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Introduction
A fundamental problem in statistics is to compare outcomes attained by two different 
subpopulations whose members are matched via numerical values known as “scores.” 
In this context, the scores are the independent variables, and the outcomes are the 
dependent variables. Propensity scores are a popular method for matching, as are the 
likelihoods assigned by statistical or machine-learned models. Synonyms for “outcome” 
include “response” and “result,” and the present paper will use all these synonyms inter-
changeably. The responses are random variables, whereas the scores are viewed as given, 
non-random. In many practical settings, no score from among either subpopulation’s 
members is exactly equal to any score from among the two subpopulations’ other mem-
bers, complicating the comparison and very concept of “matching”; the present paper 
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addresses precisely these practical settings. Some simpler settings are addressed already 
by [1] and others.

Prominent practical applications include the analysis of equity for subpopulations 
(often the subpopulations considered are sensitive groups, perhaps based on protected 
classes such as race, color, religion, gender, national origin, age, disability, veteran sta-
tus, or genetic information), as by [2] and others, as well as the comparison of control 
to treated subpopulations in medical trials, as by [3] and the references in their intro-
duction. Observational studies are another popular application, especially when inves-
tigating differences between healthy, diseased, infected, or treated subpopulations in 
biomedicine, as reviewed by [4].

Statistical questions arise when the responses are discrete, taking values at random 
according to probability distributions whose parameter values can only be estimated 
from the observed data. Perhaps the most common scenario is when each response is 
either a success or a failure, typically encoded as taking the values 1 or 0, respectively. If 
the underlying probability of success is 0.5, for example, then the actual observation will 
be 1 half the time and 0 half the time. Thus, some averaging is necessary to obtain reli-
able estimates when the responses are discrete.

The traditional “reliability diagram” plots binned responses against binned scores. 
Namely, the diagram partitions the real line into disjoint intervals known as “bins” and 
takes the (arithmetic) average of the scores in each bin paired with the average of the 
responses corresponding to the scores in that bin. The reliability diagram then graphs 
the average responses against the average scores. Typically, each subpopulation under 
consideration gets its own graph, superimposed on the same diagram. Copious examples 
are available in the figures below, as detailed in section “Results and discussion” below. 
Another name for “reliability diagram” (popularized by [2]) is “calibration plot,” espe-
cially when the responses are Bernoulli variates. A comprehensive, textbook review of 
reliability diagrams for plotting calibration is available in Chapter 8 of [5].

There are two canonical choices for the bins that partition the real line in the reliabil-
ity diagram: {1} make the width of every bin be the same or {2} set the widths of the 
bins such that each bin contains roughly the same number of scores from the observed 
data set. Naturally, the second choice can adapt to each subpopulation under considera-
tion. In both cases, increasing the number of bins trades off statistical confidence in the 
estimates for enhanced resolution in detecting deviations as a function of score; after 
all, narrower bins perform less averaging, averaging away less of the randomness in the 
observations. The trade-off between resolution and statistical confidence is inherent in 
methods based on binning or kernel density estimation such as that of [6]. The methods 
proposed in the present paper avoid making such an explicit trade-off and also avoid 
the rather arbitrary decisions about which bins or kernels to use. The present paper 
extensively compares its methods against both standard choices of bins for the classical 
methods.

The present paper follows the cumulative approach introduced into statistics by [7, 
8]. The methodology of Kolmogorov and Smirnov, as well as the refinement (“Kuiper’s 
statistic”) introduced by [9], yields scalar summary statistics useful for screening large 
numbers of data sets and subpopulations. After identification via the scalar statistics 
of potentially statistically significant deviations in a data set for two subpopulations, 
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graphical methods allow for in-depth investigation into the variation of the deviations 
as a function of score. The graphical methods (and hence an intuitive interpretation of 
the associated scalar summary statistics) rely on the weighting used by [10–12], which 
is different from the weighting used by the otherwise closely related approach of [13] 
and the others cited by [14]. The scalar summary statistics of [10] are almost the same 
as those in the present paper, but for the simpler setting in which each score comes with 
precisely one observation from one subpopulation and one observation from the other 
subpopulation. The scalar summary statistics of [11, 12] are analogues of those from the 
appendix of [1] in the special case that the parametric regression function they consider 
is nothing but the identity function on the unit interval [0, 1].

The graphs introduced in the present paper are easy to interpret. For instance, in the 
topmost plots (a and b) of Fig. 1, the deviation between the two subpopulations over a 
range of scores is simply the expected slope of the secant line for the graph over that 
range of scores, as a function of the index k/n (positive slope indicates that the responses 
for one subpopulation are greater on average than those for the other subpopulation, 
while negative slope indicates that the responses for the former subpopulation are less 
than the latter’s on average). Long ranges of steep slopes correspond to ranges of scores 
for which the average responses are significantly different between the two subpopula-
tions; the triangle along the vertical axis on the left of each plot indicates the magnitude 
of the deviation across the full range of scores that would be statistically significant at 
around the 95% confidence level. The connection with statistical significance also moti-
vated related works, including that of [15, 16], which offer Kolmogorov-Smirnov met-
rics to help gauge calibration of probabilistic predictions, much like in the appendix of 
[1]. Similarly, Section 3.2 of [17] and Chapter 8 of [5] propose cumulative reliability dia-
grams, albeit without leveraging the key to the approach of the present paper, namely 
that slope is easy to assess visually even when the constant offset of the part of a graph 
under consideration is arbitrary and uninformative. Detailed explanation of statistical 
significance and Fig. 1 is available in sections  “Methods” and  “Results and discussion” 
below.

Section  “Methods” introduces the methodology of cumulative differences, both for 
graphs of the differences and for the scalar metrics of Kuiper and of Kolmogorov and 
Smirnov that summarize the graphs’ deviation away from being perfectly flat. Sec-
tion “Results and discussion” presents several illustrative examples, via both simple syn-
thetic and complicated real data sets.1 Section “Conclusion” concludes the paper with a 
brief discussion. Table 1 summarizes the notation used throughout the present paper. 
Readers interested mainly in seeing results and comparisons of the proposed methods to 
the old standbys may wish to start with section “Results and discussion”.

