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Introduction
Community search is a major problem in graph model which had recently gained exces-
sive attention from researchers. Community Search problem is to search a graph to dis-
cover a community that satisfies certain query parameters. For example, a community 
that contains a certain vertex or a set of keywords is required to be discovered. There 
are many studies over community search especially on large graphs [1–9]. Most of stud-
ies within community search usually ignore edge weight. The edge weight is playing an 
important role where it is used to represent the strength of the relationship between any 
two vertices. There are many applications that clarify the importance of edge weight:

•	 The edge weight in a co-authorship network may indicate how many papers the two 
linked authors had co-authored together [10]. Considering the edge weight during 
community search would ensure that authors within discovered communities have 
strong co-authoring relationship between them.
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•	 The edge weight in social network may represent the similarity, or interactions 
between users [10]. Considering the edge weight in the resulted community would 
ensure the discovery of highly interacted and similar group of users.

•	 Corporate ownership networks (CON), this is a weighted economic network that 
links 406 different countries, and its weights represent the business ties among coun-
tries [11]. Considering the edge weight within the discovered communities would 
reveal and ensure the business ties between countries.

A sample of social network is illustrated in Fig. 1 where vertices represent users and edge 
between any two vertices represents the friendship relation. In such social network the 
edge weight plays an important role describing the social interactions between users. 
The two communities in Fig. 1a and in Fig.  1b are densely connected in terms of the 
number of edges between vertices. Besides, the two communities in Fig.  1b show the 
top interacting groups of users based on the weights on the edges between them. The 
community with minimum edge weight 20 is considered as the top weighted community 
of interacting users while the community with minimum edge weight 7 is considered 
as the second top weighted community. In this example, edge weight was able to dis-
tinguish between different groups of users according to their interaction level. In addi-
tion, all three communities in Fig. 1a and b are densely connected where their trussness 
is equal to three. The trussness level of three ensures that every two connected nodes 
have one common neighbor and consequently ensures a high level of structural similar-
ity between nodes.

Inspired by the importance of edge weight, this paper considers the edge weight to 
discover weighted communities. More specifically, the proposed models in this paper 
utilize edge weight and k-truss model in order to discover top weighted k-truss commu-
nities. k-truss community is the densest subgraph in which each edge resides in at least 
k-2 triangles [1], where triangle models the cyclic relationship between 3 vertices.

Querying top weighted k-truss communities has been studied recently in the literature 
using different methods like online method and index based method [10]. Both methods 
discovers top weighted k-truss communities using global search where the whole graph 

(a)
(b)

Fig. 1  Motivation example
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resides in the main memory and all edges are required to be visited. Another direc-
tion to discover top weighted communities utilizes local search method [4, 12]. Local 
search discovers the community of a given vertex using the neighbouring vertices and 
their edges. Local search is more efficient than global search as it searches a small por-
tion of the graph to discover the required communities. On the other hand, local search 
techniques proposed in the literature don’t consider edge weigh and discover coherent 
k-core local communities only. The main challenge of local search while considering 
edge weight is to find the small portion of the graph that certainly contains the required 
top weighted communities.

This paper builds on the concept of local search in order to obtain the same output 
communities discovered by global search. The utilization of local search technique is 
motivated by their search strategy that tends to check the neighborhood of a node rather 
than checking the whole graph. Using such a search strategy to obtain the same results 
obtained by global search would guarantee an extremely less search time while having 
the required results. This paper utilizes local search in three different methods in order 
to optimize the required search time to find the top-weighted k-truss communities. 
Local search is performed by checking the vicinity of the edge with the highest weight 
while processing edges in a descending order based on their weights. Once a community 
is found in the vicinity of the edge being checked between the edge and its neighbors, a 
local solution can be confirmed. The local solution is an evidence for the existence of-at 
least-one global solution within the portion of the graph checked so far. Then, the global 
solutions can be found by checking this portion of the graph instead of the whole graph.

The main contribution of this paper is utilizing local search technique in three pro-
posed algorithms to discover top-weighted k-truss communities. More specifically, the 
main contributions are as follow:

•	 A LOCAL k-TRUSS ALGORITHM (LKA): is proposed as a base solution to apply 
local search. The algorithm processes edges with the highest weight in sequence. 
With each edge, the vertices of the edge and their common neighbouring that are 
processed so far are checked to find out if they form a local k-truss community.

•	 A DEGREE-BASED LOCAL k-TRUSS ALGORITHM (DBLKA): based on the fact 
that any k-truss community must be (k-1)-core community and not vice versa, 
DBLKA is proposed. Similar to LKA, edges with the highest weight are processed 
in sequence. With each edge, the vertices of the edge and their common neighbour-
ing that are processed so far are checked to find out if they form a (k-1)-core first 
before checking if they form a local k-truss community. Consequently, the number of 
local communities that need to be checked for k-truss existence are decreased which 
improves search time as shown in "Performance evaluation" section.

•	 A MULTIPLE CANDIDATE LOCAL k-TRUSS ALGORITHM (MCLKA): Similar 
to DBLKA, the algorithm check the existence of (k-1)- core before checking the the 
existence of local k-truss. On the other hand, the algorithm does the checking pro-
cess on multiple edges vertices and their common neighbours at once rather than 
checking each edge case on its own. The collective checking process for multiple 
candidates has led to a dramatic improvement in terms of search time as shown in 
"Performance evaluation" section
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For all proposed algorithms; once the number of local k-truss communities reaches the 
required number of communities, the edges processed so far are examined using enu-
meration algorithm [10] in order to find global communities resides in them.

