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Introduction
Twitter produces a wealth of information for analysis of trends, opinions, and interac-
tions with 500 million tweets per day generated by its users [1]. As such, the microblog-
ging service is a popular target for research involving machine learning. Several problem 
settings in the field of machine learning, or variants thereof, can focus on Twitter data. 
For example, sentiment analysis, spam detection, and location prediction, all well-estab-
lished problem settings in their own right, are all applicable to tweets [2–4]. Much of the 
work in applying machine learning to Twitter data focuses on only one component, or 
a few components, of a tweet. A sentiment analysis model [5] might only use the text of 
a tweet, while a hashtag recommendation system [6] might use both text and image. A 
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tweet can contain additional components that may be informative to a machine learning 
model. Examples of these components include the author of the tweet, whose interac-
tions with other users can be modeled by a graph [7], and the location, which can link 
the tweet to others at the same location [8]. Incorporating several of these tweet com-
ponents into a machine learning framework can potentially create a model that is better 
informed than others at a given task. One approach to accomplishing this is by creating a 
joint embedding framework.

Joint embeddings [9] are used in several machine learning tasks that handle differ-
ent modalities, e.g. text and images, in order to leverage the relationship between them. 
The intuition behind a joint embedding space is that inputs from different modalities 
mapped into the space should be close if they are semantically related. For example, in 
the problem of image-text retrieval [10], the image captions or tags closest to an image in 
an embedding space should be those that best describe the visual content of the image. 
However, these models are generally limited to 2 or 3 modalities (components), like 
the aforementioned text and image. Introducing additional modalities has two poten-
tial benefits. First, it can better inform existing applications by taking these additional 
modalities into account. In the image-text retrieval task, also considering the author and 
the location of a post from an image sharing or microblogging service might achieve 
better results. Second, introducing additional modalities can open up a joint embedding 
space to new applications. Recent work in hashtag recommendation uses the text and 
image of a social media post as input to a neural network model [11–13], but a joint 
embedding model that includes hashtags as well as text, images, and other modalities 
might also perform well at this task.

Our motivation for this paper is thus to address the problem of creating a joint embed-
ding framework that incorporates several tweet components and using an embedding 
model trained with such a framework to address multiple machine learning problems 
involving Twitter data. Specifically, the first question we ask in this paper within the con-
text of Twitter is can additional modalities in a joint embedding space improve its per-
formance in typical applications and/or enable it to perform well in new ones? We show 
in our experiments that additional modalities can indeed allow a joint embedding model 
to perform better than a similar model with fewer modalities, and can also perform well 
at new tasks. The second question is can we build a single, task-agnostic joint embedding 
model for tweets and use it several diverse applications? Our results show that a single 
trained joint embedding model can be successfully applied to multiple different tasks.

Overview of the proposed approach

 Our approach builds on VSE++, the framework proposed by Faghri et al. [14]. We do 
so by extending the framework to incorporate 3 more tweet components in addition to 
text and images: hashtags, considered separately from tweet text; the author, as repre-
sented by a graph embedding [15] learned from a graph of Twitter user mentions; and 
location, to represent the context of a tweet in terms of what other Twitter users are dis-
cussing at the same place. Extending VSE++ is not trivial, as adding 3 additional modal-
ities complicates training. The loss function involved in training the model must account 
for how one modality interacts with four others rather than just one. We accomplish this 
with a novel approach that learns representations for each component using triplet loss 
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[16] calculated using an embedding for one type of tweet component and the average 
embedding across all components of a tweet. Like VSE++, this loss incorporates hard 
negatives, which have been shown to be effective in several tasks [17–20].

Our proposed model is applicable to several tasks, including:

•	 Image retrieval/text retrieval: Given a tweet t without an image (or text), retrieve text 
(or an image) relevant to t.

•	 Hashtag recommendation: Given a tweet t without hashtags, predict one or more 
hashtags relevant to t.

•	 Bot detection: Given a user u and several tweets written by u, predict whether or not 
u is a bot, i.e. an automated Twitter account.

•	 Location prediction: Given a tweet t without geolocation data, predict where the 
author of t was when it was posted.

