
Transforming OpenAPI Specification 3.0
documents into RDF‑based semantic web
services
Wardani Muhamad1,2*   , Suhardi1* and Yoanes Bandung1 

Introduction
Simple Object Access Protocol (SOAP), Remote Procedure Call (RPC), and Represen-
tational State Transfer (REST) are some of the selected approaches or architectural
styles to develop web services. However, SOAP and REST are presently the most widely

Abstract 

Web services are provided with documents that at the very least specify the endpoint,
input parameters, and output or response of each operation to expose their capabili-
ties. This should be considered through an understandable format for humans and/or
machines. In the Representational State Transfer (REST) architectural style, the OpenAPI
Specification (OAS) is used as a reference to create web service descriptions. However,
it only supports syntactic interoperability, leading to the incapability of supporting the
automated selection process. To overcome this, OAS documents must be enhanced by
including semantics to each resource to provide “understandable” services. Therefore,
this study aims to develop a system capable of transforming resources in OAS docu-
ments into RDF-based semantic web services. To begin, a relational database schema
based on the OAS structure is created to store all objects in the OAS document. The
published open-linked vocabulary was then used to create the ontology, which maps
resources and their relationships on the RDF data model. To build RDF-based semantic
web services, R2RML was used to generate the relational database model into triple
RDF. The proposed system was also tested through prototyping and using a dataset
of 106 OAS documents, which were downloaded from APIs.guru between 5–10 May
2021. The number of triple RDFs generated per document varied with resource rate.
An OAS document generates 36 to 16,505 triple RDF in a dataset. The end product was
a triple RDF knowledge base maintained by a graph management database. It is now
possible to find service operations, input and output parameters, and service compo-
sition requirements utilizing the repository semantic web services using SPARQL. On
the other hand, the use of relational databases to store OAS resources increased reuse
efficiency by approximately 48%, owing to service developers designing interoperabil-
ity between uniform parameter services, which were then used as input and output.

Keywords:  Service composition, Semantic web services, RDF, OpenAPI Specification,
Semantic ontology

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Muhamad et al. Journal of Big Data (2022) 9:55
https://doi.org/10.1186/s40537-022-00600-8

*Correspondence: wardani.
muhamad@tass.telkomuniversity.
ac.id; suhardi@itb.ac.id
1 School of Electrical
Engineering and Informatics,
Institut Teknologi Bandung,
Jl. Ganesha 10, Bandung
40132, Jawa Barat, Indonesia
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-6420-1683
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-022-00600-8&domain=pdf

Page 2 of 24Muhamad et al. Journal of Big Data (2022) 9:55

adopted options, with the main differences focusing on the availability of standardized
interfaces. In SOAP-based services, developers should provide interfaces in Web Ser-
vice Description Language (WSDL) format, although this does not apply to REST-based
development. This is because REST offers flexibility and lighter access (without being
required to adhere to strict protocols like SOAP-WSDL) to web services. The advan-
tages exhibited by this program over SOAP makes it the most preferred business archi-
tectural style for developing web services. In the previous decade, REST-based services
gained de facto recognition as a medium for exchanging data on the HTTP-based web
and also enabling mechanical processing [1]. This provides several options for accessing
the information provided by API, through the Uniform Resource Identifier (URI), query
parameters (QP), HTTP headers, and the combination of URIs and QPs [2]. To provide
easy access to resources while promoting business services [2], programmers should
define the methods to expose the API (through the provision of a URI schema) and its
characteristics (supported output formats), as well as provide web service description
documentation. This description acts as an understandable interface and service con-
tract to consumers, due to containing all the ideas regarding the web service business
activities. Also, it is read and studied by service users to meet required needs [3], such
as operations, input and output messages, as well as methods of making service calls [4].
Furthermore, the description of web services becomes the basic element to support vari-
ous activities carried out by consumers, such as search, composition, and mediation [5].

OpenAPI (OAS) is the main reference towards creating the service descriptions in
REST-style programs. This defines generally accepted interface standards and descrip-
tions for all programming languages. The OAS documents also help humans and
machines understand the capabilities of service, without accessing source code, addi-
tional documentation, or inspecting network traffic. When a web service is properly
described using OAS, consumers are found to understand the capabilities of each opera-
tion on the API, and subsequently interact without comprehending the implemented
logic. Therefore, an operation is technically an endpoint (URI for calling a web API)
equipped with an HTTP method, where the provided OAS web service description
format is capable of supporting interoperability. This was because the interoperability
between web services generally had two levels, namely syntax and semantics. Syntactic
interoperability is concerned with the fit between input and output operations, service
binding types, data formats, and more. Meanwhile, semantic interoperability aims to
produce seamless conditions through the use of machine-interpreted languages. Also,
it focuses on solving semantic problems (resource meaning). OAS presently supports
syntactic interoperability only, leading to the observation of limitations in understand-
ing web service descriptions, which barely focused on semantics. In OAS documents,
syntactical descriptions of the operations are generally supported by web services, to
assist with server and client-side code generation [1]. However, the main weakness is
the lack of interpretation of the provided resources. To solve these problems, the seman-
tic program becomes a solution as complementary service, leading to the improve-
ment of interoperability. This combines description (syntax) with web semantics, which
focuses on publishing metadata within a shared knowledge framework. These seman-
tics subsequently describes the functionality of web services using ontology terminol-
ogy and annotations, to support automation and dynamic interactions between systems.

Page 3 of 24Muhamad et al. Journal of Big Data (2022) 9:55 	

Moreover, ontology is generally used to describe a set of concepts and their relationships
in a domain, while semantic annotation is a process of adding metadata to the descrip-
tion of web services. Therefore, the addition of semantic descriptions improves the capa-
bilities of web services, by providing the defined interpretations [6] that are easier to
read by machines [7]. These are conducted by determining the right vocabulary as a for-
mal semantic provider, which contains a collection of classes representing concepts and
properties. Additionally, API acts as a standard for transforming web data and interre-
lated vocabularies into a mechanism allowing the automatic integration of various ser-
vices, according to their semantics [8].

Although a formal form for describing service semantics has not been found due to
complexity [8], several approaches to create these descriptions have been carried out.
This indicates the compilation of semantic description, by adding annotations through
JSON-LD [1–4], SA-REST [5] or the Resource Description Framework (RDF) [9–11]. A
knowledge graph was created by extracting data from set of web pages and data sources
then subsequently converted into structured data, such as triple RDF [12]. Consider-
ing the various approaches to the development of semantic web services, the following
research questions are raised in this study:

1.	 What is the appropriate relational database schema that can store data from OAS
documents?

2.	 How to make resources in OAS documents meaningful?
3.	 What language is used to convert the data model in a relational database to triple

RDF?

