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Introduction
The world’s data generation capabilities are rising rapidly. This increase has spurred 
researchers and businesses to make great strides to find new means for efficient 
and meaningful storage, retrieval, and analysis. A research report published in 2019 

Abstract 

Parallel processing of large spatial datasets over distributed systems has become a 
core part of modern data analytic systems like Apache Hadoop and Apache Spark. 
The general-purpose design of these systems does not natively account for the data’s 
spatial attributes and results in poor scalability, accuracy, or prolonged runtimes. Spatial 
extensions remedy the problem and introduce spatial data recognition and operations. 
At the core of a spatial extension, a locality-preserving spatial partitioner determines 
how to spatially group the dataset’s objects into smaller chunks using the distributed 
system’s available resources. Existing spatial extensions rely on data sampling and 
often mismanage non-spatial data by either overlooking their memory requirements 
or excluding them entirely. This work discusses the various challenges that face spatial 
data partitioning and proposes a novel spatial partitioner for effectively processing 
spatial queries over large spatial datasets. For evaluation, the proposed partitioner is 
integrated with the well-known k-Nearest Neighbor ( kNN) spatial join query. Several 
experiments evaluate the proposal using real-world datasets. Our approach differs from 
existing proposals by (1) accounting for the dataset’s unique spatial traits without sam-
pling, (2) considering the computational overhead required to handle non-spatial data, 
(3) minimizing partition shuffles, (4) computing the optimal utilization of the available 
resources, and (5) achieving accurate results. This contributes to the problem of spatial 
data partitioning through (1) providing a comprehensive discussion of the problems 
facing spatial data partitioning and processing, (2) the development of a novel spatial 
partitioning technique for in-memory distributed processing, (3) an effective, built-in, 
load-balancing methodology that reduces spatial query skews, and (4) a Spark-based 
implementation of the proposed work with an accurate k NN spatial join query. Experi-
mental tests show up to 1.48 times improvement in runtime as well as the accuracy of 
results.
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estimated the world’s daily data collection rate at around 2.5 quintillion bytes and pro-
jected that over 150 zettabytes of data will need analysis by 2025 [1, 2]. The data stems 
from various sources like the 2.6 billion social media uses (a 2020 estimate), 74.4 million 
connected cars (a 2023 projection), and 2 billion Internet of Things devices (a 2018 esti-
mate) [3–8].

A significant portion of the collected data, known as spatial data (or geospatial or geo-
graphic data), contains spatial attributes (e.g., latitude and longitude) that indicate the 
data’s physical origins. Various works have shown the benefits of analyzing spatial data, 
making it one of the most valuable assets for enterprise and governmental agencies. A 
research report published in 2019 [9] estimates that the market value of geospatial solu-
tions will exceed $502 billion by 2024. The projection includes software, hardware, and 
geospatial services with software solutions estimated to take the largest share.

Analyzing spatial data applies hypothesis testing and pattern discovery against the 
dataset’s spatial topological, geometric, and geographic properties. Spatial analysis ben-
efit businesses and government agencies who use the results to improve user experience, 
product, and service innovations, improve mobility, urban planning, and enhance secu-
rity [4–8, 10, 11]. For efficiency, executing a spatial query against a large dataset uses dis-
tributed processing frameworks like Apache Hadoop (Hadoop) [12] and Apache Spark 
(Spark) [13]. Hadoop is a collection of software components that include the Hadoop 
Distributed File System (HDFS) and MapReduce (MR). HDFS and MR allow for the 
distributed processing of large datasets with limited in-memory computation and with-
out automatic fault tolerance. Spark allows for in-memory distributed processing and 
automatic fault-tolerance. Spark’s Resilient Distributed Dataset (RDD) is a read-only 
distributed data structure that divides data between the available processing nodes. A 
Spark application can manipulate an RDD through actions and transformation. Spark 
automatically keeps track of an RDD’s transformations lineage and can recover the failed 
RDD.

Hadoop and Spark offer the bare necessities for distributed execution using non-spa-
tially aware partitioning and processing. As a result, the spatial data loses its locality, 
and the query becomes sluggish or produces inaccurate results. Subsequently, a dis-
tributed system requires a specialized layer known as a spatial extension to introduce 
spatial object and operation processing. To properly partition spatial data, the extension 
must exhibit the ability to construct a spatial partitioner that spatially groups (co-locate) 
records from two (or more) large spatial datasets. Record grouping depends on the spa-
tial query and must comply with the dataset’s characteristics like object type, density, 
and the size of non-spatial data. Further complications may arise from the spatial data-
set’s non-uniform distribution where certain regions contain higher densities. Figure 1 
illustrates this problem; the lighter areas indicate higher densities of GPS points which 
require particular awareness by the partitioner when distributing the records.

Several works have proposed scalable partitioning techniques to aid with the distrib-
uted execution of spatial queries. Most take a similar approach of sampling the dataset 
at varying rates (e.g., 1%, 5%, 10% ). Next, information from the sampled records is gen-
eralized to construct a partitioning scheme over the entire dataset. The scheme acts as 
a global index that shows how to spatially group records into partitions and allows the 
query to choose relevant partitions. However, this process may suffer from performance 
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and accuracy drawbacks. First, sampling relies on a subset of the dataset and can cause 
skewness. Second, it does not account for processing overheads of shuffling, indexing, 
or query execution. Ignoring these limits may cause skewness some nodes to serialize 
excess data or overflow the memory and fail.

This publication proposes a technique for customizing and building a scalable spa-
tial partitioner for distributed spatial queries. The partitioner does not rely on sam-
pling, requires minimal input, and automatically adapts to the datasets’ traits like mixed 
objects, non-spatial data, and high-density regions. Moreover, it considers computa-
tional overheads, preserves spatial locality, mitigates query skews, and yields accurate 
results. Furthermore, it improves scalability by allowing the query to navigate hundreds 
and even thousands of partitions. By design, the partitioner eliminates the problem of 
boundary-crossing objects from the partitioned dataset and allows objects from the que-
rying dataset to visit only relevant partitions.

A multitude of spatial queries like range, kNN, join [14–18], map-matching [19], and 
data visualization [20, 21] benefit from the proposed partitioner. To demonstrate the 
effectiveness of the design, a k NN spatial join query is implemented to perform a near-
est-neighbor search [22] under the constraint of the data’s spatial and non-spatial attrib-
utes. Accuracy and runtimes experiments compare the results of the implementation to 
several existing works. The contributions of this work are:

• A discussion of the challenges that face the construction of an efficient, accurate, and 
scalable spatial data partitioner for in-memory distributed spatial processing.

• Devise a balanced solution to the design challenges to derive an optimal spatial parti-
tioner for a given dataset.

• A ready to use k NN spatial join query for Apache Spark available on GitHub.1

• A thorough experimental runtime and accuracy study using real-world datasets.

The rest of the paper discusses, first, the definitions used in this work. The following 
section surveys previously published big spatial data partitioning and processing tech-
niques. Next, the proposed partitioner section details the design principles of the work 
introduced. The implementation section discusses the in-memory k NN spatial join 

Fig. 1 Density plots of GPS points from three real-world datasets

1 https:// github. com/ bdilab/ Spark- knn.

https://github.com/bdilab/Spark-knn
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query Apache Spark implementation. The scalability and precision evaluations section 
describes several experiments performed over several test datasets and compares the 
results with those obtained through the baseline approach and several popular tech-
niques. Finally, the paper concludes with a discussion, summary, and future research 
plans. The appendix contains the extended tabular results referenced in the scalability 
and precision evaluations. The appendix also shows several algorithms that explain vari-
ous steps.

Concepts and definitions

This word uses several concepts and definitions, including ones borrowed from Apache 
Spark’s architecture [23] given. Spark is one of the most popular in-memory computing 
frameworks for large-scale distributed processing [24, 25]. Its API supports scripts writ-
ten in Scala, Java, Python, R, SQL, C#, and F# [26].

Memory size units:  The memory units in this work are all in Bytes.
Minimum Bounding Region (MBR): The smallest region that fully encompasses a set 
of spatial objects. The MBR gives a general idea of the extent of an object (or objects) 
and can act as a quick indicator to operations like intersects and contains. For the 
rest of the discussion, we will refer to the Minimum Bounding Region as simply the 
MBR.
Spatial partitioner: A scheme that dictates how and where to group the database’s 
spatial records amongst the distributed system’s processing nodes. To preserve local-
ity, the partitioner uses the data’s spatial attribute to group records by criteria like 
proximity, size, or type. For repeated uses, the process may save the partitioner to 
disk. For the rest of the discussion, we will refer to the spatial partitioner as simply 
the partitioner.
Shuffling: The process of moving data between the processing nodes. Shuffling is an 
expensive process that involves serialization, deserialization, network resources, and 
disk I/O operations.
Partitioning: The process of mapping and migrating the dataset’s records to the 
proper partition as dictated by the partitioner. Partitioning requires the shuffling of 
one (or more) input datasets.
Pruning: A technique that allows a query to exclude some partitions that it deems 
irrelevant to its computations.
Partition: An atomic grouping of data. It is a logical division of the data retrieved 
from the underlying file system or constructed from the output of a previous pro-
cessing task. A single executor’s core processes one partition as a single task.
k NN Join query ( knn(L,R, k) ): An operation that takes as input two spatial data-
sets, L and R , and k ∈ N, k > 1 . The query pairs each object l ∈ L with the k nearest 
objects from R sorted by proximity to l (e.g., Euclidean distance). Each l creates a 
search region with the smallest possible radius that encloses the k objects. Boundary-
crossing regions require either shuffling the region or copying it to other partitions. 
Figure 2 shows several points from L after being matched with their nearest k = 3 
neighbors from R . The dotted circles represent the region’s extent, which differs for 
each l and depends on the proximity of its 3 nearest neighbors.



