
Predicting clinical outcomes of radiotherapy 
for head and neck squamous cell carcinoma 
patients using machine learning algorithms
Tarun Gangil1  , Amina Beevi Shahabuddin1, B. Dinesh Rao2  , Krishnamoorthy Palanisamy3, 
Biswaroop Chakrabarti3 and Krishna Sharan1*   

Abstract 

Background:  Radiotherapy is frequently used to treat head and neck Squamous cell 
carcinomas (HNSCC). Treatment outcomes being highly uncertain, there is a significant 
need for robust predictive tools to improvise treatment decision-making and better 
understand HNSCC by recognizing hidden patterns in data. We conducted this study 
to identify if Machine Learning (ML) could accurately predict outcomes and identify 
new prognostic variables in HNSCC.

Method:  Retrospective data of 311 HNSCC patients treated with radiotherapy 
between 2013 and 2018 at our center and having a follow-up of at least three months’ 
duration were collected. Binary-classification prediction models were developed for: 
Choice of Initial Treatment, Residual disease, Locoregional Recurrence, Distant Recur-
rence, and Development of New Primary. Clinical data were pre-processed using 
Imputation, Feature selection, Minority Oversampling, and Feature scaling algorithms. 
A method to retain original characteristics of dataset in testing samples while perform-
ing minority oversampling is illustrated. The classification comparison was performed 
using Random Forest (RF), Kernel Support Vector Machine (KSVM), and XGBoost clas-
sification algorithms for each model.

Results:  For the choice of the initial treatment model, the testing accuracy was 
84.58% using RF. The distant recurrence, locoregional recurrence, new-primary, and 
residual models had a testing accuracy (using KSVM) of 95.12%, 77.55%, 98.61%, and 
92.25%, respectively. The important clinical determinants were identified using Shapely 
Values for each classification model, and the mean area under the curve (AUC) for the 
receiver operating curve was plotted.

Conclusion:  ML was able to predict several clinically relevant outcomes, and with 
additional clinical validation, could facilitate recognition of novel prognostic factors in 
HNSCC.

Keywords:  Squamous cell head and neck cancer, Machine learning, Shapely values, 
Prognosis, Recurrence pattern, Feature selection, Missing value imputation
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Introduction
Head and neck squamous cell cancers (HNSCC) constitute a diverse group of cancers 
arising from the head and neck region with common risk factors, natural history, and 
similar treatment principles. Worldwide, they are the 6th most common malignancy 
[1]. Despite advances in evaluation and treatment, outcomes of HNSCC continue 
to be poor. Radiotherapy, either as a primary treatment or in addition to surgery, is 
integral to the management of most patients with HNSCC. Radiotherapy delivered 
with curative intent for HNSCC is associated with significant toxicity in addition to 
suboptimal disease outcomes. However, there is substantial variability in outcomes; 
some patients are cured of their disease while others aren’t, and similarly, toxicities 
of treatment are minimal in some and excessive in others. This observation reflects 
the underlying heterogeneity among patients and their cancers, primarily a result of 
incomplete biological understanding of both the disease and the patient [2]. Several 
ongoing strategies are looking at addressing this inadequacy, including genomics, 
radiomics, mathematical models, and newer therapeutic strategies [2].

Machine learning (ML) has been increasingly utilized in recent years to advance 
medicine, including cancer treatment [3]. Artificial Intelligence (AI) has found appli-
cation in various aspects of medicine, ranging from imaging (where it has been evalu-
ated for screening, diagnosis, and prognostication of radiological, pathological, and 
other medical images) to treatment planning, execution, and follow-up. With radi-
ation oncology in specific, AI has been explored for image segmentation, radiation 
dose optimization, quality assurance, and clinical decision support [4]. Regarding 
clinical decision-making, AI has significant potential in facilitating a better under-
standing of HNSCC and its treatment. A few publications have investigated the feasi-
bility of the implementation of AI on clinical details of HNSCC patients to determine 
the various outcomes, such as 5-year recurrence rates [5–8]. Few studies illustrated 
how ML algorithms aided in predicting nodal metastasis in early oral squamous cell 
carcinoma using clinical and pathological data [9, 10]. Also, several studies have com-
pared ML models and artificial neural networks to predict locoregional recurrence 
for HNSCC [11, 12]. These studies represent how ML models could effectively help 
doctors in clinical decision-making [13, 14].