Meanwhile, the objective of the work is to design a semantic web service sourced from
data stored in a relational database and then serve as a knowledge database on the ser-
vice composition platform. The output is a triple RDF dataset obtained from the extrac-
tion of OAS documents published by service providers.

Related work
The service registry holds a central position in helping service-oriented software devel-
opers determine candidates for several composed programs. This is generally public and
open to all users and programmers [13], due to primarily facilitating the discovery of
web services as a basic requirement element. Through the registry, the presence (loca-
tion) and assembly of services and media, including languages, tools, and machines are
often demonstrated, for the required provision of more complex functionality to be met
[14]. This subsequently determines the identity and description of each program, as well
as other related information such as service group, availability, endpoint, and provider
[15]. Although the registry is already storing complete information for each service,
software developers still often determine difficulties in compiling complex composite
programs, such as specification conformities, data and process compatibilities, as well
as capability translations [16]. Therefore, the provision of a capable machine support-
ing the automation of service search is very important. The availability of complemen-
tary service descriptions is the main requirement to meet the automation process. This
is because the selection recommendation for the provision of web services to clients

Page 4 of 24Muhamad et al. Journal of Big Data (2022) 9:55

(service-oriented software developers) or developers refer to the program description
[17]. Although this description uses a syntactic machine-interpreted language, it is not
still equipped with the semantics allowing web services to be “understood”, and also
automatically interacting with each other. To support automatic service composition,
the semantic description of each resource is the main basis that should be met. This is
based on the web semantic becoming a new paradigm that meets the creation of service
descriptions. Also, it provides a set of standards and best practices for data sharing and
semantics, which are automatically processed and used by various applications [18].

Based on the provision of appropriate resources, the concept of semantic technology
led to the creation of the Semantic Web Services (SWS) model, which extended the web
service capabilities. According to McIlraith et al. [3], SWS was introduced as an exten-
sion of web services through the addition of semantic descriptions. This was to provide
a formal declarative definition of the program interface and its characteristics. Further-
more, SWS is a software component that provides dynamic search, composition, and
use of web services to users [19]. This enriches the functional description of programs
by adding the annotations defined by formal logic-based ontologies, for service-based
agents and applications to understand semantics [20]. Semantic annotations are also the
result of translating electronic resources through metadata, whose interpretation was
formally determined in an ontology [7]. This indicated that the provision of a descrip-
tion or semantic annotation appropriately supported the search, composition, and exe-
cution of web services [16]. Without the provision of these specifications and required
data, machines were unable to automatically translate and propose the required services
[21]. In RESTful web services, the absence of a standard description led to a variety of
methods and formats, which were used by programmers to expose annotations. How-
ever, these formats were difficult for clients due to accessing a set of web services from
different providers, and also adapting to each description [2]. Each developer also has
the freedom to compile a service description by providing a web page (hREST), using
XML or the OAS rules. This is because the OAS is presently the standard adopted by
most programmers, to describe the web API capabilities in JSON or YAML format. At
the beginning of this study, the OpenAPI version 3.0 was used, with the OAS documents
being an interface for the software developers that used web APIs for their business pro-
cesses. This document contains operational details, which are used to ensure that cli-
ents understand the API endpoint, HTTP method, and other required parameters. Also,
the OAS document naturally presents and improves the quality of syntactic service
descriptions, leading to the possession of comprehensive semantics for easy automation
processes.

Although no formal form has been found to describe semantics due to complex-
ity [21], several previous studies have attempted and proposed the creation of service
descriptions, by assigning interpretation to the OAS resources. According to Cremaschi
and Paoli [4] and Michel et al. [1], a semantic description model was developed and
sourced from the OpenAPI document. This was conducted through the addition of
annotations to service descriptions, using the JSON-LD added by programmers before
publication. The strategy was found to be appropriate for the service providers that
developed complex web services through several different teams. Also, the addition of
annotations helped each team to understand the meaning of the resources provided by

Page 5 of 24Muhamad et al. Journal of Big Data (2022) 9:55 	

the web service. However, when the additional services were provided by a third party,
the addition of JSON-LD-based annotations was not the appropriate solution to adopt.
Based on Yu et al. [9], the development of the semantic description annotation used the
RDF format, with the inclusion of several sections, namely (1) namespace construc-
tion, service and operation name, as well as endpoint invocation, (2) service categori-
zation, (3) HTTP method declarations for service calls (GET, POST, PUT, DELETE, or
PATCH), and (4) definition of input and output parameters, as well as their reference
models. Therefore, registered web services are exposed to several capabilities, using the
RDF-based semantic description annotations. As recommended by the World-Wide
Consortium (W3C), the RDF and OWL-S schemes should be used as the models for
representing data, and also the basis for RDF ontology descriptions [22]. This is due to
RDF being used to integrate the web services originating from various sources and for-
mats [23]. According to Guodong et al. [12], a knowledge graph was created by extract-
ing the entities, attributes, and several program relationships of different structural web
pages and data sources. These were subsequently converted into structured data, such
as triple RDF. The study used RDF to define the semantics of web services, by applying
the principle of linked data, where RDF and REST had similarities in identifying pro-
grammed resources through the Uniform Resource Identifier (URI). RDF is also a data
model and language used to describe web resources [24], due to using a linked vocabu-
lary that defines standard terminology. Based on Heath and Bizer [25], the principle of
linked data was to solve the problem of information linkage, by proposing the methods
of publishing parameters through a common machine-understandable format (RDF).
This was conducted through shared vocabulary with clear semantic definitions and link-
ages between dataset resources. In this condition, any ambiguous problem in the ser-
vice description was resolved. Furthermore, a collection of RDF statements formed a
connected graph node, where they were graphically stored and queried using SPARQL.
According to the service composition plan, the semantics of web services provides a
database supporting the combination of program search and selection. Using annota-
tions and a generally understandable semantic language, the definition of service func-
tions and input/output parameters is found to support the program matching requested
by the client [26]. Besides being complementary, SPARQL is used to express requests for
service composition, and also identify appropriate operations in graphical format [21].
This indicates that a semantic matching mechanism is often implemented to determine
the most appropriate service that meets the requirements of clients. Therefore, semantic
matching is performed by matching service operations with appropriate input and out-
put parameters [12]. The integration is subsequently used to help search services in the
composition process. According to Sferruzza et al. [10] and Lucky et al. [27], OAS 3.0
was used as the basis for building semantic web services. This indicated that the provi-
sion of meaning to the OAS components was performed by adding a meta-model [10]. A
different approach was also used through the addition of annotations to the OAS docu-
ment, subsequently specifying vocabulary references to avoid ambiguity [27]. However,
both solutions required the modification of the OAS docs, to add semantic descriptions.
Furthermore, the creation of unmodified semantics was proposed by [11, 28] although
the utilized vocabulary was incomplete and less comprehensive in providing meaning to
each web resource.