Page 5 of 42Zeidan and Vo  Journal of Big Data            (2022) 9:77  

All k NN join query ( kNNall(L,R, k) ): A special case of the k NN spatial join query 
that takes as input two spatial datasets, L and R , and k ∈ N, k > 1 . The query pairs 
each object l ∈ L as described for the k NN join query. In addition, kNNall pairs each 
r ∈ R with the k nearest objects from L sorted by proximity to r. The query may 
execute as two consecutive k NN queries. However, for efficiency, it should account 
for both operations when partitioning and cache certain computations. Boundary-
crossing objects may be present in either dataset; hence, object duplication or shuf-
fling applies.

Related work
Partitioning is a powerful concept used to optimize many operations like distributed 
query processing, performance tuning of disk parallel systems [27], and query perfor-
mance [28, 29]. This work studies the in-memory spatial partitioning problem in large 
spatial datasets and proposes a novel technique for building scalable partitioning over a 
given dataset.

Parallel processing of large spatial datasets is similar to the divide and conquer pro-
gramming paradigm. Large data sets get broken into smaller, simpler parts that are pro-
cessed individually; smaller solutions are then combined to solve the original problem. 
Thus, the challenge resets with constructing the best spatial partitioner with minimal 
overhead while maximizing resource utilization, reducing runtime, minimizing data 
skews, decreasing data shuffling, and producing accurate results.

Fig. 2 Illustration of a spatial k NN join query between two datasets
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Consider, for example, a spatial query over a large spatial dataset (e.g., terabytes in 
size) that wishes to find all objects within a specific search region (e.g., 1000ft). Without 
a partitioner, the query must examine all of the dataset’s records (i.e., O(n) operation). 
Alternatively, a spatial partitioner co-locates objects across partitions and allows the 
query to select those partitions within 1000ft of its center.

Similarly, a join spatial query operating over two spatial datasets can utilize the parti-
tioner to co-locate objects from both datasets, thus avoiding an expensive complete scan 
operation (i.e., O(n×m) operation). Alternatively, a spatial partitioner regroups the first 
dataset’s objects. Next, the second dataset’s objects query the partitioner and merge with 
the partitions required to complete their query.

Several Hadoop MR spatial extensions add spatial query partitioning and process-
ing to Hadoop. SATO [30] offers several spatial partitioning strategies of spatial data-
sets. Hadoop-GIS [31] partitions its input dataset by placing records into grid tiles and 
assigning tiles to partitions. Its performance significantly improves when integrated with 
SATO. SpatialHadoop [32] partitions its input datasets into equal-sized data partitions 
such that each one fits into the underlying HDFS block size and pads small partitions to 
the required size.

Similarly, several Apache Spark [13] spatial extensions add spatial query partitioning 
and processing to its in-memory processing. Since its release in 2014, Spark has become 
one of the most popular big data distributed processing systems. Its prominent feature 
is the Resilient Distributed Dataset (RDD) which allows for in-memory processing and 
automatic fault tolerance. Table 1 summarizes the most referenced and publicly open-
sourced proposed Spark spatial extensions found in the literature. Magellan [33] extends 
Spark SQL and DataFrame API.2 It takes advantage of the SQL query optimizer, does not 
offer any partitioning, but allows users to build a Z-Order Curve to index their dataset. 
Magellan supports five spatial objects and three spatial operations; however, for polygo-
nal shapes, Magellan relies on their MBRs instead of their precise geometric shapes.

GeoSpark [14] extends Spark RDDs and introduces Spatial RDD (SRDD). It supports 
five spatial objects and grid partitioning, which samples the SRDD and builds a grid 
on the master node. Next, it divides the grid into equal-sized cells, assigns each object 
from the SRDD to a cell, and copies objects if they intersect with multiple cells. Load 
balancing requires an additional optimization round over the grid to break large cells. 
Similarly, LocationSpark [16] integrates itself with Spark through spatially aware RDDs. 
However, it mainly aims at solving the query skew problem and introduces sFilter, a spa-
tial bloom filter for load-balancing and reducing data shuffles. LocationSpark samples 
the input dataset and builds a spatial index (e.g., R-Tree), and partitions the first input 

2 Spark’s DataFrames are an extension on top of RDDs and was as an improvement API; however, a newer Dataset API 
will replace DataFrames in future releases.

partition

Unpartitioned spatial dataset Partitioned spatial dataset
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dataset according to the number of leaf nodes in the spatial index. A k NN join query 
in GeoSpark and LocationSpark, computes the maximum distance between each point 
and the furthest k match found for that point from the partitioner. If a region intersects 
with multiple partitions, a duplicate of the region’s center point gets duplicated to per-
form local k NN query on all partitions before, finally merging the results of the actual k 
matches.

STARK [17] is a spatio-temporal framework that aims to optimize queries for data-
sets with spatial and temporal components. However, the temporal component is not 
part of its partitioning strategy. STARK partitions its RDDs through grid or binary space 
partitioning (BSP) built from subsamples of the dataset. For load-balancing, users must 
specify the optimal number of dimensions and the number of partitions for each dimen-
sion. The grid partitioner suffers from query skews; therefore, STARK offers an imple-
mentation of the BSP proposed in [34] and requires the user to input the maximum cost 
for each partition. For load-balancing, BSP divides the dataset’s MBR into small cells and 

Table 1 Feature comparison of Spark-based k NN spatial extensions

Feature Magellan GeoSpark LocationSpark STARK Simba SpPart_
kNN (Proposed)

Base code Scala Java Scala Scala Scala Scala

Modifies 
spark’s core

No No Yes Yes Yes No

Data parti-
tioning

No Grid, R-tree, 
QuadTree, 
KDB-Tree

Grid, QuadTree Grid, Cost-
Based Binary 
Space

Grid, R-Tree, 
Kd-Tree

Grid

k NN Type None k NN Point k NN join k NN join k NN join k NN join

Data pruning No No No Yes Yes Yes

Carry non-
spatial data

No Yes Yes Yes Yes Yes

Accounts for 
non-spatial 
data over-
head

No No No No Yes Yes

Skew han-
dling level

None Partition Query Partition Partition Partition

Indexing 
options

Z-Order 
Curves

None, R-Tree, 
QuadTree

None, Grid, 
R-tree, 
QuadTree, IR-
tree.

None, R-Tree HashMaps, 
TreeMaps, 
R-Tree

R-Tree and 
QuadTree

Index persis-
tence

No Yes Yes Yes Yes Yes

Spatial 
objects

Point, 
LineString, 
Polygon, 
MultiPoint, 
MultiPolygon

Circle, Line-
String, Point, 
Polygon, 
Rectangle

Box and Point Inherited 
from JTS

Point, MBR Point

Geometry 
library

Built-in JTSPlus JTS JTS Built-in Built-in

Spatial opera-
tion object 
accuracy

Point only
MBR for 
others

Point, 
Polygon, and 
Circle only 
partial for 
LineString 
and MBR for 
Rectangles

Point only MBR 
for others

Point only 
MBR for 
others

Point only 
MBR for 
others

Built-in with spa-
tial operation
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evaluates all possible partitioning candidates. Finally, it selects the partitioner with the 
lowest cost difference.

Simba [35] works with Spark DataFrames, provides range and hash partitioners for two-
dimensional spatial data, and STRPartitioner for multi-dimensional data. It supports four 
spatial objects and has three partitioning strategies. Simba partitions a dataset and groups 
close-by objects on the same partition while ensuring that each partition receives the same 
number of objects. Afterward, each partition builds a local index (e.g., R-Tree), loads all 
rows into an array, collects statistics, calculates the partitions’ MBRs, and computes the 
number of records. Finally, the master node collects statistics from all partitions and con-
structs the global index. Simba offers STRPartitioner which samples the input dataset and 
constructs a partitioning scheme as described earlier. Finally, it runs the first iteration 
of the Sort-Tile-Recursive (STR) algorithm [36] over the sampled records. Simba deter-
mines the number of partitions through a cost-based analysis on a set of randomly selected 
records. The partitioner must produce partitions that have roughly the same size, fit in the 
executor’s memory, and proportional to the number of workers in the cluster.

