
Discovering top‑weighted k‑truss
communities in large graphs
Wafaa M. A. Habib1*, Hoda M. O. Mokhtar1,2 and Mohamed E. El‑Sharkawi1,2 

Introduction
Community search is a major problem in graph model which had recently gained exces-
sive attention from researchers. Community Search problem is to search a graph to dis-
cover a community that satisfies certain query parameters. For example, a community
that contains a certain vertex or a set of keywords is required to be discovered. There
are many studies over community search especially on large graphs [1–9]. Most of stud-
ies within community search usually ignore edge weight. The edge weight is playing an
important role where it is used to represent the strength of the relationship between any
two vertices. There are many applications that clarify the importance of edge weight:

•	 The edge weight in a co-authorship network may indicate how many papers the two
linked authors had co-authored together [10]. Considering the edge weight during
community search would ensure that authors within discovered communities have
strong co-authoring relationship between them.

Abstract 

Community Search is the problem of querying networks in order to discover dense
subgraphs-communities-that satisfy given query parameters. Most community search
models consider link structure and ignore link weight while answering the required
queries. Given the importance of link weight in different networks, this paper considers
both link structure and link weight to discover top-r weighted k-truss communities via
community search. The top-weighted k-truss communities are those communities with
the highest weight and the highest cohesiveness within the network. All recent studies
that considered link weight discover top-weighted communities via global search and
index-based search techniques. In this paper three different algorithms are proposed to
scale-up the existing approaches of weighted community search via local search. The
performance evaluation shows that the proposed algorithms significantly outperform
the existing state-of-the-art algorithms over different datasets in terms of search time
by several orders of magnitude.

Keywords:  Community search, Weighted graph, k-truss community detection model

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Habib et al. Journal of Big Data (2022) 9:36
https://doi.org/10.1186/s40537-022-00588-1

*Correspondence:
w.momen@fci-cu.edu.eg
1 Information Systems
Department, Faculty
of Computers and Artificial
Intelligence, Cairo University,
Cairo, Egypt
Full list of author information
is available at the end of the
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-022-00588-1&domain=pdf

Page 2 of 25Habib et al. Journal of Big Data (2022) 9:36

•	 The edge weight in social network may represent the similarity, or interactions
between users [10]. Considering the edge weight in the resulted community would
ensure the discovery of highly interacted and similar group of users.

•	 Corporate ownership networks (CON), this is a weighted economic network that
links 406 different countries, and its weights represent the business ties among coun-
tries [11]. Considering the edge weight within the discovered communities would
reveal and ensure the business ties between countries.

A sample of social network is illustrated in Fig. 1 where vertices represent users and edge
between any two vertices represents the friendship relation. In such social network the
edge weight plays an important role describing the social interactions between users.
The two communities in Fig. 1a and in Fig. 1b are densely connected in terms of the
number of edges between vertices. Besides, the two communities in Fig. 1b show the
top interacting groups of users based on the weights on the edges between them. The
community with minimum edge weight 20 is considered as the top weighted community
of interacting users while the community with minimum edge weight 7 is considered
as the second top weighted community. In this example, edge weight was able to dis-
tinguish between different groups of users according to their interaction level. In addi-
tion, all three communities in Fig. 1a and b are densely connected where their trussness
is equal to three. The trussness level of three ensures that every two connected nodes
have one common neighbor and consequently ensures a high level of structural similar-
ity between nodes.

Inspired by the importance of edge weight, this paper considers the edge weight to
discover weighted communities. More specifically, the proposed models in this paper
utilize edge weight and k-truss model in order to discover top weighted k-truss commu-
nities. k-truss community is the densest subgraph in which each edge resides in at least
k-2 triangles [1], where triangle models the cyclic relationship between 3 vertices.

Querying top weighted k-truss communities has been studied recently in the literature
using different methods like online method and index based method [10]. Both methods
discovers top weighted k-truss communities using global search where the whole graph

(a)
(b)

Fig. 1  Motivation example

Page 3 of 25Habib et al. Journal of Big Data (2022) 9:36 	

resides in the main memory and all edges are required to be visited. Another direc-
tion to discover top weighted communities utilizes local search method [4, 12]. Local
search discovers the community of a given vertex using the neighbouring vertices and
their edges. Local search is more efficient than global search as it searches a small por-
tion of the graph to discover the required communities. On the other hand, local search
techniques proposed in the literature don’t consider edge weigh and discover coherent
k-core local communities only. The main challenge of local search while considering
edge weight is to find the small portion of the graph that certainly contains the required
top weighted communities.

This paper builds on the concept of local search in order to obtain the same output
communities discovered by global search. The utilization of local search technique is
motivated by their search strategy that tends to check the neighborhood of a node rather
than checking the whole graph. Using such a search strategy to obtain the same results
obtained by global search would guarantee an extremely less search time while having
the required results. This paper utilizes local search in three different methods in order
to optimize the required search time to find the top-weighted k-truss communities.
Local search is performed by checking the vicinity of the edge with the highest weight
while processing edges in a descending order based on their weights. Once a community
is found in the vicinity of the edge being checked between the edge and its neighbors, a
local solution can be confirmed. The local solution is an evidence for the existence of-at
least-one global solution within the portion of the graph checked so far. Then, the global
solutions can be found by checking this portion of the graph instead of the whole graph.

The main contribution of this paper is utilizing local search technique in three pro-
posed algorithms to discover top-weighted k-truss communities. More specifically, the
main contributions are as follow:

•	 A LOCAL k-TRUSS ALGORITHM (LKA): is proposed as a base solution to apply
local search. The algorithm processes edges with the highest weight in sequence.
With each edge, the vertices of the edge and their common neighbouring that are
processed so far are checked to find out if they form a local k-truss community.

•	 A DEGREE-BASED LOCAL k-TRUSS ALGORITHM (DBLKA): based on the fact
that any k-truss community must be (k-1)-core community and not vice versa,
DBLKA is proposed. Similar to LKA, edges with the highest weight are processed
in sequence. With each edge, the vertices of the edge and their common neighbour-
ing that are processed so far are checked to find out if they form a (k-1)-core first
before checking if they form a local k-truss community. Consequently, the number of
local communities that need to be checked for k-truss existence are decreased which
improves search time as shown in "Performance evaluation" section.