Page 6 of 24Muhamad et al. Journal of Big Data (2022) 9:55

Research methodology
As illustrated in Fig. 1, this research was conducted in four major stages. The stages of
the research began with the application of the database normalization approach in order
to create a database schema that corresponded to the components in the OAS document
and concluded with triple RDF validation using ShExValidata [29].

The format for describing web service descriptions in OAS documents is JSON or
YAML. Both formats share the same attributes, namely the ability to represent objects in
attribute-value pair format and the array data type. Arrays are the most basic form of a
relation or table in database science. The components of the OAS document, as a semi-
structured document, can be extracted into tables that are related to each other in a rela-
tional database schema. Although creating a relational database schema can improve
understanding and reuse of components in OAS documents, the data stored in the data-
base is isolated (cannot be accessed using another database management system) and
has no meaning. The semantic web must be used to give meaning to the data stored in
the database. Vocabulary is used in the semantic web to determine semantic classes and
the relationships between classes. Furthermore, vocabulary is used to categorize classes,
characterize relationships, and define boundaries between classes that are connected.

After each class and relationship has been assigned a meaning, the RDF statement is
formatted in a triple form of subject-predicate-object. Subjects and objects in the triple
can be resources, which in this study are tables generated during the creation of a rela-
tional database schema. After all triples have been generated, the final step is to validate
them. ShExValidata, which is available online, was chosen for triple validation in this
study.

Results and discussion
System framework

To provide a complete and clear illustration for producing RDF-based semantics, a sys-
tematic framework was proposed as shown in Fig. 2. This contained three layers, namely
data modelling and extraction, as well as RDF information management.

Data modelling

Based on the first layer, data modelling was carried out by creating the appropri-
ate database schema, to store all objects in the OAS document. This was conducted
through the implementation of the normalization techniques. The informal data-
base was also designed by translating each OAS object into a table, to capture all
OpenApis document fields without considering database constraints such as primary
and foreign keys (PK and FK). Moreover, the relationship between the tables was

RDF
Statement
Validation

Creating
RDF

Statements
Vocabularies

Mapping

Relational
Database
Schema
Creation

Fig. 1  Research stages

Page 7 of 24Muhamad et al. Journal of Big Data (2022) 9:55 	

normally determined. The final result was a relational database design, which had the
characteristics of a well-structured table, based on avoiding redundant data, anomaly
problems, and manipulation, as well as meeting the normal form (NF) rules [30]. The
normalization process was carried out by evaluating the initial table structure (as a
parent table) and eliminating repetitions (as a child table). Subsequently, the relation-
ship between the parent and child tables was defined by determining the primary and
foreign keys (PK and FK). Figure 3 is an example of applying the normalization tech-
nique for the OAS Info section (Fig. 4), to become a relational database schema that
was connected from one table to another.

The implementation of the database normalization technique produced 26 tables,
which transformed all the parts and objects within the OAS [31]. The results were

Fig. 2  RDF-based semantic web services transformation proposed framework

Fig. 3  Application of normalization techniques for info objects in OAS

Page 8 of 24Muhamad et al. Journal of Big Data (2022) 9:55

then grouped into strong and weak types, which had the potentials to become a par-
ent and child table, with and without a PK, respectively. Furthermore, the tables
within the database became a data model, whose quality was improved through
important RDF concepts, which eliminated ambiguity, especially when sending
information [32]. This was because RDF supported the interoperability of informa-
tion exchange between applications, which was mechanically understood and had a
data graph format to represent each statement. In a graphical illustration, the nodes
and arrows represented entities and their relationships. This explicitly indicated that
RDF formed a triple group, namely subject, predicate, and object, to explain a seman-
tic statement. According to the principle of linked data [25], the subject should be
a class with a URI, to explain its meaning. The predicate also contained the proper-
ties that described the relationship between classes and literal values. Meanwhile, the
object was a class or a literal value. This indicated that each subject was connected to
the object through the predicate. The selection reference for triple RDF classes and
properties was subsequently found in the vocabulary, which described several ser-
vice elements. Terminology also became a knowledge that expressed the meaning and
connection between data, as recent trends related to the formal forms of connectiv-
ity provided reusable semantics to support automated composition methods [21]. To
describe a resource, the use of common vocabulary facilitated a global understand-
ing of the meaning, according to its relevance irrespective of the origin [33]. Table 1

Fig. 4  Structure of the info section on the OAS

Table 1  List of adopted vocabularies

Prefix URI

1 schema http://​schema.​org

2 http http://​www.​w3.​org/​2011/​http#

3 jsonsc http://​www.​w3.​org/​2019/​wot/​json-​schema#

4 cnt http://​www.​w3.​org/​2011/​conte​nt#

http://schema.org
http://www.w3.org/2011/http#
http://www.w3.org/2019/wot/json-schema#
http://www.w3.org/2011/content#

Page 9 of 24Muhamad et al. Journal of Big Data (2022) 9:55 	

presents a list of selected vocabulary for the development of the SWS. When com-
pared to [11, 28], using shared vocabularies as the basis for creating ontology has the
advantage of knowing the semantics of each class as well as the associated domains
and ranges globally. When the resulting RDF dataset is made public, it will be easier
to understand the meaning of each resource that has semantics added.

According to Table 1, the classes and properties contained in the vocabulary were
mapped to each relational database illustration. This showed that a vocabulary was
attached to a table based on the number of classes and properties provided to meet the
data meaning needs. For example, the @schema vocabulary was attached to a group of
interconnected tables (Fig. 5), to describe the information related to service owners.