SparkNN [37] for Apache Spark, FML-kNN [38] for Apache Hadoop, Spark, and Flink, 
[39] for Cassandra NoSQL database, and [40] for Hive-based Big Data Warehousing sys-
tems present partitioning techniques that follow the common approach of (1) sampling 
one or both input datasets, (2) computing partition boundaries, and (3) partitioning the 
dataset. Boundary crossing objects are either duplicated or shuffled between partitions. 
The random selection process occurs in parallel; the sampling rate is design-dependant 
[41] but is often a configurable parameter with common values between 1− 5% . The par-
titioner is often indexed which simplifies querying; common indexing structures include 
R-Tree [14, 16, 17, 35], QuadTree [14, 16, 17], IR-Tree [16, 42], Grid [14], TreeMap [35], 
Treap Tree [35, 43], and HashMap [35].

The proposed spatial partitioner in this work opts for a different flow from the common 
approach. First, it does not rely on training data and customizes itself according to the 
input dataset’s unique traits of distribution, object types, and size. Instead of relying on the 
non-deterministic nature of sampling, the proposed process scans both input datasets in a 
distributed fashion and collects and returns relevant information to the master node. This 
reveals the dataset’s exact distribution (concentration regions), which helps with comput-
ing the optimal number of partitions, pruning, and load balancing skewed datasets like 
those depicted in Fig. 1 without requiring additional optimization rounds.

Second, unlike [14, 16], the partitioner preserves the dataset and does not eliminate 
records that it can not match. Moreover, unlike [14, 16, 17, 33, 35, 44] it accounts for 
non-spatial data by computing the cost of storing and shuffling that data while executing 
the spatial query. Third, it automatically maximize utilization of the available computing 
resources without relying on the user to provide information such as the best number of 
partitions, index depth, or maximum size [17, 35, 37].

Fourth, network traffic is minimized by eliminating object duplication and limit-
ing shuffling to one input dataset. Boundary-crossing objects from one dataset migrate 
towards the first. Finally, our proposed partitioner ensures that a spatial query produces 
accurate results compared to other works and the baseline. Certifying the accuracy 
proves the reliability of a spatial query. As part of this work, we report on the accuracy of 
the results obtained from the tested technique.
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Challenges
A distributed spatial query starts by spatially partitioning its datasets before performing 
tasks against its partitions. Given the distinct traits of each dataset, the process must 
acknowledge the dataset’s unique characteristics (e.g., format, the presence of non-
spatial data, and its density regions). Moreover, the process should efficiently utilize the 
available hardware resources (e.g., executors, CPU, disk, and memory). Next, we discuss 
the challenges that face the construction and execution of a spatial partitioner and query.

Data storage format 

Variety, one of big data’s 3Vs [45], classifies big data into either structured, semi-struc-
tured, or unstructured. Data files may be compressed or encrypted and stored in one 
of many different formats like plain text, Well-Known Text (WKT), Comma Separated 
Value (CSV), or GeoJSON [46]. Accounting for all formats is impractical or tedious at 
best. Therefore, a process can either adopt one of the existing data formats or develop a 
custom input format [14, 16, 17, 35, 47].

Non‑spatial data

A spatial query is often part of a series of analytical steps that uses spatial and non-
spatial data. Although a spatial query primarily operates over the spatial attributes, it 
should not discard others and must account for them during computation. Consider, for 
instance, the case of the unmet taxi demands [48] where drivers may be far away from 
the best potential location. The driver can make better decisions when considering cli-
mate, traffic, special events, and past pickups. While this information may be irrelevant 
to the spatial query, it is crucial for later steps.

Memory utilization

Although Random Access Memory (RAM) outperforms disk and network operations 
[49], its capacity is relatively smaller. Many partitioners do not closely account for the 
processing nodes’ available RAM. Thus, it is counterproductive to attempt to use all 
of the available memory. In [50], the authors attempted to maximize memory usage 
in HBase [51] without accounting for growth due to computational overhead or shuf-
fle restrictions like those seen in non-database distributed systems like Spark [52].3 Our 
proposed partitioner assigns spatial objects to partitions such that each partition’s final 
size never exceeds the node’s memory storage fraction.

Spatial clustering 

A distributed processing computation requires the grouping of related objects to the 
same partition. Hence, objects from both datasets must be brought together on the same 
executor to perform the necessary computations. Grouping objects is process-specific 
and performed using different measures like distance, equality, or shape. Moreover, 
several regrouping steps may be needed if objects require others located on different 
partitions. Several factors like load balancing, object duplication, and shuffling affect 

3 Before Spark version 2.4.0, users could not shuffle partitions larger than 2GB due to the serializer’s use of byte arrays 
and ByteBuffers
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performance and could slow execution. Our approach clusters objects by proximity; 
objects from the second dataset visit only the necessary partitions.

C1

C0

Partition0 Partition1 Partition2

Query skew mitigation and load balancing 

Load balancing calls for the even (or near-even) data distribution across the different 
partitions to reduce query skews. While it is difficult to achieve a perfect balance, the 
distribution should be as fair as possible, and account for any object duplication and 
shuffling. The figure to the right shows two search regions (dotted red line) centered at 
C0 and C1 . Each region encloses the required 10 objects for this example. C0 is located in 
Partition1 and requires objects present on Partition0 . Therefore, objects from Partition0 
may be duplicated and sent over to Partition1 , or C0 may be shuffled to Partition0 after 
it finishes its computations on Partition1 . Object duplication increases the number of 
partitions or their size, avoids shuffling, but may require a final merge or filter of the 
final results. Shuffling, on the other hand, does not increase the number of partitions or 
their size but increases network traffic. Our proposal favors shuffling while attempting to 
minimize the number of shuffle rounds.

Optimal number of partitions

Initially, the distributed processing framework determines the number of partitions 
but allows users to adjust their number during execution. Choosing the optimal num-
ber of partitions is not a fixed process as it must account for the dataset’s characteris-
tics. Increasing the number of partitions reduces their size, underutilizes the executor’s 
memory, and may increase the number of shuffle rounds. Reducing the number of parti-
tions increases their size, causes the executor to write excess data to secondary storage, 
and may prolong serialization. Our proposal ensures that each partition receives approx-
imately the same number of objects, ensures that the partition’s final size never exceeds 
the executor’s available memory, and adheres to any of the distributed processing frame-
work’s limitations.

Size of the partitioner

The spatial partitioner offers a global view of the distribution of records in a dataset. 
Often, it is constructed on the master node and distributed to the processing nodes. 
The information contained within the partitioner should be detailed enough to guide 
the spatial clustering of objects and guide the spatial query towards correctly complet-
ing its computations. Detailed partitioners contain precise information but require 
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extended build times, a larger memory footprint, and additional time to broadcast it to 
the processing nodes. Less-detailed partitioners are faster to build and broadcast but 
may increase the number of shuffle rounds or produce inaccurate results. Moreover, it is 
preferred to limit the lifespan of the partitioner, extract its information early in the query 
process, and return its memory to the executor. As an added benefit, the partitioner may 
be written to disk and reused during subsequent queries over the same input datasets. 
Our proposal scans the entire dataset, collects relevant information, and summarizes it 
on the master node.

Spatial indexing

Indexing is an optimization technique used to speed up operations such as lookup, 
range, and kNN. Different spatial indexes perform better for different spatial objects. 
An R-Tree [53, 54] works best for polygonal shapes and works with their MBRs only. A 
K-dimensional tree (K-d tree) [55] organizes points in K-dimensional space. K-d trees 
are balanced trees that split the dimension plane and store points in leaf nodes. k-d trees 
are useful for point range and k NN quires. A Quadtree [56] is a two-dimensional tree 
that organizes objects in nodes with up to 4 child nodes. Quadtrees work best with point 
objects, but other variations exist to allow for polygonal object storage [57]. Grid index-
ing [58] splits the indexed space into equal-sized regions and works best with points. 
Our proposal starts with a Grid index that summarizes the dataset’s distribution, identi-
fies partition boundaries, and aids in identifying objects with boundary-crossing regions. 
Next, we transform the grid into a Quadtree for enhanced lookups.

Partition pruning 

A spatial partitioner builds a distribution strategy over one dataset. Depending on the 
spatial query and the second dataset traits, some partitions from the first dataset may 
not contribute to the query’s output. Therefore, the partitioner must allow the query to 
prune unneeded partitions without affecting accuracy or degrading execution time. An 
example of such an operation is shown in Fig. 2; the k NN query can safely exclude parti-
tions P2 and P6 since they do not contribute to the results.

Proposed spatial partitioner
In this section, we detail a novel approach for constructing an efficient and scalable spa-
tial partitioner for use with distributed in-memory spatial queries. The partitioner deter-
mines how to spatially divide the right objects across partitions; the left objects use the 
partitioner to migrate towards the correct partition(s). The partitioner accounts for the 
challenges described earlier and allows spatial queries to maximize resource utilization, 
decrease shuffling, and reduce execution time without compromising accuracy. In the 
next section, we discuss the steps of customizing the partitioner with a k NN spatial join 
query for execution over Apache Spark.