Pre-processing steps are essential to make the given dataset suitable for ML algo-
rithms. Studies have shown that techniques such as Ordinal Encoding, Onehotencoding, 
and Feature Hashing have been used to encode mixed data types, having numeric and 
categorical variables [15]. The dataset may consist of missing entries that must be dealt 
with beforehand. Studies have shown that various iterative imputation techniques work 
well on datasets with a significant amount of missing entries [16]. The dataset may con-
tain more columns than rows. Therefore, it is essential to perform appropriate feature 
selection techniques. There are studies that describe methods of feature selection such 
as Principal Component Analysis [17], Independent Component Analysis [18], Filter 
based methods [19], Wrapper based approaches [19], and Embedded approaches [19]. 
Since we intended to identify prognostic features contributing the most to classification, 
and PCA converts the original dataset into its principal components, it was not consid-
ered [20, 21]. Studies have also found methods such as genetic algorithms suitable for 
imbalanced datasets for feature selection [22].
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This study was conducted to identify if ML would be able to predict clinically perti-
nent outcomes in HNSCC treated with radiotherapy. This paper represents an approach 
to help design classification models using clinical data. The methods used to pre-process 
and clean the data are also elaborated upon. Additionally, a method to retain the origi-
nal characteristics of the dataset in the testing dataset while performing minority class 
oversampling is illustrated. Finally, the classification results using the best-performing 
ML model are presented. Predictors having significant classification importance were 
identified to see if they could offer additional clinical understanding. Implementation of 
ML algorithms using the collected data was performed using python programming lan-
guage, executed on Google Colaboratory platform.

Methodology
Collection and structuring of clinical data

A total of 311 patients with HNSCC treated at our center between 2013 and 2018 with 
radiotherapy were included in this study. After treatment, a patient should have had a 
minimum follow-up for three months. Raw data was collected from the hospital medical 
records. The collected dataset constituted of 401 non-mutually exclusive clinical vari-
ables. Broadly, the heads under which variables were collected are described in Table 1.

Data collected was structured using Excel sheets. Each row represents an individual 
patient. A single patient’s variables should not be present in multiple rows. Columns 
were structured such that all possible non-mutually exclusive variables (according to the 
possibilities found in collected 311 samples) were separated, and any given patient’s data 
variable (samples used for validation of the designed algorithm) would be contained in 
this defined structure (Fig. 1).

According to the data type collected, Table  2 shows the output labels on which 
the input variables were meant to be mapped to the output vector using classifica-
tion ML models (supervised learning). There are five models designed in this study 
(Table  2). Before beginning to build individual models, the column variables were 
segregated in such a way that every column held clinical meaning in use for the 

Table 1  Brief description of collected dataset

S. No. Clinico-pathological details No. of 
variables 
(n = 401)

1 General details 46

2 Presenting symptoms 64

3 Addictions/substance abuse 17

4 Comorbidities 27

5 Site of cancer 41

6 The extent of primary and Lymph nodes 90

7 Clinical and pathological staging 8

8 Primary treatment details (surgical, radiotherapy, and chemo-
therapy details)

33

9 Histopathological details 19

10 Acute and late toxicities 33

11 Disease outcome 23



Page 4 of 19Gangil et al. Journal of Big Data            (2022) 9:25 

prediction of its respective output vector. For example, the events occurring after 
the start of treatment wouldn’t be used to predict initial treatment, and late toxici-
ties wouldn’t be used to predict acute toxicity. Hence, the sample size varied while 
designing each model.