Based on Fig. 5, two classes were observed for selection, namely Service and APIRefer-
ence. The service class describes the programs provided by an organization, e.g., deliv-
ery and printing events, etc. This class was adopted to provide meaning to the service
table, leading to the emphasis on the interpretation of a web program. Meanwhile, the
properties of the Service Class were selected to emphasize the relationship between ser-
vice, “servicecontact”, and “servicelicense” tables, which were described with their sup-
porting data. Furthermore, the APIReference class is defined as a reference document
used to describe an Application Programming Interface (API). This class was very suit-
able for adoption, to define the meaning of the “externaldocument” table. Subsequently,
the relationship between service and externaldocument table was explained by using the
“isRelatedTo” property. After all data models are mapped into classes and properties, an
ontology capable of describing the positions and relationships between several groups
was constructed. According to open standards and data structures, ontology creation
aims to identify information connectivity and develop common semantics [34]. More-
over, Fig. 6 describes ontology as the basis for developing appropriate SWS with the
data model generated through the selected vocabulary. The ontology is manually con-
structed by analyzing the suitability of the range, domain and predicate between classes

Fig. 5  Relational tables mapped to vocabulary @schema

Page 10 of 24Muhamad et al. Journal of Big Data (2022) 9:55

contained in the chosen vocabulary. This indicates that a labelled arrow represents the
relationship between ontology classes. The direction of the arrow also determines the
range (object) belonging to a class (acts as a subject) and has a predicate according to
the label. For example, the http:resp predicate links the http:Request class as the subject,
with the http:Response class being observed as the object.

As a formal form of concept specification and database schema (data model), ontol-
ogy became the main basis for RDF creation. To translate the database model into RDF,
R2RML was used. This is a language recommended by the W3C for customizing rela-
tional database mapping (as an RDF data model) into an RDF dataset. Based on this
study, the RDF data model was structurally mapped with a vocabulary into a set of triple
RDF, which represented resource information (in the semantic context, web services are
components that explain the capabilities of web in OAS documents) as the interrelated
graphs between one node and another. In R2RML, the input was a relational database
model that matched the schema, while the output was a triple RDF according to a prede-
termined mapping. Moreover, the data model mapped using R2RML was a table, view,
or a Structured Query Language (SQL). In creating R2RML mapping, the determination
of subject-predicate-object was also determined from each data model represented by
relational database tables. When a table was observed as an RDF class, the PK column
became an identifier and a reusable resource. Meanwhile, other columns in the table
completed the meaning of the resource. For example, three interconnected illustrations
were found when observing the table schema (Fig. 3). The service table was found to be
the parent and had a “serviced” column acting as a PK. However, the “servicecontact and
servicelicense” tables were the child, related to the service table through the “serviced”
column. The mapping of the data model subsequently stored in the service, servicecon-
tact, and servicelicense tables using R2RML is described in Appendix. Meanwhile, to

Fig. 6  SWS ontology based on OAS resources

Page 11 of 24Muhamad et al. Journal of Big Data (2022) 9:55 	

provide an overview of the data model mapping in these tables into a set of triple RDF, it
is explained as follows,

Algorithm 1. Mapping for table service and servicecontact into triple RDF
01. Define
02. class Service = {brand, description, termOfService, version}
03. class BlankNode = {name, url, license}
04.
05. set table service as Service
06. foreach (column) {
07. if (column is PK) then
08. set column value as subject in associated class
09. else
10. set column value as object and column name as predicate
11. }
12.
13. set table servicecontact as BlankNode with Service as domain
14. foreach (column) {
15. if (column is identifier) then
16. set column value as subject in associated class
17. elseif (column is FK)
18. set column value as object referred to domain and column name as predicate
19. else
20. set column value as object and column name as predicate
21. }

Using R2RML, the mapping of the data model stored in the triple RDF database was
carried out by selecting a class in the vocabulary that matched the characteristics of
the design. To use the selected class, rr should be added as the R2RML IRI vocabulary
namespace. The rules for mapping a table into a triple RDF are described in Table 2.

B. Data extraction

The output generated by the data modeling layer became an artifact within the data
extraction layer. Also, the relational databases and RDF metadata models translated
into RDF mappings became key artifacts, to support goals at the extraction layer. This
was because the data extraction layer had two main objectives, namely (1) extracting
the OAS data into the records stored in a relational database, and (2) transforming the
records in the relational database into a collection of triple RDF, using the predefined
rules on the mapping process. To achieve the intended target, the sequential arrange-
ment of activities is described in Fig. 7.

The extraction process began with the upload of the OAS document, which was the
source of the information saved to the database. Each section and object in the docu-
ment was also parsed and saved to appropriate tables. In this study, there were two types
of databases with similar structure, namely temporary and production classes, which
were used to manage the information obtained from the extraction process. Further-
more, the production and temporary databases stored the extracted data from all and
present OAS documents, respectively. To improve the optimization of the production
data reuse, the existence of the similar information should be initially evaluated before
addition into the temporary system. When the data was found, the records in the pro-
duction database was copied to the temporary system. However, a new record was added
to the temporary database.

Page 12 of 24Muhamad et al. Journal of Big Data (2022) 9:55

To add records to a database table, the consideration of the dependencies and rela-
tionships was very necessary. This indicated that the table with the fewest relation-
ships and lowest dependencies obtained the first order within the process of adding
records. These were subsequently found in the OAS structure, as an object in a sec-
tion was reused in another. Therefore, this object should be able to be parsed and
stored in the database, due to not causing dependency problems. Based on Fig. 7,
the activity numbers 3–8 showed the order of information extraction from the OAS
documents into the database. The relationship between the section and the table that
stored the data extracted from the document is described in Table 3.

Based on this study, all sections and data were successfully parsed and stored in
the database, with the user being provided with the option to import the informa-
tion within the temporary system. Moreover, data extraction was continuously con-
ducted with the activity of generating triple RDF, using the RDF mapping generated
within the modeling layer. As an illustration of the RDF mapping, an example of the

Table 2  General mapping rules

Table Type Column
Specification

RDF
Form

Column Value Role R2RML Mapping Template

Strong <#_parentMapName_>

rr:logicalTable [rr:sqlQuery "_SQL
statement_"];

 Primary key Subject As identified resource
in URI

rr:subjectMap [

 rr:template "BaseURI/{_columnName_}" ;

 rr:class _vocabulary class_ ;

] ;

Weak <#_childMapName_>

rr:logicalTable [rr:sqlQuery "_SQL
statement_"];

 Identifier Subject As a blank node rr:subjectMap [

 rr:template "{_columnName_ }" ;

 rr:termType rr:BlankNode ;

] ;

Strong or
weak

Non primary
key or non-
identifier

Predicate As a string literal of
object

rr:predicateObjectMap [

 rr:predicate _vocabulary properties_ ;

 rr:objectMap [

 rr:column "_columnName_" ;

] ;

] ;

 Foreign key Predicate As a resource whose
type refers to the
parent table

rr:predicateObjectMap [

 rr:predicate _vocabulary properties_ ;

 rr:objectMap [

 rr:parentTriplesMap
<#_parentMapName_> ;

 rr:joinCondition [

 rr:child "_columnName_" ;

 rr:parent "_parentColumnName_" ;

]

] ;

] .