•	 A MULTIPLE CANDIDATE LOCAL k-TRUSS ALGORITHM (MCLKA): Similar
to DBLKA, the algorithm check the existence of (k-1)- core before checking the the
existence of local k-truss. On the other hand, the algorithm does the checking pro-
cess on multiple edges vertices and their common neighbours at once rather than
checking each edge case on its own. The collective checking process for multiple
candidates has led to a dramatic improvement in terms of search time as shown in
"Performance evaluation" section

Page 4 of 25Habib et al. Journal of Big Data (2022) 9:36

For all proposed algorithms; once the number of local k-truss communities reaches the
required number of communities, the edges processed so far are examined using enu-
meration algorithm [10] in order to find global communities resides in them.

The rest of this paper is organized as follows: "Related work" section presents related
work. "Preliminaries" section overviews some of the basic concepts used in the paper
including weighted graphs, edge support, and weighted k-truss communities. In "Pro-
posed algorithms" section the proposed algorithms are presented. "Performance evalu-
ation" presents the empirical results and discusses them. Finally, "Conclusion" section
concludes the paper and highlights possible directions for future work.

Related work
There are several models in the literature which address the problem of discover-
ing cohesive subgraph in terms of structure which is called community detection task.
Community detection models [13–16] are used to discover group of vertices that are
strongly connected to each others and weakly connected to outside vertices. The most
commonly used and familiar techniques to discover dense subgraphs are cliques [17, 18],
quasi-clique [19], k-core [20, 21, 21], edge density [22, 23], edge connectivity [24, 25],
and k-truss [1, 2]. Recently, authors in [26] proposed a new model called KTMiner to
detect k-truss communities in a distributed manner using Map-Reduce framework on
Apache Spark environment.

Community search is another task where the goal is to discover cohesive group of ver-
tices but in terms of search according to a certain query in the graph rather than detec-
tion of all existing communities. Community search is proposed to address the problem
of discovering group of vertices that contains a specific vertex, set of vertices, or set of
keywords. The community search problem is well studied in the literature [4–6, 27–30].
A global search procedure is proposed by the authors in [27] to search for a subgraph
that contains a query vertex by iteratively removing vertices with the minimum degree
which can be computed in a linear time. In [4] an efficient local search procedure for
the same problem is proposed by the authors where the algorithm starts from the vertex
query and expand the search to its neighbours in order to find the best community that
query vertex resides into. A novel α-adjacency γ-quasi-k-clique model was proposed by
the authors in [28] to study the overlapping community search problem. In [5, 29], the
community search problem is studied by utilizing the k-truss model, where the maximal
connected k-truss component containing a query vertex is considered as a community.

Another category of community search algorithms are weight-based community
search. Influential community search is an example of weight-based community
search where the each node in the graph is weighted with its influence. In [3], two
algorithms;online and index are proposed to ed discover the top weighted influential
communities where k-core model is utilized. In [8], the authors extended online algo-
rithm of[3] in two ways namely Backward and Forward algorithms. Backward algo-
rithms it starts the search by adding vertices with the highest weight and verify the
component if it is a k-core or not; if it is a k-core a solution is returned otherwise it
proceeds to add more vertices. Forward algorithm iteratively removes vertices with
the minimum weight until the graph becomes disconnected and the top communities

Page 5 of 25Habib et al. Journal of Big Data (2022) 9:36 	

are returned. The authors in [12] proposed local-optimal algorithm which consid-
ered is the state of art according to its performance. Local-optimal algorithm build
its search space incrementally by adding subsets of vertices with the highest weights
until the required top weighted communities are discovered. All these techniques
are node-weight based which utilize the k-core model as their cohesion measure.
Another weight-based community search algorithm is proposed in [10] which utilize
k-truss as its cohesion model. It differs from other algorithms as it considers an edge-
weighted approach rather than node-weighted. The authors proposed two different
techniques to retrieve top weighted k-truss communities, the first one is discover-
ing communities online; The procedure starts by discovering the maximal k-truss
of the original graph, and iteratively removes edges with the minimum weight and
with each removal a maximal connected component procedure is run to find the next
k-truss connected component. The online approach cannot scale for large graph as
the whole graph should be resides in main memory. The other approach is the index
based where all the weighted k-truss communities are indexed separately for each
k. The required communities are returned directly from the index. The index based
approach is more efficient than the online base one, it suffers from the large size of
the index which requires much time to traverse that index. In addition, the mainte-
nance of the index would be time consuming. Recently authors in [31] proposed two
online algorithms namely BACKWARD ALGORITHM, and WEIGHT-SENSITIVE
LOCAL SEARCH ALGORITHM (WSLSA). The main idea for the two proposed algo-
rithms is iteratively attaching the edge with the highest weight. The two proposed
algorithms are, the BACKWARD ALGORITHM, and WEIGHT-SENSITIVE LOCAL
SEARCH ALGORITHM (WSLSA) overcome the drawbacks of the online search
algorithms proposed in [10]. The BACKWARD ALGORITHM algorithm detects the
top-r weighted k-truss communities by iteratively attaching the edges with the highest
weight after reducing the graph to its k-truss. On the other hand, the WEIGHT-SEN-
SITIVE LOCAL SEARCH ALGORITHM (WSLSA) detects the top-r communities by
visiting only the highest weighted edges in the graph without the need to reduce the
graph into its k-truss. The drawback of BACKWARD ALGORITHM and WEIGHT-
SENSITIVE LOCAL SEARCH ALGORITHM (WSLSA) is their failure to process large
graphs especially when k approaches the max level of trussness. When k approaches
the max level of trussness, more candidate solutions have to be verified where candi-
date size gets bigger with each cycle. Consequently, the algorithm fails when it has to
verify candidates with very large size. k-core is a community detection model which
discovers a connected subgraph where each vertex has degree no less than k. Another
community detection model is called k − truss which is defined based on the con-
cept of triangle where each edge in a connected k − truss subgraph resides in at least
k − 2 triangles. All previous models that addressed the problem of top weighted com-
munity search have focused mainly on global search solutions on a way or another.
Except for BACKWARD ALGORITHM and WEIGHT-SENSITIVE LOCAL SEARCH
ALGORITHM (WSLSA), all models have either used a global search or built an index
structure to reduce search time. On the other hand, models presented in [31] uti-
lize local search but suffer from limitations while processing large graphs. The local

Page 6 of 25Habib et al. Journal of Big Data (2022) 9:36

search paradigm utilized in this paper presents an opportunity to perform commu-
nity search while having the least search time.