Figure 1 illustrates the workflow of our research. The data collection step involved 
collecting clinical data from medical records and structuring it into non-mutually 
exclusive columns. The data pre-processing step involved encoding of data, missing 
value imputation, and checking for class imbalance. If there was a class imbalance, 
then minority oversampling was performed. Further, the dataset was split into train-
ing and testing datasets, and feature scaling and feature selection were performed. 
The training data was made to fit on the ML algorithms, tuned on the hyperparam-
eters. Testing dataset was used to generate performance metrics for each algorithm. 
Also, Shapely analysis was used to identify the list of variables contributing the most 
to classification.

Fig. 1  Workflow of the study. Each model was developed in steps, as illustrated

Table 2  Classification models designed along with their respective encoded output vectors

Model 
number

Model name Output label

1 Choice of Initial Treatment (the first treatment that was given to 
the patient, typically surgery or radiotherapy)

Label 1: Surgery
Label 0: Radiation Therapy

2 Residual (disease fails to clear after even three months of 
completion of radiotherapy; this parameter does not apply to 
patients who underwent initial surgery)

Label 1: Residual present
Label 0: Residual Absent

3 Locoregional recurrence (disease recurs in the irradiated site 
itself sometime after completion of treatment)

Label 1: Locoregional Recurrence
Label 0: No Locoregional Recurrence

4 Distant recurrence (the recurrence of the disease at a site away 
from its origin, typically by spreading through the blood)

Label 1: Distant Recurrence present
Label 0- No Distant Recurrence

5 New Primary (new cancer, unrelated to the treated cancer, 
developing in the head and neck region)

Label 1: New Primary present
Label 0: New Primary absent
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Data encoding

The recorded input variables were of quantitative and categorical form. Quantitative 
attributes were recorded according to their respective measuring units. Ordinal attrib-
utes were encoded into an orderly numeric form using Label Encoder. Nominal attrib-
utes were encoded using OnehotEncoder [15, 23].

Missing value imputation using imputation algorithms

A retrospective data will have missing values by its nature because of various reasons, 
such as corrupt data, failure to retrieve the information, or incomplete extraction. If we 
attempt to delete the rows consisting of missing data, then sample size would reduce 
drastically, resulting in a poor machine learning classifier. The missing input dataset was 
imputed using Statistical Imputation, KNN Imputation, and Multiple imputation by 
chained equations (MICE) [16, 24]. After imputation from each algorithm, the imputed 
dataset was made to fit on the RF algorithm [23], and the accuracy generated was calcu-
lated as shown in Table 5, appendix. The model was evaluated using ten splits of k-fold 
cross-validation so that each sample would be a part of the training and testing dataset. 
This ensures the effectiveness of ML models in limited data. The best-performing miss-
ing value imputation algorithm was chosen for the dataset.

Handling class imbalance using minority oversampling and feature scaling

ML algorithm assumes that an approximately equal number of samples are present in 
each class of a dataset. But in a retrospective dataset and variable medical outcomes, 
class imbalances are common. To deal with such imbalance, for each model, the number 
of samples belonging to respective classes was counted. If the number of samples in each 
class were approximately equal, then oversampling step was skipped. Otherwise, the 
class imbalance was handled using oversampling techniques, including Random Over-
sampling, SMOTE, Borderline SMOTE, SVM SMOTE, and ADASYN algorithms for 
oversampling of minority class [25]. Performance was evaluated using each algorithm, 
and the best-performing metric was chosen. The shape of the new dataset was recorded 
to determine the dimensions. Newly added synthetic data was stored in separate vari-
ables similarly minority and majority dataset concerning classes were stored in separate 
variables [26].

The dataset consisting of samples only from the majority class was split into train-
ing and testing datasets. The ratio of 67:33 was maintained for training and testing. The 
training dataset for the model was built by adding a training split majority class dataset 
with the synthetic dataset. The testing dataset was built by adding the test split of the 
majority dataset with the minority data from the original dataset (Fig. 2). In this impro-
vised method as against conventional technique, after performing minority oversam-
pling on the original dataset, training and testing variables were generated such that the 
training samples would contain train-split of majority class samples and synthetically 
generated samples. Also, it was ensured that the testing dataset would contain test-split 
of majority and original minority samples. This customization was performed to extract 
more reliable performance from the testing dataset.
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The input variables present in the dataset were of different measuring scales and had 
different ranges of magnitude. Hence, the dataset was scaled using standard scalar func-
tion [23], such that all variables have zero mean and unit variance.