Table  2 shows the required and optional input parameters provided by the user. The 
two input datasets ( RDDRight and RDDLeft ) are any two spatial datasets that consist of the 
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supported object types. 4 gridDim is the initial width and height of the grid spatial index 
cells. maxPartSize is the absolute maximum amount of memory that a partition can reach. 
This value is crucial for some parallel processing frameworks (e.g., Spark version 2.4 or ear-
lier) to prevent memory overflow failures. If not specified, the partitioner will compute the 
partition’s optimal byte size based on the executor’s available memory. spatialIndexType 
allows the user to choose one of the supported spatial indexing structures (e.g., Quadtree 
or Kd-Tree). Finally, other is any additional parameter(s) needed by the spatial query, such 
as the value of k in a k NN spatial join query or the value of range in a range query.

Figure 3 shows an overview of the steps followed by the proposed partitioner when 
embedded within a k NN spatial join query. The process consists of four phases. The 
first two stages analyze the input RDDs, estimate the partitions’ capacity, and construct 
and index the partitioner. The final two stages relate to the execution of the k NN spatial 
join query, which requires computing the number of shuffle rounds and executing local 
query operations.

Stage 1: Analyzing the input datasets
The first stage in constructing the spatial partitioner examines both input datasets’ spa-
tial and non-spatial components, identifies the region with the highest density, estimates 
the cost of in-memory processing, and computes the total number of objects. Figure 4 
highlights the steps taken during this stage. First, a parallel task indexes the right data-
set’s objects using a grid index with dimensions equal to the input parameter gridDim. 
Next, the master node receives the aggregated the results which show each grid cell’s 
(X, Y) coordinates and the total number of objects grouped into that cell. The grid index 
in this stage offers three major advantages. First, it reduces the amount of shuffled data 
during the broadcast and aggregate operations. Second, knowing the number of objects 
that fall within each cell identifies the density region of the dataset. Third, the grid pro-
duces a summary that fits into the master node’s memory.

Next, the left dataset undergoes a similar but less detailed analysis process. We do 
not index the left dataset since we are only interested in its memory requirements when 
joined with the right dataset. The analysis step outputs:

Table 2 Required and optional input parameters

Parameter Type Default Description

RDDRight RDD A Spark RDD of spatial objects4

RDDLeft RDD A Spark RDD of spatial objects4

gridDim Integer 100 Initial grid spatial index cell size for grouping the right dataset objects 
that are within gridDim.

maxPartSize Integer 0 The partition’s maximum memory size in Bytes. If set to 0, the process 
uses all available memory.

spatialIndexType SpatialIndex Quadtree Type of spatial index to use (e.g., Quadtree or Kd-Tree). Supported 
types extend a interface.

Other Parameters specific to the spatial query (e.g., k for kNN, range for 
range query)

4 The partitioner works with custom light-weight spatial objects (e.g., Point) consisting of the coordinates (e.g., (X, Y)) 
and non-spatial data (e.g., trip records)
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Minimum bounding region ( right dataset only): The MBR of the right (referred to as 
mbrRight hereafter) shows the extent of the dataset’s objects which is necessary for 
the construction of spatial indexes like the Quadtrees and K-d Trees. Only the right ’s 
MBR is relevant since the left dataset is never indexed.
Maximum concentrations of objects ( right dataset only): To mitigate query-skews 
without requiring users to know the exact distribution of their datasets; the pro-
cess automatically finds the grid cell with the highest object density (referred to as 
maxObjCountRight hereafter). This value allows the adjustment the input parameter 
gridDim and reduce the partitions load imbalance in the next stage.
Largest record byte size (both datasets): In-memory computing degrades (or fails) if 
a task exceeds the available memory. Thus, the process should correctly estimate the 
byte size of cached structures and any operational costs. For efficiency, we assume 
that entries in both datasets occupy memory as much as the largest record in that 
dataset (referred to as memMaxObjRight and memMaxObjLeft hereafter).

Fig. 3 Proposed partitioner stages (Stages 1 and 2) and spatial query (Stages 3 and 4)

Fig. 4 Stage 1—analyzing the input datasets
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Total number of objects (both dataset): This value indicates the total number of 
objects in right and left datasets (referred to as countObjRight and countObjLeft 
respectively). Knowing the exact number of objects aids in estimating the memory 
requirements and the maximum object capacity for each partition.

Using the analysis step outputs, we compute the optimal number of partitions and their 
object count without exceeding the available memory (or, maxPartSize if set by the user). 
First, we estimate the maximum memory size in bytes ( memMaxPart ) using formula 1. 
memExec is the distributed job’s assigned memory to each executor, memOverheadExec 
is the executor’s overhead memory necessary for its function as defined by the distrib-
uted system (e.g., Java Virtual Machine and reserved memory), and countCoresExec is the 
number of processing cores available for each executor. The value is finally divided by 2 
to account for the merging of the left partitions.

Next, using memMaxPart and formulas 2 and 3, we compute the number of partitions 
that both datasets require ( countPartRight , countPartLeft ). memOverheadSI is the over-
head associated with constructing the spatial index (e.g., internal nodes, lists, and 
pointers). The value is specific to the spatial index used (e.g., Quadtree or K-d Tree); if 
indexing is not required, then memOverheadSI is 0.  

Using countPartRight , countPartLeft , and formulas  4 and  5, we compute the minimum 
and the maximum number of partitions for the right dataset ( countPartMinRight and 
countPartMinLeft ). countPartMinRight is the maximum needed partitions between the 
two dataset. Doing so ensures that joining the two datasets will not overflow the execu-
tor’s memory. The maximum number of partitions (formula 5) is the countPartMinRight 
adjusted to occupy all processing cores. This value may increase the number of parti-
tions , but reduces the chance of idle cores.

Finally, this stage outputs: 

1. MBR of the right dataset ( MBRRight ): This is the same value computed earlier.

(1)memMaxPart =
min(memExec−memOverheadExec

countCoresExec
,maxPartSize)

2

(2)countPartRight =

⌈

(countObjRight ×memMaxObjRight)+memOverheadSI

memMaxpart

⌉

(3)countPartLeft =

⌈

(countObjLeft ×memMaxObjLeft)+memOverheadSI

memMaxpart

⌉

(4)countPartMinRight =max(countPartRight , countPartLeft)

(5)countPartMaxRight =

⌈

countPartMinRight

countCoresall

⌉

× countCoresall

(6)countCoresall =coutCoresexec × countexec
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2. Partition’s minimum and maximum number of right dataset objects 
( countObjMinRight and countObjMaxRight ): The range is produced using 
countPartMaxRight and countPartMinRight and formulas 7 and 8. 

3. Optimal grid dimension gridDim: If the maximum concentration of objects within a 
single grid square ( maxObjCountRight ) is larger than the minimum number of objects 
per partition ( countObjMinRight ), the load of the partitions may become unbalanced. 
In this case, we attempt to reduce the value of gridDim:

rate ← maxObjCountRight

countObjMinRight

if rate > 1 then
gridDim ← gridDim

ceil(sqrt(rate) ) � gridDim is divided by
⌈√

rate
⌉
since a single division of a

square’s sides splits that square into 4. Two splits into 9. . .
end if

In the rare case of a highly skewed dataset, the adjusted value of gridDim may still pro-
duce a high concentration of objects (i.e., rate > 1 ). If this occurs, the process proceeds 
since recomputing maxObjCountRight requires multiple expensive computational rounds 
that will offset any gains from computing a partitioner without any query skews.

Stage 2: Constructing and indexing the partitioner
Using the output of state 1, stage 2 builds the partitioner over the right dataset. The 
partitioner (1) a spatial which simplifies lookup and (2) a Map that shows the parti-
tions and their unique IDs. Each partition must receive and object count between 
countObjMinRight and countObjMaxRight . Figure 5 shows an overview of the steps taken 
during this stage which re-indexes the right dataset into a grid as described in stage 1, 
but with cell dimensions equal to the adjusted value of gridDim. The master node col-
lects the aggregated summary of the grid and incrementally assigns non-empty grid cells 
to partitions.

Figure  6 illustrates the grouping grid cells to partitions. The example shows a sam-
ple grid of 5 rows and 8 columns. Non-empty cells show the number of objects within. 
Assuming that the partition capacity is between 8 and 10, the first partition (green) 
receives a total of 9 objects since adding cell (1,  4) increases the sum to 11, which is 
greater than the maximum of 10. Subsequently, the partition 2 and 3 receive 10 objects 
each; the final partition gets the remaining 8. Simultaneously, a Map records the parti-
tions’ MBRs and their unique IDs as shown in table 3.