The rest of this paper is organized as follows: "Related work" section presents related 
work. "Preliminaries" section overviews some of the basic concepts used in the paper 
including weighted graphs, edge support, and weighted k-truss communities. In "Pro-
posed algorithms" section the proposed algorithms are presented. "Performance evalu-
ation" presents the empirical results and discusses them. Finally, "Conclusion" section 
concludes the paper and highlights possible directions for future work.

Related work
There are several models in the literature which address the problem of discover-
ing cohesive subgraph in terms of structure which is called community detection task. 
Community detection models [13–16] are used to discover group of vertices that are 
strongly connected to each others and weakly connected to outside vertices. The most 
commonly used and familiar techniques to discover dense subgraphs are cliques [17, 18], 
quasi-clique [19], k-core [20, 21, 21], edge density [22, 23], edge connectivity [24, 25], 
and k-truss [1, 2]. Recently, authors in [26] proposed a new model called KTMiner to 
detect k-truss communities in a distributed manner using Map-Reduce framework on 
Apache Spark environment.

Community search is another task where the goal is to discover cohesive group of ver-
tices but in terms of search according to a certain query in the graph rather than detec-
tion of all existing communities. Community search is proposed to address the problem 
of discovering group of vertices that contains a specific vertex, set of vertices, or set of 
keywords. The community search problem is well studied in the literature [4–6, 27–30]. 
A global search procedure is proposed by the authors in [27] to search for a subgraph 
that contains a query vertex by iteratively removing vertices with the minimum degree 
which can be computed in a linear time. In [4] an efficient local search procedure for 
the same problem is proposed by the authors where the algorithm starts from the vertex 
query and expand the search to its neighbours in order to find the best community that 
query vertex resides into. A novel α-adjacency γ-quasi-k-clique model was proposed by 
the authors in [28] to study the overlapping community search problem. In [5, 29], the 
community search problem is studied by utilizing the k-truss model, where the maximal 
connected k-truss component containing a query vertex is considered as a community.

Another category of community search algorithms are weight-based community 
search. Influential community search is an example of weight-based community 
search where the each node in the graph is weighted with its influence. In [3], two 
algorithms;online and index are proposed to ed discover the top weighted influential 
communities where k-core model is utilized. In [8], the authors extended online algo-
rithm of[3] in two ways namely Backward and Forward algorithms. Backward algo-
rithms it starts the search by adding vertices with the highest weight and verify the 
component if it is a k-core or not; if it is a k-core a solution is returned otherwise it 
proceeds to add more vertices. Forward algorithm iteratively removes vertices with 
the minimum weight until the graph becomes disconnected and the top communities 
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are returned. The authors in [12] proposed local-optimal algorithm which consid-
ered is the state of art according to its performance. Local-optimal algorithm build 
its search space incrementally by adding subsets of vertices with the highest weights 
until the required top weighted communities are discovered. All these techniques 
are node-weight based which utilize the k-core model as their cohesion measure. 
Another weight-based community search algorithm is proposed in [10] which utilize 
k-truss as its cohesion model. It differs from other algorithms as it considers an edge-
weighted approach rather than node-weighted. The authors proposed two different 
techniques to retrieve top weighted k-truss communities, the first one is discover-
ing communities online; The procedure starts by discovering the maximal k-truss 
of the original graph, and iteratively removes edges with the minimum weight and 
with each removal a maximal connected component procedure is run to find the next 
k-truss connected component. The online approach cannot scale for large graph as 
the whole graph should be resides in main memory. The other approach is the index 
based where all the weighted k-truss communities are indexed separately for each 
k. The required communities are returned directly from the index. The index based 
approach is more efficient than the online base one, it suffers from the large size of 
the index which requires much time to traverse that index. In addition, the mainte-
nance of the index would be time consuming. Recently authors in [31] proposed two 
online algorithms namely BACKWARD ALGORITHM, and WEIGHT-SENSITIVE 
LOCAL SEARCH ALGORITHM (WSLSA). The main idea for the two proposed algo-
rithms is iteratively attaching the edge with the highest weight. The two proposed 
algorithms are, the BACKWARD ALGORITHM, and WEIGHT-SENSITIVE LOCAL 
SEARCH ALGORITHM (WSLSA) overcome the drawbacks of the online search 
algorithms proposed in [10]. The BACKWARD ALGORITHM algorithm detects the 
top-r weighted k-truss communities by iteratively attaching the edges with the highest 
weight after reducing the graph to its k-truss. On the other hand, the WEIGHT-SEN-
SITIVE LOCAL SEARCH ALGORITHM (WSLSA) detects the top-r communities by 
visiting only the highest weighted edges in the graph without the need to reduce the 
graph into its k-truss. The drawback of BACKWARD ALGORITHM and WEIGHT-
SENSITIVE LOCAL SEARCH ALGORITHM (WSLSA) is their failure to process large 
graphs especially when k approaches the max level of trussness. When k approaches 
the max level of trussness, more candidate solutions have to be verified where candi-
date size gets bigger with each cycle. Consequently, the algorithm fails when it has to 
verify candidates with very large size. k-core is a community detection model which 
discovers a connected subgraph where each vertex has degree no less than k. Another 
community detection model is called k − truss which is defined based on the con-
cept of triangle where each edge in a connected k − truss subgraph resides in at least 
k − 2 triangles. All previous models that addressed the problem of top weighted com-
munity search have focused mainly on global search solutions on a way or another. 
Except for BACKWARD ALGORITHM and WEIGHT-SENSITIVE LOCAL SEARCH 
ALGORITHM (WSLSA), all models have either used a global search or built an index 
structure to reduce search time. On the other hand, models presented in [31] uti-
lize local search but suffer from limitations while processing large graphs. The local 
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search paradigm utilized in this paper presents an opportunity to perform commu-
nity search while having the least search time.