Feature selection

The collected dataset consisted of more features than the number of samples, thereby 
falling under the curse of dimensionality [27]. Therefore, feature selection was per-
formed on the dataset. In this process, the variables contributing most to classification 
were selected. Boruta [28, 29] and Sequential forward floating selection (SFFS) [30, 31] 
methods were used for feature selection. Each method was evaluated using the perfor-
mance metrics of three Machine Learning models- RF, KSVM [23], and XGBoost [32]. 
The performance results from SFFS were better and were therefore chosen as a feature 
selection method for the dataset. For the Boruta method, the RF algorithm was used as 
the base algorithm. For the SFFS method, the same algorithm was chosen to run as its 
base, on which the training dataset was fit. Both Boruta and SFFS were made to run in a 

Perform Minority Oversampling on the original dataset
(Example Model- Distant Recurrence

Shape of Original Data- 311x388)

Iden�fy the shape of the new dataset a�er oversampling
(Shape- 573x388)

Synthe�c samples were taken out  from the new dataset
(No. of Synthe�c Samples- 262)

Input variables and output vector for minority class were stored in X_minority and y_minority 
respec�vely

(Shape of minority samples - 30x388)

Input variables and output vector for majority class were stored in X_majority and y_majority 
respec�vely

(Shape of majority samples - 281x388)

train_test_split was performed on X_majority and y_majority
(Ra�o- 67:33)

Training dataset: (451x388)
X_train=X_train_majority+synthe�c input samples

y_train=y_train_majority+synthe�c output samples

Tes�ng Dataset: (122x388)
X_test=X_test_majority+X_minority
y_test=y_test_majority+y_minority

Fig. 2  Flow Diagram for minority oversampling using an example of distant recurrence



Page 7 of 19Gangil et al. Journal of Big Data            (2022) 9:25 	

setting where it will select k-best features out of all the features in the dataset, and prec-
edence was given to the features having the highest accuracy.

Optimal hyperparameters for ML algorithms

The ML algorithms were made to run optimally for finding the best set of hyperparam-
eters by fitting them on the given dataset. Using Gridsearch [23] approach, optimal 
hyperparameters were found for each RF, KSVM, and XGBoost model. These hyperpa-
rameters were used, both in the base algorithm while performing feature selection and 
on the ML algorithms while performing classification (Table 11, appendix).

The training dataset was fit on the ML model using the optimal hyperparameters 
derived using grid search. The new dataset with only the selected features was chosen, 
and the ML model was fit on the training dataset.

Testing the designed model

Testing of the designed model was done on the hold-out dataset, and its efficiency 
and reliability were determined using evaluation of performance metrics. This was 
the dataset that was not included while training the model. The results of classifica-
tion prediction were compared with the output vector of the testing dataset to gener-
ate performance metrics [23]. We calculated Training and Testing Accuracy, Sensitivity, 
Specificity, F1 score [33] for both classes, and AUC of Receiver Operating Curve [34]. 
Each performance measure was recorded five times, and the average value was reported. 
Finally, the best performing ML algorithm for each model was made to run ten times, 
and the average performance measure value was reported. The most important features 
contributing to the classification were fetched using Shapely values [35]. The higher 
value on the labels yes or no indicates the stronger positive or negative correlation of a 
particular variable with respect to outcome. The mean AUC for each model was plotted, 
and the data was divided using stratified k fold cross-validation [36] to determine the 
best performance of the models. A higher AUC score represents that a classifier has a 
better performance in distinguishing between the two classes.

Results and analysis
A total of 311 patients with HNSCC treated with radiotherapy and having a follow-up 
of more than three months were found suitable for the study. Males constituted 257 
patients, and the mean age of patients was 56.5 years. The average follow-up duration 
was 23 months.

