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Introduction
Emotions play a paramount role in social conversation. They convey essential non-ver-
bal meanings along with the other social signals expressed during social interactions. 
Emotions can be interpreted from several channels, such as facial expressions, body 
gestures, and speech patterns. When conveying emotions, our facial expressions form a 
specific pattern depending on the emotions that we feel. In the 70s, Paul Ekman started 
to work on a coding system called Facial Action Coding System (FACS), describing the 
facial muscle actions [1]. The system enables the researcher to understand and recognise 
the emotions displayed through our facial expressions. When we express our emotions, 
some specific pattern is displayed in our face depending on the emotions. For exam-
ple, when we express happiness, our lip corners are pulled back (FACS code AU12), our 
checks are raised (FACS code AU6), and there are some wrinkles detected around our 
eyes (FACS code AU1 & FACS code AU2). Those patterns can be automatically detected, 
learned through machine learning techniques and mapped to the appropriate emotions. 

Abstract 

Social interactions are important for us, humans, as social creatures. Emotions play an 
important part in social interactions. They usually express meanings along with the 
spoken utterances to the interlocutors. Automatic facial expressions recognition is one 
technique to automatically capture, recognise, and understand emotions from the 
interlocutor. Many techniques proposed to increase the accuracy of emotions recogni-
tion from facial cues. Architecture such as convolutional neural networks demonstrates 
promising results for emotions recognition. However, most of the current models of 
convolutional neural networks require an enormous computational power to train and 
process emotional recognition. This research aims to build compact networks with 
depthwise separable layers while also maintaining performance. Three datasets and 
three other similar architectures were used to be compared with the proposed archi-
tecture. The results show that the proposed architecture performed the best among 
the other architectures. It achieved up to 13% better accuracy and 6–71% smaller and 
more compact than the other architectures. The best testing accuracy achieved by the 
architecture was 99.4%.

Keywords:  Facial expression recognition, Convolutional neural networks, Depthwise 
separable layers, Emotions recognition

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Chowanda ﻿J Big Data           (2021) 8:132  
https://doi.org/10.1186/s40537-021-00522-x

*Correspondence:   
achowanda@binus.edu 
Computer Science 
Department, School 
of Computer Science, 
Bina Nusantara University, 
11480 Jakarta, Indonesia

http://orcid.org/0000-0002-2150-414X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-021-00522-x&domain=pdf


Page 2 of 17Chowanda ﻿J Big Data           (2021) 8:132 

The works in automatic facial expressions recognition have been an attractive topic past 
these decades. Facial Expressions Recognition is paramount to build an affective system. 
The system can be implemented in several application such as, but not limited to: medi-
cal area (e.g., depression analysis [2], nervous system disorder [3]), entertainment area 
(e.g., games [4, 5]), virtual humans/agents or conversational agents [4, 6, 7] and many 
more. Several research efforts have focused on building an automatic facial expressions 
recognition system, and there remain some challenges yet to be solved. Most of the 
problems are shared with general problems in the computer vision fields, and they are 
poses, illumination, partial occlusion and variations [8].

The rise of deep learning has tremendously advanced the accuracy of facial expres-
sions recognition tasks. Recently, various Convolutional Neural Networks (CNN) mod-
els have been implemented to solve the problems in recognising emotions from facial 
expressions. Generally, CNN architecture consists of convolutional, activation, and 
pooling layers. The convolutional layers perform the inner product of the linear filter 
and the inputs. The non-linear activation layers filter the important information from 
the inner product results in the convolutional layers process. Pooling layers are generally 
providing dimensional reduction. The results are generally called feature maps. A num-
ber of architectures have been proposed to solve several problems in the recognition 
tasks. Most of the CNN architectures perform feature maps construction by performing 
linear convolution processes followed by non-linear activation functions and reducing 
the feature maps dimension with pooling functions. Research has shown that achieving 
a good level of abstraction of the learning model generally requires non-linear functions 
of the input images [9, 10].

Moreover, generally training and classification process with CNN requires an immense 
computation power due to its convolution process. Therefore, it is not practical to be 
implemented into devices that have small or limited computational power. Moreover, a 
complex system such as virtual humans [4, 7] also require an architecture with an effec-
tive process. The facial expressions recognition process is a part of the virtual humans’ 
system [4], which also requires an effective process for training and classification the 
emotions from facial cues. Hence, inspired by the research done by [9, 10], and [11], this 
research aims to propose an effective architecture of CNN by creating a separate process 
to deal with the depth and spatial features by also maintaining the performances level 
(e.g., accuracy).