Preliminaries
Table 1 describes the notions that are utilized within the paper. Given undirected and 
edge weighted graph G(V, E, W), where V, E, and W represent vertices, edges, and vec-
tor of weights respectively. Each entry in the vector of weights is assigned a different 
weight value for each edge. Each edge is denoted by e(u, v), its weight denoted by ω(e) , 
and the set of neighbors of a vertex υ are denoted by nb(υ ), i.e., nb(υ ) = { u ∈ V: ∃ e (u, υ ) 
∈ E}, and degree of υ is denoted by d(υ ) = |nb(υ)|. A triangle denoted by 

�
uυw is a cyclic 

relationship between three vertices u,  v,  w such that (u, v), (u,w), (v,w) ∈ E . Given an 
induced subgraph H(VH ,EH ) from G where VH ⊆ VG and EH ⊆ EG , the support of an 
edge e(u, v) ∈ H is defined as the number of triangles that edge resides in, and denoted 
by sup(e, H). The edge trussness is the edge support increased by 2.

Definition 1  (k-truss) A subgraph H(VH ,EH ,WH ) is a connected k-truss iff each eH 
has sup(e, H) at least k-2. A subgraph H is called a maximal k-truss if there is no other 
subgraph H ′ contains H.

The trussness of a subgraph H denoted as τ (H) is the minimum support of the all 
edges in subgraph H incremented by 2, e.g. τ(H) = min{sup(e, H): e ∈ EH} + 2.

In this paper weighted graph is considered where the weight of the subgraph H is 
defined as the minimum weight of the set of edges in subgraph H.

Definition 2  Subgraph Weight: The weight of subgraph H denoted by f(H) is the mini-
mum weight of the edges-weights in H, e.g. f (H) = mine∈EH {ω(e)} . The edge with mini-
mum weight in subgraph H is called the key-edge of H.

The rational behind the minimum weight is that each edge in the subgraph H has at 
least this minimum weight as discussed in [3]. In addition, minimum weight would be 
robust to outliers than average weight.

Table 1  Frequently used notations

Notation Description

G = (V, E, W) Undirected and edge weighted graph

n = |V|, m = |E| Number of vertices and number of edges

n X = |VX | , m X = |EX | Number of vertices and number of edges in subgraph X

nb(v) The set of neighbors of v

d(v) The degree of v

sup(e,H) The support of edge e in subgraph H

ω(e) The weight of edge e

f(H) The weight of subgraph H min
e∈EH

{ω(e)}

S(u,v) The common neighbors of vertex (u, v), nb(u) ∩ nb(v)

τ(H) The trussness of subgraph H

ES(u,v) ↔ u, v The set of edges between S(u,v) and {u, v}
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Based on the previous definitions of k-truss and subgraph weight, the weighted 
k-truss community is defined as follow.

Definition 3  Weighted k-truss Community: Given undirected and edge weighted 
graph G = (V ,E,W ) , and trussness level k, a subgraph H ⊂ G is weighted k-truss com-
munity satisfies the following constraints:

•	 Connectivity H is a connected subgraph
•	 k-truss The minimum sup(e,H) is at least k-2.
•	 Maximal There is no other subgraph H ′ contains H and the f (H ′) = f(H).

By applying the three conditions of weighted k-truss community while extracting 
resulting communities, the output communities are guaranteed to be k-truss and not 
a subset from other weighted k-truss community with the same weight.

Example 1  Consider the graph in Fig.  2. Suppose for instance k = 4, as clarified in Def-
inition 3 the original graph is a weighted 3-truss community with minimum weight of 
value = 1. In addition, two weighted communities with higher weights reside in the orig-
inal graph; the top-1 4-truss subgraph shown in Fig. 2 highlighted by a red rectangle with 
weight value 37 of the edge e(v1, v3) . The highlighted subgraph by green rectangle shown 
in the same Fig. 2 is the top-2 4-truss community with weight 35 of the edge e(v2, v4) . The 
subgraph induced by the set of edges {(v1, v2), (v2, v3), (v1, v3), (v3, v4), (v1, v4), (v2, v4) } 
also has weight 35; however it is not weighted 4 − truss community sine it is already 
contained in the subgraph highlighted by green rectangle with the same weight 35.

Fig. 2  Graph example and its weighted communities
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Problem Definition G = (V, E, W) is an undirected and edge-weighted graph where 
r and k are the two query parameters. The problem is defined as the task to discover the 
top-r weighted k-truss communities from G = (V, E, W)

Example 2  Consider the example illustrated in Fig.  2, suppose k = 4 and r = 2, the 
top-2 weighted 4-truss communities are highlighted in red and green rectangles in 
Fig. 2. The top-1 4-truss community is the one highlighted by red rectangle with weight 
37 where each edge in the community resides in two triangles. The top-2 4-truss com-
munity shown in the same Figure highlighted by green rectangle with weight value 35. 
The top-2 4-truss community contains the top-1 community but it has smaller weight 
than the top-1 community.