During the various pre-processing steps, compared to statistical Imputation and KNN 
Imputation, the Iterative Imputation (MICE) algorithm gave the highest accuracy of 
68.6% while running the algorithm for four iterations, having ‘ascending’ hyper-parame-
ter with RF (Table 5; appendix).

All the results discussed below are reported as the mean of five iterations. The perfor-
mance of RF, KSVM, and XGBoost were compared, and results of the best performing 
ML algorithm are reported.

For ‘choice of initial treatment,’ no oversampling methods were performed due to 
insignificant class imbalance. RF gave the best performance, using 34  k-best features 
selected by SFFS. The mean training and testing accuracies were 94.3% and 84.58%, 
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respectively. The sensitivity and specificity were calculated to be 85.1% and 85.7%, 
respectively. The algorithm tended towards overfitting, but comparatively, testing accu-
racy was better than the other two algorithms. Similarly, the F1 score was calculated to 
be the highest among the algorithms (85% for label 0 and 84.2% for label 1). Finally, the 
AUC was calculated to be 0.8904, signifying it to be a good classifier for the given dataset 
(Table 6, appendix).

For the remaining four models, all five oversampling techniques were applied, and each 
technique was evaluated using the three ML algorithms. ADASYN minority oversam-
pling gave the best performance for ‘distant recurrence,’ whereas the SMOTE minority 
oversampling technique performed best for locoregional recurrence, new primary and 
residual-disease predictions. The classification performance was determined using the 
mean accuracy of the testing dataset. The distant recurrence, locoregional recurrence, 
new-primary, and residual models had a testing accuracy (using KSVM) of 95.12%, 
77.55%, 98.61%, and 92.25%, respectively. The respective sensitivity and specificity values 
were 90% and 98%, 95% and 89%, 100% and 98%, and 72% and 97%.

As a measure of precision and recall, F1 scores were calculated for both classes of each 
model. For distant recurrence, the mean F1-score was calculated to be 91% and 96.8% 
for minority and majority classes. For locoregional recurrence, they were 68.6% and 
82.4%; for new primary, they were 95.4% and 98.8%; for residual disease, they were 87.6% 
and 94.6%.

The AUC of ROC curves for distant recurrence, locoregional recurrence, new-pri-
mary, and residual disease prediction models were 0.998, 0.9453, 0.9994, and 0.9948, 
respectively (Table 7, 8, 9, 10; appendix).

Finally, the best performing ML algorithm was iterated ten times to ensure the reli-
ability of performance that is consistent for the complete dataset. The mean AUC scores 
were 0.977, 0.734, 0.983 and 0.993, respectively (Table 3). Also, recurring features identi-
fied after ten iterations of Shapely analysis provide the list of most contributing predic-
tors for each model (Table 4).

For visualizing the best performing ML algorithm for each model, ten splits of k-fold 
cross-validation were applied. The mean AUC and AUC for each iteration are presented 
(Fig.  3). The mean AUC for Choice of Initial Treatment, Distant Recurrence, Locore-
gional Recurrence, New Primary and Residual were 0.93 ± 0.07, 0.99 ± 0.00, 0.96 ± 0.02, 
0.99 ± 0.00, and 0.98 ± 0.03, respectively.

Discussion
HNSCC merits significant advances in the way it is presently managed, and one of the 
potential strategies to achieve this is the ability to accurately predict outcomes. This 
study highlights the possible clinical utility of ML in the management of HNSCC. This 
approach aids, in addition to predicting the outcomes themselves, to also identifying the 
factors responsible for a particular outcome (event) occurring. For instance, fore-knowl-
edge of whether a patient is likely to suffer a residual disease, locoregional, and/or a dis-
tant recurrence carries tremendous importance. HNSCCs are aggressive tumors, and 
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Table 3  Results from test dataset for distant recurrence, locoregional recurrence, new primary and 
residual models using KSVM algorithm using its optimal hyperparameters