In our experiments, we show the performance of our proposed model compared to base-
lines from these domains using Twitter data.

Contributions: We make the following contributions.

•	 We introduce the problem of developing a task-agnostic representation learning 
framework for tweets that incorporates several tweet components. To our knowl-
edge, this is the first work to address this problem.

•	 We develop a novel framework with pairwise ranking loss to learn a robust joint 
embedding with 5 tweet components.

•	 We showcase the usefulness of additional tweet components by applying the learned 
embeddings to different tasks and comparing their performace to task-specific base-
lines.

The remainder of the paper is organized as follows: “Related work” discusses prior work. 
“Approach” describes our proposed method. “Experiments” explains the experimental 
evaluation of our proposed method and presents the results of our experiments. We 
conclude in “Conclusion”.

Related work
Joint embedding

Joint embedding models have been proposed for image-text retrieval [14, 21–23], video-
sentence retrieval [24–28], video-paragraph retrieval [29, 30], temporal localization of 
moments [31–33], and a variety of other tasks [34–37]. The general idea behind a joint 
embedding model is to place vector representations of different media, such as text and 
images, into the same embedding space such that the distance between semantically 
similar vectors (e.g. an image and its captions or tags) is minimized. For the image-text 
retrieval task, Faghri et al. [14] projected images and text in a visual-semantic embed-
ding space learned with a loss function that utilizes hard negatives. In [21], Mithun et al. 
used images and noisy text from the Web to improve a joint embedding model. Lee et al. 
[23] captured the fine-grained interplay between objects present in an image and text to 
better align images and text in a joint embedding space. For the task of video-sentence 
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retrieval, Mithun et al. [24] employed multimodal cues such as image, motion, and audio 
for video encoding. In [25], Dong et  al. used multi-level encodings for video and text 
to perform zero-example video retrieval. Wray et  al. [26] enriched embedding learn-
ing by disentangling the parts-of-speech of captions. For the temporal localization 
task, moment-sentence pairs [31, 33] or clip-sentence pairs [32] are aligned in the joint 
embedding space.

Machine learning on Twitter data

Several studies have created machine learning methods specifically for use with Twit-
ter data [38–40]. However, these works typically focus on text instead of also including 
other parts of a tweet. Other work incorporates additional tweet data, e.g. images and 
tweet author metadata, to accomplish specific tasks such as hashtag recommendation, 
bot detection, and location prediction. We explore some of these studies below.

Hashtag recommendation

Many studies have focused on hashtag recommendation for Twitter and other micro-
blogging platforms. Rawat and Kankanhalli [11] proposed a deep neural framework to 
recommend descriptive tags for an image that combined image features from a convo-
lutional neural network (CNN) [41] with features from a “ContextNet” neural network 
using the image’s associated location and time data as input to provide context for the 
image. Their proposed method outperformed a model that considered only image data. 
Zhang et al. [12] used an image’s features from a VGG1 network [42] and text features 
from a long short-term memory (LSTM) network [43] representing the image’s caption 
as input to a co-attention mechanism [44] to recommend hashtags. They compared their 
proposed framework to state-of-the-art methods that used only the image caption and 
found that their method performed the best. The method proposed by Ma et  al. [13] 
uses a framework similar to [12] to recommend hashtags, but it also incorporates images 
and text associated with previous uses of a candidate hashtag to achieve better perfor-
mance than state-of-the-art methods.

Bot detection

Bot detection on Twitter is another area of active research. Botometer (formerly Bot-
OrNot), originally proposed by Davis et  al. [45], extracts over 1000 features from a 
Twitter user’s metadata, interaction patterns, and content, then uses them as input 
to a random forest classifier [46] to predict the likelihood of that user being a bot. 
Botometer’s most recent version, v4 [47], is an ensemble classifier that combines Bot-
ometer v3 [48] with random forest classifiers that are each trained on a specific class 
of Twitter bot. This method outperformed baselines on several datasets. Another 
approach by Kudugunta and Ferrara [49] uses a deep learning method to deter-
mine whether an individual tweet was made by a bot, rather than the more conven-
tional approach of determining whether or not a Twitter user is a bot. It uses word 

1  “VGG” refers to the Visual Geometry Group at the University of Oxford’s Department of Engineering Science, which 
created the VGG model.
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embeddings from tweet text as input to an LSTM combined with tweet metadata to 
make its predictions and achieved high accuracy in testing compared to baselines.