Finally, we index the grid (e.g., Quadtree or K-d Tree). This expedites lookup opera-
tions for boundary-crossing objects. Each entry in the spatial index records the grid cell’s 

(7)countObjMinRight =

⌊

countObjRight

countPartMaxRight

⌋

(8)countObjMaxRight =

⌊

countObjRight

countPartMinRight

⌋
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(X, Y) coordinates, the total number of spatial objects assigned to the cell, and the parti-
tion number where the cell resides. Finally, this stage outputs: 

1. Broadcast indexed spatial partitioner: this is the indexed spatial partitioner that is 
made available on all processing nodes.

2. Partition mapping: A map of the partitions IDs and MBRs. The map is useful for 
quickly looking up a partition’s information and aids partition pruning.

Stage 3: Computing the number rounds

Executing the spatial query starts by computing the number of shuffle rounds. This step 
is critical since the process does not duplicate boundary-crossing objects. Thus, the 
object with the longest partition list sets the number of shuffle rounds. For instance, in 

Fig. 5 Stage 2—constructing and indexing the partitioner

Fig. 6 Grid cell grouping illustration
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a k NN spatial query, each object’s region should extend to encompass the required k 
objects includes those residing on separate partitions (Fig. 2).

Figure 7 shows an overview of the steps taken during stage 3. Each left dataset object 
starts by computing its grid cell location and queries the spatial index to record the par-
titions to visit. Finally, the master node receives the aggregated results, which show the 
maximum length between all objects lists (numRounds) and a set of distinct partitions 
needed overall (setNeededPartitions).

Using the set of distinct partitions, setNeededPartitions, the master node attempts 
to update the partition mapping produced during stage 2 and removes partitions not 
present in setNeededPartitions. This pruning step allows the query to exclude unneeded 
partitions (if present). We should note here that pruning does not update the broadcast 
partitioner since the cost of unpersisting, rebuilding, and rebroadcasting the partitioner 
outweighs the cost of keeping the extra information. Finally, pruned map is broadcast to 
all processing nodes. Finally, this stage outputs: 

1. Number of rounds: this is the length of the largest partition list (numRounds).
2. Broadcast partition mapping: this is the final pruned version of the hashmap.

Stage 4: Spatial query execution
The final stage executes the spatial query by repartitioning and grouping both datasets. 
Figure 8 shows an overview of the steps taken during this stage. The right dataset objects 
look up and migrate to their partitions, build a local spatial index, and persist their state. 

Table 3 Partition MBR to ID mapping

An illustration of a map that shows the partition’s MBRs and their unique IDs. The count column shown here for illustration; 
the implementation does not need to record the counts

Part. ID MBR ends Object count

0 (0, 0), (1, 3) 9

1 (1, 4), (3, 3) 10

2 (3, 4), (5, 4) 10

3 (6, 2), (7, 4) 8

Fig. 7 Stage 3—Pruning and computing the number of computational rounds
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Local indexing is optional but enhances lookups. Similarly, persistence is crucial for sub-
sequent computations when numRounds > 1.

Likewise, the left dataset objects utilize the partitioner and select the partitions that 
each object requires. The lookup step is similar to the one performed in Stage 3; how-
ever, each object keeps the actual list of partitions sorted by proximity instead of just the 
count. Moreover, the order of the list is crucial since this ensures that the search region 
for each object can shrink once the number of matches reaches the required limit (e.g., 
k in k NN query). We should note that we opted to recompute the partition lists since 
persisting these computations may cause data spill to disk.

During this stage, the process accounts for query skews caused by the left dataset dis-
tribution. Depending on the distributed framework, selective exclusion of objects from 
the shuffle process may be prohibited. To mitigate skews, we ensure that the size of the 
partition list for all left objects equals to numRounds. Shorter lists receive randomly 
assigned partitions inserted at random places within the list while preserving the origi-
nal order as shown in the following algorithm.

rand ← RandomNumberGenerator()
listParts ← lookupFromPartitioner(spObj) 	 spObj is a left dataset spatial object
while listParts.length < numRounds do 	 Padding check

randIdx = rand.nextInt(numParts) 	 numParts is the number of right partitions
listParts.insert(rand.nextInt(listParts.length+ 1),−randIdx)

	 Padding partitions have negative ID.
	 Query operations are skipped there.

end while

After finalizing the list for all objects, the partitioner is removed from memory. This 
will increase the available memory on the executor and reduces the amount of seri-
alization work that occurs during shuffling. Next, the process repartitions the dataset, 
and places each object on the first partition on its list. Next, both datasets join, and the 
left object query the right objects on that partition using the spatial index, if it exists, 
or through a full scan O(n) operation. Finally, the steps of repartition, join, and query 
repeat a number of times equal to numRounds.

Fig. 8 Stage 4—executing the spatial query
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Apache Spark implementation − k NN spatial join query
The design details of our proposed partitioner apply to all distributed in-memory com-
puting systems. In this section, we detail the implementation steps of the proposed 
partitioner for executing a spatial k NN join query of two− dimensionalPoint spatial 
objects. We use this implementation in section  to compare our work to existing k NN 
implementations on Apache Spark. The implementation provides interfaces that allow 
the addition of new spatial objects and indexes. We implement our spatial partitioner 
and k NN join query in Scala for execution with Apache Spark version 2.4.0.

Figure 9 shows an overview of the inputs and outputs to the implemented k NN spatial 
join query. RDD1 and RDD2 are Spark RDDs of type Point, k ∈ N, k > 1 , and RDDOut is 
a Spark RDD of tuples consisting of all points from RDD1 and a list of points from the 
RDD2 sorted by proximity and size up to k.

Implementation of stage 1: analyzing the input datasets
Following the design details of stage 1, we compute MBRRight , countObjMinRight , 
countObjMaxRight , and gridDim. The computation occurs in parallel results collected on 
the master node. The executor’s memory overhead ( MemOverheadExec = 300, 000, 000 ) 
is set to the value specified by the Spark configuration [59, 60] and depicted in Figure 10, 
and compute memExec using formula 9. memJobExec is the amount of memory assigned 
to the Spark job; 0.60 and 0.50 are Spark’s configuration parameter for the fraction of 
memory used for execution and storage and the amount of storage memory immune to 
eviction [59] respectively.

To estimate the memory size for objects, we use Spark’s SizeEstimator [61]. How-
ever, due to some limitations whit estimating the size of deeply nested objects, we used 
SizeEstimator to estimate the object’s shell and aggregate the results. Formula 10 shows 
the memory estimate for indexing the entire right dataset. memEstSI is an estimate of the 
memory required to index the dataset. This value is specific to the type and implementa-
tion of the spatial index and includes the cost of storing the index boundaries, internal 
nodes, and lists.

Implementation of stage 2: constructing and indexing the partitioner
Algorithm 1 in appendix C details the steps followed for building and indexing the par-
titioner. The inputs to the algorithm are the right RDD, the adjusted grid dimension, 
and the computed partition’s size limits (rightRDD, gridDim, countPointMinRight , and 
countPointMaxRight ). A grid index groups the right dataset objects as described in the 
design details of stage 1 which produces an indexed partitioner and a map of partition 
IDs and their MBRs (partitionerSI and mapMBR).

(9)memExec = (memJobExec − 300, 000, 000)× 0.60× 0.50

(10)memEstRight = countPartObjRight ×memMaxObjRight +memEstSI



Page 20 of 42Zeidan and Vo  Journal of Big Data            (2022) 9:77 

Stage 3: computing the number of processing rounds
Following the design details of stage 3, Algorithm 2 in Appendix C describes the com-
putation process, which starts with the left dataset object computing their grid cell 
location, querying the spatial index, and selecting the number of partitions required to 
provide the required k right dataset objects. Simultaneously, the process maintains a dis-
tinct list of all partitions selected by the left objects.

Fig. 9 k NN query input and output RDDs. The input is two Spark RDDs of type Point

Fig. 10 Spark memory allocation
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The spatial index lookup process performed by each of the left objects is depicted 
in Fig. 11 and detailed in algorithm 3 in appendix C. The process finds the best region 
that contains at least k points. In a Quadtree, for example, the best region is the quad-
rant that contains the lookup point and has no fewer than k points. Next, we construct 
a search region with the search point as its center and dimensions W, H that contain 
the Quadtree’s best region. Next, the point queries the partitioner starting from the best 
region, updates the k matches, and shrinks its search region. Next, the point queries the 
partitioner starting from the root element. Finally, we prune and broadcast mapMBR.

Stage 4: k NN Spatial join query execution

Following the design details of stage 4, and using the spatial index, the right dataset 
points migrate to their respective partitions, build a local spatial index, and persist to the 
executor’s main memory. Next, the left dataset points extract a list of partitions needed 
to find the k right dataset points. Lists with sizes less than numRounds receive their ran-
dom partition padding as described earlier in algorithm 4.

Next, the processing rounds commence; each left dataset point migrates to the first 
partition on its list and joined with the persisted right dataset partitioner. The join 
occurs via Spark’s union transformation. For efficiency, we ensure that Spark internally 
switches to the PartitionerAwareUnionRDD operation.5 After the join operation, each 
point in the left dataset performs a k NN lookup operation against the local spatial index 
as described earlier in figure 11.