Methods
This section details the methodology proposed in the present paper. Sec-
tion “Approach to big data” breaks data analysis into two stages: a first, broad-brush 
stage of screening for potentially significant deviations across many data sets and 

1  Permissively licensed open-source software that can automatically reproduce all figures and statistics reported below is 
available at https://​github.​com/​faceb​ookre​search/​fbcdd​isgra​ph.

https://github.com/facebookresearch/fbcddisgraph
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pairs of subpopulations, and a second, finely detailed investigation of the variations 
in the deviations as a function of score. Section “Unweighted sampling” develops the 
graphical method for the second stage, in the simplest case of unweighted sampling. 
Section “Scalar summary statistics” then collapses the graphs of section “Unweighted 

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 1  n = 6451; Kuiper’s statistic is 0.09740/σ = 7.823 , Kolmogorov’s and Smirnov’s is 0.09724/σ = 7.810 ; 
the reliability diagrams with only 10 bins each (c and d) smooth out the jumps at high scores, and while 
the reliability diagrams with 50 bins each (e and f) give some indication of the jumps, the jumps still get 
smoothed over, while the bins for lower scores are too narrow to average away noise well. The cumulative 
graph (a) clearly displays the jumps, while remaining easily interpretable at lower scores. The statistics of 
Kuiper and of Kolmogorov and Smirnov are both several times greater than σ , so both reflect that the 
deviation displayed in the graphs is highly statistically significant
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sampling” into scalar statistics useful for the first, broad-brush stage. Section “Sig-
nificance of stochastic fluctuations” explains how to gauge statistical significance. 
Finally, section “Weighted sampling” treats the case of weighted sampling, general-
izing the previous sections to the more complicated case of data with weights.

Approach to big data

This subsection proposes a two-step approach to analyzing multiple data sets and 
subpopulations (the same approach taken by [1] in a related setting): 

1.	 Calculate a single scalar summary statistic for each data set for each pair of subpopu-
lations of interest, such that the size of the statistic measures the deviation between 
the subpopulations.

2.	 Analyze in graphic detail each data set and pair of subpopulations whose scalar sum-
mary statistic is large, graphing how the deviation between the subpopulations varies 
as a function of score.

The scalar statistic for the first step simply summarizes the overall deviation across 
all scores, as either the maximum absolute deviation of the second step’s graph or 
the size of the range of deviations in the graph. Thus, both steps rely on a graph, 
with the first stage collapsing the graphical display into a single scalar summary sta-
tistic. The following subsection details the construction of this graph, for the case of 
unweighted sampling (later, section “Weighted sampling” treats the weighted case).

Table 1  Notational conventions (The symbols in the table are in alphabetical order.)

Symbol Meaning Equation for the unweighted 
case

Equation for the case with 
weights

Ak Abscissa for the cumulative 
graph in the case with weights

(Not applicable) (16)

Ck Cumulative average difference 
between the subpopulations

(3) (15)

Dk Average difference between the 
subpopulations

(1) and (2) (1) and (2)

�k Expected slope of Cj from j = k 
to j = k + 1

(6) (20)

G Kolmogorov-Smirnov statistic (11) (11)

H Kuiper statistic (12) (12)

R
j
k

(Average) response for subpop-
ulation j’s kth block—random 
dependent variable, outcome, 
or result

(Step 4 within sec-
tion “Unweighted sampling”)

(Readjusted in section “Weighted 
sampling”)

S
j
k

(Average) score for subpopula-
tion j’s kth block—non-random 
independent variable

(Step 4 within sec-
tion “Unweighted sampling”)

(Readjusted in section “Weighted 
sampling”)

σ Scale of random fluctuations 
over the full range of scores

(13) (21)

Tk Total weight for R0k/2 or R1
(k−1)/2

(Not applicable) (14)

Wk Aggregated weight (Not applicable) (14)
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Unweighted sampling

This subsection presents the special case in which the observations are unweighted 
(or, equivalently, uniformly or equally weighted). Section “Weighted sampling” treats 
the more general case of weighted observations, which is more complicated.

The present and all following subsections focus on a single data set together with a 
single pair of subpopulations; the previous subsection outlines a strategy for handling 
multiple data sets and pairs of subpopulations, based on the processing of individual 
cases. The data being considered should be observations of independent responses, 
with each response taking one of finitely many real-valued possibilities, and with each 
(random) response being paired with a real-valued score viewed as given not random 
(the responses across the different scores should be independent). Hence, the scores 
can take on any real values, whereas the responses should be drawn from discrete 
distributions. In the present paper, the scores from the observations in both subpopu-
lations put together must be distinct—the score for every observation from either sub-
population must be unique or else slightly perturbed to become different from all the 
other scores (perturbing as little as possible while accounting for roundoff, for instance).

Under this assumption of uniqueness, a graphical method for analyzing deviation 
between the outcomes of the two subpopulations as a function of score comprises the 
following procedure: 

1.	 Merge all scores into a single sequence.
2.	 Sort the merged sequence into ascending order and let “subpopulation 0” denote the 

subpopulation associated with the first (the least) score in the sorted sequence.
3.	 Partition the sorted sequence into blocks such that the scores in every other block all 

come from subpopulation 0, interleaved with blocks in which all scores come from 
subpopulation 1; that is to say: 

(a)	 the scores in the first (lowest) block all come from subpopulation 0,
(b)	 the scores in the second lowest block all come from subpopulation 1,
(c)	 the scores in the third lowest block all come from subpopulation 0,
(d)	 the scores in the fourth lowest block all come from subpopulation 1,
(e)	 and so on, alternating between the two subpopulations, with all scores in each 

block coming from only one of the subpopulations.

