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Introduction
Categorical sequence data have grown enormously in commercial and scientific stud-
ies over the past decades. Categorical sequences, such as the biological sequences, web-
clicking or behavioral sequences [1–6], are consist of a finite set of categorical values 
with chronological (or spatial) dependencies that are characteristic of each one of them. 
For instance, protein sequence is characterized by the 20 possible amino acids with their 
spatial orders. Discovering and understanding the sequential dependencies hidden in a 
set of sequences are very important tasks for characterizing sequence families and still 

Abstract 

Markov models are extensively used for categorical sequence clustering and classifi-
cation due to their inherent ability to capture complex chronological dependencies 
hidden in sequential data. Existing Markov models are based on an implicit assump-
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pose significant challenges to the field of data mining, in particular, sequence clustering 
and classification analysis.

Categorical sequence clustering aims at partitioning a set of categorical sequences 
into homogeneous groups by maximizing their intra-cluster similarity and minimizing 
their inter-cluster similarity, and has been extensively studied in pattern recognition, 
web mining, and bioinformatics [7–11]. Many applications have been put into practice 
by academics and practitioners, such as inferring protein subfamilies [12], predicting 
biological sequence function [13], discovering behavior patterns from web user profiles 
[14], and detecting fraud patterns in credit card behaviors [15]. Moreover, sequence 
clustering helps provide critical insights into the mountains of sequential data without 
requiring prior knowledge.

The quality of clustering results depends on the similarity measure used to evaluate 
how well a sequence matches with another sequence or fits a set of sequences/model. 
Consequently, the biggest challenge in categorical sequence clustering is to define an 
effective similarity measure between a set of sequences. The existing similarity meas-
ures can be classified into two categories: alignment-based and alignment-free methods. 
The alignment-based methods focus on finding an optimal match by identifying regions 
shared by sequences, such as the local alignment [16] and global alignment [17], which 
are often associated with high time complexity or impaired by the presence of statis-
tically significant patterns1 in reverse orders. The alignment-free methods, such as the 
frequent patterns and Markov model based methods [18–20], aim to capture the under-
lying patterns of the sequences that can be used to represent each sequence (by vectori-
zation) or build a statistic model for clustering analysis. They are in general much more 
efficient and effective compared to the alignment-based methods for clustering analysis.

In this paper, we are interested in the methods based on Markov techniques since they 
have shown to be highly effective in encoding chronological dependencies in sequential 
data [19, 21, 22]. Generally, such methods proceed in defining a probability framework 
for capturing the statistically significant patterns hidden in the sequences for sequence 
representation, while assuming that the probability of next categorical value depends 
on the proceeding context/pattern2. For simplifying computation, the existing methods 
impose a constraint on each pattern assuming that it is consecutive. This constraint has 
an effect of preventing exploration of many sub-patterns that are not statistically signifi-
cant enough in their consecutive form, but could become statistically significant if some 
noisy or non-frequent values in the patterns are masked. For instance, the pattern GTIT 
and GTAT​ shown in Fig. 1a are sub-frequent individually, but can become frequent in 
a sparse form of GT ∗ T3  in Fig. 1d. More formally, a sparse pattern, such as G ∗ GT  
and GT ∗ T  , is a pattern in which one or more of the value/s between the first and last 
value in the pattern are replaced by wildcard/s that can be matched by a subset of cat-
egorical values in the categorical value set. Figure 1d shows that one consecutive pattern 
GTGT​ and two sparse pattern G ∗ GT  and GT ∗ T  are discovered in a protein dataset. In 

1  A pattern is statistically significant whose occurrence is no less than the user-defined support threshold τ , otherwise 
the pattern is or sub-frequent or non-statistically significant.
2  In this paper, the terminology of context and pattern are used interchangeably.
3  The * denotes a wildcard. To compared with the consecutive pattern, we call the pattern containing wildcard/s as 
sparse pattern. Sparse pattern GT ∗ T  consists of sub-frequent pattern GTAT​ and GTIT, and the wildcard * only matches 
with I, A.
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this dataset, G ∗ GT  is frequent while both patterns GVGT and GSGT are sub-frequent 
because of the noisy values V and S, which is often the case in categorical sequences 
being imbued with significant quantities of noise and will lead to information loss during 
the clustering analysis.

A major drawback of conventional Markov model based methods is that they take 
advantage of only a portion of statistical significant contexts as consecutive pattern 
detected according to a predefined threshold. All the patterns in Fig. 1a would be fre-
quent while the threshold was set as τ = 15 , and if we keep all the patterns to make 
maximal use of information for model learning, which can make use of information 
underlying in the sequences on the cost of the exponential increase of parameter 
learning, but also will suffer from the overfitting problem. However, if the threshold 
were set such as τ = 20 , only one consecutive pattern would be detected as shown in 
Fig. 1b, which will cause underfitting problem. Overfitting or Underfitting describes 
sufficiency or insufficiency in the number and content of the patterns detected for the 
knowledge representation in the discovery process, which may lead to information 
redundancy or information loss. Although, the wildcard constrained approaches, a 
well-studied topic, can retain information in the sub-frequent pattern by containing 
wildcards [23–26], the issue of these methods is that the frequent consecutive pat-
terns will be masked by the sparse patterns. For example, compared with the Fig. 1c, 
d, the frequent consecutive patterns (GTGT) is covered by the sparse pattern GT ∗ T  
and G ∗ GT  , which can not make use of the information in frequent consecutive 
patterns (GTGT) and may result in underfitting problem. In summary, the existing 

Fig. 1  Selected patterns detected from the 3 β-HSD protein family are used here to illustrate the concept 
of sparse pattern. a Shows some of the patterns GTGT​(25), GSGT(16), GVGT(18), GTIT(17), GTAT​(15) with 
occurrence in bracket, which represents that original dataset; b Shows patterns detected by conventional 
consecutive detection method, and only one consecutive pattern GTGT​, while the other patterns are filtered 
by a predefined support threshold τ = 20 . c Shows the patterns detected by the wildcard/gap detection 
method, yielding only sparse pattern G ∗ GT  and GT ∗ T  detected since the can not find consecutive patterns. 
d Presents the patterns detected by our approach (sparse pattern detection) with the same threshold. 
Compared with b, c, our approach not only detects the sparse patterns G ∗ GT  and GT ∗ T  , but also retains 
the consecutive pattern GTGT​ as shown in (d)
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models likely yield underfitting or overfitting from the model perspective, which will 
inevitably lead to information loss and has impacts on the performance of clustering 
analysis, a common limitation of categorical sequence mining.