Once the left points finish their k NN lookups, the process repartitions the left dataset 
and sends each point to the next partition on its list. Next, the left dataset is joined with 
the persisted right dataset and performs a k NN lookup. The steps continue several times 
equal to the number of processing rounds computed during stage 3 (Algorithm 2. Finally, 
the output consists of all the left points, with each point containing a list of points from 
the right dataset sorted by proximity.

Query scalability and outcome precision evaluations
The scalability and accuracy of a spatial partitioner and query are of equal importance. 
Their value diminishes if the results accuracy is weak or fails to handle large datasets 
within an acceptable period. Using our Spark implementation of the k NN spatial join 

Fig. 11 Illustration of the k NN lookup process (Assuming k = 5)

5 Spark performs PartitionerAwareUnionRDD when the two datasets were partitioned using the same partitioner
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query, we perform several experiments and compare the runtimes and precision of our 
approach to those found in the literature. Furthermore, we study the effect of the pres-
ence of non-spatial data by repeating tests with and without non-spatial data. We repeat 
each test three times and record the standard deviation of the runtimes under the same 
input parameters. For the remainder of this section, we refer to our implementation as 
SpPart_kNN  . We utilize our previous work on accuracy benchmarking [47] and classify 
the results into several categories that compare the outputs for similarity and complete-
ness of records. The benchmark implementation is available on GitHub[1] ; it analyzes the 
contents of two files and generates a report of several classifications. In this section, we 
limit our discussion to the following criteria:

• Total records: Shows the total number of distinct records in both files. Records with 
the same key, count once, but records found in one file count as one too.

• Exact match record: The number of records with exact matches in both input files. 
The number of matches from the second file matching those from the first file must 
equal a value specified as an input parameter. If there is at least one mismatch, the 
record cannot receive this classification.

• Mismatch records: The number of records from the second file that were not clas-
sified as Exact Match Record. The sum of this classification and the Exact Match 
Record classification equals to Total Records.

• Missing records: The number of records that were present in the first input file but 
were missing from the second input file. This classification indicates that the tested 
technique omitted records it could not match.

Evaluation setup

The source code for our partitioner and k NN spatial join query is available on GitHub[1] . 
We examined several implementations of existing works on spatial partitioning and spa-
tial query execution whose source code was available for testing. The examined works 
were Magellan6, GeoSpark7, LocationSpark8, STARK9, and Simba10. Magellan does not 
support k NN query, and we exclude it from further discussion. We exclude STARK and 
Simba from many of our test results since their jobs either failed or terminated after exe-
cuting for more than 180 minutes. We chose to stop jobs after 180 to adhere to our data 
center’s usability rules and to acknowledge that real-world applications usually operate 
under time and budgetary constraints. GeoSpark relies on the JTS 11 library and its near-
estNeighbour function [62]; it does not offer k NN join query over two datasets but does 
allow for a single-point k NN query.

We conduct our tests at the operational data facility of our research center. The cluster 
consists of 20 high-end nodes; each node has 24TB of disk space, 256GB of RAM, and 64 

6 https:// github. com/ harsh a2010/ magel lan.
7 https:// mvnre posit ory. com/ artif act/ org. datas yslab/ geosp ark/1. 3.1.
8 https:// github. com/ purdu edb/ Locat ionSp ark.
9 https:// github. com/ dbis- ilm/ stark.
10 https:// github. com/ Initi alDLab/ Simba.
11 https:// locat ionte ch. github. io/ jts/.

https://github.com/harsha2010/magellan
https://mvnrepository.com/artifact/org.datasyslab/geospark/1.3.1
https://github.com/purduedb/LocationSpark
https://github.com/dbis-ilm/stark
https://github.com/InitialDLab/Simba
https://locationtech.github.io/jts/
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AMD cores (total 1, 200+ cores) running Cloudera Data Hub 6.1.0 with Apache Spark 
2.4.0. Each job may use up to 250 cores and 1.6TB of RAM.

Datasets

Table 4 summarizes four real-world datasets employed in our evaluations. The datasets 
consist of GPS coordinates projected from WGS84 [66] to NAD83 datum [67] using the 
coordinate projection library PyProj [63]. The table lists the datasets in ascending order 
of their size. The first dataset, referred to as POI, consists of 119,  319 New York City 
(NYC) Points-of-Interest (POI) [68, 69] extracted from OpenStreeMap [63]. The remain-
ing three datasets consist of records obtained from NYC Taxis [65] (TAXI and TLC) and 
Busses [64] (BUS). Each record in the later three datasets contains information about a 
single trip including, pick-up and drop-off locations, date/time, trip fair, number of pas-
sengers, and distance traveled.

The datasets consist of different sizes and densities. The BUS dataset size is close to 
the TAXI dataset; however, it is denser as busses only operate over selected city streets. 
If ignored, the density characteristic may cause skewness or load imbalance. The TLC 
dataset is the largest of the three (6.4 times larger than the BUS dataset) and contains far 
more GPS pings.

Baseline result design and implementation

Reliable accuracy evaluation requires result comparison against those certified as accu-
rate (i.e., baseline). Due to the lack of baseline results for our datasets, we devised a 
technique to generate these results using exhaustive search; each point from one data-
set examines every point from the other. Due to the computationally intensive nature of 
this approach, we extracted two small-scale POI datasets consisting of 100 and 200 POI 
points, respectively. For each point in each small-scale dataset, we perform a k NN query 
operation against the BUS dataset. The BUS dataset is denser and has fewer records than 
the TAXI and TLC datasets. The task for the 100 POI points finished its k NN query in 
6.55 hours while the second task for the 200 POI points lasted 11.34 hours. We per-
formed spatial object recognition and k NN lookup operations using LocationTech’s JTS 

Table 4 Experimental dataset summary sorted by the dataset’s file size

Dataset Name Short Name Summary Observations

OSM POI  [63] POI • 38.814 MB
• 119, 319 Points

• Open Street Map (OSM) points of interest
• New York City (NYC) only
• GPS location of buildings, restaurants, shops ...

NYC Bus Trip Records [64] BUS • 22.147 GB
• 221.715 Mil. Points

• Similar format to the TAXI dataset but denser 
(Buses run over fewer city streets)
• Non-uniform distribution (Fig. 1a)
• Good for testing the behavior with locations 
significantly overloaded than others.

NYC Taxi Trip Records [65] TAXI • 27.738 GB
• 165.114 Mil. Points

• Non-uniform distribution (Fig. 1b)
• Ideal for testing techniques that cannot handle 
the LARGE dataset

TLC TPEP and LPEP [65] TLC • 141.99 GB
• 3.78 Bil. Points

• Non-uniform distribution (Fig. 1c)
• 10.9 Mil duplicate records.
• 158.9 Mil unmatchable records.
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library [70]. Namely, we used the library’s Point object and STRtree, an R-Tree spatial 
index implementation.

Figure  12 shows the workflow for generating the baseline results using Spark. The 
process starts by evenly repartitioning the BUS dataset amongst several partitions 
of 300,000 points. We chose this number experimentally after several trials. Next, on 
each partition, we constructed an STRtree and persisted it in memory. Next, we trans-
formed the POI dataset to JTS Point objects, repartitioned the dataset, and joined it with 
STRtree BUS partitions. Each point performs its k NN query steps and keeps up to 50 
best matches. Once finished, the POI points migrate to the next partition; the process 
continues until all points query all STRtree. The final output consisted of the original trip 
record followed by its matches sorted by proximity.

Spatial partitioner construction time evaluation

Our first round of evaluations examines the time needed to construct the spatial par-
titioner with and without non-spatial data. We fix the size of the input dataset (BUS, 
TAXI, TLC) and vary the number of executors for each subsequent test by adding 10 
new executors (i.e., 10, 20, 30, 40,  to 50) while fixing the number of cores per executor 
at 512. The results of this test show how a technique analyzes the dataset and utilizes the 
available computing resources to build its spatial partitioner.

Figure 13 shows the average runtimes that each technique took to construct its par-
titioner for the three datasets BUS, TAXI, and TLC with and without non-spatial data. 
Each value is the average of three repeated tests with standard deviation ranges shown 
in Table  6. Values labeled with an “X” indicate that the test failed or terminated after 
executing 180 minutes.

Test results indicate awareness of the added computing resources, with runtimes 
remaining close or decreasing. SpPart_kNN, GeoSpark, and STARK finished with close 
runtimes. SpPart_kNN was 1.01− 1.15 times faster than the following quickest tech-
nique (varies per test) during 10 of the 15 tests without non-spatial data, 1.02− 1.17 
times faster in 5 of the 15 tests with non-spatial data. Table 6 in appendix A shows that 

Fig. 12 Workflow for producing the k NN baseline result.