4.	 Denote by S0k the (arithmetic) average of the scores in the (2k + 1) th block and denote 
by S1k the average of the scores in the (2k + 2) th block; denote by R0

k the average of 
the responses (the random outcomes) corresponding to the scores in the (2k + 1) th 
block and denote by R1

k the average of the responses (the random outcomes) corre-
sponding to the scores in the (2k + 2) th block.

5.	 Form the sequence of average differences with even-indexed entries 

 and odd-indexed entries 

(1)D2k =
(R0

k − R1
k)+ (R0

k+1
− R1

k)

2
=

R0
k + R0

k+1
− 2R1

k

2
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6.	 Graph as a function of j/n the sequence of cumulative average differences 

 for j = 1 , 2, ..., n, where n is the length of the sequence D0, D1 , ..., Dn−1 from the pre-
vious step. Supplement C1 , C2 , ..., Cn with 

Figure 2 illustrates Steps 1–4, while Fig. 3 illustrates Step 5. The increment in the expected 
cumulative average difference from j = k to j = k + 1 is

so that the expected slope of a graph of Ck versus k/n is

(2)D2k+1 =
(R0

k+1
− R1

k)+ (R0
k+1

− R1
k+1

)

2
=

2R0
k+1

− R1
k − R1

k+1

2
.

(3)Cj =
1

n

j−1
∑

k=0

Dk

(4)C0 = 0.

(5)E [Ck+1 − Ck ] =
E [Dk ]

n
,

(6)�k = E [Dk ],

scoreS0 S S S S S S S S S S S S S0 0 1 0 1 0 1 1 0 1 0 1
0 0 1 3 3 4 4 5 8 8 9 9

1
2 2 S0

5S1
1

1S7
0
7S S0

6S6
1

R0 R R R R R R R R R R R R R0 0 1 0 1 0 1 1 0 1 0 1
0 0 1 3 3 4 4 5 8 8 9 9

1
2 2 R0

5R1
1

1R7
0
7R R0

6R6
1

= 0
score

= 1

Fig. 2  The crosses (“x”) indicate the scores for subpopulation 0 while the circles (“o”) indicate the scores 
for subpopulation 1. The averages of the scores for subpopulation 0 for the indicated blocks of observed 
scores are S0

0
 , S0

1
 , ..., S0

9
 , while the averages of the scores for subpopulation 1 are S1

0
 , S1

1
 , ..., S1

9
 . The averages of 

the responses for subpopulation 0 corresponding to the indicated blocks of observed scores are R0
0
 , R0

1
 , ..., R0

9
 , 

while the averages of the responses for subpopulation 1 are R1
0
 , R1

1
 , ..., R1

9
 . The scores need not range from 0 to 

1 as in the present figure, but that is a common case

(a)

2

R0
k Rk

1 R0
k+1

2

D k

(b)

+1k+1

D k2 +1

R1
k R0 R1

2

k

Fig. 3  In each of these subfigures, the operation indicated by “ + ” sums its two inputs and the operations 
indicated by “−” subtract their inputs, with one of these “−” operations subtracting its rightmost input 
from its leftmost input, while the other subtracts its leftmost input from its rightmost input. In all cases, the 
operations indicated by “−” subtract subpopulation 1 from subpopulation 0, in that order. The operation 
indicated by “ ÷2 ” divides its input by 2. These subfigures depict visually Formulaes (1) and (2), respectively
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which is simply the expected value of the difference between the two subpopulations. 
Thus, the slope of a secant line over a long range of k/n for the graph of Ck versus k/n 
becomes the average difference in responses between the subpopulations.

Figure  1 presents a synthetic example from section  “Synthetic” below for which the 
ground-truth is known explicitly. In accord with (5), the topmost plots (a and b) of Fig. 1 
display deviation between the two subpopulations over a range of scores as the expected 
slope of the secant line for the graph over that range of scores, as a function of the index 
k/n given along the horizontal axis. As mentioned in the introduction, long ranges of steep 
slopes correspond to ranges of scores for which the average responses are significantly dif-
ferent between the two subpopulations, with the triangle along the vertical axis on the left 
of each plot indicating the magnitude of the deviation across the full range of scores that 
would be statistically significant at around the 95% confidence level. Section “Significance 
of stochastic fluctuations” below provides details on statistical significance and the compu-
tation of the triangle’s height.

Remark 1  The blocked sequence of responses is R0
0
 , R1

0
 , R0

1
 , R1

1
 , R0

2
 , R1

2
 , .... The backward 

differences are

and

while the forward differences are

and

so that D2k from (1) is the average of  (7) and  (9) while D2k+1 from (2) is the negative 
of the average of  (8) and (10). The reason for D2k+1 to be the negative is to align with 
D2k when summing them in  (3)—the differences need to be in the same direction for 
the sum to make sense, and the negative synchronizes the directions of the differences 
(which would otherwise be alternating or staggered in the sequence); with the negative, 
the differences always compare subpopulation 0 to subpopulation 1, in that order.

Remark 2  In the absence of any reason to prefer backward differences to forward dif-
ferences (or vice versa), we opt to average the two possibilities together. In the absence of 
any reason to prefer entries in the sequence with even indices ( D0 , D2 , D4 , ...) to entries 
with odd indices ( D1 , D3 , D5 , ...), we include both.

(7)R0
k − R1

k

(8)R1
k − R0

k+1
,

(9)R0
k+1

− R1
k

(10)R1
k+1 − R0

k+1
,
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Scalar summary statistics

This subsection constructs standardized statistics which summarize in single scalars the 
plots of the previous subsection.