To best of our knowledge, the existing sequence clustering methods are either focus on 
detecting the frequent consecutive patterns or sparse patterns for categorical sequence 
analysis, which results in overfitting or underfitting problem in terms of knowledge dis-
covery and representation. However, no literature reports mining both of them simulta-
neously for similarity measure for categorical sequence analysis, which promotes us to 
propose the sparse pattern detector (SPD) to detect both sparse and consecutive pattern 
for sequence clustering that is a trade-off between underfitting and overfitting for model 
learning. The basic idea of proposing SPD is to relax the constraint of variable order 
Markov model on patterns being comprised of consecutive patterns, and this relaxation 
model is capable of exploiting both sparse and consecutive patterns with variable length, 
named Dynamic order Markov model (DOMM). In fact, DOMM is a generalization of 
the Markov approach that can make use of both frequent consecutive pattern and sparse 
patterns detected from the sub-frequent patterns as shown in Fig. 1d. The major contri-
butions of this work can be summarized as follows:

•	 We propose a sparse pattern detector (SPD) to discover patterns by using probabil-
ity suffix tree (PST) with wildcards. SPD not only inherits the capabilities of PST to 
discover consecutive patterns, but also is capable of discovering sparse patterns from 
sub-frequent patterns with wildcard, which is completely different from conventional 
pattern detection methods since it retains the consecutive patterns, and also can 
detects the sparse patterns from sub-frequent patterns simultaneously.

•	 We propose a new Dynamic order Markov model that extends conventional Markov 
model to account for sparse patterns in addition to consecutive patterns, which can 
take advantage of the statistical information in sub-frequent patterns. Among others, 
it allows the design of a new similarity measure between a sequence and a cluster.

•	 We design a cascade algorithm for categorical sequence clustering based on the 
proposed DOMM, named Dynamic order Markov model for categorical sequence 
clustering (DMSC). Comprehensive experimental results on real-world datasets 
demonstrate the promising performance of our algorithm.

The remainder of this paper is organized as follows: we present the related work 
and preliminaries on Markov model based similarity measures. This is followed by a 
detailed description of the proposed model, including Dynamic Order Markov Model 
(DOMM), sparse pattern detector (SPD), the clustering optimizer based on DOMM 
and the divisive algorithm DMSC; and then we describe the experimental results and 
analysis on the performance of DMSC. Finally, we present a conclusion of our work 
and some potential works in the near future.

Related work and preliminaries
In this section, we will introduce the related work on categorical sequence clustering and 
the premises of typical Markov chain based models on categorical sequence analysis.
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Categorical sequence clustering

Recent literature reports a number of pattern-based categorical sequence clustering 
approaches [27–34]. SigClust, proposed by [20], is a signature based clustering method by 
an n-gram model, which makes use of frequent grams as signature for sequence represen-
tation. Ref. [28] proposed an n-gram based method (SCS) that allows mismatches within 
fixed length frequent consecutive grams to detect shorter grams with variable length for 
sequence representation. Those approaches suffer, however, from the gram length problem 
since a fixed length is the cause of either overfitting or pattern underfitting and the opti-
mal length is difficult to obtained. This leads to the development of variable length mod-
els [19] and [27] who, in a perspective of pattern exploration, employed the PST to search 
for frequent and consecutive subsequences (patterns) with maximum-length from a set of 
sequences and use them as patterns for their Markov chain models. On the other hand, 
several gap/wildcard constrained methods have been proposed for extracting contexts/
patterns for sequential data mining [26, 35–37]. For instance, [36] proposed a sequential 
pattern mining method using wildcard constraints that are specified by user with flexibil-
ity, which needs extra prior insights into the dataset. The model proposed by [37], named 
SMCD, groups fixed preceding patterns with identical conditional distributions into invari-
ance classes and represents each class by a sparse pattern, which is used as the fixed order 
of a Markov chain model. Existing gap/wildcard constrained methods address overfitting 
problem by compressing multiple patterns into a sparse pattern containing wildcards [36], 
but result in underfitting problem. For instance, in [37], the frequent and consecutive pat-
tern is also included by a sparse pattern ( GTGT ∈ G ∗ GT  ), which is a typical example of 
underfitting that results in information loss, a common issue for sequential data mining.

Generative model and similarity measure

The generative Model, widely used to model categorical sequences for clustering and clas-
sification, is based on the assumption that the conditional probability distribution of the 
next categorical value depends on the immediate preceding pattern [14, 21, 27, 37, 38]. For 
instance, given a sequence S = s1s2 . . . sn of length n composed of categorical values from 
the set � and a set of sequences denoted by a Markov chain model M , the generative prob-
ability of the sequence S over the model M is defined as follows:

where s0 = ∅ and PM(s1|s0) = PM(s1) is the frequency of symbol s1 over the model M , 
and PM(si|s1 . . . si−1) is the conditional probability of the next symbol si right after the 
preceding pattern s1 . . . si−1 over model M . Thereby, PM(S) should be relatively higher, 
if sequence S is subsumed by a more similar model M compared with the other models, 
which means that PM(S) can be used as the similarity measure between sequence S and 
model M (derived by a set of sequences M ); namely, the higher the value of PM(S) , the 
more likely that S comes from that group of sequences. However, such model requires 
that all preceding patterns are statistically significant which provides enough statistical 
information from the model perspective, but it is unrealistic in practice. Thus, the high 

(1)

PM(S) = PM(s1)PM(s2|s1) . . .PM(sn|s1 . . . sn−1)

=

n
∏

i=1

PM(si|s1 . . . si−1)
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or variable order Markov model are proposed to provide a better estimation by using 
constrains on the preceding patterns, yielding the Markov model based similarity meas-
ures which are widely used in sequence clustering and classification.

Markov model

Many Markov model based methods have been proposed for modeling the chronologi-
cal dependencies of sequential data, which exhibit many interesting characteristics for 
sequence analysis, such as speech and pattern recognition [39] and sequence cluster-
ing [19]. Ref. [21] proposed a higher order Markov chain model for categorical data 
sequences, which has the potential to capture the chronological dependencies or pat-
terns in sequential data where the dependencies are in a fixed length whose value is set 
to L for simplicity. From the Markov chain model perspective, the high order Markov 
model can be viewed as an generalization of the Markov chain model, since the pattern 
s1 . . . si−1 is approximated by the sub-pattern si−L+1 . . . si−1 with length L. Consequently, 
the L order Markov model is defined as follows:

The issue associated with the high order Markov model is that the patterns si−L+1 . . . si−1 
in si ( 1 ≤ i ≤ n ) can not all be statistically significant over model M in practice due to 
the parameter of order L. Consequently, they can not provide reliable statistics for for 
estimating the conditional probability of si , which in turn affects the estimated prob-
ability PM(S) from the model perspective. Moreover, the number of model parameters 
grows exponentially with the orders ( |�|L(|�| − 1) for L order). Thus, this model based 
methods may suffer from overfitting problem. Ref. [40] proposed a SMCD model based 
on the High order Markov model, which classifies all patterns with length L into sev-
eral groups shared the same transition probability, such classification can reduce dimen-
sion of the parameter space effectively. For instance, there are five pattern GTGT​, GTIT, 
GTAT​, GSGT and GVGT in the Fig. 1a, which can be viewed as a fourth-order Markov 
chain. The five patterns can be classified into two groups of patterns: {GSGT, GVGT}, 
{GTGT​, GTIT, GTAT​}, which are represented by two sparse patterns G ∗ GT  and GT ∗ T  
respectively as shown in Fig. 1c. However, it is not fair enough for the probability cal-
culation of pattern GTGT​ since it is frequent inherently as shown in Fig. 1d, which will 
obviously result in underfitting by such representation as aforementioned. Ref. [22] pro-
posed a sequence mining method to represent the higher-order dependencies in net-
works. Those high order Markov model based methods only can tackle the pattern with 
fixed length, which may also break chronological dependencies or structurally relevant 
information that vary in length among sequences.