12 The 5 core per executor setting allows the executor to perform up to 5 parallel tasks. Increasing this number caused 
congestion within the executor and degraded performance
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SpPart_kNN exhibited better overall consistency during 15 of the repeated tests, SIMBA 
was better in 5 of the tests for both with and without non-spatial data, STARK was bet-
ter in 1 and 5 tests with and without non-spatial data, respectively, and LocationSpark 
and GeoSpark showed the slowest times in all tests with GeoSpark finishing ahead. We 
should reemphasize that our approach performs a complete distributed dataset scan, 
collects minimal details, and does not rely on sampling as commonly done in the other 
tested techniques.

kNN join query—small‑scale datasets

In this section, we report on small-scale datasets experiments to highlight the impor-
tance of assessing the accuracy of spatial query results. As noted earlier, we were unable 
to perform k NN query tests over all studied techniques due to either lack of support 
or failure. For these techniques, we obtain results by iteratively invoking their single 
point k NN spatial query method, namely, we use the KNNQuery.SpatialKnnQuery() 
and kNNJoin() methods for GeoSpark and STARK respectively. We omit reporting on 
runtime results in this section since iteratively invoking k NN point query is less efficient 
than a k NN spatial query

Accuracy comparison results

Table  5 summarizes the results of comparing the outputs of each of the tested tech-
niques and the baseline matches for the small-scale dataset. The matches of SpPart_
kNN, Simba, and GeoSpark agree with the baseline’s results. STARK’s matches agree 
with the baseline’s k = 10 only but mismatched one record from both POI datasets for 
k = 50 . The single mismatched record in STARK contained a point that was further 
than the one found by the baseline approach. LocationSpark’s matches showed the worst 
results, agreeing with the baseline matches by 80% for k = 10 and 29− 33% for k = 50 . 

Fig. 13 Cost of building the partitioner with and without non-spatial data
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LocationSpark matched points that were further than those found through the baseline 
approach.

Table 9 in Appendix B shows the results of comparing the outputs of all techniques 
against each other. The results of SpPart_kNN, Simba, and GeoSpark agreed with each 
other and with STARK matches for k = 10 but missed one record for k = 50 . These 
techniques agreed with LocationSpark matches by 21% and 71% for k = 10 and by 21.5%, 
and 72.5% for k = 50 . These results were in line with our findings during later accuracy 
evaluations which lack baseline results. In these experiments, we consider the output 
with the closest matches as the better approach.

kNN join query‑scalability evaluation

The scalability test examines the runtime and accuracy of the partitioner and the k NN 
spatial join query under different processing configurations. The tests fix the input size 
to the entire dataset (BUS, TAXI, and TLC) and gradually increase the number of execu-
tors by 10 with k = 10.

Figure  14 shows the average runtimes for successful tests. The runtimes overall 
decreased with the addition of new executors. SpPart_kNN showed a runtime spike in 
the BUS and TAXI between 1.18− 1.82 times over the previous tests with 10 executors. 
Upon examining the runtime logs, we noticed that during these tests, the partitioner 
increased its estimated optimal number of partitions by 33% . The cause of the mises-
timate is in the subprocedure that tries to adjust the number of partitions to become 
divisible by the number of cores. This increase, in turn, required 2 additional shuffle 
rounds. Adjusting the number of partitions relative to the cores’ count increases the uti-
lization of cores (i.e., fewer idle cores); however, depending on the dataset’s density and 
size, it may slightly increase the number of shuffle rounds. This behavior was not a factor 
in subsequent experiments during the 30, 40,  and 50 executors or for the TLC tests. We 
will study this behavior further and propose a fix in later versions.

SpPart_kNN was 1.08−1.59 times faster than LocationSpark in 4 of the 15 tests with-
out non-spatial data and 1.06−2.31 times slower in the remaining 11. In the tests with 

Table 5 Accuracy evaluation results—summary for small-scale query dataset

A � indicates that the results completely agree with the baseline matches

 SpPart_kNN  LocationSpark  Simba  STARK  GeoSpark

With non-spatial data 100 Points 10 ✔ 80.0% � � �

50 ✔ 33.0% � 99.0% �

200 Points 10 ✔ 80.0% � � �

50 ✔ 29.5% � 99.5% �

Without non-spatial data 100 Points 10 ✔ 80.0% � � �

50 ✔ 33.0% � 99.0% �

200 Points 10 ✔ 80.0% � � �

50 ✔ 29.5% � 99.5% �
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non-spatial data, SpPart_kNN was 1.05−1.71 times faster in 5 out of the 15 tests and 
1.09−2.34 times slower in the remaining 10. However, LocationSpark tests were found 
unreliable due to their low accuracy score, as discussed next. Table  7 in appendix  A 
shows that SpPart_kNN exhibited better overall consistency than LocationSpark during 
27 of the repeated tests.

Accuracy comparison results

Table 10 in Appendix B shows the results of comparing the outputs of successful tests. 
For tests with non-spatial data, LocationSpark and SpPart_kNN results agreed, at best, 
by 81.50% of the POI records for the BUS dataset tests, 82.01% for the TAXI dataset 
tests, and 85.69% for the TLC dataset tests. We independently examined and verified the 
remaining parts of the results, and found that SpPart_kNN matched points with closer 
matches than LocationSpark. In other words, SpPart_kNN found better matches than 
LocationSpark in 18.50% of the POI records for the BUS dataset tests, 17.99% for the 
TAXI dataset tests, and 14.31% for the TLC dataset tests.

For the tests without non-spatial data, the percentages were close to those with spa-
tial data. LocationSpark and SpPart_kNN results agreed, at best, by 80.67% of the POI 
records for the BUS dataset tests, 82.12% for the TAXI dataset tests, and 85.63% for the 
TLC dataset tests. Similar to the tests with non-spatial data, SpPart_kNN produced 
closer matches for the remaining parts of the results.

kNN join query evaluation—varying the value of k

Our final round of evaluations examines the effect of increasing the value of k for a k NN 
spatial join query. We observe how the k NN query utilizes the partitioner to account for 

Fig. 14 Scalability test with and without non-spatial data ( k = 10)
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the increase in k, which expands the range for each query point as k grows. This, in turn, 
increases the number of boundary-crossing regions, decreases the chance of partition 
pruning, and requires additional shuffling rounds or object duplication.

Accuracy comparison results

Figure  15 shows the average runtimes of several k NN queries using six different val-
ues for k (3,  10,  50,  100,  500,   and 1,  000). We fix the input size to the entire dataset 
(BUS, TAXI, and TLC) and set the number of executors to 50. The BUS dataset showed 
the best runtime consistency except for LocationSpark during the test with k = 1000 
without non-spatial data. For the TAXI dataset, both SpPart_kNN and LocationSpark 
showed increasing runtimes except for LocationSpark during the test with k = 1000 
with non-spatial data. We should reiterate that the BUS and TAXI datasets are similar in 
size; however, the BUS dataset is denser as it spans fewer.

The most interesting observation is seen in the runtimes of LocationSpark for the 
largest dataset (TLC). During these tests, the runtimes remained very close even as k 
increased. This behavior was clarified when we reviewed the accuracy results and 
noticed the degraded accuracy of the results compared to SpPart_kNN. SpPart_kNN 
was 1.08−1.69 times faster during 7 of the 18 tests with non-spatial data and 1.03−1.58 
times faster during 5 of the 18 tests without non-spatial data. Table  8 in appendix  A 
shows that SpPart_kNN exhibited better overall runtime variations with a range of 
0.016−3.289 compared to 0.039−11.362 for LocationSpark.

Accuracy comparison results

Table 11 in appendix B shows the outputs comparison results for the successful tests. 
LocationSpark accuracy degraded as k increased compared to SpPart_kNN. For k = 3 

Fig. 15 Varying the value of k with and without non-spatial data
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for the tests with non-spatial data, LocationSpark agreed with SpPart_kNN by 91.19% , 
95.31% , and 96.66% of the POI records for the BUS, TAXI, and TLC datasets respec-
tively. For k = 1000 , LocationSpark agreed with SpPart_kNN by 0% , 14.31% , and 0% for 
the three datasets respectively.

For the tests without non-spatial data, the percentages were close to those with spatial 
data. For k = 3 , LocationSpark and SpPart_kNN results agreed, at best, by 90.86% for 
the BUS dataset, 95.29% for the TAXI dataset, and 96.67% for the TLC dataset. For the 
remaining portion, SpPart_kNN produces results with closer matches; 9.14% , 4.71% , and 
3.33% . Overall, LocationSpark produced a higher percentage of imprecise matches than 
SpPart_kNN as the value of k increased.

Discussion
The proposed partitioner exhibits performance gains over existing works due to several 
factors. First, it customizes itself to the dataset’s exact traits without sampling the input 
datasets or relying on training data. Second, it gathers precise information about the 
dataset’s object types, size, and high-density locations. Third, it naturally accounts for 
query skews and load balancing and avoids the need for additional optimization rounds 
that could offset runtime gains. Fourth, the partitioner computes the dataset’s memory 
byte size requirements, including its non-spatial data.