Preliminaries
Table 1 describes the notions that are utilized within the paper. Given undirected and
edge weighted graph G(V, E, W), where V, E, and W represent vertices, edges, and vec-
tor of weights respectively. Each entry in the vector of weights is assigned a different
weight value for each edge. Each edge is denoted by e(u, v), its weight denoted by ω(e) ,
and the set of neighbors of a vertex υ are denoted by nb(υ ), i.e., nb(υ ) = { u ∈ V: ∃ e (u, υ )
∈ E}, and degree of υ is denoted by d(υ ) = |nb(υ)|. A triangle denoted by

�
uυw is a cyclic

relationship between three vertices u, v, w such that (u, v), (u,w), (v,w) ∈ E . Given an
induced subgraph H(VH ,EH) from G where VH ⊆ VG and EH ⊆ EG , the support of an
edge e(u, v) ∈ H is defined as the number of triangles that edge resides in, and denoted
by sup(e, H). The edge trussness is the edge support increased by 2.

Definition 1  (k-truss) A subgraph H(VH ,EH ,WH) is a connected k-truss iff each eH
has sup(e, H) at least k-2. A subgraph H is called a maximal k-truss if there is no other
subgraph H ′ contains H.

The trussness of a subgraph H denoted as τ (H) is the minimum support of the all
edges in subgraph H incremented by 2, e.g. τ(H) = min{sup(e, H): e ∈ EH} + 2.

In this paper weighted graph is considered where the weight of the subgraph H is
defined as the minimum weight of the set of edges in subgraph H.

Definition 2  Subgraph Weight: The weight of subgraph H denoted by f(H) is the mini-
mum weight of the edges-weights in H, e.g. f (H) = mine∈EH {ω(e)} . The edge with mini-
mum weight in subgraph H is called the key-edge of H.

The rational behind the minimum weight is that each edge in the subgraph H has at
least this minimum weight as discussed in [3]. In addition, minimum weight would be
robust to outliers than average weight.

Table 1  Frequently used notations

Notation Description

G = (V, E, W) Undirected and edge weighted graph

n = |V|, m = |E| Number of vertices and number of edges

n X = |VX | , m X = |EX | Number of vertices and number of edges in subgraph X

nb(v) The set of neighbors of v

d(v) The degree of v

sup(e,H) The support of edge e in subgraph H

ω(e) The weight of edge e

f(H) The weight of subgraph H min
e∈EH

{ω(e)}

S(u,v) The common neighbors of vertex (u, v), nb(u) ∩ nb(v)

τ(H) The trussness of subgraph H

ES(u,v) ↔ u, v The set of edges between S(u,v) and {u, v}

Page 7 of 25Habib et al. Journal of Big Data (2022) 9:36 	

Based on the previous definitions of k-truss and subgraph weight, the weighted
k-truss community is defined as follow.

Definition 3  Weighted k-truss Community: Given undirected and edge weighted
graph G = (V ,E,W) , and trussness level k, a subgraph H ⊂ G is weighted k-truss com-
munity satisfies the following constraints:

•	 Connectivity H is a connected subgraph
•	 k-truss The minimum sup(e,H) is at least k-2.
•	 Maximal There is no other subgraph H ′ contains H and the f (H ′) = f(H).

By applying the three conditions of weighted k-truss community while extracting
resulting communities, the output communities are guaranteed to be k-truss and not
a subset from other weighted k-truss community with the same weight.

Example 1  Consider the graph in Fig. 2. Suppose for instance k = 4, as clarified in Def-
inition 3 the original graph is a weighted 3-truss community with minimum weight of
value = 1. In addition, two weighted communities with higher weights reside in the orig-
inal graph; the top-1 4-truss subgraph shown in Fig. 2 highlighted by a red rectangle with
weight value 37 of the edge e(v1, v3) . The highlighted subgraph by green rectangle shown
in the same Fig. 2 is the top-2 4-truss community with weight 35 of the edge e(v2, v4) . The
subgraph induced by the set of edges {(v1, v2), (v2, v3), (v1, v3), (v3, v4), (v1, v4), (v2, v4) }
also has weight 35; however it is not weighted 4 − truss community sine it is already
contained in the subgraph highlighted by green rectangle with the same weight 35.

Fig. 2  Graph example and its weighted communities

Page 8 of 25Habib et al. Journal of Big Data (2022) 9:36

Problem Definition G = (V, E, W) is an undirected and edge-weighted graph where
r and k are the two query parameters. The problem is defined as the task to discover the
top-r weighted k-truss communities from G = (V, E, W)

Example 2  Consider the example illustrated in Fig. 2, suppose k = 4 and r = 2, the
top-2 weighted 4-truss communities are highlighted in red and green rectangles in
Fig. 2. The top-1 4-truss community is the one highlighted by red rectangle with weight
37 where each edge in the community resides in two triangles. The top-2 4-truss com-
munity shown in the same Figure highlighted by green rectangle with weight value 35.
The top-2 4-truss community contains the top-1 community but it has smaller weight
than the top-1 community.

Proposed algorithms
This section discusses the proposed algorithms to discover top-r weighted k-truss com-
munities. k-truss community detection model is used to measure the cohesiveness of
the resulting communities. Since k-truss is defined based on the concept of triangle;
k-truss model main advantage is related to its ability to ensures a high level of cohe-
siveness. In addition, a community with certain k-truss is also a community with (k-1)-
core on the same time but not vice versa which guarantees the high cohesiveness level
of k-truss. k-truss community is a (k-1)-core community since it is (k-1)-edge connected
and any deletion of no fewer than k-1 edges will not disconnect k-truss. Also, k-truss is
a diameter bounded algorithm where a subgraph of n vertices has a diameter no more
than [2n− 2/k] . All these properties are indicators for the cohesivness of the resulting
communities from the the k-truss model [32]. For self completeness of this paper truss
decomposition algorithm introduced in [2] is outlined in Algorithm 1.

A local search procedure is used in the proposed algorithms. Mainly a local vicinity of
the edge e with highest weight w(e) is built from the edges with weights higher then w(e)
and checked whether it is a connected k-truss component or not. Suppose that two ver-
tices u, v, and an edge e(u, v) is considered as the edge being checked, a local vicinity of
this edge is built from the set of edges between common neighbors of u and v and e(u, v)
itself. A local vicinity is defined as follow:

Page 9 of 25Habib et al. Journal of Big Data (2022) 9:36 	

Definition 4  local vicinity H e(u,v) is the set of edges E S (u,v) ↔ u, v where each edge E i
in E is defined as (v1, v2) : v1 ∈ Su,v , v2 ∈ u, v and S(u,v) = nb(u) ∩ nb(v) is the common
neighbors of u, v.

Local Vicinity H of the edge is checked whether it has connected k-truss component
iff sup(e,H) at least k-2, | nb(u) ∩ nb(v)|=k and degree of each vertex in S(u,v) at least k-1
which is formalized in 1.

Property 1  A k-truss connected component should have at least k vertices with degree
at least k-1.