As aforementioned, the fixed length pattern, to some extent, still can not satisfy the sta-
tistical needs of Markov model since any fixed length value may break the chronological 
pattern dependencies of sequential data. To deal with the pattern with variable length, [41] 
proposed the variable order Markov model for data compression, which is viewed as a fur-
ther generalization of Markov chain model. The pattern s1 . . . si−1 is generalized to learn 

(2)PM(si|s1 . . . si−1) ≈ PM(si|si−L+1 . . . si−1)
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from the given previous pattern that could be varying in length of patterns based on the 
data being modeled. Ref. [19] proposed a variable order Markov model for categorical 
sequence clustering by detect only the frequent consecutive pattern by PST for the model 
representation. Thus, the Eq. (1) is extended to dealing with pattern in variable length as 
follows:

In fact, the pattern s1 . . . si−1 is approximated by the latest frequent sub-pattern sj . . . si−1 
whose length can be larger or smaller than L which is capable of capturing the variable 
chronological dependencies in flexibility. Thus, such approximation can guarantee a reli-
able statistic for conditional probability estimation accordingly, since if si−L+1 . . . si−1 is 
not frequent, s1 . . . si−1 will never be frequent (apriori algorithm), but there exists a sub-
pattern sj . . . si−1(j > i − L+ 1) being frequent that avoids making probability approxi-
mation meaningless. However, such models suffer from overfitting since they can not 
deal with the sparse patterns detected from sub-frequent patterns.

The proposed model
In this section, we will first propose the derivation of Dynamic order Markov model 
(DOMM) that serves as similarity measure of the sequence clustering, and then describe 
the sparse pattern detector (SPD), which discovers the sparse and consecutive patterns 
of DOMM from the categorical sequences. Finally, we will present the divisive algorithm 
(DMSC) for categorical sequence clustering based on DOMM and SPD.

Dynamic order Markov model

In light of the above Markov models, we propose a new Dynamic order Markov model 
(DOMM) that is capable of modeling the sparse and consecutive patterns of variable 
length, including consecutive pattern (GTGT​) and sparse pattern ( GT ∗ T  , G ∗ GT  ) shown 
in Fig. 1d, in order to solve the challenges of the conventional Markov models. According to 
the Markov chain model, we therefore define the new DOMM in a general form as follows:

where ψm = i −m−
∑m

j=0 φj , sψ denotes the ψth categorical value of the pat-
tern s1 . . . si−1 , while wφ denotes φ consecutive wildcards ‘*’. Note that the model 
in Eq. (4) will decay to the variable order Markov model in Eq. (3) if φj = 0 for all j. 
PM(si|sψmw

φm
. . . sψ2w

φ2sψ1w
φ1) is the conditional probability of symbol si(si ∈ �) 

occurring right after the preceding pattern (consecutive or sparse pattern) 
sψmw

φm
. . . sψ2w

φ2sψ1w
φ1 denoted by θi . Thereby, PM(si|sψmw

φm
. . . sψ2w

φ2sψ1w
φ1) in Eq. 

(4) is simplified to PM(si|θi) . Statistical information in this paper denotes the number of 
sequences in corresponding group or cluster, the length of each sequence and the pat-
tern occurrence in each sequence. In order to make use of these statistical information 
in sequence S and model M , the probability PM(si|θi) in Eq. (4) is divided into two part: 
one part is from sequence S: P̂S(si|θi) , the other is from model M : P̂M(si|θi) . We there-
fore redefined model probability PM(si|θi) in Eq. (4) as follows:

(3)PM(si|s1 . . . si−1) ≈ PM(si|sj . . . si−1)

(4)PM(si|s1 . . . si−1) ≈ PM(si|sψmw
φm

. . . sψ2w
φ2sψ1w

φ1
)



Page 8 of 25Chen et al. Journal of Big Data           (2021) 8:154 

where P̂S(si|θi) is the conditional probability of si given the preceding pattern θi in 
sequence S, and P̂M(si|θi) is referred to as the model parameter derived from cluster C, 
which will be inferred later. If sequence S coming from model M, the conditional prob-
ability distribution of si right after pattern θi in sequence S will be the same as model M 
and the exp(·) is equal to 0, thus, PM(si|θi) would be equal to 1; otherwise, the exp(·) is 
equal to −∞ , and PM(si|θi) would be approaching but not equal to 0. Thus, we guaran-
teed that the probability PM(si|θi) is in the range 0 to 1.0. To take the sequence length 
and pattern occurrence into account, we estimate P̂S(si|θi) as follows:

where PS(si|θi) = n(θisi ,S)
n(θi ,S)

 is the experience probability of si following the pattern θi in 
sequence S, while ωθi

S = n(θi ,S)
|S|  is the frequency of θi occurs in S; n(θisi, S) , n(θi, S) denote 

the number of occurrence of pattern θisi and θi , respectively, in sequence S.
For the occurrence calculation as n(θisi, S) in Eq. (6), if the pattern θi is consecu-

tive, it is easy to calculate P̂S(si|θi) by the occurrence of θisi and sequence length |S|. 
However, if θi is a sparse pattern with wildcard/s whose number and position varies 
among different pattern. We assume that there is one wildcard (denoted by *) in pat-
tern θi for simplicity, so that the pattern θi can be denoted as θ1 ∗ θ2 ( θ1 and θ2 being 
the consecutive parts of sparse pattern θi ). Thereby, n(θisi, S) and n(θi, S) in Eq. (6) can 
be calculated as follows:

Thus, according to the Markov chain model in Eq. (1), and the DOMM in Eq. (5), the 
probability of sequence S coming from model M can be redefined as follows:

where M is derived from a set of sequences (refered to as cluster C), the larger PM(S) , 
the more likelihood of sequence S coming from cluster C. Thus, this generative prob-
ability can be similarity measurement between a sequence and a cluster. According to 
the principle of relativity for similarity measures, we omitted exponential function in Eq. 
(8) to simplify calculation, and defined a new DOMM based similarity measurement as 
follows:

(5)PM(si|θi) = exp






−

�

P̂S(si|θi)− P̂M(si|θi)
�2

P̂M(si|θi)