Two standard metrics for the overall deviation between the two subpopulations over 
the full range of scores and that take into account expected random fluctuations are that 
due to Kolmogorov and Smirnov, the maximum absolute deviation

and that due to Kuiper, the size of the range of the deviations

where C0 is defined in (4) and C1 , C2 , ..., Cn are defined in (3). Under appropriate statisti-
cal models, G and H can form the basis for tests of statistical significance, the context in 
which they originally appeared; see, for example, Section 14.3.4 of [18]. To assess statisti-
cal significance (rather than absolute effect size), G and H should be rescaled larger by 
a factor proportional to 

√
n ; further discussion of the rescaling is available in the next 

subsection. Needless to say, if the graph constructed in the previous subsection is fairly 
flat for all scores (which indicates a lack of deviation between the subpopulations for 
all scores), then both the maximum absolute deviation of the graph and the size of the 
range of deviations (G and H, respectively) will be close to 0. The captions of the figures 
report the values of these scalar statistics for numerical examples.

Remark 3  Remark 1 of [1] explains the reason for including C0 in the definition of Kui-
per’s statistic H in (12), as well as why H is often slightly preferable to G.

Significance of stochastic fluctuations

This subsection discusses statistical significance both for the graphical methods of sec-
tion “Unweighted sampling” and for the summary statistics of section “Scalar summary 
statistics”.

The graph of Ck as a function of k/n generally displays some “confidence bands” due 
to Ck fluctuating randomly as the index k increments; the “thickness” of the plot arising 
from the random fluctuations gives some sense of “error bars.” To indicate the rough 
size of the fluctuations of the maximum deviation expected under the hypothesis that 
the actual underlying response distributions of the two subpopulations are the same, 
the plots should include a triangle centered at the origin whose height above the origin 
is proportional to 1/

√
n . The triangle is similar to the conventional confidence bands 

around an empirical cumulative distribution function introduced by Kolmogorov and 
Smirnov, as reviewed by [19]—a driftless, purely random walk deviates from zero by 
roughly 

√
n after n steps, so a random walk scaled by 1/n deviates from zero by roughly 

1/
√
n . Identification of deviation between the two subpopulations is reliable when 

focusing on long ranges of steep slopes (as a function of k/n) for Ck ; the triangle gives 
a sense of the length scale for the largest stochastic variations that are likely to happen 

(11)G = max
1≤k≤n

|Ck |,

(12)H = max
0≤k≤n

Ck − min
0≤k≤n

Ck ,



Page 10 of 29Tygert ﻿Journal of Big Data           (2021) 8:158 

even when there is no underlying deviation between the subpopulations. The remainder 
of the present subsection derives this conservative upper bound on the length scale in 
cases for which the value of every observed response is either 0 or 1.

The long-range deviations of C0 , C1 , C2 , ..., Cn from zero can be biased even when the 
two subpopulations are drawn from the same underlying distribution as a function of 
score; however, the use of centered, second-order differences in (1) and (2) makes this 
a second-order effect. In the sequel, we make two assumptions about bias: {1} the bias 
arising from averaging together multiple responses at slightly different scores into a sin-
gle R0

k or R1
k is offset by the reduction in variance due to the averaging, and {2} the bias 

arising from taking differences of responses from the different subpopulations at slightly 
different scores is negligible in comparison with the square root of the accumulated vari-
ance. The first assumption can be especially reasonable when the scores considered for a 
single R0

k or R1
k are in reality drawn at random from some probability distribution, such 

that the variance in the probabilities of success for the associated Bernoulli responses 
is comparable to the variance of a Bernoulli variate with a given probability of success. 
In such cases, the first assumption permits us to regard each R0

k or R1
k as contributing 

no more to the long-range deviation than a single Bernoulli variate would. The second 
assumption means that we will neglect the second-order effect of accumulated bias, 
which is often reasonable due to the use of second-order differences in (1) and (2).

In cases for which the value of every observed response is either 0 or 1, the tip-to-
tip height of the triangle centered at the origin should be 8/n times the standard 
deviation of the sum of n independent Bernoulli variates. This is simply 8/n times the 
square root of the sum of the variances of n Bernoulli variates, which could be at most 
(8/n)(

√
n/4) = 4σ , where

since the variance of a Bernoulli variate is p(1− p) ≤ 1/4 , where p is the unknown 
probability of success. Note that the factor 8 incorporates a factor of 2 for the triangle 
extending both above and below the origin, a factor of 2 to extend for 2 standard devia-
tions rather than just 1 (setting the confidence level at approximately 95%), a factor of 
√

2 due to the dependency between the even- and odd-indexed entries in the sequence 
of second-order differences from (1) and (2), and a factor of 

√

2 to account for having 2 
independently drawn subpopulations. Needless to say, the upper bound of 4σ is often 
somewhat loose in practice, as the two assumptions discussed in the previous paragraph 
yield rather conservative guarantees. Tighter bounds may exist in settings for which the 
scores are drawn from a specified probability distribution (unlike in the setting of the 
present paper).

Weighted sampling

This subsection presents the general case in which the observations come with weights, 
where each weight is a positive real number associated with the corresponding observa-
tion. Section “Unweighted sampling” treats the special case of unweighted (or, equiva-
lently, uniformly or equally weighted) observations, which is simpler.

(13)σ =
1
√
n
,
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The weighted case uses the same procedure as in section “Unweighted sampling”, but 
with S0k , S1k , R0

k , and R1
k being weighted averages rather than unweighted averages (the 

weighted average for each S0k , S1k , R0
k , and R1

k should be normalized separately). Then, we 
define T2k to be the average of the weights associated with the scores whose weighted 
average is S0k , and define T2k+1 to be the average of the weights associated with the scores 
whose weighted average is S1k . Setting Wk to be the sum of the weights associated with Dk 
defined in (1) and (2), that is,

Formula (3) generalizes to

for j = 1 , 2, ..., n, while C0 = 0 exactly as before in Formula (4). In the weighted case, the 
abscissae (that is, the horizontal coordinates) for the graph consist of the normalized 
aggregated weights

for j = 1 , 2, ..., n, and

The original, unweighted procedure of section “Unweighted sampling” yields precisely 
the same results as the weighted procedure of the present subsection in the special case 
that the weights for the original observations are all the same.