This paper argues that the existence of a k − truss component in the local subgraph of
edge vicinity would prove the existence of at least one global community that would be
discovered by decomposing the larger subgraph containing the local graph. The exist-
ence of community in the local subgraph is used as an evidence that the edges pro-
cessed so far has a community within them. Thus, In the first step; the edges with the
highest weights are processed until the required number of communities is discovered
through local communities subgraphs. Afterwards, global communities can be discov-
ered by decomposing the subgraph containing only the edges that was processed dur-
ing the first step. Such procedure would allow the proposed algorithms to discover the
top weighted communities while processing a small subset of the edges with the highest
weights rather than the whole graph edges. Formally, we define the paper argument in
the following property followed by an example to illustrate the idea of local communities
versus global communities.

Property 2  Given a local vicinity subgraph H ⊆ G, if there is a k-truss H ′ ∈ H then
there is k-truss component H ′′ ∈ G and H ′ ⊆ H ′′.

Example 3  Consider the graph G shown in Fig. 3a contains set of the highest weight
edges where e(v1, v3) is the one with the least weight of 27 and considered for local vicin-
ity subgraph checking. Property 1 is satisfied within the local vicinity of edge e(v1, v3) and
the local subgraph is built as shown in Fig. 3b where the goal is to extract top weighted
4-truss communities. However, the local subgraph has no 4-truss community. Then, the
next edge e(v2, v4) with weight 25 is considered for local vicinity subgraph checking .
Property 1 is satisfied within the local vicinity of of edge e(v2, v4) and the local subgraph
is built as shown in Fig. 3d. The local subgraph is found to have a local 4-truss commu-
nity. Thus, the local exploration of the edges has led to the discovery of one local com-
munity. However, the graph in its current form as shown in Fig. 3c has two top weighted
global communities that can be discovered only through k-truss decomposition of graph
3c. The two top weighted global communities are themselves the two graphs in Fig. 3a
and Fig. 3c with weights 27 and 25. The local graph in Fig. 3b didn’t have a local commu-
nity where the graph in Fig. 3a that the local subgraph was extracted from has a global
community. This example shows that the local exploration of the edges local vicinity
can provide an evidence for communities existence rather than truly discovering them.
In addition, the existence of one local community is an evidence of the existence of at
least one global community where multiple global communities can exist in the original

Page 10 of 25Habib et al. Journal of Big Data (2022) 9:36

graph. Thus, it is a necessity to analyze the graph that local graphs are extracted from in
order to discover the set of global communities.

This paper proposes three algorithms which utilize property 1 and property 2 to dis-
cover top-r weighted k-truss communities; LOCAL k-TRUSS ALGORITHM (LKA),
DEGREE-BASED LOCAL k-TRUSS ALGORITHM (DBLKA), MULTIPLE CANDIDATE
LOCAL k-TRUSS ALGORITHM (MCLKA) where each of them is explained in the fol-
lowing subsections.

Local k‑truss algorithm

This algorithm consists of three main steps, all three main steps work together to even-
tually define a subgraph y that contains the required top-r weighted communities.
Through this way, only a small subgraph y can be used to discover the communities

(a)
(b)

(c)

(d)

Fig. 3  Local community versus Global community Example

Page 11 of 25Habib et al. Journal of Big Data (2022) 9:36 	

rather than the original graph G. The three main steps are listed below and explained in
more details:

•	 Build temp graph.
•	 Temp graph verification.
•	 Enumerating the required top-r weighted k-truss communities.

Local k-truss algorithm takes as an input the weighted graph G along with k, r; The
weighted graph G edges are presorted in descending order and stored on disk. The algo-
rithm starts by processing the edges with the highest weight in sequence. The processed
set of edges are added into subgraph Y. With each edge being processed, the effect of this
edge is checked according to property 1. If the edge e(u, v) has k-2 common neighbors
i.e. |Su,v ≥ k − 2| and each with degree at least k − 1 in subgraph Y, a k-truss component
is suspected. Then, a temp graph X is constructed, X= ES(u,v) ↔ {u, v} where the set of
vertices are the two vertices u, v in addition to the set of vertices of S(u,v)=nb(u) ∩ nb(v)
that reside in subgraph Y. Finally, edges between S(u,v) in Y are added to temp graph X.

The next step—Temp graph verification—is to check if the temp graph X has a k-truss
component. The algorithm impose count triangle procedure in order to remove edges
with support less than k-2. Then, detect connected component procedure is run to
check whether there is a k-truss connected component in X or not as outlined in Algo-
rithm 1. Once a community in X is discovered, the number of verified communities is
incremented by 1. The decomposition of X is expected to be fast in terms of time as the
decomposition is done only on a small number of edges in subgraph X.

Finally, once the number of verified local communities reach the required number
of the k-truss weighted communities r, the global communities should be discovered
from subgraph y as realization of property 2. The enumeration procedure firstly decom-
poses the subgraph y that contains r-communities and iteratively removes edges with
the minimum weight that represent the key-edges of the community. Before each key-
edge removal, a community with the weight of the key-edge is retrieved and stored. The
removal of the edges continues till graph y is no longer connected. Then, top r weighted
communities are retrieved and considered as the output. The pesudo code of LOCAL
k-TRUSS ALGORITHM (LKA) is outlined in Algorithm 2.

Page 12 of 25Habib et al. Journal of Big Data (2022) 9:36

Complexity analysis Local k-truss Algorithm complexity can be described as the
decomposition cost of each candidate subgraph in addition to the decomposition cost
of the subgraph containing the global solutions. Given the number of candidates sub-
graphs as α , the edges in each candidate subgraph X as mx and the decomposition
cost of edges as the number of edges to the power of 1.5 as mentioned in [33], the
complexity of the first phase of the algorithm (from line 2 to line 10 in Algorithm 2)
can be formally defined as O(α ∗m1.5

x) . Similarly, the decomposition of the subgraph
Y containing the global solutions (line 12 in algorithm 2) would be O(my

1.5) . The total
complexity of the Local k-truss Algorithm would be O(α ∗m1.5

x)+ O(m1.5
y).