Proposed algorithms
This section discusses the proposed algorithms to discover top-r weighted k-truss com-
munities. k-truss community detection model is used to measure the cohesiveness of 
the resulting communities. Since k-truss is defined based on the concept of triangle; 
k-truss model main advantage is related to its ability to ensures a high level of cohe-
siveness. In addition, a community with certain k-truss is also a community with (k-1)-
core on the same time but not vice versa which guarantees the high cohesiveness level 
of k-truss. k-truss community is a (k-1)-core community since it is (k-1)-edge connected 
and any deletion of no fewer than k-1 edges will not disconnect k-truss. Also, k-truss is 
a diameter bounded algorithm where a subgraph of n vertices has a diameter no more 
than [2n− 2/k] . All these properties are indicators for the cohesivness of the resulting 
communities from the the k-truss model [32]. For self completeness of this paper truss 
decomposition algorithm introduced in [2] is outlined in Algorithm 1. 

A local search procedure is used in the proposed algorithms. Mainly a local vicinity of 
the edge e with highest weight w(e) is built from the edges with weights higher then w(e) 
and checked whether it is a connected k-truss component or not. Suppose that two ver-
tices u, v, and an edge e(u, v) is considered as the edge being checked, a local vicinity of 
this edge is built from the set of edges between common neighbors of u and v and e(u, v) 
itself. A local vicinity is defined as follow:
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Definition 4  local vicinity H e(u,v) is the set of edges E S (u,v) ↔ u, v where each edge E i 
in E is defined as (v1, v2) : v1 ∈ Su,v , v2 ∈ u, v and S(u,v) = nb(u) ∩ nb(v) is the common 
neighbors of u, v.

Local Vicinity H of the edge is checked whether it has connected k-truss component 
iff sup(e,H) at least k-2, | nb(u) ∩ nb(v)|=k and degree of each vertex in S(u,v) at least k-1 
which is formalized in 1.

Property 1  A k-truss connected component should have at least k vertices with degree 
at least k-1.

This paper argues that the existence of a k − truss component in the local subgraph of 
edge vicinity would prove the existence of at least one global community that would be 
discovered by decomposing the larger subgraph containing the local graph. The exist-
ence of community in the local subgraph is used as an evidence that the edges pro-
cessed so far has a community within them. Thus, In the first step; the edges with the 
highest weights are processed until the required number of communities is discovered 
through local communities subgraphs. Afterwards, global communities can be discov-
ered by decomposing the subgraph containing only the edges that was processed dur-
ing the first step. Such procedure would allow the proposed algorithms to discover the 
top weighted communities while processing a small subset of the edges with the highest 
weights rather than the whole graph edges. Formally, we define the paper argument in 
the following property followed by an example to illustrate the idea of local communities 
versus global communities.

Property 2  Given a local vicinity subgraph H ⊆ G, if there is a k-truss H ′ ∈ H then 
there is k-truss component H ′′ ∈ G and H ′ ⊆ H ′′.

Example 3  Consider the graph G shown in Fig. 3a contains set of the highest weight 
edges where e(v1, v3) is the one with the least weight of 27 and considered for local vicin-
ity subgraph checking. Property 1 is satisfied within the local vicinity of edge e(v1, v3) and 
the local subgraph is built as shown in Fig. 3b where the goal is to extract top weighted 
4-truss communities. However, the local subgraph has no 4-truss community. Then, the 
next edge e(v2, v4) with weight 25 is considered for local vicinity subgraph checking . 
Property 1 is satisfied within the local vicinity of of edge e(v2, v4) and the local subgraph 
is built as shown in Fig. 3d. The local subgraph is found to have a local 4-truss commu-
nity. Thus, the local exploration of the edges has led to the discovery of one local com-
munity. However, the graph in its current form as shown in Fig. 3c has two top weighted 
global communities that can be discovered only through k-truss decomposition of graph 
3c. The two top weighted global communities are themselves the two graphs in Fig. 3a 
and Fig. 3c with weights 27 and 25. The local graph in Fig. 3b didn’t have a local commu-
nity where the graph in Fig. 3a that the local subgraph was extracted from has a global 
community. This example shows that the local exploration of the edges local vicinity 
can provide an evidence for communities existence rather than truly discovering them. 
In addition, the existence of one local community is an evidence of the existence of at 
least one global community where multiple global communities can exist in the original 
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graph. Thus, it is a necessity to analyze the graph that local graphs are extracted from in 
order to discover the set of global communities. 

This paper proposes three algorithms which utilize property 1 and property 2 to dis-
cover top-r weighted k-truss communities; LOCAL k-TRUSS ALGORITHM (LKA), 
DEGREE-BASED LOCAL k-TRUSS ALGORITHM (DBLKA), MULTIPLE CANDIDATE 
LOCAL k-TRUSS ALGORITHM (MCLKA) where each of them is explained in the fol-
lowing subsections.

Local k‑truss algorithm

This algorithm consists of three main steps, all three main steps work together to even-
tually define a subgraph y that contains the required top-r weighted communities. 
Through this way, only a small subgraph y can be used to discover the communities 

(a)
(b)

(c)

(d)

Fig. 3  Local community versus Global community Example
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rather than the original graph G. The three main steps are listed below and explained in 
more details:

•	 Build temp graph.
•	 Temp graph verification.
•	 Enumerating the required top-r weighted k-truss communities.