Location prediction

Previous work has examined location prediction for tweets. Matsuo et al. [50] com-
bined a text-based location estimator and a CNN for image features to perform grid-
based location prediction and showed that combining image and text outperformed 
using only one modality. Kumar and Nezhurina [51] proposed a method to predict the 
location of a Twitter user’s next tweet based on the user’s past tweets. Their method 
used tweet geo-coordinates, mentions of predefined location categories, and tweet 
personality traits as input to an ensemble of popular classification methods, which 
outperformed individual classifiers used in the ensemble. The method proposed by 
Lau et al., Deepgeo [52], takes a tweet’s text and creation time as well as the author’s 
UTC offset, time zone, location (i.e. the free text location listed in a user’s profile), 
and account creation time as input to a deep learning framework to predict location 
as a city class, i.e. the city in which a tweet was written. The authors of [52] found that 
Deepgeo outperformed the state-of-the-art in this task.

Big Data analysis on Twitter

As one of the largest social media platforms, Twitter presents a prime target for stud-
ies involving analysis of big data. Linell et al. [53] estimated the prevalence of sleep loss 
incurred by the beginning of Daylight Saving Time (DST) by analyzing a dataset of 13.1 
million tweets. They found that the beginning of DST causes changes in sleep behavior 
as indicated by a change in the time of peak Twitter activity. Feizollah et al. [54] analyzed 
tweets related to halal tourism by identifying related topics and performing sentiment 
analysis. They found that the word “halal” was primarily associated with food and hotels 
on Twitter, many non-Muslim countries are popular halal tourist destinations, and the 
majority of tweets expressed positive sentiment. Piña-García and Ramírez-Ramírez [55] 
examined data from Twitter and other sources to predict the most frequent crimes in 
Mexico City. They showed that their methods can successfully estimate the occurrences 
of crime, they note that more work is necessary to develop an accurate model. Our pro-
posed method can support future big data studies similar to these, as researchers can 
use it to analyze Twitter data they have collected according to their goals.

Approach
In this section, we describe our proposed model to represent tweet components 
in an embedding space. We first provide an overview of the VSE++ framework on 
which our proposed method is based (“Description of VSE++ framework”). Next, we 
describe the structure of the neural network framework and how we represent tweet 
components (“Network structure and input features”). Then, we present our approach 
to training a joint embedding model with this framework using pairwise ranking loss 
(“Training joint embedding”).
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Description of VSE++ framework

VSE++, proposed by Faghri et  al. [14], is a joint embedding framework designed for 
image-text retrieval. Given a dataset of images and captions, a trained VSE++ model 
attempts to pair each image with its corresponding caption. It does so by projecting 
them in a joint embedding space; image embeddings are generated via a ResNet [56] 
or VGG [42] model, while the embeddings for image captions are generated by a gated 
recurrent unit (GRU)-based text encoder, which is a commonly-used method to repre-
sent sentences [21].

The most notable contribution of [14] is the incorporation of hard negatives during 
training. In the context of image-text retrieval, a hard negative is the closest non-match-
ing caption to an image (or vice-versa). More generally, a hard negative is the closest 
negative (i.e. non-matching embedding) to a training query. A loss function incorporat-
ing hard negatives will assign higher loss to a query with a negative that is particularly 
close to the query compared to a more conventional “sum of hinges” loss function that 
would be more influenced by the average distance of the negatives. Faghri et al. explain 
that one advantage of this approach is avoiding local minima created by the sum of 
hinges loss, leading to a better performing model. Their loss function for an image i and 
an image caption c is thus

where ĉ is the hardest negative caption with respect to i, î is the hardest negative image 
with respect to c, and � is the margin parameter. Experimental evaluation with the 
Microsoft COCO [57] and Flickr30K [58] datasets showed that this approach was supe-
rior to other image-text retrieval methods.