Example 4  This example shows a detailed explanation for local k-truss algorithm
where k = 4 and r = 2 are considered as the search parameters. The subgraph Y con-
tains the highest weight edges processed so far from graph G in Fig. 2, upon processing
edge e(v1, v3) , property 1 is satisfied where e(v1, v3) has four vertices {v2, v4, v5, v9} as a
common neighbours with degree 3. Then, temp graph X for e(v1, v3) is built as shown
in Fig. 4b. Afterwards, decompose k-truss procedure is run over X(v1,v3) where the sub-
graph highlighted by green circle will be removed as the support of all its edges is equal
to 1. The subgraph highlighted by red rectangle is a 4-truss community. Figure 4c shows
the same subgraph Y where the edge e(v2, v4) is added and checked according to prop-
erty 1 the temp graph X(v2,v4) is built as shown in Fig. 4d and a 4 − truss is found. Thus,

(a) (b)

(c) (d)

(e)
Fig. 4  Running example for LKA

Page 13 of 25Habib et al. Journal of Big Data (2022) 9:36 	

subgraph Y with edge e(v2, v4) has at least two global 4-truss communities according to
property 2 as two local communities are discovered. The top-2 4-truss communities are
highlighted in Fig. 4e, the top-1 4-truss community is highlighted by7 red rectangle and
top-2 4-truss community is highlighted by green rectangle.

Degree based local k‑Truss Algorithm (DBLKA)

In this subsection DBLKA is proposed to extract local communities more efficiently.
It follows the same steps similar to LKA except for the verification step which intro-
duces k-core filtration as an extra step during the verification process. The three main
steps are listed below and explained in more details:

•	 Build temp graph.
•	 Temp graph verification.
•	 Enumerating the required top-r weighted k-truss communities.

All these three steps work together to mainly extract top-r weighted communities. The
top-r weighted k-truss communities are extracted from a subgragh Y rather than origi-
nal graph G. The DBLKA takes as an input original graph G, k, and r where the set
of edges are presorted in descending order in terms of edge weights. The set of edges
are processed iteratively starting from the edge with the highest weight. It starts with
building the temp graph X following the same steps as explained in the first step in
section "Local k-truss algorithm". After the temp graph X is built a verification step
is performed. The main idea of the verification step here is based on the fact that any
k − truss component must be (k − 1)− core component. Therefore, the temp graph
X is checked if it is (k − 1)− core before performing k-truss decomposition. K-truss
decomposition is performed only if temp graph X is found to be (k − 1)− core . Oth-
erwise, the edge being processed is ignored and next edge with the highest weight is
considered for processing.

Temp graph X is checked if it is (k − 1)− core by removing any vertex with degree
less than k − 1 . Thus, the remaining vertices if any represents a (k − 1)− core com-
ponent. If a (k − 1)− core component is found, its vertices and edges are checked
against two different cases; First, if the number of the remaining vertices are greater
than k then the remaining vertices and their edges should be processed to check if
they form a k − truss component or not. Second, if the number of remaining vertices
are equal to k vertices with degrees equal to k − 1 then the remaining vertices with
their edges is a k − clique component and consequently a k − truss component.

Page 14 of 25Habib et al. Journal of Big Data (2022) 9:36

Finally the third step is performed to extract the top− r weighted k − truss commu-
nities from the subgraph Y following the same steps as explained in the third step in
section "Local k-truss algorithm". The pesudo code of Degree Based LOCAL k-TRUSS
ALGORITHM (DBLKA) is outlined in Algorithm 3 and a detailed explanation for the
algorithm is showed in Example 5.

Complexity analysis DBLKA complexity can be described as the decomposition
cost of each candidate subgraph in addition to the decomposition cost of the sub-
graph containing the global solutions. Given the number of degree-based filtered
candidates subgraphs as β , the edges in each candidate subgraph X as mX and the
decomposition cost of edges as the number of edges to the power of 1.5 as mentioned
in [33], the complexity of the first phase of the algorithm (from line 2 to line 19 in
Algorithm 3) can be formally defined as O(β ∗m1.5

x) . Similarly, the decomposition
of the subgraph Y containing the global solutions (line 20 in algorithm 3) would be
O(m1.5

y) . The total complexity of the Degree Based Local k-truss Algorithm would be
O(β ∗m1.5

x)+ O(m1.5
y) . It’s noted that the number of degree-based filtered candidates

subgraphs β is expected to be less than the number of candidates subgraphs α gener-
ated by the Local k-truss Algorithm.

Example 5  Consider the graph G in Fig. 2 where k = 4 and r = 2 are considered as the
search parameters. The subgraph Y contains the highest weight edges processed so far,
upon processing edge e(v1, v3) , property 1 is satisfied where e(v1, v3) has four vertices
{v2, v4, v5, v9} as a common neighbours with degree 3. Then, temp graph X for e(v1, v3)
is built as shown in Fig. 5b where the two vertices {v2, v9} are excluded while building X
due to k − 1 core filtration step. The the two vertices {v2, v9} are not a part from 3− core
where the degree of each them is 2. The remaining component is highlighted by red in
Fig. 5b is a 4 − truss community without calling decompose k-truss procedure as X(v1,v3)
contains 4 vertices with degree 3 which turns it to as a clique clarified in the proposed

Page 15 of 25Habib et al. Journal of Big Data (2022) 9:36 	

algorithm. Figure 5c shows the same subgraph Y where the edge e(v2, v4) is added and
checked according to property 1. Then, the temp graph X(v2,v4) is built as shown in
Fig. 5d and a 4 − truss is found directly given the number of vertices and their degrees
where no vertices will be removed in k − 1 core filtration step and the remaining number
of vertices with their degrees form a clique as clarified in the proposed algorithm. Thus,
subgraph Y with edge e(v2, v4) has at least two global 4-truss communities according to
property 2 as two local communities are discovered. The top-2 4-truss communities are
highlighted in Fig. 5e, the top-1 4-truss community is highlighted by red rectangle and
top-2 4-truss community is highlighted by green rectangle.

Multiple candidates local k‑truss algorithm(MCLKA)

In this subsection the third algorithm MCLKA is proposed where multiple temp graphs
of multiple edges with the highest weight and satisfying property 1 are generated as one
multiple candidates graph. The generated multiple candidates graph is verified once at
a time instead of verifying each temp graph separately. In generating multiple candi-
dates graph, edges with the highest weight are processed in sequence where the vertices
and their common neighbours of each edge satisfying property 1 is added to multiple

(a)
(b)

(c) (d)

(e)
Fig. 5  Running example for DBLKA

Page 16 of 25Habib et al. Journal of Big Data (2022) 9:36

candidates graph Z. Once the number of processed edges satisfying property 1 reach
r, temp graph Z is built and its vertices are connected. Then, a verification step is per-
formed over the multiple candidates graph Z. The verification of multiple candidates at
once should allow a faster processing for the edges and consequently a faster discovery
for the top− r weighted k − truss communities. The three main steps are listed below
and explained in more details:

•	 Generate Multiple Candidates Graph.
•	 Multiple Candidates Graph verification.
•	 Enumerating the required top-r weighted k-truss communities.