Local k-truss algorithm takes as an input the weighted graph G along with k, r; The 
weighted graph G edges are presorted in descending order and stored on disk. The algo-
rithm starts by processing the edges with the highest weight in sequence. The processed 
set of edges are added into subgraph Y. With each edge being processed, the effect of this 
edge is checked according to property 1. If the edge e(u, v) has k-2 common neighbors 
i.e. |Su,v ≥ k − 2| and each with degree at least k − 1 in subgraph Y, a k-truss component 
is suspected. Then, a temp graph X is constructed, X= ES(u,v) ↔ {u, v} where the set of 
vertices are the two vertices u, v in addition to the set of vertices of S(u,v)=nb(u) ∩ nb(v) 
that reside in subgraph Y. Finally, edges between S(u,v) in Y are added to temp graph X.

The next step—Temp graph verification—is to check if the temp graph X has a k-truss 
component. The algorithm impose count triangle procedure in order to remove edges 
with support less than k-2. Then, detect connected component procedure is run to 
check whether there is a k-truss connected component in X or not as outlined in Algo-
rithm 1. Once a community in X is discovered, the number of verified communities is 
incremented by 1. The decomposition of X is expected to be fast in terms of time as the 
decomposition is done only on a small number of edges in subgraph X.

Finally, once the number of verified local communities reach the required number 
of the k-truss weighted communities r, the global communities should be discovered 
from subgraph y as realization of property 2. The enumeration procedure firstly decom-
poses the subgraph y that contains r-communities and iteratively removes edges with 
the minimum weight that represent the key-edges of the community. Before each key-
edge removal, a community with the weight of the key-edge is retrieved and stored. The 
removal of the edges continues till graph y is no longer connected. Then, top r weighted 
communities are retrieved and considered as the output. The pesudo code of LOCAL 
k-TRUSS ALGORITHM (LKA) is outlined in Algorithm 2. 
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Complexity analysis Local k-truss Algorithm complexity can be described as the 
decomposition cost of each candidate subgraph in addition to the decomposition cost 
of the subgraph containing the global solutions. Given the number of candidates sub-
graphs as α , the edges in each candidate subgraph X as mx and the decomposition 
cost of edges as the number of edges to the power of 1.5 as mentioned in [33], the 
complexity of the first phase of the algorithm (from line 2 to line 10 in Algorithm 2) 
can be formally defined as O(α ∗m1.5

x ) . Similarly, the decomposition of the subgraph 
Y containing the global solutions (line 12 in algorithm 2) would be O(my

1.5) . The total 
complexity of the Local k-truss Algorithm would be O(α ∗m1.5

x )+ O(m1.5
y ).

Example 4  This example shows a detailed explanation for local k-truss algorithm 
where k = 4 and r = 2 are considered as the search parameters. The subgraph Y con-
tains the highest weight edges processed so far from graph G in Fig. 2, upon processing 
edge e(v1, v3) , property 1 is satisfied where e(v1, v3) has four vertices {v2, v4, v5, v9} as a 
common neighbours with degree 3. Then, temp graph X for e(v1, v3) is built as shown 
in Fig. 4b. Afterwards, decompose k-truss procedure is run over X(v1,v3) where the sub-
graph highlighted by green circle will be removed as the support of all its edges is equal 
to 1. The subgraph highlighted by red rectangle is a 4-truss community. Figure 4c shows 
the same subgraph Y where the edge e(v2, v4) is added and checked according to prop-
erty 1 the temp graph X(v2,v4) is built as shown in Fig. 4d and a 4 − truss is found. Thus, 

(a) (b)

(c) (d)

(e)
Fig. 4  Running example for LKA
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subgraph Y with edge e(v2, v4) has at least two global 4-truss communities according to 
property 2 as two local communities are discovered. The top-2 4-truss communities are 
highlighted in Fig. 4e, the top-1 4-truss community is highlighted by7 red rectangle and 
top-2 4-truss community is highlighted by green rectangle.

Degree based local k‑Truss Algorithm (DBLKA) 

In this subsection DBLKA  is proposed to extract local communities more efficiently. 
It follows the same steps similar to LKA except for the verification step which intro-
duces k-core filtration as an extra step during the verification process. The three main 
steps are listed below and explained in more details:

•	 Build temp graph.
•	 Temp graph verification.
•	 Enumerating the required top-r weighted k-truss communities.

All these three steps work together to mainly extract top-r weighted communities. The 
top-r weighted k-truss communities are extracted from a subgragh Y rather than origi-
nal graph G. The DBLKA  takes as an input original graph G, k, and r where the set 
of edges are presorted in descending order in terms of edge weights. The set of edges 
are processed iteratively starting from the edge with the highest weight. It starts with 
building the temp graph X following the same steps as explained in the first step in 
section "Local k-truss algorithm". After the temp graph X is built a verification step 
is performed. The main idea of the verification step here is based on the fact that any 
k − truss component must be (k − 1)− core component. Therefore, the temp graph 
X is checked if it is (k − 1)− core before performing k-truss decomposition. K-truss 
decomposition is performed only if temp graph X is found to be (k − 1)− core . Oth-
erwise, the edge being processed is ignored and next edge with the highest weight is 
considered for processing.