VSE++ is written in Python and uses the PyTorch deep learning library [59]. Using 
this as our basis, we extend the concepts presented by Faghri et al. to account for addi-
tional modalities present in tweets.

(1)Lic = max[0,�− f (i, c)+ f (i, ĉ)] +max[0,�− f (i, c)+ f (î, c)],

Fig. 1  Overview of our proposed framework for learning a multimodal embedding model for tweets. A 
dataset of tweets is used to learn an aligned representation of tweet components. The trained embedding is 
used in several tasks.
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Network structure and input features

Network architecture

We learn a joint embedding model using a deep neural network framework. Our 
framework, shown in Fig.  1, has 5 branches for tweet text, an image, hashtags, the 
location of the tweet, and the user who wrote the tweet. Each of these branches uses 
a different network. The goal of this design is for the individual branch networks to 
focus on component-specific features while the fully connected layers convert these 
to embeddings in the joint space with a dimensionality of 1024.

Text representation

For encoding tweet text (i.e. the text of the tweet without hashtags), we use an embed-
ding layer with weights initialized with word embeddings from a fastText [60] model 
trained on Twitter data. The dimensionality of this layer is 300. The word embeddings 
are then input to a GRU. The GRU maps the text features to the joint embedding 
space.

Image representation

To encode an image contained in a tweet, we use a 152-layer ResNet model [56] 
trained on the ImageNet dataset [61]. The dimensionality of the image embedding is 
2048; this is mapped to the joint space via a fully connected layer. Similar frameworks 
have also evaluated a 19-layer VGG model [42] as an alternative, however ResNet has 
been shown to perform better, at least for the task of image-text retrieval [14, 21], so 
we limit our experiments to the ResNet model.

Hashtag representation

To represent hashtags, which are a form of metadata used to denote keywords or top-
ics within tweet text [13], we first separate hashtags from the text of the tweet. We 
then average over the fastText word embeddings of the extracted hashtags and map 
this to the joint space with a fully connected layer.

Location representation

To emphasize the context of a tweet, we consider location in terms of tweets from the 
same place. This is a two-step process: first, we collect the text of “neighbor” tweets 
from the same place as an input tweet. For simplicity, we do this by grouping tweets 
from our collected Twitter data with the same Twitter-assigned place ID as the input 
tweet. The texts of these tweets are then encoded through a network branch identical 
to that of the input tweet’s text, but this is followed by averaging the encodings of the 
texts.

User representation

We represent the author of a tweet by using a trained graph embedding model. Spe-
cifically, we use the fastnode2vec [62] implementation of node2vec [63]. The weighted 
graph used to train this model was constructed with users as vertices and mentions 
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as edges, i.e. an edge (u, v, w) represents user u mentioning user v in w tweets. The 
dimensionality of the graph embedding is 300; this is mapped to the joint space via a 
fully connected layer.

Training joint embedding

For a pair of dissimilar tweets t1 and t2 , t1 should have embedding vectors for its compo-
nents that are similar to each other, but are not similar to the embedding vectors of the 
components of t2 . Conversely, t2 should have embedding vectors for its components that 
are similar to each other, but are not similar to the embedding vectors of the compo-
nents of t1 . With that intuition in mind, our goal is to learn a joint embedding character-
ized by the weights of the fully connected layers, the text and location word embedding 
layers, and the GRUs.

We base our approach on previous work that uses hinge-based bi-directional ranking 
loss for visual-semantic embeddings [14, 21]. These approaches maximize the similar-
ity between corresponding image and text embeddings and minimize similarity to non-
matching embeddings. They also focus on hard negatives, i.e. given a pair (i, t) of image 
and text embedding vectors, the corresponding hard negatives are the image vector î �= i 
and the text vector t̂ �= t closest to t and i, respectively.