(6)P̂S(si|θi) = PS(si|θi)× ω
θi
S

(7)

n(θisi, S) =
∑

q∈V

n(θ1qθ2si, S)

n(θi, S) =
∑

q∈V

n(θ1qθ2, S)

(8)

PM(S) =

|S|
�

i=1

PM(si|θi)

=

|S|
�

i=1

exp






−

�

P̂S(si|θi)− P̂M(si|θi)
�2

P̂M(si|θi)






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To be consistent with the conventional similarity measures, we turn the similarity meas-
ure in Eq. (9), into a dissimilarity measure (dsim) as follows:

As is clear from Eq. (10), the dissimilarity measure dsim(S, C) is meaningless when i is 
equal to 1 as s1 has no preceding pattern. However, there are two issue during the Eq. 
(10) calculation: one is that si will be repeated multiple times in S and map to the same 
pattern, another is that there are many short patterns detected by SPD. Thus, we ignore 
the short patterns and use all the longest frequent patterns to represent the sequences 
as for the dissimilarity approximation. Therefore, the dissimilarity approximation in Eq. 
(10) can be rewritten as follows:

where � ( θ ∈ � ), � ( s ∈ � ) denotes all the longest frequent pattern detected by SPD in 
cluster C and the distinct categorical values that consist of the whole sequence in cluster 
C. We thus can use the dissimilarity measure in Eq. (11) to refine clusters by relocating 
sequence and estimate the compactness of a cluster. Based on Eq. (10), we can therefore 
define the clustering objective function of a categorical sequence dataset with K clusters. 
The objective function for the Sum of Clustering Error (SCError) is given as follows:

By minimizing the objective function Eq. (12) as presented in [42], we can obtain the 
parameter P̂M(si|θi) of model M derived from the corresponding cluster as follows:

Sparse pattern detector

The sparse pattern detector (SPD) is used to detect the sparse and consecutive pattern 
for DOMM. The intuition behind the SPD is derived from the framework of PST con-
taining wildcards that not only inherits capability of PST detecting the frequent con-
secutive patterns, but also exploits sparse pattern from the sub-frequent patterns, which 
can make use of the statistical information in the form of sparse pattern. To provide an 
illustrative building process of SPD, we decompose the building process into three steps 
for a better understanding that happens simultaneously in practice. We start by building 

(9)sim(S,C) = −

|S|
∑

i=1

(

P̂S(si|θi)− P̂M(si|θi)
)2

P̂M(si|θi)

(10)dsim(S,C) =

|S|
∑

i=1

(

P̂S(si|θi)− P̂M(si|θi)
)2

P̂M(si|θi)

(11)d(S,C) =
∑

s∈�

∑

θ∈�

(

P̂S(s|θ)− P̂M(s|θ)
)2

P̂M(s|θ)

(12)SCError =

K
∑

k=1

∑

S∈Ck

d(S,C)

(13)P̂M(si|θi) =

(

∑

S∈C |S|P̂2
S(si|θi)

∑

S∈C |S|

)
1
2
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a PST on a cluster C with 250 sequences over � = {a, b, c} without pruning as shown in 
Fig. 2a. For simplicity, we set the maximum depth to L = 3 and the threshold to τ = 250 , 
while the depth is not limited in actuality, but we will be set to a maximal depth for the 
sake of space complexity in practice.

Then, we shall select those nodes with occurrence under the support threshold τ to 
merge to retain the frequent consecutive patterns, and identify the sparse patterns from 
sub-frequent consecutive ones. We thus need to scan the number of occurrences at each 
node and compare it to the threshold τ , starting from the root. If the number of occur-
rences is smaller than τ , the node will be pruned, since its descendants’ occurrence will 
never be greater than τ according to Apriori algorithm; otherwise the children of that 
node are classified into two groups: U (occurrence greater than τ ) and V (occurrence 
less than τ ). Technically, U ∪ V = � , {a} ∈ U  and {b, c} ∈ V  ) as shown in Fig. 2b. Then, 
we keep the node in U and merge the node in V if necessary. Actually, the node merging 
process is subtrees merging, since each node in V can be regarded as the root of a sub-
tree. Thus, we merge all the subtrees in V with their descendants, and then update the 
occurrences at each node and label the edge by ∗ . For instance, the two subtrees in blue 
and the two in green in Fig. 2b will be merged to yield the results shown in Fig. 2c.

Finally, we obtain the final SPD by node pruning. We compare the number of occur-
rences in each children of the merged subtree with the threshold τ in order to determine 
whether or not any sparse pattern has been detected after the node merging process. If 

Fig. 2  To compare with the PTS above, we use the same dataset (250 sequences over � = {a, b, c} L = 3 and 
τ = 250) to demonstrate the pattern detection process of SPD: a Initial PST constructed from dataset without 
pruning. b Find merge candidates with threshold τ , the subtrees share the same color will be merged. c Final 
SPD, the node below red dotted line will be pruned. d Final PST with threshold τ = 250 for comparison with 
SPD. There is an extra sparse pattern a ∗ b in (c) compared with (d)
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the number of occurrences at the root of the merged subtree is still below the threshold 
τ and no new child with occurrence above τ has been produced, the merged subtree will 
be pruned (subtree in green in Fig. 2c; otherwise the merged subtree is kept and the edge 
is labeled by ∗ (new child, pink node, with occurrence 290 in Fig. 2c, and the final SPD 
is shown in Fig. 2d. However, the parameter τ for construction here is simply set to the 
number of sequences in the corresponding cluster, which is based on the frequent pat-
tern assumption that a frequent pattern should occur at least once in each sequence in 
the cluster. The thresholds change dynamically according to the number of sequences in 
each clusters during the iterative process of clustering refinement, which can overcome 
the hindrance to pattern detection caused by a fixed threshold for all clusters since some 
patterns may be only frequent in one cluster, but not necessary frequent in another. 
Moreover, if we use the same fixed threshold for all clusters, most of the patterns may 
be filtered by the same threshold, especially for the unbalance clusters. The construction 
process of SPD is given in Algorithm 1: 

Algorithm 1: Sparse Pattern Detector
Input: Sequence Cluster: C
Output: SPD
begin

/* Obtain threshold τ */
τ = the number of sequences in Cluster C;
/* /*TSPmorfDPSlaitinI
Building a PST with suffixes of each sequence in C;
/* /*gnigremeertbusdnanoitacifitnediedoN
Define an empty stack �;
Push PST root node to � ;
while � �= ∅ do

current = pop a node from � ;
V = ∅;
for each child in current do

if occurrence of child ≥ τ then
Push child to �

else
Add child to V ;

/* Each node in V /*eertbusasi
if sum of occurrences in V ≥ τ then

Merge all the subtrees in V to a new tree �;
for each child of root � do

if have child’s occurrence ≥ τ then
Push � root to � ;

else
Prune the child ;

else
Prune all the subtrees in V ;

return SPD

Clustering optimizer

In this subsection, we design a clustering optimizer to refine the clusters based on the 
DOMM. The procedure of clustering optimizer can be divided into three steps: firstly, 
we need to build a SPD on each cluster, which is used to detect the sparse and con-
secutive pattern for DOMM, and then we update the model parameters of each cluster 
based on the patterns detected by SPD from each clusters. Finally, we relocate sequences 
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to clusters iteratively based on the dissimilarity measure Eq. (11) until no membership 
changes. The process of the clustering optimizer are detailed in Algorithm 2. 