Temp graph X is checked if it is (k − 1)− core by removing any vertex with degree 
less than k − 1 . Thus, the remaining vertices if any represents a (k − 1)− core com-
ponent. If a (k − 1)− core component is found, its vertices and edges are checked 
against two different cases; First, if the number of the remaining vertices are greater 
than k then the remaining vertices and their edges should be processed to check if 
they form a k − truss component or not. Second, if the number of remaining vertices 
are equal to k vertices with degrees equal to k − 1 then the remaining vertices with 
their edges is a k − clique component and consequently a k − truss component. 
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Finally the third step is performed to extract the top− r weighted k − truss commu-
nities from the subgraph Y following the same steps as explained in the third step in 
section "Local k-truss algorithm". The pesudo code of Degree Based LOCAL k-TRUSS 
ALGORITHM (DBLKA) is outlined in Algorithm 3 and a detailed explanation for the 
algorithm is showed in Example 5.

Complexity analysis DBLKA complexity can be described as the decomposition 
cost of each candidate subgraph in addition to the decomposition cost of the sub-
graph containing the global solutions. Given the number of degree-based filtered 
candidates subgraphs as β , the edges in each candidate subgraph X as mX and the 
decomposition cost of edges as the number of edges to the power of 1.5 as mentioned 
in [33], the complexity of the first phase of the algorithm (from line 2 to line 19 in 
Algorithm  3) can be formally defined as O(β ∗m1.5

x ) . Similarly, the decomposition 
of the subgraph Y containing the global solutions (line 20 in algorithm 3) would be 
O(m1.5

y ) . The total complexity of the Degree Based Local k-truss Algorithm would be 
O(β ∗m1.5

x )+ O(m1.5
y ) . It’s noted that the number of degree-based filtered candidates 

subgraphs β is expected to be less than the number of candidates subgraphs α gener-
ated by the Local k-truss Algorithm.

Example 5  Consider the graph G in Fig. 2 where k = 4 and r = 2 are considered as the 
search parameters. The subgraph Y contains the highest weight edges processed so far, 
upon processing edge e(v1, v3) , property 1 is satisfied where e(v1, v3) has four vertices 
{v2, v4, v5, v9} as a common neighbours with degree 3. Then, temp graph X for e(v1, v3) 
is built as shown in Fig. 5b where the two vertices {v2, v9} are excluded while building X 
due to k − 1 core filtration step. The the two vertices {v2, v9} are not a part from 3− core 
where the degree of each them is 2. The remaining component is highlighted by red in 
Fig. 5b is a 4 − truss community without calling decompose k-truss procedure as X(v1,v3) 
contains 4 vertices with degree 3 which turns it to as a clique clarified in the proposed 
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algorithm. Figure 5c shows the same subgraph Y where the edge e(v2, v4) is added and 
checked according to property 1. Then, the temp graph X(v2,v4) is built as shown in 
Fig. 5d and a 4 − truss is found directly given the number of vertices and their degrees 
where no vertices will be removed in k − 1 core filtration step and the remaining number 
of vertices with their degrees form a clique as clarified in the proposed algorithm. Thus, 
subgraph Y with edge e(v2, v4) has at least two global 4-truss communities according to 
property 2 as two local communities are discovered. The top-2 4-truss communities are 
highlighted in Fig. 5e, the top-1 4-truss community is highlighted by red rectangle and 
top-2 4-truss community is highlighted by green rectangle.

Multiple candidates local k‑truss algorithm(MCLKA)

In this subsection the third algorithm MCLKA is proposed where multiple temp graphs 
of multiple edges with the highest weight and satisfying property 1 are generated as one 
multiple candidates graph. The generated multiple candidates graph is verified once at 
a time instead of verifying each temp graph separately. In generating multiple candi-
dates graph, edges with the highest weight are processed in sequence where the vertices 
and their common neighbours of each edge satisfying property 1 is added to multiple 

(a)
(b)

(c) (d)

(e)
Fig. 5  Running example for DBLKA
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candidates graph Z. Once the number of processed edges satisfying property 1 reach 
r, temp graph Z is built and its vertices are connected. Then, a verification step is per-
formed over the multiple candidates graph Z. The verification of multiple candidates at 
once should allow a faster processing for the edges and consequently a faster discovery 
for the top− r weighted k − truss communities. The three main steps are listed below 
and explained in more details:

•	 Generate Multiple Candidates Graph.
•	 Multiple Candidates Graph verification.
•	 Enumerating the required top-r weighted k-truss communities.

In the first step—Generate Multiple Candidates Graph—the edges are processed in 
sequence from the highest weight edge where the processed set of edges are added 
into subgraph Y. For each edge e(u, v) being processed, the edge is checked to find out 
if it satisfies property 1 or not. If the edge was found to be satisfying for property 1, 
the set of affected vertices with degree >= k−1; the two vertices u, v in addition to the 
set of vertices of S(u,v)=nb(u) ∩ nb(v) that reside in subgraph Y are added to graph Z. 
In addition, e(u, v) is considered as a key-edge for the set of the affected vertices that 
was added to subgraph Z and saved in key-edges list for later processing. The process-
ing of the edges continue until the number of key edges reaches r. Once the number 
of key-edges reaches r, the edges between vertices in graph Z which exist in graph Y 
are added to graph Z.