Our approach must also account for hashtags, user, and location. To accomplish this, 
we first calculate the loss using each pair (c, a) in a minibatch, where c is the embedding 
for one component from a tweet (e.g. text or image) and a is the averaged tweet compo-
nent embeddings from the same tweet. This can be written as follows:

where � is the margin value for the ranking loss, f (c, a) = f (a, c) is the similarity scoring 
function between a tweet component embedding c and averaged tweet component 
embeddings a, and â = arg max

a−
f (c, a−) and ĉ = arg max

c−
f (a, c−) are the hardest nega-

tive samples. In our experiments we use cosine similarity for f(c, a), but our approach 
does not depend specifically on this. With Equation 2 and the set of tweet component 
embeddings (t, i, h, l, u), representing text, image, hashtags, location, and user of a tweet, 
respectively, our complete loss function is

i.e. the total loss for a minibatch is the sum of the component-specific minibatch losses 
(Eq. 2).

Experiments
Though the tweet component representations/embeddings generated by out framework 
are learned in a task-agnostic way, our experiments demonstrate the proposed model’s 
effectiveness on several machine learning applications involving Twitter data by com-
paring the results of experiments versus baselines designed specifically for those appli-
cations. In each of these experiments, we generate tweet component embeddings from 
our trained model and use them in an application-specific framework as shown in Fig. 2. 

(2)Lca =
∑

(c,a)

{max[0,�− f (c, a)+ f (c, â)] +max[0,�− f (a, c)+ f (a, ĉ)]},

(3)L = Lta + Lia + Lha + Lla + Lua.
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Note that the tweet component embedding model is only trained once, then used in all 
of the applications evaluated in our experiments.

Table  1 summarizes the applications, baselines, and performance metrics in our 
experiments

Dataset

We trained our model on a dataset of tweets before applying the model to the machine 
learning tasks studied in our experiments. We created this dataset by collecting tweets 
from the Twitter Streaming API, which streams tweets in real-time.2 To accomplish this, 
we used the Tweepy library for Python.3 We collected all tweets from the API within the 
bounds established by the API’s rate limits. From these tweets, we filtered out tweets 
that do not contain all of the components necessary to generate embedding vectors with 
our proposed model (i.e. text, image, hashtags, geolocation data, and author ID). 100,000 
tweets in the dataset from March 1–8, 2020 were used for training, while 5000 tweets 
from March 9, 2020 were used for validation. An additional 5000 tweets from March 
10, 2020 were used for testing. The tweets used in our experiments were limited to 
those with a location that falls within a bounding box that encompasses most of North 
America.

Training details

The embedding networks in our model were trained with an Adam optimizer [64] over 
a total of 30 epochs. We set the initial learning rate of 0.0002 and decreased the learning 
rate by a factor of 10 after 15 epochs. We set the gradient L2 norm threshold for clip-
ping gradients to 2, the margin � to 0.2, and the mini-batch size to 128. The model was 

Fig. 2  Overview of application-specific experiments. Our tweet component embedding model generates 
embeddings to be used in an application-specific framework

Table 1  Applications and baselines evaluated

Section Application Baseline Performance metrics

Image/text retrieval Image/text retrieval VSE++ [14] Recall @ k, median rank

Hashtag recommendation Hashtag recommendation Co-Attention [12] {Precision, recall, F1 score} @ k

Bot detection Bot detection Botometer v4 [47] F1 score, AUC​

Location prediction Location prediction Deepgeo [52] Accuracy

2  https://​devel​oper.​twitt​er.​com/​en/​docs/​tutor​ials/​consu​ming-​strea​ming-​data.
3  https://​www.​tweepy.​org/.

https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data
https://www.tweepy.org/
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evaluated on the validation set every 500 training iterations. The trained model used for 
evaluation on the test data was selected based on the sum of recalls (recall @ 1, 5, and 
10) on the validation set to mitigate overfitting. The fastText and node2vec models used 
in our proposed model were trained on tweets from March 1–7, 2020, which were col-
lected from the Twitter Streaming API as described in “Dataset”.

Image/text retrieval

For image retrieval and text retrieval, we compare our proposed model to VSE++ [14], 
which was the basis for our method. We also include results from using hashtags as the 
text for VSE++ because many hashtags have significant descriptive information of their 
associated images [65], which the text of a tweet might not. In our image retrieval exper-
iments, which are based on the experiments in [14], each model is given a test tweet 
minus the image and attempts to retrieve a relevant image from the test data. Similarly, 
our text retrieval experiments involve attempting to retrieve relevant tweet text given a 
test tweet minus its text.