Page 13 of 24Muhamad et al. Journal of Big Data (2022) 9:55 	

Fig. 7  Sequence activities to extract data

Table 3  Extraction mapping on OAS document and database schema

Activity OAS section Data storage table

convertInfoSection() info service, servicecontact, and servicelicense

convertServersSection() servers Server

convertTagsSection() tags tag

convertExternalDocsSection() externalDocs externaldocument

convertComponentsSection() components primitiveschema, objectschema, arrayschema, objectproperties,
and arrayitem

convertPathSection() paths operation, parameter, header, content, response, requestbody,
operationrequestbody, primitiveschema, objectschema, array-
schema, objectproperties, and arrayitem

Table 4  Record in service table

Serviceid Title Description Termofservice Version

5f5d97f0-b09f-11eb-
8c83-4fa8fcf43f30

Google Classroom API Manages classes, rosters,
and invitations in Google
Classroom

https://​devel​opers.​
google.​com/​v1/​terms/

v1

https://developers.google.com/v1/terms/
https://developers.google.com/v1/terms/

Page 14 of 24Muhamad et al. Journal of Big Data (2022) 9:55

data stored in Tables 4, 5 and 6 was presented as a representation of the information
within the service, servicecontact, and servicelicense tables.

Based on R2RML mapping described in Appendix, the service table was a resource
included in the schema:Service class, which was represented by a value in the ser-
viceid column. However, the other columns in the service table were the predicates
reinforcing the interpretation of the schema:Service class. In the RDF generation pro-
cess, a triple RDF was obtained in the turtle syntax, which matched the record in the
service table, as shown below,

RDF Triple 1. RDF Generation from Table service
@prefix schema: <http://schema.org/>.
@prefix: <http://sws.itbsmartcampus.id/ont#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

:5f5d97f0-b09f-11eb-8c83-4fa8fcf43f30 a schema:Service ;
schema:brand "Google Classroom API" ;
schema:description "Manages classes, rosters, and invitations in Google Classroom." ;
schema:termOfService <https://developers.google.com/terms/> ;
http://schema:version "v1" .

In this study, servicecontact and servicelicense tables were weak illustrations
with no PK. Therefore, the stored record was not identified as a resource, although
described the service table as a blank node. This indicated that every column besides
FK was a predicate connecting the RDF schema:Service class. RDF Triple 2 described
the triple RDF as follows:

Table 5  Record in servicecontact table

Name Url Email Serviceid

Google https://​google.​com 5f5d97f0-b09f-11eb-8c83-4fa8fcf43f30

Table 6  Record in servicelicense table

Name Url Serviceid

Creative Commons Attribution 3.0 http://​creat​iveco​mmons.​org/​licen​ses/​
by/3.​0/

5f5d97f0-b09f-11eb-8c83-
4fa8fcf43f30

https://google.com
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Page 15 of 24Muhamad et al. Journal of Big Data (2022) 9:55 	

RDF Triple 2. RDF Generation from Table servicecontact and servicelicense
:5f5d97f0-b09f-11eb-8c83-4fa8fcf43f30 a schema:Service ;

schema:license
[

schema:name "Creative Commons Attribution 3.0" ;
schema:url "http://creativecommons.org/licenses/by/3.0/"

] ;
schema:contactPoints

[
schema:name "Google" ;
schema:url "https://google.com"

] .

C. RDF management

The produced set of triple RDF should be managed based on supporting graph process-
ing as the basic form of RDF. This indicated the selection of various open-source graph
management systems, including Apache Jena [35], Stardog [36], GraphDB [37], and
Neo4J [38]. SPARQL was also a standard language used to perform queries, leading to
the collection of the information stored within the RDF store. Based on service search,
this language was used to determine the program candidates that matched the composi-
tion requirements.

Experiment result
To support system testing, a software prototype was developed which had the ability to
convert OAS documents into a triple RDF collection, by initially filling the records in the
relational database. Moreover, datasets were generated from the published OAS docu-
ments with the development of prototypes. These were useful in supporting the search
process in service composition, using SPARQL. Table 7 describes the prototype develop-
ment environment to support testing.

The main programming language used to develop prototypes was Node.js, with
express as its web server. Besides this, several modules integrated with Node.js were also
used to support the achievement of the expected capabilities, such as node-jq [39]. This
provided the main feature of extracting the OAS documents in JSON format. Also, the
Node.js used an open-source engine based on the Java programming language, namely

Table 7  Prototype development environment

Hardware/Software Specification

Processor Intel(R) Core(TM) i5-8265U CPU @
1.60 GHz 1.80 GHz

RAM 8.00 GB

Operating system Windows 10 Home Single Language

Programming language Node.js v10.15.3
Library:
express v4.17.1
node-jq v1.12.0
r2rmlF

Database Management System (DBMS) MariaDB v10.4.8

Page 16 of 24Muhamad et al. Journal of Big Data (2022) 9:55

R2RML-F [40]. This engine satisfied all the specifications presented in R2RML, by creat-
ing data mappings to generate triple RDF. As a complement, MariaDB was selected as
a database management system, to create a relational structure and also store records
of the OAS document processing results. Therefore, the functionality designed in the
prototype primarily supported the activities described at the data extraction layer of the
system framework, as shown in Fig. 8.

In the uploaded OAS Doc functionality, users were required to upload the documents
with JSON extension files. When the upload process was successful, the file was copied
to the server. This indicated that a successful file upload was a prerequisite for being
able to use the Extract OAS Sections functionality. In this functionality, the extracted
data on the OAS document was appropriate with the sequence of processes, as shown in
Fig. 7. Any data generated from this extraction process was stored in a table, whose map-
ping was explained in Table 3. After storage in a relational database, users downloaded
the data for documentation or recovery needs, due to the unexpected incidence of dam-
ages to the production system. This indicated the abilities to generate a set of triple RDF,

Fig. 8  Prototype use case diagram

Fig. 9  OAS document file upload interface

Page 17 of 24Muhamad et al. Journal of Big Data (2022) 9:55 	

which was managed and transformed from the database information through a graphi-
cal system.