Algorithm 2: Clustering Optimizer
Input: Two initial clusters C1 and C2
Output: Two refined clusters Ĉ1 and Ĉ2
begin

Let Ĉ1 = C1 and Ĉ2 = C2;
/* Obtain parameter of Ĉ1 and Ĉ2 */
τ = {τC1 , τC2};
/* SPD construction on τ */

Build two SPDs on Ĉ1, Ĉ2 by Algorithm 1;
/* /*retemarapledomezilaitinI

Initialize parameters of Ĉ1 and Ĉ2 using Eq.(13);
repeat

for Si ∈ Ĉ1 do
if d(Si, Si ∪ Ĉ2) < d(Si, Ĉ1) then

Assign Si to Ĉ2

for Si ∈ Ĉ2 do
if d(Si, Si ∪ Ĉ1) < d(Si, Ĉ2) then

Assign Si to Ĉ1

Update parameters of Ĉ1 and Ĉ2 using Eq.(13);
until no membership change;
return: two refined clusters Ĉ1 and Ĉ2

The DMSC algorithm

In this subsection, we describe the divisive algorithm of DMSC in details. The process 
of DMSC involves the sequence vectorization and an iterative phase. The sequence vec-
torization is to transform each sequence in the dataset into a fixed length vector by the 
first order Markov chain. The iterative phase includes two steps: initialization and clus-
tering refinement. The initialization includes bisecting one cluster in two initial clus-
ters based on the sequence vector matrix obtained from sequence vectorization phase, 
and optimizing them according to Chi-square distance. The clustering refinement step 
refines the two optimized clusters by the clustering optimizer shown in the Algorithm 2 
in “Clustering optimizer” subsection, and then choose one cluster for the next iteration 
until the predefined K clusters achieved. The dissimilarity measure in Eq. (11) can also 
be used as the estimation of compactness for a cluster, we thus can choose the cluster 
with maximal compactness for the bisecting process in the initialization phase. The 
overview of DMSC is shown in Fig. 3.

Sequence vectorization

In this phase, we use the first order Markov chain model to transform each categorical 
sequence into a numerical vector with fixed length ( |�|2 ), which is referred to as Markov 
Vector of Sequence ( MVS ). Thus, the sequence set will be converted into a sequence 
MVS matrix that will be used for initialization. As example for the transformation process 
of a sequence to an MVS , we select a sequence S = ababababbcbabcabacbacbacacaa 
( � = {a, b, c} and |�| = 3 ) from the previous dataset whose length n is 28. The sym-
bol frequency vector VF and transition occurrence matrix MO are obtained from the 



Page 13 of 25Chen et al. Journal of Big Data           (2021) 8:154 	

frequency of symbol and the state transition by the first order Markov model from 
sequence S respectively, which are shown as follows:

where FSa is the frequency of a in sequence S, and OSij is the occurrence of state tran-
sition from i to j in sequence S. However, the occurrence of observed state transition 
shown in matrix MO is not fair enough to serve as the representation for a stochastic 
Markov process of a categorical sequence. We thus introduce the Bayesian approach to 
model the transition probability among states, other than just use the state transition 
occurrence dividing by total occurrence, which can guarantee the stochastic process of a 
Markov model (for more details, please read the reference [43]). According to the Bayes-
ian estimation, the state transition probability thus can be defined as follows:

where ηij is a hyper-parameter and Oij is the state transition occurrence of sj given si , 
ηi =

∑

j ηij , fi =
∑

j Oij , η = |�| and ηij = 1
|�|

 . Thus, the occurrence transition matrix 
MO can be transformed into the state transition probability as MP by Bayesian estima-
tion in Eq. (14) as follows:

VF =
�

FSa FSb FSc
�

=
�

0.500 0.286 0.214
�

MO =





OSaa OSab OSac
OSba OSbb OSbc
OSca OScb OScc



 =





3 5 5
7 0 1
3 3 0





(14)pij =
ηij

ηi

ηi

ηi + Oi
+

Oij

ηi + Oi

Fig. 3  The overview of DMSC consists of the sequence vectorization and an iterative process, while the 
iterative process includes initialization and clustering refinement
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Using the symbol frequency as weight, the state probability transition can be further 
estimated as MFP by the state probability transition MP and symbol frequency VF as 
follows:

Finally, sequence S is transformed into an MVS by flattening the state probability transi-
tion matrix MFP into one dimension vector as follows:

Therefore, any sequence set can be transformed into a sequence vector matrix composed 
of the MVS of each sequence, which can be used for cluster splitting and optimization in 
the initialization phase.

Initialization

In this phase, we need to bisect one cluster (initial dataset denoted as one cluster), and 
optimize the two clusters according to the Chi-square distance. They will be used as 
input for further optimization in the phase of clustering refinement. As presented above, 
each sequence in the cluster has been converted into a sequence MVS . However, such 
MVS is highly sparse in dimensionality as 9 dimensions with � = 3 and 400 dimension 
for a protein sequence ( � = 20 ). We therefore utilize the principal component analysis 
(PCA) to reduce the dimensionality on the MVS matrix of cluster. To obtain two ini-
tial robust clusters with maximal distance, we take first component of PCA, explains the 
largest portion of the variance on the sequence matrix, to bisect the cluster into two 
initial clusters, namely, sequence with positive value in first component will be assigned 
to one cluster; otherwise it will be assigned to the other. We then obtain two initial clus-
ters and use the Chi-square distance to optimize the two initial clusters on their MVS to 
obtain two robust optimal C1 and C2 for clustering refinement.

Clustering refinement

In this phase, we need to refine the two optimal clusters from the initialization phase. 
Since we have obtained two optimal clusters C1 and C2 in initialization phase, and then 
we can obtain the parameter τ for SPD construction whose value is equal to the number 

MP =





POSaa
POSab

POSac

POSbb
POSba

POSbc

POSca
POScb

POScc



 =





0.238 0.381 0.381
0.815 0.037 0.148
0.476 0.476 0.048





MFP = Diag(VF)MP

=




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FSc








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POScc





=





0.500
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0.214








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0.476 0.476 0.048





=





0.119 0.1905 0.1905
0.233 0.011 0.042
0.102 0.102 0.010





MVS =
[

0.119 0.1905 0.1905 0.233 0.011 0.042 0.102 0.102 0.010
]
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of sequences in the corresponding cluster as discussed before. Thus, two SPDs will be 
built on C1 and C2 , which serves as the sparse and consecutive pattern detector shown in 
Algorithm 1 for the similarity measure in the clustering optimizer in Algorithm 2. The 
clustering refinement is an iterative process that operates by reassigning sequences to 
the cluster with minimal dissimilarity measure in Eq. (11). After the clustering refine-
ment, as aforementioned, we need to choose one cluster to repeat for the next iteration 
until the desired K clusters obtained. The procedure of algorithm DMSC is shown in 
Algorithm 3.