Model name Distance recurrence Locoregional 
recurrence

New primary Residual

Particular Value Value Value Value

No. of original samples (rows) 311 311 311 152

Total number of independent variables 
(columns)

388 384 388 354

Feature selection method used SFFS SFFS SFFS SFFS

ML algorithm KSVM KSVM KSVM KSVM

The minority oversampling method used ADASYN SMOTE SMOTE SMOTE

No. of samples after oversampling 573 514 588 270

No. of synthetic samples 262 203 277 118

No. of features selected by SFFS 18 24 42 312

No. of original samples for class-0 281 257 294 135

No. of original samples for class-1 30 54 17 17

Mean train accuracy 0.99 0.96 1 1

Mean test accuracy 0.94 0.73 0.96 0.91

Sensitivity 0.87 0.83 0.94 0.89

Specificity 0.96 0.73 0.98 1.00

Mean training F1 score class label 0 0.99 0.96 1 1

Mean training F1 score class label 1 0.99 0.97 1 1

Mean testing F1 score class label 0 0.96 0.78 0.97 0.93

Mean testing F1 score class label 1 0.89 0.64 0.89 0.87

Base algorithm KSVM KSVM KSVM KSVM

Mean AUC_ROC 0.97 0.73 0.98 0.99

Table 4  List of common features selected by Shapely analysis

S. No. Model name Feature name Label: yes Label: no

1 Distant recurrence No. of times recurrences/residual High Low

Type of recurrence LocoRegional Low High

New primary High Low

2 Locoregional recurrence Alcohol consumption High Low

Pain in the oral cavity No Impact High

Mean dose larynx High Low

3 New primary No. of recurrences High Low

Size of lymph nodes Low High

PTV V95% Low High

Age in years Low High

4 Residual Number of lymph nodes High Low

Age Low High

Vegetarian diet No Impact High

Site of cancer High No Impact

Poor orodental hygiene Low High
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especially in more advanced stages, recur in a substantial number of patients. Though 
locoregional recurrences constitute a significant proportion of recurrences, many pre-
sent with distant recurrences too. It is currently difficult to predict recurrence patterns; 
the ability to foresee it could pave way for a greater understanding of the disease and 
help in initial treatment planning. For example, a patient inclined to recur at a distant 
site could be considered upfront for a more aggressive systemic therapy, and a patient 
at low risk of local recurrence could be considered for de-intensification strategies in 
locoregional treatment. Similarly, if the patient is expected to have residual disease fol-
lowing radiotherapy, alternative strategies, such as dose-escalation, chemotherapy inten-
sification, or in some cases excluding radiotherapy completely, could greatly benefit the 

Fig. 3  Mean ROC plots for each model: a Choice of Initial Treatment, b Distant Recurrence, c Locoregional 
Recurrence, d New Primary, e Residual
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outcomes in terms of both tumor control and reduced toxicity. In our study, for example, 
the generated models could predict the risk of locoregional recurrence with reasonable 
accuracy of 73.45%.

Several researchers have looked into the benefit of ML in predicting treatment on a 
retrospective dataset of HNSCC patients, with very encouraging results. For instance, 
researchers from the University of Chicago reported that the ML algorithms successfully 
identified patients with intermediate-risk HNSCC who stood to benefit from concurrent 
chemotherapy from those who did not [37]. This study highlights the potential of ML in 
being a valuable tool for clinical use once the findings have been validated.

In addition, by looking at features that carried a higher weightage in a particular pre-
diction, ML could also facilitate in developing a better understanding of the disease. As 
an example, for locoregional recurrence, among the feature weights, like presence and 
size of lymph nodes, presence of gross margin positive status following resection, the 
extent of primary and grade of tumor carried higher importance across multiple models. 
While these were expected factors, there were also some unusual factors having a bear-
ing on local recurrence in some of the models, such as doses received by the organ at risk 
(normal structure) and use of chemotherapy- both of which could perhaps partially be 
explained by their likelihood of occurrence being high in more advanced disease. Simi-
larly, most recurring factors weighing high in the prediction models for distant recur-
rence included the presence of residual disease, absence of locoregional recurrence, and 
development of new (metachronous) primary. Interestingly, in one of the models, the 
patients’ address appeared to have a bearing on distant recurrence, with patients hailing 
from a particular district less prone to distant recurrence. This exercise highlights the 
potential of such an AI implementation in healthcare. Properly implemented, the pos-
sibilities are immense—all the way from the departmental level to the national and even 
international levels.