In the first step—Generate Multiple Candidates Graph—the edges are processed in
sequence from the highest weight edge where the processed set of edges are added
into subgraph Y. For each edge e(u, v) being processed, the edge is checked to find out
if it satisfies property 1 or not. If the edge was found to be satisfying for property 1,
the set of affected vertices with degree >= k−1; the two vertices u, v in addition to the
set of vertices of S(u,v)=nb(u) ∩ nb(v) that reside in subgraph Y are added to graph Z.
In addition, e(u, v) is considered as a key-edge for the set of the affected vertices that
was added to subgraph Z and saved in key-edges list for later processing. The process-
ing of the edges continue until the number of key edges reaches r. Once the number
of key-edges reaches r, the edges between vertices in graph Z which exist in graph Y
are added to graph Z.

In the second and the third step—Multiple Candidates Graph verification and Enu-
merating the required top-r weighted k-truss communities, the subgraph Z is verified
to check whether there is a connected k − truss component in it or not. The count

Page 17 of 25Habib et al. Journal of Big Data (2022) 9:36 	

triangle procedure is performed over all multiple candidates in subgraph Z to remove
any edge with support less than k − 2 . If a k − truss component is found, then the
existence of the key-edges from the key-edges list are checked in the decomposed
version of subgraph Z. If r key-edges are found in decomposed version of subgraph Z,
then the subgraph Y is decomposed to extract and enumerate top-r weighted k-truss
communities. On the other hand, if less than r key-edges existed on the k − truss
component or no k − truss component was found in the decomposed version of sub-
graph Z, the algorithm gets back and starts to process edges with the highest weights
for another cycle. The pesudo code of Multiple Candidates Local k-truss Algorithm
(MCLKA) is outlined in Algorithm 4 followed by a detailed explanation in Example 6.

Complexity analysisMCLKA complexity can be described as the decomposition
cost of each multiple candidate subgraph in addition to the decomposition cost of
the subgraph containing the global solutions. Given the number of multiple candi-
date subgraphs as µ , the edges in each multiple candidate subgraph X as mX and the
decomposition cost of edges as the number of edges to the power of 1.5 as mentioned
in [33], the complexity of the first phase of the algorithm (from line 2 to line 21 in
Algorithm 4) can be formally defined as O(µ ∗m1.5

x) . Similarly, the decomposition
of the subgraph Y containing the global solutions (line 22 in Algorithm 4) would be
O(m1.5

y) . The total complexity of Multiple Candidates Local k-Truss Algorithm would
be O(µ ∗m1.5

x)+ O(m1.5
y) . It’s noted that the number of multiple candidate subgraphs

µ is expected to be less than the number of degree-based filtered candidates sub-
graphs β generated by Degree Based Local k-truss Algorithm.

Example 6  Consider the graph G in Fig. 2 where k = 4 and r = 2 are the search param-
eters. The subgraph Y contains the highest weight edges processed so far from graph G,
upon processing edge e(v1, v3) , property 1 is satisfied where e(v1, v3) has four vertices
{v2, v4, v5, v9} as a common neighbours with degree 3. Then, the list of affected vertices of
e(v1, v3) are added to the temp graph Z as shown in Fig. 6b where the two vertices {v2, v9}
are excluded due to k − 1 core filtration step. The the two vertices {v2, v9} are not a part
from 3− core where the degree of each them is 2. Figure 6c shows the same subgraph Y
where the edge e(v2, v4) is added and found to be satisfying to property 1. Accordingly,
the temp graph Z is updated as shown in Fig. 6d by adding the vertex v2 and the list
of key-edges is updated by adding the current one e(v2, v4) . The temp graph Z is then
updated by adding the edges between the set of vertices in graph Z as shown in Fig. 6e.
The edges between vertices are extracted from graph y in Fig. 6c. The temp graph Z is
decomposed where the decomposed version is found to contain the two key-edges. The
existence of two key-edges in the decomposed version of Z is an evidence to decompose
the subgraph Y to extract the required top-2 4-truss communities. The top-2 4-truss
communities are highlighted in Fig. 6f, the top-1 4-truss community is highlighted by
red rectangle and top-2 4-truss community is highlighted by green rectangle.

Page 18 of 25Habib et al. Journal of Big Data (2022) 9:36

Performance evaluation
In this section the proposed algorithms are evaluated to find out their perfor-
mance in terms of execution time and prove their efficiency against the state-of-
the-art algorithms. The execution time was considered as evaluation metric since it
was used while evaluating similar community search models in the literature [4, 6,
8, 10, 31]. The proposed algorithms are evaluated against four different algorithms

(f)

(c)

(e)

(d)

(a)
(b)

Fig. 6  Running example for MCLKA

Page 19 of 25Habib et al. Journal of Big Data (2022) 9:36 	

the BFS-based Online Search Algorithm proposed in [10] ,the LocalSearch-P Algo-
rithm proposed in [12] and both algorithms Backward Algorithm and Weight Sensi-
tive Local Search Algorithm proposed in [31]. All algorithms discover the weighted
communities in an online manner. The BFS-based Online Search Algorithm, back-
ward Algorithm, and Weight Sensitive Local Search algorithm are designed to find
weighted k-truss communities. The LocalSearch-P Algorithm utilizes the concept of
local community search to discover the top-k influential communities where k-core
and vertex-weight are considered. In order to ensure fairness and completeness of
the experiment, LocalSearch-P Algorithm is implemented following the same strat-
egy but with k-truss model and weighted edges instead of k-core model and ver-
tex-weight. All algorithms were explained in details in related work section. All
experiments are conducted on seven public datasets as shown in Table 2 and are run
over Python environment. In addition, all experiments are conducted on a machine
with an Intel i5 2.5GHz CPU and 8 GB main memory.

Datasets

The proposed algorithms are evaluated using seven datasets shown in Table 2 and
availed in [34]. The datasets are in different sizes which range from small to large size.
As shown in Table 2, each dataset has set of parameters to identify its size where V
represents the number of vertices, E represents the number of the edges, and kmax
represents the max k − truss that can be extracted from the dataset. As the weighted-
edge graph is considered in this paper, the weight is calculated as the common neigh-
bors between each two vertices i.e. w(e(u, v)) = nb(u) ∩ nb(v) . The proposed methods
are not affected whether the weight is calculated or given as the weighted communi-
ties will be extracted correctly.