The use case illustrated in Fig. 8 serves as a reference for developing a prototype that
enables proper and accurate interaction between users and the system, as illustrated in
Figs. 9 and 10. The form displayed in Fig. 9 allows users to upload an OAS document file
for extraction. The system restricts the file extensions that can be uploaded throughout
the upload process, that is.json. If it does not conform to the specified restrictions, an
error notice is produced. After successfully uploading and copying the OAS document
file to the server, the user can begin extracting each component of the OAS document.
The user must follow a specific procedure while extracting the OAS document, as illus-
trated in Fig. 10. If the extraction procedure is successful, each section of the OAS docu-
ment will be saved to the database as a separate record.

To test the prototype’s ability to produce RDF-based semantic web services, a total of
106 OAS documents were selected and downloaded between 05–10 May 2021, to serve
as an analytical dataset. The OAS documents were also obtained from APIs.guru [41],
where 2283 files were registered by web service owners and other contributors. Based
on Table 8, the distribution of OAS documents and the number of generated triple RDFs
were described.

Discussion
Based on the experimental process, the OAS document transformation system was
appropriately operated. This indicated that the sections within the OAS documents
were fully translated into records in a relational database, which were subsequently
transformed into triple RDF. According to the creation of a relational database, the
benefit obtained was the avoidance of data duplication. Furthermore, the potential for
data duplication was found in the schema definition (in relational databases stored in
the primitiveschema, objectschema, and arrayschema tables) used in each operation
within the OAS document section. The results showed that an operation had at least a

Fig. 10  OAS document extraction interface

Page 18 of 24Muhamad et al. Journal of Big Data (2022) 9:55

Table 8  OAS document distribution per service provider and number of generated triple RDF

Service provider Number of services Number of
generated
triples

ebay.com 12 11.366

adyen.com 9 9.963

transavia.com 1 437

mastercard.com 2 1.429

gov.bc.ca 1 1.382

deutschebahn.com 4 250

bikewise.org 1 44

regcheck.org.uk 1 59.287

googleapis.com 27 2.741

ticketmaster.com 2 71

exchangerate-api.com 1 1.021

nytimes.com 1 5.208

walletobjects.googleapis.com 1 4.409

getgo.com 2 1.191

instagram.com 1 1.602

interzoid.com 17 1.814

walmart.com 4 69

ip2location.com 1 36

ip2whois.com 1 76

iptwist.com 1 460

isbndb.com 1 341

oceandrivers.com 1 252

omdbapi.com 1 4.477

openchannel.io 1 2.017

openfintech.io 1 360

apache.org 1 434

synq.fm 1 16.505

trello.com 1 11.379

twilio.com 6 2.416

twitter.com 1 310

worldtimeapi.org 1 11.366

 -
 2,000
 4,000
 6,000
 8,000

 10,000
 12,000
 14,000
 16,000
 18,000

Accumula�ve Schema Data Sum of Created Schema Data

Fig. 11  Accumulated insertion of records to database

Page 19 of 24Muhamad et al. Journal of Big Data (2022) 9:55 	

response, which returned a status code and a message (in a specified data format) to the
service user. This showed that the returned message had one data schema format defined
in the OAS document. The data schema is also applied to the parameters and requests
for an operation. Considering these characteristics, the reuse of data schemas from a set
of OAS documents were predicted to provide efficiency in the addition of records to the
database. From the dataset used as a test, an average efficiency of 14.59% was obtained,
compared to not reusing similar data scheme. Figure 11 shows the addition of records
into the database, for each iteration of OAS document processing.

Based on Fig. 11, two different lines indicated the addition of records in the data-
base. This showed that the red line represented the addition of records, when the
data schema reused was not applied to other OAS documents. Meanwhile, the blue
line indicated the addition of records when the data schema stored in the identi-
fied database was found in the processed OAS document. This efficiency linearly
affected the number of triple RDF produced. When the observation was focused on
service providers, the efficiency reached 48.28%. This was because programmers
had designed high interoperability between services. Through this interoperability,
several services interacted with each other (forming a composite service) to meet a
more complex business need. Table 9 provides an overview of the data schema reuse
efficiency on several services.

Conclusion
Based on the study objective, the produced triple RDF met the requirements for the
composition of web services, as a source of knowledge to support service discovery
method. In addition, the results obtained resolved all research questions. To accom-
plish first research question, the SWS design process begins with the design of a rela-
tional database by applying the database normalization technique, then extracting the
components in the OAS document into data in the relational database. 26 tables are
constructed in the relational database to store all of the components contained in the
OAS document. Selection of the appropriate shared dictionary to determine resource
semantics, and creation of semantic statements in triple format (subject–predicate–
object) based on semantic ontologies that relate classes from shared dictionaries
becomes the next job after the relational database is generated. The results obtained
are a solution to the second research question. To address the last research question,
R2RML was selected as the standard language capable of transforming data from

Table 9  Efficient use of data schemes per service provider

Service provider Number of
services

Number of data schemes
(without reuse mechanism)

Number of data schemes
(with reuse mechanism)

Efficiency (%)

twilio.com 6 984 879 10.67

adyen.com 9 1.666 985 40.88

interzoid.com 17 145 75 48.28

googleapis.com 27 8.993 8.138 9.51

ebay.com 12 1.495 1.324 11.44

Page 20 of 24Muhamad et al. Journal of Big Data (2022) 9:55

relational databases into triple RDF. To transform, a mapping between the relational
database’s table structure and the matching dictionary was created using the R2RML
protocol. SWS is built using the RDF data schema with turtle syntax and is managed
in a SWS repository, Apache Jena. Apache Jena is a Java-based open source that can
be used to manage triple RDF and supports processing (querying) triple RDF using
SPARQL. To support the proof-of-concept design of SWS, a software prototype was
built with the main ability to extract OAS documents into relational database sche-
mas and transform data in relational databases into triples. The software prototype
only supports the extraction of OAS documents using the JSON format. The OAS
document used to test the SWS design and software prototype was obtained from
APIs.guru. Although this study generated a triple RDF dataset, it was not made pub-
licly available. As a result, it cannot be used for comparable research. Further work
will integrate the proposed framework with a service composition platform to enable
seamless service discovery via a knowledge database. On the other hand, it is neces-
sary to develop a more user-friendly user interface that is multi-platform compatible.