The increment in the expected cumulative weighted average difference from j = k to 
j = k + 1 is

while the increment in the normalized aggregated weights from j = k to j = k + 1 is

so that the expected slope of a graph of Ck versus Ak is the ratio of (18) to (19), that is,

which is none other than the expected value of the difference between the two subpopu-
lations. Thus, the slope of a secant line over a long range of k for the graph of Ck versus Ak 
becomes the average difference in responses between the subpopulations.

The scalar summary statistics in the weighted case are given by the same formu-
lae from section  “Scalar summary statistics” as for the unweighted case, just using Cj 

(14)Wk = Tk + 2Tk+1 + Tk+2,

(15)Cj =

∑j−1

k=0
WkDk

∑n−1

k=0
Wk

(16)Aj =

∑j−1

k=0
Wk

∑n−1

k=0
Wk

(17)A0 = 0.

(18)E [Ck+1 − Ck ] =
Wk E [Dk ]
∑n−1

j=0 Wj

,

(19)Ak+1 − Ak =
Wk

∑n−1
j=0 Wj

,

(20)�k = E

[

Ck+1 − Ck

Ak+1 − Ak

]

= E [Dk ],
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from (15) in place of Cj from (3). In cases for which the value of every observed response 
is either 0 or 1, the tip-to-tip height of the triangle centered at the origin analogous to 
that from section “Significance of stochastic fluctuations” could be set conservatively at 
4σ , where

which is an upper bound on the worst case under the same two assumptions as in sec-
tion “Significance of stochastic fluctuations”.

Remark 4  The classical methods for reliability diagrams discussed in the introduction 
easily adapt to the case of weighted sampling. Rather than plotting the plain, unweighted 
average of responses against the unweighted average of scores in each bin, the weighted 
case involves plotting the weighted average of responses against the weighted average 
of scores in each bin. Two natural choices of bins in the weighted case are {1} make 
the widths of the bins all be the same or {2} use the binning of the following remark 
(Remark 5). As in the unweighted case, the second choice can adapt to each subpopula-
tion under consideration, with each subpopulation having its own binning.

Remark 5  In the case of weighted sampling, the most useful reliability diagrams are 
usually those entitled, “reliability diagram ( ‖W‖2/‖W‖1 is similar for every bin).” These 
diagrams construct bins such that, for every bin, the ratio of the sum of the squares of 
the bin’s weights to the square of the sum of the bin’s weights is similar for every bin. 
Remark 5 of [1] details the specific procedure employed for setting the bins.

Results and discussion
This section illustrates via numerous examples the previous section’s methods, includ-
ing comparisons with the canonical plots—the “reliability diagrams”—discussed in the 
introduction.2 Section  “Synthetic” presents several synthetic examples. Section  “Ima-
geNet” gives examples from a popular, unweighted data set of images, ImageNet. Sec-
tion “American Community Survey of the U.S. Census Bureau” considers a weighted data 
set, the year 2019 American Community Survey of the United States Census Bureau. 
Finally, section  “Cautions” issues a warning about possible overinterpretations of the 
plots (both for the cumulative graphs and for the classical reliability diagrams) and sug-
gests following [1] by comparing a subpopulation to the full population (when apposite).

The figures display the reliability diagrams (that is, the classical calibration plots) 
as well as both the graphs of cumulative differences and the exact expectations in the 
absence of the random sampling’s noise (the figures include the exact expectations only 
when they are known, as for the synthetic data). The captions of the figures discuss the 
numerical results depicted.

(21)σ =

√

∑n−1

k=0
(Wk)

2

∑n−1

k=0
Wk

,

2  Permissively licensed open-source software that can automatically reproduce all figures and statistics reported in the 
present paper is available at https://​github.​com/​faceb​ookre​search/​fbcdd​isgra​ph.

https://github.com/facebookresearch/fbcddisgraph
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The title, “subpopulation deviation is the slope as a function of k/n,” labels a plot of Ck 
from (3) as a function of k/n. In each such plot, the upper axis specifies k/n, while the 
lower axis specifies the score for the corresponding value of k. The title, “subpopulation 
deviation is the slope as a function of Ak ,” labels a plot of Ck from (15) versus the cumu-
lative weight Ak from (16). In each such plot, the major ticks on the upper axis specify 
k/n, while the major ticks on the lower axis specify the score for the corresponding value 
of k; the points in the plot are the ordered pairs (Ak ,Ck) for k = 1, 2, ..., n, with Ak being 
the abscissa and Ck being the ordinate. (The abscissa is the horizontal coordinate; the 
ordinate is the vertical coordinate.)

In all cases, if the second subpopulation ends up being subpopulation 0 in the notation 
of section  “Methods”, then the cumulative graph technically actually plots −Ck rather 
than Ck (in the same notation of section “Methods”).

The titles, “reliability diagram,” “reliability diagram (equal number of subpopulation 
scores per bin),” and “reliability diagram ( ‖W‖2/‖W‖1 is similar for every bin),” label 
plots of the pairs from the introduction (in the unweighted case) or from Remark 4 (in 
the case of weighted sampling), with the pairs from the first subpopulation in black and 
the pairs from the second subpopulation in gray.

In the traditional, binned plots, we vary the number of bins to see how the plotted 
values vary. Displaying the bin frequencies is another way to indicate uncertainties, as 
suggested, for example, by [20]. Still other possibilities for uncertainty quantification 
could use kernel density estimation, as suggested, for example, by [6, 21] and [5]. Such 
uncertainty estimates involve setting widths for the bins or kernel smoothing; such set-
tings are fairly arbitrary and actually unnecessary when varying the widths as in the plots 
of the present paper. A comprehensive review of the various possibilities is available in 
Chapter 8 of [5].