Algorithm 3: Procedure of DMSC
Input: Dataset D, cluster number K
Output: K clusters: {Ci}K1
begin

/* /*CretsulcasaDtesataddrageR
C = D ;
• Sequence Vectorization:
for Si ∈ C do

/* /*ledomniahcvokraMredrotsriF
Obtain MVS for each sequence;

repeat
• Initialization:
/* /*CretsulcnoxirtamniatbO
Obtain MVS matrix on cluster C;
/* Bisect cluster on MVS /*xirtam
Bisect C into two initial clusters C1, C2;
/* Get τ based on C1, C2 */
τ = {τC1 , τC2};
/* C1, C2 initial opimization by chi-square distance */

Obtain two optimal cluster Ĉ1 and Ĉ2;
• Clustering Refinement:
/* SPD building using τ and Algorithm 1 */

Obtain two SPDs on Ĉ1, Ĉ2;
/* Refine clusters by the optimizer in Algorithm 2 */

Obtain two refined cluster Ĉ1 and Ĉ2;
/* /*noitaretitxenrofretsulcenoesoohC
C = the cluster with maximal compactness;

until K clusters achieved ;

Experiment
In this section, we will compare the results of our model with the state-of-the-art algo-
rithms on six real-world datasets, and evaluate its performance based on the empirical 
results.

Datasets

Clustering biological sequences poses significant challenges for biological sequence 
analysis in bioinformatics, we therefore choose two biological sequence datasets, one 
speech sequence dataset and other three datasets to evaluate the performance of our 
model. The details of the six datasets are shown as follows:

•	 Protein: This dataset contains 2074 protein sequences from three families, which 
is available from the SWISS-PROT protein sequence data bank. These sequences 
are arbitrarily chosen from the globin, immunoglobulin, and 3 β-HSD families, 
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with respective sizes of 1500, 313 and 261. Sequence lengths vary from 10 to 1709, 
with an average length of 310.

•	 RNA: This dataset comprises three classes of RNA sequence from RFAM data-
base of non-coding RNA families: transfer messenger RNA (abbreviated tmRNA), 
signal recognition particle RNA (SRP) and transfer RNA (tRNA). The respective 
sizes of classes are 390, 254 and 640 sequences. Sequence lengths vary from 54 to 
380, and the average length is 201.

•	 Speech: This dataset includes 500 sequences from five classes (100 sequences for 
each class). All the sequences were generated from the pronunciation of five iso-
lated French vowels (i.e., ‘a’, ‘e’, ‘i’, ‘o’, ‘u’) and each pronunciation is characterized 
with a categorical sequence with 20 different categorical values [44]. Sequence 
lengths vary from 701 to 3753, with an average length being 1898.

•	 Robot: This dataset consists of two classes: Move-Forward with 2205 samples and 
SharpRight-Turn with 2097 samples. Each sequence consists of ultrasound read-
ings collected by the sensors of a robot, and is discretised into 95 categorical val-
ues, which is used by [45]. Sequence lengths vary from 4 to 100, with an average 
length being 40.

•	 Pioneer: this dataset is derived from the pioneer-1 dataset in UCI repository. The 
time series is manually discretized into three bins (referred to as gripper, move, or 
turn) based on exploratory data analysis. The numerical time series thus can be 
categorized by one of three scenarios: gripper, move, or turn [46]. Each sequence 
is with the same lengths being 24.

•	 Pattern: this dataset is also comporsed of time interval sequence converted into 
categorical sequence based on exploratory data analysis. Each time interval in the 
sequence is characterized by one of five categorical value such as street or meeting 
[47]. Sequence lengths vary from 22 to 246, with an average length being 88.

The statistics of the datasets are shown in Table 1. 

Baselines

To demonstrate the performance of DMSC, we present our results in comparison 
with following baselines on the six test datasets. The description of the baselines is as 
follows:

Table 1  Dataset description

Dataset Size Categorical value Classes Length.range Length.average

Protein 2074 20 3 10–1709 232

RNA 1284 4 3 54–380 201

Speech 500 20 5 179–3753 1101

Robot 4302 95 2 24–24 24

Pioneer 160 178 3 4–100 40

Pattern 240 94 5 22–246 88
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•	 SigClust [20] is a n-gram based approach, in which each sequence is represented 
by a binary document signature vector, and uses k-means for clustering on the 
sequence vector matrix.

•	 CLUSEQ [27] is a Markov chain model and PST-based method, which uses PST to 
capture the frequent consecutive patterns as entities of the conditional pattern for 
the similarity calculation.

•	 SCS [28] is a variation of n-gram that allows mismatches between patterns within 
length L by detecting the frequent consecutive patterns with variable length for 
sequence representation.

•	 WCPD [19] is also a variable order Markov model, which employs the PST to 
detect consecutive, statistically significant pattern for similarity estimation and 
model representation.

•	 SMCD [37] is a fixed Markov chain model for sequence classification, uti-
lizes Delaunay triangulation to cluster the possible preceding pattern in invari-
ance classes with identical conditional distributions, but here we modify it as a 
sequence clustering method by using the entites of a fixed Markov model to pre-
dict the next categorical value for the generative probability of a given sequence.

Performance metrics

As for the performance metric, besides accuracy, we also employ the F1-measure 
and Normalized Mutual Information (NMI) to evaluate the quality of the clustering 
results. They are extensively used metrics for evaluating the performance of cluster-
ing analysis [48]. Given two sets of the cluster results C = { C1, . . . ,CK  } and the ground 
truth G = { G1, . . . ,GK  }, the accuracy, F1-measure and NMI are defined respectively as 
follows:

where the LS and LS is the clustering label and ground truth of sequence S respectively, 
and the accuracy, precision and recall are also calculated as the fraction of sequences 
correctly clustered against the ground truth [49], while 
MI(C,G) =

∑K
i=1

∑K
j=1

(

|Ci∩Gj |

N

)

log
(

N×|Ci∩Gj |

|Ci|×|Gj |

)

 is the mutual information, and 

H(C) = −
∑K

k=1

(

|Ck |
N

)

log
(

|Ck |
N

)

 is the entropy. In fact, all those measures are derived 

from clustering results whose cluster number is the same as the actual class number, 
which are used to reveal how well the clustering results match with the actual class dis-
tribution. Larger value means better clustering performance.