Page 21 of 24Muhamad et al. Journal of Big Data (2022) 9:55 	

Appendix

R2RML mapping for table service, servicecontact and servicelicense
01. @prefix rr: <http://www.w3.org/ns/r2rml#> .
02. @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
03. @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
04. @prefix schema: <http://schema.org/> .
05. @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
06. @prefix : <http://sws.itbsmartcampus.id/ont#> .
07.
08. <#Service>
09. rr:logicalTable [rr:sqlQuery "SELECT SERVICEID, TITLE, DESCRIPTION, TERMOFSERVICE,

VERSION FROM SERVICE"];
10. rr:subjectMap [
11. rr:template "http://sws.itbsmartcampus.id/service/{SERVICEID}" ;
12. rr:class schema:Service ;
13.] ;
14. rr:predicateObjectMap [
15. rr:predicate schema:brand ;
16. rr:objectMap [
17. rr:column "TITLE" ;
18.] ;
19.] ;
20. rr:predicateObjectMap [
21. rr:predicate schema:description ;
22. rr:objectMap [
23. rr:column "DESCRIPTION" ;
24.] ;
25.] ;
26. rr:predicateObjectMap [
27. rr:predicate schema:termOfService ;
28. rr:objectMap [
29. rr:column "TERMOFSERVICE" ;
30. rr:termType rr:IRI ;
31.] ;
32.] ;
33. rr:predicateObjectMap [
34. rr:predicate schema:version ;
35. rr:objectMap [
36. rr:column "VERSION" ;
37.] ;
38.] ;
39. rr:predicateObjectMap [
40. rr:predicate schema:license ;
41. rr:objectMap [
42. rr:parentTriplesMap <#ServiceLicense> ;
43. rr:joinCondition [
44. rr:child "SERVICEID" ;
45. rr:parent "SERVICEID" ;
46.]
47.] ;
48.] ;
49. rr:predicateObjectMap [
50. rr:predicate schema:contactPoints ;

Page 22 of 24Muhamad et al. Journal of Big Data (2022) 9:55

51. rr:objectMap [
52. rr:parentTriplesMap <#ServiceContact> ;
53. rr:joinCondition [
54. rr:child "SERVICEID" ;
55. rr:parent "SERVICEID" ;
56.]
57.] ;
58.] .
59.
60. <#ServiceLicense>
61. rr:logicalTable [rr:sqlQuery "SELECT NAME, URL, SERVICEID FROM SERVICELICENSE"];
62. rr:subjectMap [
63. rr:template "{NAME}" ;
64. rr:termType rr:BlankNode ;
65.] ;
66. rr:predicateObjectMap [
67. rr:predicate schema:name ;
68. rr:objectMap [
69. rr:column "NAME" ;
70.] ;
71.] ;
72. rr:predicateObjectMap [
73. rr:predicate schema:url ;
74. rr:objectMap [
75. rr:column "URL" ;
76.] ;
77.] .
78.
79. <#ServiceContact>
80. rr:logicalTable [rr:sqlQuery "SELECT NAME, URL, EMAIL, SERVICEID FROM

SERVICECONTACT"];
81. rr:subjectMap [
82. rr:template "{EMAIL}" ;
83. rr:termType rr:BlankNode ;
84.] ;
85. rr:predicateObjectMap [
86. rr:predicate schema:provider ;
87. rr:objectMap [
88. rr:column "NAME" ;
89.] ;
90.] ;
91. rr:predicateObjectMap [
92. rr:predicate schema:url ;
93. rr:objectMap [
94. rr:column "URL" ;
95.] ;
96.] ;
97. rr:predicateObjectMap [
98. rr:predicate schema:email ;
99. rr:objectMap [
100. rr:column "EMAIL" ;
101.] ;
102.] .

Abbreviations
SOA: Service-Oriented Architecture; SWS: Semantic web services; OAS: OpenAPI Specification; REST: REpresentational
State Transfer; RDF: Resource Description Framework; R2RML: RDB to RDF Mapping Language; SPARQL: SPARQL Protocol
and RDF Query Language; SOAP: Simple Object Access Protocol; RPC: Remote Procedure Call; WSDL: Web Service
Description Language.

Page 23 of 24Muhamad et al. Journal of Big Data (2022) 9:55 	

Acknowledgements
The author is grateful to the Institut Teknologi Bandung and Telkom University, for supporting this study.

Author contributions
The author confirms the sole responsibility for this manuscript based on the following, study conception and design,
data collection, analysis, and result interpretations, as well as manuscript preparation. All author read and approved the
final manuscript.

Funding
Not applicable. This study received no specific grant from any funding agency in the public, commercial, or not-for-profit
sectors.

Availability of data and materials
The original dataset used for this study is available on APIs.guru (https://​apis.​guru/).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The author reports no potential conflict of interest.

Author details
1 School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Jawa
Barat, Indonesia. 2 School of Applied Science, Telkom University, Jl. Telekomunikasi No.1, Bandung 40257, Jawa Barat,
Indonesia.

Received: 23 November 2021 Accepted: 6 April 2022

References
	1.	 Michel F, Zucker C, Gargominy O, Gandon F. Integration of web APIs and linked data using SPARQL micro-services—

application to biodiversity use cases. Information. 2018;9:310.
	2.	 Neumann A, Laranjeiro N, Bernardino J. An analysis of public REST web service APIs. IEEE Trans Serv Comput.

2021;14:957–70.
	3.	 McIlraith SA, Son TC, Zeng H. Semantic Web services. IEEE Intell Syst. 2001;16:46–53.
	4.	 Cremaschi M, De Paoli F. A practical approach to services composition through light semantic descriptions. In: Kri-

tikos K, Plebani P, de Paoli F, editors. Service-oriented and cloud computing. Berlin: Springer International Publishing;
2018. p. 130–45.

	5.	 Lathem J, Gomadam K, Sheth AP. SA-REST and (S)mashups: adding semantics to RESTful services. In: International
conference on semantic computing (ICSC 2007). Irvine: IEEE; 2007. p. 469–76.

	6.	 Klusch M. Semantic web service description. In: Schumacher M, Schuldt H, Helin H, editors. CASCOM: intelligent
service coordination in the semantic web. Basel: Birkhäuser Basel; 2008. p. 31–57.

	7.	 Kurniawan K, Ekaputra FJ, Aryan PR. semantic service description and compositions: a systematic literature review.
In: 2018 2nd international conference on informatics and computational sciences (ICICoS). Semarang: IEEE; 2018. p.
1–6.

	8.	 Serrano D, Stroulia E, Lau D, Ng T. Linked REST APIs: a middleware for semantic REST API integration. In: 2017 IEEE
international conference on web services (ICWS). Honolulu: IEEE; 2017. p. 138–45.