Fifth, the construction of the partitioner is independent of the spatial query type. This 
flexibility allows any query to extract information from the partitioner and build a list of 
partitions to visit to avoid object duplication and minimize shuffling. Sixth, the size of 
the partitioner is minimal and only stores relevant information about objects’ location 
and counts. Finally, the partitioner performs most computations like grid assignment 
and aggregation in parallel. The master node only collects results, distributes the load, 
and indexes the information to improve lookup.

In addition to the performance gains, the proposed partitioner allows the spatial query 
to produce accurate results. The comprehensive information offered by the partitioner 
permit complex queries like the k NN spatial join query to learn enough about which 
partitions contribute to the output. A boundary-crossing object that overlaps a partition 
can learn the exact number of objects that may fall within its region. Users can choose 
to allow the partitioner to select the proper grid size or adjust it for coarse or fine sizes.

We plan to enhance our proposed spatial partitioner and address some of its current 
limitations. The partitioner can account for density spots within the database. How-
ever, less dense datasets may increase the size of the indexed partitioner, which in turn 
requires additional partitions and shuffling. In extremely skewed datasets, the parti-
tioner may bypass the object size estimate. While the two problems will not cause the 
distributed task to fail or reduce accuracy, it may increase the runtime and space com-
plexities. The solution is for the user to adjust the input parameter griDim to an opti-
mal setting specific to the input datasets. In addition, the density affects the complexity 
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of the spatial index used. For instance, Quadtrees work well when they are balanced or 
near-balanced. Dense datasets may cause the tree to grow in one specific direction more 
than others.

While trajectory matching is not part of the studied problem; however, given the flex-
ibility of the design, trajectory analysis is easily applied to the output of the spatial query. 
Moreover, the design is not limited to one spatial type; adding additional types may be 
introduced as the partitioner can account for mixed-object datasets. Finally, the parti-
tioner does not currently recognize the temporal attribute within the dataset. Such a fea-
ture is planned for future work to integrate and ensure the scalability and accuracy of 
spatial and temporal partitioning.

Conclusion and future work
The preceding work proposed a novel approach to spatial data partitioning for in-mem-
ory distributed processing frameworks and detailed several challenges facing partitioner 
construction, scalability, and query processing. The proposed solution takes a balanced 
approach to the challenges and does not compromise the spatial query’s accuracy. The 
implementation section discussed the details for integrating the partitioner with a k NN 
spatial join query for execution on Apache Spark called SpPart_kNN.

Several experiments were conducted using real-world datasets and compared to sev-
eral popular and publicly available spatial partitioning techniques for Apache Spark. 
Although SpPart_kNN does not rely on sampling, its partitioner construction time was 
up to 1.17 during 15 of the 30 experiments and up to 1.50 times slower in the rest of the 
tests. In the scalability tests, SpPart_kNN was up to 1.59 times faster than LocationSpark 
in 9 of the 30 experiments and up to 2.34 times slower. However, the accuracy results of 
LocationSpark were unreliable, which explains its runtime advantage. During the experi-
ments that varied the value of k, the results were similar; SpPart_kNN was up to 1.69 
times faster during 12 of the 24 tests and up to 2.12 times slower than LocationSpark 
during the remaining tests. However, the accuracy results of LocationSpark showed 
weaker results compared to SpPart_kNN, which degraded as the value of k increased.

For future releases, we plan to continue our study into spatial partitioning and address 
the limitations encountered during this work. We plan to investigate finding a more 
efficient estimate of the dataset’s memory requirements (e.g., mean or mode instead of 
maximum). We believe that this may reduce the partition size estimate, which in turn 
will decrease the number of partitions and shuffle rounds. The memory size estimator 
provided by Spark (i.e., SizeEstimator) may overestimate objects sizes; thus, a preciser 
size estimator is needed. We also plan to introduce support for new spatial shapes like 
LineStrings and Polygons and expand the list of supported operations to others like join 
and intersect. Finally, for better usability with Spark, we plan to offer tighter integration 
with Spark’s RDD through Scala’s Domain-Specific Languages (DSL)13.

13 https:// www. scala- lang. org/ old/ node/ 1403.

https://www.scala-lang.org/old/node/1403
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Algorithms

Algorithm 1 Building and Indexing the Partitioner
� An algorithm illustrating the right object assignment to partitions. The grid assignment starts in
� parallel with the master node receiving occupied cells and their object counts. Each partition receives
� objects between the specified limits and added to the spatial index.
� The time complexity of the algorithm greatly depends on the right distribution but has a complexity
� of O(n), where n is the number of right points

function buildPartitioner(rightRDD, gridDim, countPointMinRight, countPointMaxRight)

partitionerSI ← SpatialIndex() � Create a new Spatial Index
currPartNum, currPartSize ← 0 � Partition and number of points assigned counters.
mapMBR ← newMap() � Maps partitions IDs (key) and their MBRs (value)
rightRDD

.mapPartitions( � rInt rounds to the nearest integer
.map(point ⇒ ((rInt(point.x/gridDim), rInt(point.y/gridDim)), 1L)))

.reduceByKey( + ) � Counts the number of points in each cell

.sortByKey() � Sorts by the cells’ (X,Y ) coordinates

.collect() � Brings the summarized information to the master node

.map(xyCount → {
if(currPartNum == 0 OR currPartSize ≥ countPointMinRight OR

currPartSize+ xyCount.count > countPointMaxRight) then

currPartNum ← currPartNum+ 1
currPartSize ← xyCount.count
mapMBR.add(newMBR(xyCount))

else

currPartSize ← currPartSize+ xyCount.count
mapMBR.last.updateMBR(xyCount)

endif

partitionerSI.insert(xyCount, currPartNum)
})

return partitionerSI, mapMBR
end function

Algorithm 2 Computing the Number of Processing Rounds
� An algorithm for illustrating the distributed computation of the number of rounds. Each object in
� the left object computes its grid location and queries the spatial partitioner and finds the partitions
� needed to satisfy its k matches. Finally, the master node receives a unique set of the partitions
� needed by all objects along with the size of the longest overall list.
� The time complexity is O(n) where n is the number of left dataset objects on the partition

function computeRounds(leftRDD, gridDim, partitionerSI)

setPartitionID ← Set() � A unique list of needed partitions

numRounds ← 0 � The size of the longest list of partitions

(setPartitionID,maxPartition) =
leftRDD

.mapPartitions(
.map(point → ((rInt(point.x/gridDim), rInt(point.y/gridDim))))

� rInt rounds to the nearest integer
.distinct() � Avoids repetitive lookups from partitionerSI
.mapPartitions(

.map(gridCell → setPartitions ← knn(partitionerSI, gridCell, k).toSet
� Finds closest k grid cells and returns their partition assignments

(setPartitions, setPartitions.size)
))
.treeReduce((x, y) → (mergeSets(x.1, y.1),max(x.2, y.2)))

� Merges the results on the master node
return setPartitionID, numRounds

end function
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Algorithm 3 kNN Lookup Within Spatial Index
� An algorithm for illustrating kNN lookup from a Quadtree index. First, the gridCellXY finds the
� region that contains it had has at least k points. Next, gridCellXY builds a search area that
� encloses the best region and search all the child quadrants of the best region that intersect the
� search area. Add all points that fall within the search region. Once their size reaches k, shrink the
� search area. Once finished with the best region, repeat the search steps with the remainder of the
� Quadtree regions.
� The time complexity of the algorithm depends on dataset distribution, how it effects building the
� Quadtree, and the value of k. In the worst case, the time complexity is O(n×m), where n is the
� number of points in the left dataset, and m is the number of points in the spatial index.

function knn(partitionerSI, gridCellXY, k)

bestLoc ← partitionerSI.bestLocation(gridCellXY, k)
� Finds the best location in the spatial index with at least k points

searchRegion ← circularRegion(gridCellXY, bestLoc)

for each cell ∈ bestLoc do
if searchRegion.intersects(cell) then

for each point ∈ cell do
if searchRegion.contains(point) then

searchRegion.addToList(cell)
shrink region if list size reaches k

end if
end for

end if
end for

for each cell ∈ partitionerSI.root do
if cell �= bestLoc AND searchRegion.intersects(cell) then

for each point ∈ cell do
if searchRegion.contains(point) then

searchRegion.addToList(cell)
shrink region if list size reaches k

end if
end for

end if
end for

end function

Algorithm 4 Padding the List of Partitions to Visit
� An algorithm illustrating the padding of lists with sizes < numRounds. Each short list randomly
� receives partition assignments in random locations within the list without disrupting the existing
� order. Padding partitions are made negative to distinguish them from the original ones.
� The time complexity for this algorithm is constant (O(numRounds)). When applied by the
� left objects, the complexity is O(n).

rand ← RandomNumberGenerator()
listParts ← lookup from partitioner()
while listParts.length < numRounds do

randIdx = rand.nextInt(numParts) � numParts is the number of right dataset partitions
listParts.insert(rand.nextInt(listParts.length+ 1),−randIdx)

� Negative IDs indicate a padding partition. Objects should not perform operations there
end while
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