While retrieval with VSE++ is simply a matter of finding the most similar image to 
the input text (or vice versa), this becomes somewhat more complex with the additional 
embeddings in our proposed model’s joint embedding space. To determine which image 

Fig. 3  Image retrieval task. A tweet’s components are projected in the joint embedding space along with 
images and the most similar image is retrieved

Table 2  Image retrieval results

Method Recall @ 1 (%) Recall @ 5 (%) Recall @ 10 (%) Median rank

VSE++ 0.02 0.1 0.18 2500

VSE++ with hashtags as text 0.02 0.16 0.34 2329

Proposed method 0.04 0.24 0.36 2213
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(or text) embedding to retrieve, we retrieve the embedding corresponding to the high-
est similarity score from any of the input tweet’s component embeddings. This is shown 
with our proposed model in Fig. 3, where the image corresponding to the image embed-
ding closest to the input tweet’s component embeddings is shown.

Our results are shown in Table 2 (image retrieval) and Table 3 (text retrieval), which 
show that our method has higher recall (@ 1, 5, and 10) and median rank than VSE++ 
in both image retrieval and text retrieval of Twitter data.

Hashtag recommendation

Our experiments on hashtag recommendation are performed in the context of recom-
mending hashtags for images and their associated text. Our baseline for this is the Co-
Attention model proposed in [12], which uses both the image and text from a tweet or a 
post on a photo sharing service such as Instagram. We trained the baseline on the same 
dataset used to train our model described in “Dataset”.

To recommend hashtags for a test tweet t with our model, we use a nearest neighbor-
style approach by calculating the embeddings of the components of t and scoring each 
training hashtag embedding h according to the maximum cosine similarity between h 
and the component embeddings of t. The recommendation of k hashtags for t is thus the 

Table 3  Text retrieval results

Method Recall @ 1 (%) Recall @ 5 (%) Recall @ 10 (%) Median rank

VSE++ 0.02 0.1 0.18 2492

VSE++ with hashtags as text 0.02 0.08 0.16 2481

Proposed method 17.4 25.04 28.2 308

Fig. 4  Hashtag recommendation task. A tweet is given as input to the hashtag recommendation framework, 
which then outputs a number of recommended hashtags
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top k hashtags according to these scores. This approach is illustrated in Fig. 4 for k = 3 , 
in which the 3 hashtags from the training data corresponding to the 3 hashtag embed-
dings closest to any component embedding from the input tweet are returned.

Figure 5 shows the average precision, recall, and F1 scores for k = 1, ..., 5 for both our 
method and the Co-Attention baseline. Our method performs better in all three meas-
ures for all values of k evaluated.

Bot detection

As the state-of-the art for bot detection on Twitter, Botometer v4 [47] serves as our 
baseline in these experiments. Because we use the same datasets in our experiments as 
those used in [47], we compare the results of our method to those presented there. Spe-
cifically, we compare to their cross-domain experiments, which combine several anno-
tated bot detection datasets [47, 48, 66–73] for a training dataset of 43,576 bots and 
32,849 humans and a test dataset of 9432 bots and 8862 humans. These datasets consist 
of a Twitter user ID combined with a binary class label indicating whether the user is a 
bot or a human.

We evaluated two approaches using our trained tweet component embedding model. 
However, the input for each approach is similar. For each user u in the bot detection 
datasets, we first retrieved up to 200 tweets written by u. We represent u by up to n of 
the most recent of these tweets, where n is a hyperparameter of our bot detection frame-
works. In our experiments, we use n = 10 . The component embeddings of each of these 
tweets are then computed by our model and averaged; each instance is thus an nu ×m 
matrix composed of nu ≤ n averaged component embeddings of length m of tweets 
from user u.

The first approach uses tweet component embeddings in a CNN classifier. The 
network’s structure is based on the text CNN proposed by Kim [74], except the input 
is matrices of averaged embedding vectors as described above rather than matrices 
of word embedding vectors. In addition to representing each user by up to n con-
secutive tweets, we also attempt to balance the training data by adding duplicates of 
users of the less frequent class (humans) with a different set of up to n tweets drawn 
from that user’s retrieved set of tweets. Training the CNN is performed via 5-fold 
cross-validation of the training data. This approach is demonstrated in Fig. 6, which 
shows the conversion of a tweet’s components to embedding vectors, which are then 

Fig. 5  Hashtag recommendation results: precision, recall, and F1 score with different numbers of 
recommended hashtags
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averaged. The user’s averaged tweet embeddings are used as input to a CNN classi-
fier, which predicts the user’s class label.