(15)Accuracy =

∑K
k=1

∑

S∈Ck
1{LS = LS}

N

(16)F1-measure =
2× precision× recall

precision+ recall

(17)NMI(C,G) =
2× I(C,G)

H(C)+H(G)
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Results and analysis

To show the performance of DMSC, three performance metrics accuracy, F1-measure 
and NMI obtained on the test datasets by our model and the baselines are demonstrated 
in Tables 2, 3 and 4, respectively. It is easy to see that DMSC shows much better perfor-
mance than that of the baselines on the six test datasets. DMSC achieves an improve-
ment of 6.3%, 7.0% and 14.6% on average than that of second-place SMCD model on 
accuracy, F1-measure and NMI on all the test dataset, respectively. The significant 
improvement on the NMI means that DMSC outperforms the baselines in terms of the 
clustering quality and stability.

For the accuracy in Table 2, DMSC achieves the highest accuracy overall on the six test 
datatsets with average value is 91.7%; 10.6%, 6.6% and 4.8% higher than the second-place 
SMCD model on the protein, robot and pioneer dataset, and also betters the second-
place SCS model by 3.2%, 3.3% and 3.0% on the pattern dataset, RNA and speech dataset 
respectively. In terms of the clustering quality and stability performance: the F1-measure 
in Table 3 and NMI in Table 4. It can be readily concluded that DMSC also outperforms 

Table 2  Comparision of performance in terms of accuracy

The best results are shown in bold

Protein RNA Speech Robot Pioneer Pattern Average.

SigClust 0.723 0.689 0.831 0.648 0.638 0.713 0.707

SCS 0.914 0.861 0.834 0.835 0.793 0.838 0.846

CLUSEQ 0.827 0.603 0.835 0.739 0.731 0.754 0.745

WCPD 0.890 0.848 0.850 0.808 0.821 0.814 0.839

SMCD 0.924 0.829 0.878 0.859 0.825 0.809 0.854

DMSC 0.962 0.893 0.918 0.925 0.931 0.871 0.917

Table 3  Comparision of performance in terms of F1-measure

The best results are shown in bold

Protein RNA Speech Robot Pioneer Pattern Average.

SigClust 0.386 0.706 0.832 0.647 0.637 0.611 0.637

SCS 0.920 0.861 0.861 0.834 0.792 0.745 0.836

CLUSEQ 0.598 0.532 0.843 0.738 0.730 0.652 0.685

WCPD 0.900 0.851 0.849 0.795 0.810 0.669 0.801

SMCD 0.928 0.830 0.877 0.858 0.824 0.704 0.837

DMSC 0.964 0.894 0.917 0.924 0.930 0.810 0.907

Table 4  Comparision of performance in terms of NMI

The best results are shown in bold

Protein RNA Speech Robot Pioneer Pattern Average.

SigClust 0.157 0.332 0.658 0.243 0.207 0.368 0.346

SCS 0.702 0.651 0.801 0.355 0.421 0.609 0.589

CLUSEQ 0.451 0.435 0.702 0.422 0.421 0.471 0.494

WCPD 0.659 0.650 0.764 0.453 0.301 0.565 0.570

SMCD 0.721 0.619 0.789 0.481 0.501 0.552 0.601

DMSC 0.838 0.744 0.873 0.616 0.755 0.658 0.747
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the other baselines. DMSC earns the highest F1-measure and NMI value on all test data-
sets, especially for pioneer and robot dataset, where it achieves highest NMI over the 
second-place SMCD with a significant improvement of 24.5% and 13.5%, while yields 
9.3% and 7.2% higher than that of the second-place SCS model on RNA and speech 
dataset. In short, DMSC achieves better performance over other baselines in terms of 
the clustering quality and stability based on the accuracy, F1-measure and NMI on the 
six test datasets.

As we can see the results in Table 2, 3 and 4, SigClust achieves the lowest performance 
on all the test datasets due to the fact that it utilizes fixed-length patterns as signatures 
for sequence representation, assuming the pattern with fixed length is not realistic, since 
the chronological dependent structures or patterns varies differently in practice. SCS 
allows mismatching with fixed n-gram patterns, which allows to discover grams in vari-
able length to make use of the sub-frequent patterns within n-gram for sequence rep-
resentation. Thereby, it is reasonable that SCS outperforms SigClust. The CLUSEQ can 
detect variable length patterns by PST but suffers from underfitting that ignores the sta-
tistical information of individual sequences so that CLUSEQ shows better performance 
than that of SigClust but is inferior to SCS due to the variable length patterns and statis-
tical information underlying sequences.

However, the WCPD model takes into account both the frequent consecutive patterns 
of variable length and the statistical information of individual sequences, but loss the 
information hidden in sparse patterns, which suffers from underfitting or overfitting 
because of the improper support threshold. Both of them thus show good performance 
on the test dataset which are better than CLUSEQ, but still inferior to DMSC due to 
the fact that they can not take advantage of the statistical information in sub-frequent 
patterns. SMCD, a Markov model, uses data compression technique to clustering the 
possible preceding subsequences with same length into invariance classes, which are 
used as the patterns of a fixed order Markov model, to predict the next categorical value 
for generative probability of a given sequence. It can take the information from the sub-
frequent patterns into account, but still suffers from both the issue of fixed length pat-
tern and underfitting (frequent consecutive patterns GTGT​ are represented by pattern 
G ∗ GT  or GT ∗ T  as argued above), which may explain the reason why SMCD performs 
better than others, but is also inferior to DMSC. As for DMSC, it neither suffers from 
overfitting nor underfitting, which not only retains the information hidden in consecu-
tive patterns, but also makes use of the statistical information underlying sub-frequent 
patterns by the form of sparse pattern during the pattern detection process. All in all, 
the results also prove that DMSC outperforms the other baselines with respect to the 
performance metric of accuracy, F1-measure and NMI in Tables 2, 3 and 4 respectively.

Scalability analysis

DMSC is scalable to the number of sequences and average length of the sequences, and 
the time complexity can be analysed by three parts of DMSC. The first part is data vec-
torization. The time complexity of this phase is mainly about of vectorizing all sequence 
in the dataset into an MVS matrix. The time of vectorizing sequence S = s1 . . . sn 
to an MVS is O(n|�| + |�|2) . Thus, the time complexity of sequence vectorization is 
O(Nn|�| + N |�|2) , where n is the average length of the sequences in dataset, and � is 
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the number of categorical value set. The second part is initialization. The time complex-
ity of this phase can be divided into two part: one is time complexity of PCA on the MVS 
matrix: O(N |�|R) , where R ≤

√

min(n, |�|2) . The other is optimization by Chi-square 
distance O(INM logK ) , where I  is the average number of iterations for the whole opti-
mization process, M is the dimension of MVS after processed by PCA and K number of 
final clusters. Thus, the complexity of initialization is O(N |�|R+ INM logK ) . The final 
part is the clustering refinement. The time complexity of this phase also includes three 
part. The first part is the construction of SPD: O(NnL|�|) , where L is the maximal depth 
of SPD, the second is to detect patterns from SPD: O(|�|l) , where l ≤ L is the average 
length of pattern and involves the number of wildcards in the pattern. The final is clus-
tering refinement, updating model parameters for one iteration is O(|C1||�|l) , the com-
plexity of clustering refinement itself is O(NnL|�| + INM logK ) . Consequently, the 
time complexity of DMSC is linear with number of sequence N and sub-linear in terms 
of the average sequence length n.