There is also the possibility of systematization of the practice of oncology. For exam-
ple, multiple factors are taken into consideration in determining the initial choice of 
treatment for a patient with HNSCC; these include the site of primary, its locoregional 
extent, stage of the disease, the patient’s overall health, and presence of comorbidities, 
etc. However, despite established guidelines, the choice of treatment for an individual 
patient can be variable and is usually individualized. Decision-making in the multi-disci-
plinary field of oncology is therefore fairly complex and is fraught with differing opinions 
and a significant lack of consensus among the treating team. The potential benefits of 
being able to accurately predict treatment allocation include systematizing the process, 
in addition to gaining a better understanding of the complex interaction of different fac-
tors that make up the eventual decision.

Our study has several limitations. It included multiple sub-sites of HNSCC, which 
could reduce clarity. Another glaring problem was the quality and quantity of data; it 
investigated a single-center retrospective data, with a small number of patients with rel-
atively poor follow-up information on outcomes. In addition to improving the accuracy, 
a greater sample size could have also avoided the curse of dimensionality. Similarly, a 
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prospective implementation of such data capturing across multiple centers could help 
gain a much better understanding of such cancers. This work needs additional validation 
before it can be implemented in the clinic. Additional variables, including radiomics and 
advanced pathological data could also be incorporated to make a robust tool that can be 
confidently utilized by clinicians in decision-making.

Conclusion
With the data available for analysis in our study, the iterative imputation algorithm gave 
the best accuracy compared to Statistical and KNN Imputation while evaluating with 
RF. SFFS feature selection algorithm was used since its performance metrics were better 
than Boruta while evaluating with RF, KSVM, and XGBoost for all models. SMOTE and 
ADASYN gave the best minority oversampling performance metrics using the three ML 
algorithms. Intrinsic pre-processing, as applied in this research, greatly facilitated the 
performance of the designed ML models.

Thus, ML was able to predict several clinically relevant outcomes of patients with 
HNSCC receiving radiotherapy, using clinicopathological data, with reasonable accu-
racy. This could significantly impact the way patients are managed, leading to a better 
understanding of disease and improved outcomes. However, such findings need to be 
validated prospectively and across multiple centers before they can be introduced into 
routine clinical use.

Appendix
See Tables 5, 6, 7, 8, 9, 10 and 11.

K Fold cross-validation as applied to the dataset using 10 splits, repeated 3 times. 
Evaluation of imputed dataset was performed using RF classifier, the mean and standard 
deviation of the accuracy of all the splits were reported. The comparison of the accu-
racy of different algorithms was performed to choose the best performing missing value 
imputation algorithm (Table 5).

The performance metrics from RF give the best result in comparison to KSVM and 
XGBoost. Results shown here are presented as the average of five iterations (Table 6).

The performance metrics from KSVM give the best results in comparison to RF and 
XGBoost. ADASYN minority oversampling technique was performed for this model. 
Results shown here are presented as an average of five iterations (Table 7).