	9.	 Yu HQ, Liu D, Dietze S, Domingue J. Developing RDF-based Web Services for supporting runtime matchmaking and
invocation. In: 2011 7th international conference on next generation web services practices. Salamanca: IEEE; 2011.
p. 392–7.

	10.	 Sferruzza D, Rocheteau J, Attiogbé C, Lanoix A. Extending OpenAPI 3.0 to build web services from their specifica-
tion. In: Proceedings of the 14th international conference on web information systems and technologies. Seville:
SCITEPRESS - Science and Technology Publications; 2018. p. 412–9.

	11.	 Mainas N, Petrakis EGM, Sotiriadis S. Semantically enriched open API service descriptions in the cloud. In: 2017 8th
IEEE international conference on software engineering and service science (ICSESS). Beijing: IEEE; 2017. p. 66–9.

	12.	 Guodong L, Zhang Q, Ding Y, Zhe W. Research on service discovery methods based on knowledge graph. IEEE
Access. 2020;8:138934–43.

	13.	 Rathod D. REGISTRY FOR RESTful WEB SERVICE: RESTRegistry. Int J Res-GRANTHAALAYAH. 2017;5:128–35.
	14.	 Papazoglou MP. Web services: principles and technology. Boston: Pearson/Prentice Hall; 2007.
	15.	 Verma R, Srivastava A. A dynamic web service registry framework for mobile environments. Peer-to-Peer Netw Appl.

2018;11:409–30.
	16.	 Pedrinaci C, Domingue J, Sheth AP. Semantic web services. In: Domingue J, Fensel D, Hendler JA, editors. Handbook

of semantic web technologies. Berlin: Springer; 2011. p. 977–1035.

https://apis.guru/

Page 24 of 24Muhamad et al. Journal of Big Data (2022) 9:55

	17.	 Roman D, Kopecký J, Vitvar T, Domingue J, Fensel D. WSMO-Lite and hRESTS: lightweight semantic annotations for
Web services and RESTful APIs. J Web Semant. 2015;31:39–58.

	18.	 DuCharme B. Learning SPARQL: querying and updating with SPARQL 1.1. 2nd ed. Sebastopol: O’Reilly Media; 2013.
	19.	 Hesami Rostami N, Kheirkhah E, Jalali M. Web services composition methods and techniques: a review. IJCSEIT.

2013;3:15–29.
	20.	 Klusch M, Kapahnke P, Schulte S, Lecue F, Bernstein A. Semantic web service search: a brief survey. Künstl Intell.

2016;30:139–47.
	21.	 Serrano D, Stroulia E. Semantics-based API discovery, matching and composition with linked metadata. SOCA.

2020;14:283–96.
	22.	 Jacksi K, Dimililer N, Subhi R. State of the art exploration systems for linked data: a review. Int J Adv Comput Sci Appl.

2016;7:155–64.
	23.	 Houngue YPE, Sagbo KAR, Yetongnon K. RDF-based web information integration system: a travel system use case.

In: 2018 14th international conference on signal-image technology & internet-based systems (SITIS). Las Palmas de
Gran Canaria: IEEE; 2018. p. 500–7.

	24.	 Klyne G, Carrol JJ, McBride B, editors. Resource Description framework (RDF): concepts and abstract syntax. W3C
recommendation. https://​www.​w3.​org/​TR/​rdf-​conce​pts/. Accessed 14 Sept 2020.

	25.	 Heath T, Bizer C. Linked data: evolving the web into a global data space. Synthesis lectures on the semantic web:
theory and technology. 2011;1:1–136.

	26.	 Chen N, Cardozo N, Clarke S. Goal-driven service composition in mobile and pervasive computing. IEEE Trans Serv
Comput. 2018;11:49–62.

	27.	 Lucky MN, Cremaschi M, Lodigiani B, Menolascina A, De Paoli F. Enriching API descriptions by adding API profiles
through semantic annotation. In: Sheng QZ, Stroulia E, Tata S, Bhiri S, editors. Service-oriented computing. Berlin:
Springer International Publishing; 2016. p. 780–94.

	28.	 Mainas N, Petrakis EGM. SOAS 3.0: semantically enriched OpenAPI 3.0 descriptions and ontology for REST services.
San Diego, California; 2020.

	29.	 Validata: RDF validator using shape expressions. https://​www.​w3.​org/​2015/​03/​ShExV​alida​ta/. Accessed 15 Aug 2020.
	30.	 Ponniah P. Database design and development: an essential guide for IT professionals. Wiley-Interscience: IEEE Press;

2003.
	31.	 Muhamad W, Suhardi, Bandung Y. Designing semantic web service based on OAS 3.0 through relational database.

In: 2020 international conference on information technology systems and innovation (ICITSI). Bandung - Padang:
IEEE; 2020. p. 306–11.

	32.	 Segaran T, Taylor J, Evans C. Programming the Semantic web. 1st ed. Beijing: O’Reilly; 2009.
	33.	 d’Aquin M. Linked data for open and distance learning. Milton Keynes: The Open University, UK; 2012.
	34.	 Pattuelli MC, Provo A, Thorsen H. Ontology building for linked open data: a pragmatic perspective. J Libr Metadata.

2015;15:265–94.
	35.	 Apache Jena. https://​jena.​apache.​org/. Accessed 1 Sept 2020.
	36.	 Stardog. https://​www.​stard​og.​com/. Accessed 1 Sept 2020.
	37.	 GraphDB. https://​graph​db.​ontot​ext.​com/. Accessed 1 Sept 2020.
	38.	 neo4j. https://​neo4j.​com/. Accessed 1 Sept 2020.
	39.	 Ackermans M. node-jq. https://​www.​npmjs.​com/​packa​ge/​node-​jq.
	40.	 Debruyne C, O’Sullivan D. R2RML-F: towards sharing and executing domain logic in R2RML mappings. Montreal,

Canada; 2016.
	41.	 APIs.guru. https://​apis.​guru/. Accessed 5 May 2021.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.w3.org/TR/rdf-concepts/
https://www.w3.org/2015/03/ShExValidata/
https://jena.apache.org/
https://www.stardog.com/
https://graphdb.ontotext.com/
https://neo4j.com/
https://www.npmjs.com/package/node-jq
https://apis.guru/

	Transforming OpenAPI Specification 3.0 documents into RDF-based semantic web services
	Abstract
	Introduction
	Related work
	Research methodology
	Results and discussion
	System framework
	Data modelling
	B. Data extraction
	C. RDF management

	Experiment result
	Discussion
	Conclusion
	Acknowledgements
	References