As the introduction discusses, there are two standard choices for the bins when the 
sampling is unweighted (or uniformly weighted): {1} make the average of the scores in 
each bin be roughly equidistant from the average of the scores in each neighboring bin 
or {2} make the number of scores in every bin (except perhaps for the last) be the same. 
The figures label the first, more conventional possibility with the short title, “reliabil-
ity diagram,” and the second possibility with the longer title, “reliability diagram (equal 
number of subpopulation scores per bin).” As noted in Remark 4, there are two typical 
choices for the bins when the sampling is weighted: {1} make the weighted average of the 
scores in each bin be roughly equidistant from the weighted average of the scores in each 
neighboring bin or {2} follow Remark 5 above. The figures label the first possibility with 
the short title, “reliability diagram,” and the second possibility with the longer title, “reli-
ability diagram ( ‖W‖2/‖W‖1 is similar for every bin).”

Needless to say, reliability diagrams with fewer bins provide estimates that are less 
noisy, at the cost of restricting the resolution for detecting deviations and for resolving 
variations as a function of the score.

Synthetic

This subsection presents several toy examples that consider instructive “ground-truth” 
statistical models and generate observations at random from them. The examples set 
values for the scores and expected values of the responses, and then independently draw 
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the observed responses from the Bernoulli distributions whose probabilities of success 
are those expected values.

Each top row of Figs. 1, 4, 5, and 6 plots C1 , C2 , ..., Cn from (3) as a function of k/n, with 
the rightmost plot displaying its noiseless expected value rather than using the random 
observations ( R0

k and R1
k ). (Technically speaking, the top row of Fig. 5 actually plots −C1 , 

−C2 , ..., −Cn , since for Figs. 5 the second subpopulation ends up being subpopulation 

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 4  n = 5472; Kuiper’s statistic is 0.1531/σ = 11.32 , Kolmogorov’s and Smirnov’s is 0.1531/σ = 11.32 ; the 
reliability diagrams all have trouble resolving the sharp behavior corresponding to the relatively sharp corners 
in the cumulative graphs (a and b), though the reliability diagram with 50 bins that has an equal number 
of subpopulation scores per bin (e) is decent. The metrics of Kuiper and of Kolmogorov and Smirnov report 
extremely statistically significant deviation, taking values of many times σ
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0 in the notation of section  “Methods”.) Each bottom row of Figs.  1,  4, 5, and 6 plots 
the pairs of scores and expected values for the first subpopulation in black, and plots 
the pairs for the second subpopulation in gray, producing ground-truth diagrams that 
the middle two rows of plots are trying to estimate using only the observations, without 
access to the underlying probabilities.  

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 5  n = 6637; Kuiper’s statistic is 0.2730/σ = 22.24 , Kolmogorov’s and Smirnov’s is 0.2730/σ = 22.24 ; 
the reliability diagrams with 10 bins each (c and d) smooth the black curve too much, while the reliability 
diagrams with 50 bins each (e and f) display overly noisy variations in the gray curve. The empirical 
cumulative graph (a) matches its ground-truth expectations (b) well, though the oscillations at low scores are 
a bit hard to discern in the cumulative graphs. The metrics of Kuiper and of Kolmogorov and Smirnov report 
profoundly statistically significant deviation, taking values many times larger than σ
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The first three examples include substantial deviations in the expected responses 
between the two subpopulations, while the fourth example omits any deviation in 
the expected responses between the two subpopulations. The first three examples 

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 6  n = 6451; Kuiper’s statistic is 0.01429/σ = 1.148 , Kolmogorov’s and Smirnov’s is 0.01046/σ = 0.8402 ; 
the stochastic variations in the empirical cumulative graph (a) are clearly within the expectations indicated 
by the triangle at the origin—the graph looks like a perfectly random walk, and indeed really is a drift-free, 
perfectly random walk. The statistics of Kuiper and of Kolmogorov and Smirnov give no indication of 
any statistically significant deviation between the subpopulations, as both are less than 1.25σ—the 
expected value for the metric of Kolmogorov and Smirnov in the absence of any deviation between the 
subpopulations’ expected responses, as detailed by Remark 2 of [1]
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illustrate how well the various plots can detect substantial deviations, while the fourth 
example illustrates how the plots look in the absence of any deviation.

For the first example, corresponding to Fig.  1, the scores for the first subpopula-
tion are 0.5(1+ 23(x − 0.5)3) for 10,000 values of x drawn uniformly at random from 
the unit interval [0, 1], whereas the scores for the second subpopulation are 7000 val-
ues drawn uniformly at random from the unit interval [0, 1] (the latter values are also 
equal to 0.5(1+ 2(x − 0.5)) for 7000 values of x drawn uniformly at random from the 
unit interval [0, 1]). The expected values are as indicated in the lowermost plot of Fig. 1, 
with the expected values for each subpopulation varying smoothly as a function of the 
score, aside from swapping the values between the two subpopulations for scores in a 
short range near 0.9. The deviation in the expected values between the subpopulations is 
substantial for this example.

For the second example, corresponding to Fig. 4, the scores for the first subpopulation 
are x5 for 10,000 values of x drawn uniformly at random from the unit interval [0, 1], 
whereas the scores for the second subpopulation are 7000 values drawn uniformly at 
random from the unit interval [0, 1]. The expected values are as indicated in the lower-
most plot of Fig. 4, with several discontinuities in the expected values. The deviation in 
the expected values between the subpopulations is substantial for this example, too.

For the third example, corresponding to Fig. 5, the scores for the first subpopulation 
are 0.5(1+ 21/3(x − 0.5)1/3) for 10,000 values of x drawn uniformly at random from 
the unit interval [0, 1], whereas the scores for the second subpopulation are 7000 val-
ues drawn uniformly at random from the unit interval [0, 1] (the latter values are also 
equal to 0.5(1+ 2(x − 0.5)) for 7000 values of x drawn uniformly at random from the 
unit interval [0, 1]). The lowermost plot of Fig. 5 displays the expected values, with the 
expected values for the first subpopulation varying sinusoidally within an envelope 
bounded below by 0 and bounded above by the diagonal line on the plot extending from 
the origin (0,  0) to the point (1,  1), and with the expected values for the second sub-
population drawn uniformly at random from the unit interval [0, 1]. The deviation in the 
expected values between the subpopulations is substantial for this example, as well.

