposes, 
e.g. simpler expression of queries.

•	 Evaluation of values: The access paths could be extended with both constant values 
and basic functions for the evaluation of new values (e.g., various aggregations).
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