Here performance metrics of KSVM show the best results in comparison to RF and 
XGBoost. SMOTE minority oversampling method was used for this model. Results 
shown here are presented as an average of five iterations (Tables 8, 9, 10).
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Table 6  Results of test dataset for choice of the initial treatment model

Particular Data

Model name Choice of initial treatment

No. of samples (rows) 289 289 289

Total number of independent variables (columns) 268 268 268

ML algorithm used Random Forest KSVM XGBoost

Feature selection technique SFFS SFFS SFFS

No. of independent variables used in the dataset 34 53 46

Mean accuracy train 0.94 0.92 0.95

Mean accuracy test 0.84 0.75 0.77

Sensitivity 0.85 0.81 0.85

Specificity 0.85 0.69 0.78

Mean F-Score train label 0 0.95 0.93 0.96

Mean F-Score train label 1 0.94 0.92 0.95

Mean F-score test label 0 0.85 0.76 0.78

Mean F-score test label 1 0.84 0.73 0.75

No. of samples for class-0 152 152 152

No. of samples for class-1 137 137 137

Base algorithm Random forest KSVM XGBoost

ROC_AUC_Score 0.89 0.83 0.88

Table 7  Results of test dataset for distant recurrence model

Particular Data

Model name Distant recurrence

No. of samples (rows) 311 311 311

Total number of independent variables (columns) 388 388 388

ML algorithm used Random Forest KSVM XGBoost

Feature selection technique SFFS SFFS SFFS

OverSampling method used ADASYN ADASYN ADASYN

No. of samples after OverSampling 573 573 573

Number of synthetic samples 262 262 262

No. of independent variables used in the dataset 22 18 86

Mean accuracy train score 0.99 0.99 1

Mean accuracy test score 0.87 0.95 0.87

Sensitivity 0.92 0.90 0.75

Specificity 0.93 0.98 0.81

Mean F-Score train label 0 0.99 0.99 1

Mean F-Score train label 1 0.99 0.99 1

Mean F-score test label 0 0.92 0.96 0.92

Mean F-score test label 1 0.68 0.91 0.64

No. of samples for class-0 281 281 281

No. of samples for class-1 30 30 30

Base algorithm Random forest KSVM XGBoost

ROC_AUC_Score 0.96 0.99 0.97
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Table 8  Results of the test dataset for locoregional recurrence

Particular Data

Model name locoregional Recurrence

No. of samples 311 311 311

Total number of features 384 384 384

ML algorithm used Random Forest KSVM XgBoost

Feature selection technique SFFS SFFS SFFS

OverSampling method used SMOTE SMOTE SMOTE

No. of samples after OverSampling 514 514 514

Number of synthetic samples 203 203 203

No. of features used in the dataset 216 24 169

Mean accuracy train 0.96 0.97 1

Mean accuracy test 0.66 0.77 0.62

Sensitivity 0.75 0.95 1.00

Specificity 0.63 0.89 0.62

Mean F-Score train label 0 0.96 0.97 1

Mean F-Score train label 1 0.96 0.97 1

Mean F-score test label 0 0.78 0.82 0.76

Mean F-score test label 1 0.26 0.68 0.07

No. of samples for class-0 257 257 257

No. of samples for class-1 54 54 54

Base algorithm Random forest KSVM XGBoost

ROC_AUC_Score 0.89 0.94 0.84

Table 9  Results of the test dataset for the new primary model

Particular Data

Model name New primary

No. of samples 311 311 311

Total number of features 388 388 388

ML algorithm used Random Forest KSVM XGBoost

Feature selection technique SFFS SFFS SFFS

OverSampling method used SMOTE SMOTE SMOTE

No. of samples after OverSampling 588 588 588

Number of synthetic samples 277 277 277

No. of features used in the dataset 20 42 18

Mean accuracy train 0.99 1 1

Mean accuracy test 0.91 0.98 0.90

Sensitivity 0.88 1.00 0.88

Specificity 0.91 0.98 0.91

Mean F-Score train label 0 1 1 1

Mean F-Score train label 1 1 1 1

Mean F-score test label 0 0.95 0.98 0.94

Mean F-score test label 1 0.63 0.95 0.53

No. of samples for class-0 294 294 294

No. of samples for class-1 17 17 17

Base algorithm Random forest KSVM XGBoost

ROC_AUC_Score 0.95 0.99 0.95
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The optimal hyperparameters obtained using grid search were used with their respec-
tive ML model both for the purpose when implementing a Base ML algorithm while per-
forming feature selection and while training the dataset (Table 11).
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