Our second approach is a simpler k-nearest neighbors (kNN) method. For each 
user u, we average their embeddings into a single vector (i.e. the average of the aver-
aged tweet component embeddings from u’s tweets) and calculate the cosine simi-
larity between u and the users in the training data. We collect the class labels (bot 
or human) of the users with the k highest similarity scores; the predicted label for 
u is thus the most common label among the k labels collected by this method. This 
approach is similar to the movie recommendation system proposed by Singh et  al. 
[75], except we are using vectors to represent Twitter users rather than movies. Fig-
ure 6 illustrates our kNN-based approach, in which tweet components are converted 
to embedding vectors, which are then averaged into a single vector for each of that 
user’s tweets. Those vectors are again averaged into a single vector representing the 
user, whose class label is predicted according to other nearby user vectors.

We further refined our approaches by using a validation dataset taken from the 
training data to tune some of their hyperparameters using a small set of values for 
each one. Based on these results, we set the CNN’s filter window sizes to 2, 3, and 4, 
and number of feature maps to 300. For the kNN approach, we set k = 1.

The results of our bot detection experiments are shown in Fig. 7, which shows the 
F1 and AUC scores for the baseline and our proposed approaches for the combined 
test dataset as well as individual bot detection datasets. The baseline’s performance 
is better for all datasets, however our proposed methods come close in some cases.

Fig. 6  Bot detection task. Component embeddings from a tweet are averaged; our CNN method (top right) 
uses a matrix of vectors from the same user as input to a CNN classifier to predict the user’s label, while our 
kNN method (bottom right) averages a user’s averaged embeddings and predicts the user’s label based on 
the k nearest users
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Location prediction

We evaluate our proposed model on the task of location prediction in terms of cities, 
i.e. given a tweet without location data, predict the city in or near which that tweet 
was posted. As a baseline, we use Deepgeo [52], which combines information from a 
tweet as well as the author’s profile in a deep learning framework. Notably, Deepgeo 
is designed for the classification setting of predicting a city class rather than predict-
ing a location’s latitude and longitude. To train and test this baseline, we used subsets 
of the datasets described in “Dataset” that include only tweets with a Twitter place ID 
corresponding to a city (i.e. we omitted tweets with a place ID corresponding to other 
place types such as administrative regions and points of interest) that is present in all 
datasets (training, validation, and test). This left a total of 41,849 tweets in the train-
ing data, 2841 tweets in the validation data, and 2594 tweets in the test data, with a 
set of 522 classes (cities) between them.

Our approach for using our proposed tweet embedding model uses concatenated 
embeddings, i.e. each tweet is represented by a single feature vector that contains 
each of the tweet’s non-location component embeddings. Noting that Lau et al. [52] 
found that a user’s location (i.e. the location listed in a user’s profile) contributed sub-
stantially to their tweet location prediction model’s accuracy, we also represent user 
location in the tweet’s feature vector. We do so by using the user location text of each 

Fig. 7  Bot detection results: F1 score and AUC on various bot detection test datasets
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tweet’s author as input to the text branch of our trained tweet component embed-
ding model and concatenating the resulting embedding with its corresponding tweet’s 
component embeddings. We then use these feature vectors and their corresponding 
class labels as input to a random forest classifier. We use the default hyperparameter 
values defined in the implementation in [76] with the exception of using “balanced 
subsample” class weights. This setting calculates class weights such that they are 
inversely proportional to class frequencies for every decision tree’s bootstrap sample. 
Balancing class weights in this manner accounts for any differences in class frequen-
cies within the training data. Our tweet location prediction approach is summarized 
in Fig. 8, where the embeddings of a tweet’s non-location components and its author’s 
location text are computed and concatenated to a single feature vector, which is then 
passed to a random forest classifier to predict the tweet’s location.