For the fourth example, corresponding to Fig. 6, the scores are the same as in the first 
example, and the expected values are equal to the scores. Since the expected values are 
equal to the scores, the expected values are given by the same function of the score for 
both subpopulations, and thus there is no deviation between the expected responses for 
the subpopulations in this example.

The captions of the figures comment on the numerical results displayed.

ImageNet

This subsection applies the methods of section “Methods” to the training data set “Ima-
geNet-1000” of [22], which contains a thousand labeled classes. Each class forms a natu-
ral subpopulation to consider, with each class considered consisting of 1300 images of a 
particular noun (such as a “cheetah,” a “night snake,” or an “Eskimo Dog or Husky”). The 
total number of members of the data set over all classes is 1,281,167, as some classes in 
the data set contain fewer than 1300 images, but each subpopulation considered below 
comes from a class with 1300 images. The images are unweighted (or, equivalently, uni-
formly or equally weighted), not requiring the methods of section “Weighted sampling” 
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above. We calculate the scores using the pretrained ResNet18 classifier of [23] from the 
computer-vision module, “torchvision,” in the PyTorch software library of [24]; the score 
for an image is the negative of the natural logarithm of the probability assigned by the 
classifier to the class predicted to be most likely, with the scores randomly perturbed 
by about one part in 108 to guarantee their uniqueness. The response (also known as 
“result” or “outcome”) corresponding to a given score takes the value 1 when the class 
predicted to be most likely is the correct class; the response takes the value 0 otherwise. 
Figures 7, 8, and 9 present three examples; the captions first list the names of the classes 
for the subpopulations and then compare the different kinds of plots.  

American Community Survey of the U.S. Census Bureau

This subsection applies the methods of section “Weighted sampling” to the latest (year 
2019) microdata from the American Community Survey of the United States Census 
Bureau;3 specifically, we consider each subpopulation to be the observations from a 
county in California. The sampling in this survey is weighted, and we retain only those 
members whose weights (“WGTP” in the microdata) are nonzero, omitting any mem-
ber whose household personal income (“HINCP”) is zero or for which the adjustment 
factor to income (“ADJINC”) is missing. The scores are the logarithm to base 10 of the 
adjusted household personal income (the adjusted income is “HINCP” times “ADJINC,” 
divided by one million when “ADJINC” omits its decimal point in the integer-valued 
microdata), and we randomly perturb the scores by about one part in 108 to guarantee 
their uniqueness. The response (also known as “result” or “outcome”) for a given score 
takes the value 1 when the corresponding household has limited English speaking (lim-
ited English speaking refers to a household in which every member strictly older than 
13 has some difficulty speaking English); the response takes the value 0 when the cor-
responding household is fully English speaking. Table 2 lists the numbers of scores in 
the subpopulations prior to any binning. Figures 10, 11, 12, 13, 14, and 15 present several 
examples; the captions first list the names of the counties corresponding to the subpopu-
lations considered and then compare the reliability diagrams with the cumulative graph.

Cautions

This subsection warns about some limitations of both the methods of the present paper 
and the conventional reliability diagrams.

The fourth example from section  “Synthetic”, with its corresponding Fig.  6, empha-
sizes a cautionary note: avoid hallucinating deviations between the subpopulations on 
account of statistically insignificant random fluctuations! The indicators such as σ and 
the triangle at the origin discussed in sections “Scalar summary statistics”, “Significance 
of stochastic fluctuations”, and “Weighted sampling” are critical for the proper interpre-
tation of statistical significance. (Note that similar questions of significance also arise for 
the conventional reliability diagrams, on account of multiple testing: error bars for each 
bin could report 95% confidence intervals, for instance, but then 1 out of every 20 such 
bins would be expected to report results exceeding its error bar.)

3  All microdata from the United States Census Bureau’s American Community Survey of 2019 is available for download 
at https://​www.​census.​gov/​progr​ams-​surve​ys/​acs/​micro​data.​html.

https://www.census.gov/programs-surveys/acs/microdata.html
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(a)

(b) (c)

(d) (e)

(f) (g)

Fig. 7  Eskimo Dog (or Husky) vs. Cheetah (Acinonyx jubatus); n = 455; Kuiper’s statistic is 0.3738/σ = 7.974 , 
Kolmogorov’s and Smirnov’s is 0.3738/σ = 7.974 ; in this case, the reliability diagrams with many bins 
can resolve the phenomena displayed in the graph of cumulative differences (a), but only by sacrificing 
confidence in their estimates, as they exhibit wild fluctuations. The metrics of Kuiper and of Kolmogorov and 
Smirnov both report extremely statistically significant deviations between the subpopulations
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(a)

(b) (c)

(d) (e)

(f) (g)

Fig. 8  Night snake (Hypsiglena torquata) vs. Monarch (or milkweed) butterfly (Danaus plexippus); n = 304; 
Kuiper’s statistic is 0.3138/σ = 5.471 , Kolmogorov’s and Smirnov’s is 0.3138/σ = 5.471 ; the lack of deviation 
at large scores is hard to detect without 30 bins or more (d, e, f, and g), but then the reliability diagrams are 
too noisy for other scores. Moreover, the diagrams with only 10 or 30 bins (b, c, d, and e) smooth away the 
extreme deviation for the lowest scores. The graph of cumulative differences (a) captures all phenomena 
nicely simultaneously. The statistics of Kuiper and of Kolmogorov and Smirnov both report very highly 
statistically significant deviations between the subpopulations
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(a)

(b) (c)

(d) (e)

(f) (g)