Experimental results

The proposed algorithms are evaluated against the BFS-algorithm, the optimal ver-
sion of the LocalSearch-P algorithm and the state of the art algorithms Backward
algorithm and Weight Sensetive Local Search algorithm. There are two varying query
parameters where the algorithms are evaluated against them. The query parameters
are K and r where k represents the trussness level and varying from 5 to largest k for
each dataset and r represents the number of required top communities and varying

Table 2  Datasets description

Graph |V| |E| kmax

Wiki-Vote 8K 200K 25

Email 37K 200K 20

Youtube 1.1M 3M 19

Wiki-Talk 2.4M 5M 53

Skitter 1.7M 11M 68

LiveJournal 4M 34.6M 214

Orkut 3.1M 117.1M 78

Page 20 of 25Habib et al. Journal of Big Data (2022) 9:36

from 10 to 1000 in large datasets. Figures 7 and 9 show the evaluation results where
k equals a default value 10 and r is varying while Figs. 8 and 10 show the evaluation
results where r equals the default value 10 and k is varying. Generally Figs. 7 and 8
show that (MCLKA) performs better than the other algorithms. The processing time
is linearly proportional to the size of the graph the algorithm visits.

With small values of both r and k, all the proposed algorithms perform the same
and require the same time to discover the output communities where the algorithms
usually verify a small subset of the graph. When r increases in Figs. 7 and 9, (MCLKA)
shows a better performance as it has a faster verification process than the other two
proposed algorithms (LKA) and (DBLKA). Following the same behavior in Figs. 8 and
10 when k increases, (MCLKA) shows a better performance as it verifies a set of local
candidates altogether at once rather than individual candidates verification. Verifying
as set of local candidate saves the times required to do the verification steps for each
candidate individually. Consequently, it has the ability to discover local communities
with higher k efficiently than other algorithms.

As shown in Figs. 7 and 8, the BFS- algorithm takes constant time for different r
as it discovers all the possible communities in the whole graph and then outputs the
top ones. The BFS algorithm couldn’t run for the large graphs Wiki-Talk, LiveJournal,

(a) (b) (c)

(e) (f) (g)

(h)

Fig. 7  Execution time of the proposed algorithms against BFS and LocalSearch-P Algorithms while k = 10
and r is varying

Page 21 of 25Habib et al. Journal of Big Data (2022) 9:36 	

Skitter, and Orkut dataset due to the large size of the graphs and the inability to
decompose such graphs in main memory. These graphs don’t fit in a small main mem-
ory which is used during performance evaluation.

On the other hand, the localsearch-p algorithm performs in a different way where the
search time increases in leaps as the search time is constant while discovering a num-
ber of communities before leaping in time to discover the next set of communities. For
example, the localsearch-p algorithm examines a subset of graph that contains 100 com-
munities while trying to discover only the top 10 weighted communities. Then, when
the algorithm try to discover the top 20 weighted communities, it will also examine the
same subset of the graph containing 100 communities. Consequently, the search time
will be constant until the number of required communities is greater than 100. By then,
the search time will have a leap as it will examine a bigger subset of the graph. The linear
paradigm is better than leaps especially in large k and r.

Figures 9 and 10 indicate that MCLKA performs better than Backward and Weight
Sensitive Local Search algorithms. MCLKA outperformance is related to its discovery
method as it processes a small portion of graph that has the required r-communities.
During this experiment, BACWARD has the worst performance as it first decompose
the original graph into k-truss to prune all set of edges that don’t reside in k-truss.
WSLSA yeilds a close performance to MCLKA at different values of trussness level

(a) (b) (c)

(e) (f) (g)

(h)

Fig. 8  Execution time of the proposed algorithms against BFS and LocalSearch-P Algorithms while r = 10
and k is varying

Page 22 of 25Habib et al. Journal of Big Data (2022) 9:36

with constant number of communities to retrieve of 10 communities. However,
WSLSA fails at high levels of trussness unlike MCLKA and other local search based
algorithms. Mostly, BACWARD and WSLSA algorithms failed to discover weighted
communities at large values of K and large values of r unlike local-search based algo-
rithms which did succeed at the same case.

Conclusion
In this paper community search problem is investigated to discover top-r weighted
communities where the link weight is considered and the k-truss model is consid-
ered as the cohesiveness model. Three different algorithms which utilize the con-
cept of local community search in order to discover the global community search
results were proposed. The three different algorithms are LKA, DBLKA, and MCLKA.
LKA where these algorithms consist of three main steps. LKA imposes a traditional

(a) (b) (c)

(e) (f) (g)

(h)

Fig. 9  Evaluation time of the proposed algorithms against Backward and WSLSA Algorithms while k = 10
and r is varying

Page 23 of 25Habib et al. Journal of Big Data (2022) 9:36 	

procedure for k-truss model that count triangles and decompose local graphs in
order to find k-truss local graphs before finding the global community search results.
DBLKA imposes a more filtration step over the local graph to remove vertices which
wont ever belong to k-truss community and consequently find k-truss local graphs in
a faster way. MCLKA does a verification step over r-generated local graphs at once
rather than considering each of them on its own. All these algorithms are evaluated
against the (BFA), LocalSearch-p, Backward and Weight Sensetive Local Search algo-
rithms . Experimental results showed that (MCLKA) is the superior algorithm in
terms of execution time against all other algorithms. One of the main challenges to
consider as future work is to ensure that the difference between the number of discov-
ered candidates and the number of truly existing communities will be low in order to
enhance the search time. In addition, the proposed algorithms could be extended to
add the vertices properties as an extra dimension to find homogeneous top-weighted
communities. Extending the algorithms to find top weighted communities where each
edge is assigned multiple weights is another future work direction.
Acknowledgements
Not applicable.

Authors’ contributions
Authors contributed equal share in this research. All authors read and approved the final manuscript.

(a) (b) (c)

(e) (f) (g)

(h)

Fig. 10  Execution time of the proposed algorithms against Backward and WSLSA Algorithms while r = 10
and k is varying

Page 24 of 25Habib et al. Journal of Big Data (2022) 9:36

Funding
Not applicable.

Availability of data and materials
The datasets used in the experiments are available online and referenced in the paper.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Information Systems Department, Faculty of Computers and Artificial Intelligence, Cairo University, Cairo, Egypt. 2 Faculty
of Computing and Information Sciences, Egypt University of Informatics, Cairo, Egypt.

Received: 19 November 2021 Accepted: 23 March 2022

References
	1.	 Cohen J. Trusses: Cohesive subgraphs for social network analysis. Natl Secur Agency Tech Rep. 2008;16:3–1.
	2.	 Wang J, Cheng J. Truss decomposition in massive networks. Proc VLDB Endow. 2012;5(9):812–23.
	3.	 Li RH, Qin L, Yu JX, Mao R. Influential community search in large networks. Proc VLDB Endow. 2015;8(5):509–20.
	4.	 Cui W, Xiao Y, Wang H, Wang W. Local Search of Communities in Large Graphs. In: Proceedings of the 2014 ACM SIG‑

MOD International Conference on Management of Data. SIGMOD ’14. New York, NY, USA: ACM; 2014. p. 991–1002.
http://​doi.​acm.​org/​10.​1145/​25885​55.​26121​79.