In the second and the third step—Multiple Candidates Graph verification and Enu-
merating the required top-r weighted k-truss communities, the subgraph Z is verified 
to check whether there is a connected k − truss component in it or not. The count 
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triangle procedure is performed over all multiple candidates in subgraph Z to remove 
any edge with support less than k − 2 . If a k − truss component is found, then the 
existence of the key-edges from the key-edges list are checked in the decomposed 
version of subgraph Z. If r key-edges are found in decomposed version of subgraph Z, 
then the subgraph Y is decomposed to extract and enumerate top-r weighted k-truss 
communities. On the other hand, if less than r key-edges existed on the k − truss 
component or no k − truss component was found in the decomposed version of sub-
graph Z, the algorithm gets back and starts to process edges with the highest weights 
for another cycle. The pesudo code of Multiple Candidates Local k-truss Algorithm 
(MCLKA) is outlined in Algorithm 4 followed by a detailed explanation in Example 6.

Complexity analysisMCLKA complexity can be described as the decomposition 
cost of each multiple candidate subgraph in addition to the decomposition cost of 
the subgraph containing the global solutions. Given the number of multiple candi-
date subgraphs as µ , the edges in each multiple candidate subgraph X as mX and the 
decomposition cost of edges as the number of edges to the power of 1.5 as mentioned 
in [33], the complexity of the first phase of the algorithm (from line 2 to line 21 in 
Algorithm  4) can be formally defined as O(µ ∗m1.5

x ) . Similarly, the decomposition 
of the subgraph Y containing the global solutions (line 22 in Algorithm 4) would be 
O(m1.5

y ) . The total complexity of Multiple Candidates Local k-Truss Algorithm would 
be O(µ ∗m1.5

x )+ O(m1.5
y ) . It’s noted that the number of multiple candidate subgraphs 

µ is expected to be less than the number of degree-based filtered candidates sub-
graphs β generated by Degree Based Local k-truss Algorithm.

Example 6  Consider the graph G in Fig. 2 where k = 4 and r = 2 are the search param-
eters. The subgraph Y contains the highest weight edges processed so far from graph G, 
upon processing edge e(v1, v3) , property 1 is satisfied where e(v1, v3) has four vertices 
{v2, v4, v5, v9} as a common neighbours with degree 3. Then, the list of affected vertices of 
e(v1, v3) are added to the temp graph Z as shown in Fig. 6b where the two vertices {v2, v9} 
are excluded due to k − 1 core filtration step. The the two vertices {v2, v9} are not a part 
from 3− core where the degree of each them is 2. Figure 6c shows the same subgraph Y 
where the edge e(v2, v4) is added and found to be satisfying to property 1. Accordingly, 
the temp graph Z is updated as shown in Fig.  6d by adding the vertex v2 and the list 
of key-edges is updated by adding the current one e(v2, v4) . The temp graph Z is then 
updated by adding the edges between the set of vertices in graph Z as shown in Fig. 6e. 
The edges between vertices are extracted from graph y in Fig. 6c. The temp graph Z is 
decomposed where the decomposed version is found to contain the two key-edges. The 
existence of two key-edges in the decomposed version of Z is an evidence to decompose 
the subgraph Y to extract the required top-2 4-truss communities. The top-2 4-truss 
communities are highlighted in Fig. 6f, the top-1 4-truss community is highlighted by 
red rectangle and top-2 4-truss community is highlighted by green rectangle.
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Performance evaluation
In this section the proposed algorithms are evaluated to find out their perfor-
mance in terms of execution time and prove their efficiency against the state-of-
the-art algorithms. The execution time was considered as evaluation metric since it 
was used while evaluating similar community search models in the literature [4, 6, 
8, 10, 31]. The proposed algorithms are evaluated against four different algorithms 

(f)

(c)

(e)

(d)

(a)
(b)

Fig. 6  Running example for MCLKA
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the BFS-based Online Search Algorithm proposed in [10] ,the LocalSearch-P Algo-
rithm proposed in [12] and both algorithms Backward Algorithm and Weight Sensi-
tive Local Search Algorithm proposed in [31]. All algorithms discover the weighted 
communities in an online manner. The BFS-based Online Search Algorithm, back-
ward Algorithm, and Weight Sensitive Local Search algorithm are designed to find 
weighted k-truss communities. The LocalSearch-P Algorithm utilizes the concept of 
local community search to discover the top-k influential communities where k-core 
and vertex-weight are considered. In order to ensure fairness and completeness of 
the experiment, LocalSearch-P Algorithm is implemented following the same strat-
egy but with k-truss model and weighted edges instead of k-core model and ver-
tex-weight. All algorithms were explained in details in related work section. All 
experiments are conducted on seven public datasets as shown in Table 2 and are run 
over Python environment. In addition, all experiments are conducted on a machine 
with an Intel i5 2.5GHz CPU and 8 GB main memory.

Datasets

The proposed algorithms are evaluated using seven datasets shown in Table  2 and 
availed in [34]. The datasets are in different sizes which range from small to large size. 
As shown in Table 2, each dataset has set of parameters to identify its size where V 
represents the number of vertices, E represents the number of the edges, and kmax 
represents the max k − truss that can be extracted from the dataset. As the weighted-
edge graph is considered in this paper, the weight is calculated as the common neigh-
bors between each two vertices i.e. w(e(u, v)) = nb(u) ∩ nb(v) . The proposed methods 
are not affected whether the weight is calculated or given as the weighted communi-
ties will be extracted correctly.