Fig. 9  Monarch (or milkweed) butterfly (Danaus plexippus) vs. Wild boar (Sus scrofa); n = 315; Kuiper’s 
statistic is 0.1292/σ = 2.294 , Kolmogorov’s and Smirnov’s is 0.1292/σ = 2.294 ; the reliability diagrams with 
30 bins or less (b, c, d, and e) underestimate (or fail to resolve) the extreme deviation at the lowest scores, 
whereas the diagrams with 50 bins (f and g) are far too noisy for the other scores. The graph of cumulative 
differences (a) resolves all these behaviors clearly. The metrics of Kuiper and of Kolmogorov and Smirnov 
both report somewhat statistically significant deviations between the subpopulations, though much less 
extreme than in Figs. 7 and 8
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A chief drawback of the approach of the present paper is the limitation highlighted 
in the abstract, in the introduction, and in an italicized sentence of section “Methods”, 
too: the score for every observation in either subpopulation must not be exactly equal 
to the score for any other observation from the subpopulations. Of course, one way 
to enforce the required uniqueness of scores is to perturb them at random slightly. 
Another drawback is that the observations from one subpopulation get compared to 
observations from the other subpopulation at slightly different scores; although the 
bias that this introduces in the cumulative approach is less than in the classical reli-
ability diagrams, the bias is still there and potentially worrisome. An ideal means of 
circumventing such drawbacks is to compare a subpopulation to the full population 
as detailed by [1]. The approach of [1] is effectively ideal and should be the method of 
choice whenever applicable. The approach of the present paper is only relevant when 
comparing subpopulations directly is necessary.

Conclusion
The plot of cumulative differences between the two subpopulations is easy to interpret—
the slope of a secant line for the graph over a long range becomes the average difference 
between the two subpopulations, and slope is easy to gauge irrespective of any constant off-
set of the secant line. The plots for the examples of section “Results and discussion” clearly 
demonstrate many advantages of the cumulative approach over the classical reliability dia-
grams, and the scalar summary statistics of Kuiper and of Kolmogorov and Smirnov usually 
faithfully reflect significant differences between the subpopulations if any occur across the 
full range of scores in the plots. The graphs of cumulative differences avoid explicitly mak-
ing a trade-off between statistical confidence and resolution as a function of score—a trade-
off that is inherent to the traditional binned diagrams.

Table 2  Numbers of observations in the original data sets

Number of the figure Number of scores for the first subpop. Number of scores 
for the second 
subpop.

1, 4, 5, 6 10,000 7000

7, 8, 9 1300 1300

10 6415 1616

11 3440 2276

12 3440 3697

13 3440 2282

14 3440 2888

15 7826 843
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(a)

(b) (c)

(d) (e)

(f) (g)

Fig. 10  Alameda County vs. Placer County; n = 2536; Kuiper’s statistic is 0.05192/σ = 2.450 , Kolmogorov’s 
and Smirnov’s is 0.05192/σ = 2.450 ; the behavior for small scores is interesting, as the cumulative graph (a) 
shows a big spike at the very lowest scores and then a very flat part, and only the reliability diagrams with 
100 bins (f and g) reflect those. Yet the latter reliability diagrams are very, very noisy for the other scores. The 
metrics of Kuiper and of Kolmogorov and Smirnov report mildly statistically significant deviation between the 
subpopulations
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(a)

(b) (c)

(d) (e)

(f) (g)

Fig. 11  San Francisco County vs. Kern County; n = 2260; Kuiper’s statistic is 0.07882/σ = 3.454 , 
Kolmogorov’s and Smirnov’s is 0.07863/σ = 3.445 ; only the cumulative graph (a) and the reliability diagrams 
with 100 bins (f and g) resolve both the extreme deviation for many low scores and the relatively small 
deviation for the very lowest scores, whereas 100 bins (f and g) produce far too much noise for most scores. 
The statistics of Kuiper and of Kolmogorov and Smirnov report statistically significant deviation between the 
subpopulations
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(a)

(b) (c)

(d) (e)

(f) (g)

Fig. 12  San Francisco County vs. Contra Costa County; n = 3407; Kuiper’s statistic is 0.06395/σ = 3.488 , 
Kolmogorov’s and Smirnov’s is 0.06395/σ = 3.488 ; only the cumulative graph (a) fully captures the relatively 
small deviation for the very lowest scores, and having even just 100 bins in a reliability diagram (f and g) 
already produces far too much noise for most scores. The metrics of Kuiper and of Kolmogorov and Smirnov 
report statistically significant deviation between the subpopulations
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(a)

(b) (c)

(d) (e)

(f) (g)

Fig. 13  San Francisco County vs. San Joaquin County; n = 2358; Kuiper’s statistic is 0.06160/σ = 2.794 , 
Kolmogorov’s and Smirnov’s is 0.06025/σ = 2.733 ; only the cumulative graph (a) and the otherwise 
extremely noisy reliability diagrams each with 100 bins (f and g) fully detail the sharp spike at scores just 
slightly greater than 4. The metrics of Kuiper and of Kolmogorov and Smirnov report some statistically 
significant deviation between the subpopulations
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(a)

(b) (c)

(d) (e)

(f) (g)

Fig. 14  San Francisco County vs. San Mateo County; n = 3147; Kuiper’s statistic is 0.03688/σ = 1.923 , 
Kolmogorov’s and Smirnov’s is 0.03631/σ = 1.893 ; resolving the full extent of the spike at some of the lowest 
scores in the cumulative graph (a) requires at least 100 bins in the reliability diagrams (f and g), but then the 
reliability diagrams are too noisy at the other scores. The statistics of Kuiper and of Kolmogorov and Smirnov 
do not report very statistically significant deviation between the subpopulations
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(a)

(b) (c)

(d) (e)

(f) (g)

Fig. 15  Riverside County vs. Butte County; n = 1478; Kuiper’s statistic is 0.04624/σ = 1.650 , Kolmogorov’s 
and Smirnov’s is 0.04624/σ = 1.650 ; resolving both the phenomena corresponding to the fairly flat part 
and the phenomena corresponding to the very steep part of the cumulative graph (a) for the lowest scores 
requires at least 100 bins in the reliability diagrams (f and g), but then the rest of the diagrams is very noisy. 
The statistics of Kuiper and of Kolmogorov and Smirnov do not report much statistically significant deviation 
between the subpopulations
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