	5.	 Huang X, Cheng H, Qin L, Tian W, Yu JX. Querying k-truss community in large and dynamic graphs. In: Proceedings
of the 2014 ACM SIGMOD international conference on Management of data. ACM; 2014. p. 1311–1322.

	6.	 Akbas E, Zhao P. Truss-based community search: a truss-equivalence based indexing approach. Proc VLDB Endow.
2017;10(11):1298–309.

	7.	 Huang X, Lakshmanan LV. Attribute-driven community search. Proc VLDB Endow. 2017;10(9):949–60.
	8.	 Chen S, Wei R, Popova D, Thomo A. Efficient computation of importance based communities in web-scale networks

using a single machine. In: Proceedings of the 25th ACM International on Conference on Information and Knowl‑
edge Management. ACM; 2016. p. 1553–1562.

	9.	 Fortunato S. Community detection in graphs. Phys Rep. 2010;486(3–5):75–174.
	10.	 Zheng Z, Ye F, Li RH, Ling G, Jin T. Finding weighted k-truss communities in large networks. Inf Sci. 2017;417:344–60.
	11.	 Garas A, Argyrakis P, Rozenblat C, Tomassini M, Havlin S. Worldwide spreading of economic crisis. New J Phys.

2010;12(11): 113043.
	12.	 Bi F, Chang L, Lin X, Zhang W. An optimal and progressive approach to online search of top-k influential communi‑

ties. Proc VLDB Endow. 2018;11(9):1056–68.
	13.	 Chang L, Li W, Qin L, Zhang W, Yang S. Fast and exact structural graph clustering. IEEE Trans Knowl Data Eng.

2017;29(2):387–401.
	14.	 Shao J, Han Z, Yang Q, Zhou T. Community Detection Based on Distance Dynamics. In: Proceedings of the 21th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’15. New York, NY, USA: ACM;
2015. p. 1075–1084. http://​doi.​acm.​org/​10.​1145/​27832​58.​27833​01.

	15.	 Yang J, Leskovec J. Defining and evaluating network communities based on ground-truth. Knowl Inf Syst.
2015;42(1):181–213.

	16.	 Huang X, Lu W, Lakshmanan LV. Truss decomposition of probabilistic graphs: Semantics and algorithms. In: Proceed‑
ings of the 2016 International Conference on Management of Data; 2016. p. 77–90.

	17.	 Cheng J, Ke Y, Fu AWC, Yu JX, Zhu L. Finding maximal cliques in massive networks. ACM Trans Database Syst.
2011;36(4):21.

	18.	 Cheng J, Zhu L, Ke Y, Chu S. Fast algorithms for maximal clique enumeration with limited memory. In: Proceed‑
ings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM; 2012. p.
1240–1248.

	19.	 Tsourakakis C, Bonchi F, Gionis A, Gullo F, Tsiarli M. Denser than the densest subgraph: extracting optimal quasi-
cliques with quality guarantees. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM; 2013. p. 104–112.

	20.	 Cheng J, Ke Y, Chu S, Özsu MT. Efficient core decomposition in massive networks. In: 2011 IEEE 27th International
Conference on Data Engineering. IEEE; 2011. p. 51–62.

	21.	 Khaouid W, Barsky M, Srinivasan V, Thomo A. K-core decomposition of large networks on a single PC. Proc VLDB
Endow. 2015;9(1):13–23.

	22.	 Charikar M. Greedy approximation algorithms for finding dense components in a graph. In: International Workshop
on Approximation Algorithms for Combinatorial Optimization. Springer; 2000. p. 84–95.

http://doi.acm.org/10.1145/2588555.2612179
http://doi.acm.org/10.1145/2783258.2783301

Page 25 of 25Habib et al. Journal of Big Data (2022) 9:36 	

	23.	 Goldberg AV. Finding a maximum density subgraph. In: Tech. Report No. UCB CSD 84/171. Computer Science Divi‑
sion (EECS), University of California, Berkeley, CA, 1984.

	24.	 Chang L, Yu JX, Qin L, Lin X, Liu C, Liang W. Efficiently computing k-edge connected components via graph decom‑
position. In: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. ACM; 2013.
p. 205–216.

	25.	 Zhou R, Liu C, Yu JX, Liang W, Chen B, Li J. Finding maximal k-edge-connected subgraphs from a large graph. In:
Proceedings of the 15th International Conference on Extending Database Technology. ACM; 2012. p. 480–491.

	26.	 Alemi M, Haghighi H. KTMiner: distributed k-truss detection in big graphs. Inf Syst. 2019;83:195–216.
	27.	 Sozio M, Gionis A. The community-search problem and how to plan a successful cocktail party. In: Proceedings of

the 16th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM; 2010. p. 939–948.
	28.	 Cui W, Xiao Y, Wang H, Lu Y, Wang W. Online search of overlapping communities. In: Proceedings of the 2013 ACM

SIGMOD international conference on Management of data. ACM; 2013. p. 277–288.
	29.	 Wu Y, Jin R, Li J, Zhang X. Robust local community detection: on free rider effect and its elimination. Proc VLDB

Endow. 2015;8(7):798–809.
	30.	 Zhu Y, He J, Ye J, Qin L, Huang X, Yu JX. When Structure Meets Keywords: Cohesive Attributed Community Search.

In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management; 2020. p.
1913–1922.

	31.	 Habib WM, Mokhtar HM, El-Sharkawi ME. Weight-Based K-Truss Community Search via Edge Attachment. IEEE
Access. 2020;8:148841–148852.

	32.	 Shao Y, Chen L, Cui B. Efficient cohesive subgraphs detection in parallel. In: Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data; 2014. p. 613–624.

	33.	 Latapy M. Main-memory triangle computations for very large (sparse (power-law)) graphs. Theor Comput Sci.
2008;407(1–3):458–73.

	34.	 https://​snap.​stanf​ord.​edu/​data/.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://snap.stanford.edu/data/

	Discovering top-weighted k-truss communities in large graphs
	Abstract
	Introduction
	Related work
	Preliminaries
	Proposed algorithms
	Local k-truss algorithm
	Degree based local k-Truss Algorithm (DBLKA)
	Multiple candidates local k-truss algorithm(MCLKA)

	Performance evaluation
	Datasets
	Experimental results

	Conclusion
	Acknowledgements
	References