The results of our location prediction experiments are shown in Table 4, which show 
that our method has higher accuracy than the Deepgeo baseline.

Discussion

Image/text retrieval

In our image and text retrieval tasks, we found that our method outperforms VSE++ in 
all metrics evaluated. This is particularly true for text retrieval, in which additional tweet 
components are more effective in retrieving text than image alone. However, we note 
that these findings do not extend to the more general problem of image-text retrieval, 
as a tweet’s text and other non-image components may not be as semantically similar to 

Fig. 8  Location prediction task. The input tweet’s component and user location embeddings are 
concatenated and input to a classifier that predicts the tweet’s location

Table 4  Location prediction results

Method Accuracy (%)

Deepgeo 48.88

Proposed method 52.43
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its image as a caption written specifically for that image. This is supported by the image 
retrieval results, where we observe that both methods perform very poorly.

Hashtag recommendation

We used our trained tweet component embedding model to recommend the k most sim-
ilar hashtags to any of the component embeddings of an input tweet. For k = 1, ..., 5, our 
method had better average precision, recall, and F1 than the Co-Attention baseline. As 
with our text retrieval experiments, this suggests that the addition of other tweet com-
ponents along with images improves performance in this task. Further work might refine 
this approach, either by eliminating tweet components that do not improve performance 
or by adding new components not evaluated in this study.

Bot detection

Our bot detection experiments evaluated two different methods: one that used a CNN 
classifier and another that used a kNN approach. In both cases, each tweet was repre-
sented by the average of all of its component embeddings. However, the Botometer v4 
baseline outperformed our methods with all datasets evaluated. One limitation of our 
methods is the data used to train the tweet component embedding model. Our methods 
may perform better in the bot detection task if the model were trained with tweets from 
users in the bot detection training data. In the dataset described in “Dataset”, bots may 
be underrepresented compared to the bot detection data because bots are estimated to 
make up only 9–15% of active Twitter accounts [67]. Another possible reason for the 
poor performance of our method compared to the baseline is that the baseline benefits 
from some manual work in separating bots in the training datasets according to distinct 
bot classes; their model takes advantage of this additional information while our method 
only considers the binary classes of “bot” and “human.” One more possibility is that the 
poor performance of our proposed bot detection methods is caused by one or more of 
the tweet components, e.g. by overfitting. This may suggest that additional components 
do not necessarily contribute to model performance. If this is indeed the case, it could 
be overcome by validating models trained with different subsets of tweet components. 
Addressing these issues may improve the performance of our bot detection methods.

Location prediction

For our location prediction task, we concatenated tweet component embeddings into a 
single vector for input to a random forest classifier to predict in which one of 522 cities 
an input tweet was written. Compared to the Deepgeo baseline, our method performed 
slightly better. A future iteration of our proposed method may yield higher accuracy by 
taking advantage of the other tweet and user information used by Deepgeo, e.g. tweet 
creation time, user timezone, or account creation time.

Conclusions
In this paper, we proposed a joint embedding framework for representing multimodal 
tweet data to generate embeddings for machine learning tasks on Twitter. The frame-
work aligns tweet component embeddings in the joint space using a loss function that 
incorporates hard negatives. We tested a trained tweet component embedding model 
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on four Twitter machine learning applications and found that it can perform well on 
most applications evaluated. In the text retrieval task, our proposed method achieved 
recall@1 of 17.4% compared to 0.02% for the baselines. For hashtag recommendation, 
we achieved an F1 score of 0.1181 vs. the baseline’s 0.0866 for K = 1 . Our location pre-
diction experiments showed accuracy of 52.43% for our method compared to 48.88% 
for the baseline. These results show that our proposed method can be applicable to a 
variety of tasks involving Twitter data. However, its performance in bot detection, where 
our method achieved an F1 score of only 69% compared to the baseline’s 77% on the 
combined test dataset, shows that this is not the case for all tasks. Future work will 
investigate how our joint embedding framework can be improved, both in its design 
(e.g. incorporating different tweet components) and its application (e.g. how to best use 
generated tweet component embeddings for a given task), to perform well in additional 
tasks.
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