To examine the scalability of DMSC with respect to number of sequences and average 
length of sequences, we generated eight datasets with two class from two RNA families, 
and each class shares the same number of sequences. We use four datasets with size of 
102 , 103 , 104 and 105 whose sequence length is 100 for the scalability of sequence num-
bers, while the rest four datasets with 1000 sequences whose average length sequences 
are 10, 102 , 103 and 104 , respectively, which are used to test scalability of the average 
sequence length sequences. The running time are shown in Fig.  4. It can be clearly 
seen that the running time of DMSC increases linearly with respect to the number of 
sequences and the average length of sequences, respectively.

Further analysis

Despite the performance against the baselines, we also present a in-depth analysis to 
investigate whether the sparse pattern is helpful for the clustering analysis or not by 
experiments. We have done a series of experiment to explore above question in the fol-
lowing two domains:

•	 SPD method can rich in pattern structure and cluster characterization?

Fig. 4  The time efficiency of DMSC with respect to the number of sequences and average sequence length
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•	 Sparse pattern can really improve the clustering performance?

Pattern richness and cluster characterization analysis

As for the pattern richness, we use SPD to detect the patterns from each cluster on the 
RNA dataset compared with consecutive detection methods. However, apart from the 
frequent consecutive patterns, SPD also detected the sparse patterns from each cluster, 
and top five frequent sparse patterns are shown in Table 5. What is most interesting is 
that these unique sparse patterns detected from one cluster can not be found in another 
cluster, which means that they are never co-occurred in two clusters and can be used to 
characterize the properties of cluster in view point of knowledge representation for clus-
tering analysis. However, we will not focus on the biological analysis of these detected 
patterns like UGGU ∗ ∗U  in cluster C3 , and that will a part of our future work to investi-
gate in the near future.

We also compared the detected patterns using for clustering against the baselines from 
each cluster on test datasets. The patterns detected from the final clustering results are 
shown in Fig. 5. We thus can learn that DMSC has the largest number of patterns due to the 
fact that SPD detects sparse patterns from sub-frequent patterns by containing wildcards, 

Table 5  Examples of sparse patterns on RNA dataset

Cluster Top five sparse patterns of each cluster

C1 CAA ∗ U , GAA ∗ C , GCA ∗ C , GGUUC ∗ A ∗ U , GUU ∗ G

C2 CCA ∗ C ∗ A , GGGG ∗ U , GACG ∗ G , AAGC ∗ U , AAAC ∗ A

C3 GGUC ∗ G , UGGG ∗ U , GUGG ∗ G , UGGU ∗ ∗U , UGGC ∗ G

Fig. 5  The number of patterns detected by six baselines from each clusters on the six test datasets, and 
our model has more patterns than other baselines, which demonstrates the pattern richness of DMSC for 
sequence clustering analysis and knowledge representation
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while also remains the frequent consecutive patterns simultaneously. It can be obviously 
concluded that such pattern richness is of great help for sequence analysis and knowledge 
representation in view point of a statistic model. Moreover, these sparse patterns are capa-
ble of taking advantage of the statistical information underlying the sub-frequent patterns, 
a common sub-optimization problem of pattern detection of sequence mining, which may 
explain the reason why DMSC has the largest number of patterns and outperforms the 
other baselines in terms of clustering results.

Clustering improvement of sparse pattern analysis

As for the clustering performance improvement, we experiment the DMSC without the 
sparse patterns on test datasets, named DMSC-SP. Such implementation can directly vali-
date the usefulness of the sparse patterns whether they can improve the performance of 
clustering result or not. As the results shown in Fig. 6, it can easily be concluded that the 
clustering performance of DMSC on the test dataset outperforms that of DMSC-SP with-
out sparse patterns, as results of DMSC is obviously higher than that of DMSC-SP. Actu-
ally, DMSC improves significantly on three performance metrics on text dataset, around 
6.0% improvement on accuracy, F1-measure, and NMI on average, which validates that the 
sparse pattern is of great importance to improve the performance of clustering. Thereby, we 
can make sure that those sparse patterns detected by SPD can be of great help to character-
izing clusters for clustering analysis.

In summary, DMSC, a based statistical model for categorical sequence clustering, not 
only takes the consecutive patterns with variable length and statistical information, such as 
the number of sequence in each cluster and sequence length, into account, but also makes 
use of the information underlying in sparse patterns detected from the sub-frequent pat-
terns for the clustering analysis. SPD is a powerful pattern detector in terms of the pattern 
richness in the domain of pattern recognition, since it not only detects consecutive pattern, 
but also retains the possibility of discovering frequent sparse patterns from the sub-frequent 
patterns. Moreover, it also avoids overfitting and underfitting by retaining the some sub-
frequent patterns, thus sidestepping the sub-optimal pattern detection problem, a common 
limitation of pattern mining. Finally, the experimental results on real-world datasets also 
exhibit the superiority of the DMSC over a number of state-of-the-art competitors.

Fig. 6  Three performance metrics of DMSC and DMSC-SP on test datasets. DMSC-SP, the DMSC without 
sparse pattern, is designed to use only consecutive pattern to validate of the effects of sparse patterns for 
clustering analysis
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Conclusion
In this paper, we propose a Dynamic order Markov model (DOMM) that is capable of deal-
ing with the sparse patterns and handling the length of the sparse patterns adaptively, i.e. 
allowing variable length pattern, which allows deriving a similarity measure between a 
sequence and a set of sequences/cluster. To implement DOMM, we propose a sparse pat-
tern detector (SPD) to discover sparse and consecutive patterns based on the PST contain-
ing wildcards, which can take advantage of significant statistical information, specially the 
information veiled by the noise in the form of sparse pattern. We then develop a divisive 
clustering algorithm, named DMSC, for Dynamic order Markov model for Categorical 
Sequence Clustering. Experimental results on real-world datasets demonstrate the promis-
ing performance of the proposed model.

Our future work may focus on the following aspects: on one hand, we would like to 
improve the performance of the for sparse pattern detection, and investigate how this kind 
of sparse patterns would be useful for knowledge discovery and model representation in 
the field of bioinformatics, such as the mutation patterns and the evolution of biological 
sequence. On the other hand, we would like to apply the SPD on financial data or event data 
to detect complex patterns for decision making or behavior analysis. In short, we see the 
significant challenges for our future work, but we are confident that the proposed method 
has great potential in real applications.
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