Experimental results

The proposed algorithms are evaluated against the BFS-algorithm, the optimal ver-
sion of the LocalSearch-P algorithm and the state of the art algorithms Backward 
algorithm and Weight Sensetive Local Search algorithm. There are two varying query 
parameters where the algorithms are evaluated against them. The query parameters 
are K and r where k represents the trussness level and varying from 5 to largest k for 
each dataset and r represents the number of required top communities and varying 

Table 2  Datasets description

Graph |V| |E| kmax

Wiki-Vote 8K 200K 25

Email 37K 200K 20

Youtube 1.1M 3M 19

Wiki-Talk 2.4M 5M 53

Skitter 1.7M 11M 68

LiveJournal 4M 34.6M 214

Orkut 3.1M 117.1M 78
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from 10 to 1000 in large datasets. Figures 7 and 9 show the evaluation results where 
k equals a default value 10 and r is varying while Figs. 8 and 10 show the evaluation 
results where r equals the default value 10 and k is varying. Generally Figs. 7  and 8 
show that (MCLKA) performs better than the other algorithms. The processing time 
is linearly proportional to the size of the graph the algorithm visits.

With small values of both r and k, all the proposed algorithms perform the same 
and require the same time to discover the output communities where the algorithms 
usually verify a small subset of the graph. When r increases in Figs. 7 and 9, (MCLKA) 
shows a better performance as it has a faster verification process than the other two 
proposed algorithms (LKA) and (DBLKA). Following the same behavior in Figs. 8 and 
10 when k increases, (MCLKA) shows a better performance as it verifies a set of local 
candidates altogether at once rather than individual candidates verification. Verifying 
as set of local candidate saves the times required to do the verification steps for each 
candidate individually. Consequently, it has the ability to discover local communities 
with higher k efficiently than other algorithms.

As shown in Figs.  7 and 8, the BFS- algorithm takes constant time for different r 
as it discovers all the possible communities in the whole graph and then outputs the 
top ones. The BFS algorithm couldn’t run for the large graphs Wiki-Talk, LiveJournal, 

(a) (b) (c)

(e) (f) (g)

(h)

Fig. 7  Execution time of the proposed algorithms against BFS and LocalSearch-P Algorithms while k = 10 
and r is varying



Page 21 of 25Habib et al. Journal of Big Data            (2022) 9:36 	

Skitter, and Orkut dataset due to the large size of the graphs and the inability to 
decompose such graphs in main memory. These graphs don’t fit in a small main mem-
ory which is used during performance evaluation.

On the other hand, the localsearch-p algorithm performs in a different way where the 
search time increases in leaps as the search time is constant while discovering a num-
ber of communities before leaping in time to discover the next set of communities. For 
example, the localsearch-p algorithm examines a subset of graph that contains 100 com-
munities while trying to discover only the top 10 weighted communities. Then, when 
the algorithm try to discover the top 20 weighted communities, it will also examine the 
same subset of the graph containing 100 communities. Consequently, the search time 
will be constant until the number of required communities is greater than 100. By then, 
the search time will have a leap as it will examine a bigger subset of the graph. The linear 
paradigm is better than leaps especially in large k and r.

Figures 9 and 10 indicate that MCLKA performs better than Backward and Weight 
Sensitive Local Search algorithms. MCLKA outperformance is related to its discovery 
method as it processes a small portion of graph that has the required r-communities. 
During this experiment, BACWARD has the worst performance as it first decompose 
the original graph into k-truss to prune all set of edges that don’t reside in k-truss. 
WSLSA yeilds a close performance to MCLKA at different values of trussness level 

(a) (b) (c)

(e) (f) (g)

(h)

Fig. 8  Execution time of the proposed algorithms against BFS and LocalSearch-P Algorithms while r = 10 
and k is varying
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with constant number of communities to retrieve of 10 communities. However, 
WSLSA fails at high levels of trussness unlike MCLKA and other local search based 
algorithms. Mostly, BACWARD and WSLSA algorithms failed to discover weighted 
communities at large values of K and large values of r unlike local-search based algo-
rithms which did succeed at the same case.

Conclusion
In this paper community search problem is investigated to discover top-r weighted 
communities where the link weight is considered and the k-truss model is consid-
ered as the cohesiveness model. Three different algorithms which utilize the con-
cept of local community search in order to discover the global community search 
results were proposed. The three different algorithms are LKA, DBLKA, and MCLKA. 
LKA where these algorithms consist of three main steps. LKA imposes a traditional 

(a) (b) (c)

(e) (f) (g)

(h)

Fig. 9  Evaluation time of the proposed algorithms against Backward and WSLSA Algorithms while k = 10 
and r is varying
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procedure for k-truss model that count triangles and decompose local graphs in 
order to find k-truss local graphs before finding the global community search results. 
DBLKA imposes a more filtration step over the local graph to remove vertices which 
wont ever belong to k-truss community and consequently find k-truss local graphs in 
a faster way. MCLKA does a verification step over r-generated local graphs at once 
rather than considering each of them on its own. All these algorithms are evaluated 
against the (BFA), LocalSearch-p, Backward and Weight Sensetive Local Search algo-
rithms . Experimental results showed that (MCLKA) is the superior algorithm in 
terms of execution time against all other algorithms. One of the main challenges to 
consider as future work is to ensure that the difference between the number of discov-
ered candidates and the number of truly existing communities will be low in order to 
enhance the search time. In addition, the proposed algorithms could be extended to 
add the vertices properties as an extra dimension to find homogeneous top-weighted 
communities. Extending the algorithms to find top weighted communities where each 
edge is assigned multiple weights is another future work direction.
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