To evaluate the proposed architecture, we compare it with a similar network without 
separable modules. In addition, we also explore the combination of the architectures 
with global average pooling versus the dense and flatten operation at the end of the net-
work before the classification layers. The results have shown that the proposed architec-
ture performs the best in both training times and accuracy. The proposed architecture 
has up to four times fewer trainable parameters than the other architectures, result-
ing in 13–46% faster training times. It also performed up to 13% better than the other 
architectures. The best accuracy achieved was 99.4% in the CK+ dataset. The rest of the 
paper is organised as follows: A recent work in CNN architecture and facial expressions 
recognition is described in the next section. The Proposed Architectures section illus-
trates the details of the models proposed in this research. Meanwhile, the details of the 
experiments are thoroughly explained in the Experimental Settings section. The results 
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of experiments are discussed in the Results and Discussions section. Finally, the Conclu-
sion and Future Work section provides the takeaway messages from this research and 
the future research directions.

Recent work
Emotions recognition

Emotions convey meaning in social interactions. They generally express significant 
context along with spoken utterances to the interlocutors. Hence, capturing, recognis-
ing, and understanding the emotions conveyed by the interlocutors during conversa-
tion automatically are paramount to develop a system that can perceive a more holistic 
conversation. Affective Computing and Social Signal Processing are the areas that dis-
cuss emotions and social interaction between two agents (humans or machines). Affec-
tive Computing is a study of system development that can capture, process, recognise, 
interpret, and synthesise human’s affects [12]. Social Signal Processing is a study in the 
computing domain that aims to model, analyse, and synthesise social signals between 
agents’ interactions [13]. One of the specific studies in both domains dealing with emo-
tions is automatic emotions recognition from humans using sensors. The idea is to have 
a system capable of perceiving emotions from humans and reacting based on the per-
ceived emotions (e.g., virtual humans [4]). By understanding the humans’ emotions from 
the social conversation, the system provides more colourful interaction to humans [4, 
7, 13, 14]. Recognising emotions can be done with several features, such as: brainwave 
[15], heartbeat [16], voice prosody (e.g., the stress, rhythm and intonation of speech [17], 
facial expressions [18, 19], and body gestures [20]. The most natural features to be cap-
tured during the social conversation are voice prosody, facial expressions, and body ges-
tures. The features can be captured by using microphones and cameras.

Datasets

Dataset is one of the important aspects of the deep learning training process. Dataset 
acts as the fuel to the deep learning architecture. The quality and the quantity of the 
data in the dataset can significantly influence the model’s results trained by deep learn-
ing architecture and algorithms. Several datasets can be used to train emotions recog-
nition from facial cues (e.g., facial expressions). The Cohn-Kanade Dataset (CK) [21], 
The Facial Expressions Recognition 2013 (FER2013) [22], The Maja Pantic, Michel Val-
star and Ioannis Patras (MMI) [23] are the most influential dataset in the early work 
of facial expression recognition. CK dataset (later extended into The Extended Cohn-
Kanade Dataset (CK+)) [21] has eight emotions (six basic emotions, contempt, and 
neutral) in 593 images from 123 subjects. FER2013 [22] and MMI [23] dataset provide 
seven emotions classification (six basic emotions and neutral). The FER2013 provides 
more than 30,000 images, and MMI provides 2900 videos collected from 25 participants. 
The researcher in the area of Social Signal Processing and Affective Computing recently 
built a multimodal database in conversation to be implemented in several areas, includ-
ing facial expressions recognition. The Sustained Emotionally coloured Machinehuman 
Interaction using Nonverbal Expression (SEMAINE) Dataset [24] is one of the multi-
modal conversation database collected from the human and agents (i.e., virtual humans) 
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interactions. The SEMAINE Dataset has 24 interaction sessions with a total of 95 char-
acter interactions and 190 video clips [24].

Some datasets in the facial expressions recognition area also were collected with Asian 
respondents, for example, The Japanese Female Facial Expression (JAFFE) [25], Mul-
timodal Asian Conversation Dataset [26], and the Indonesian Mixed emotion Dataset 
(IMED) [27]. The Japanese Female Facial Expression (JAFFE) [25] provides 7 classifica-
tion of emotions (six basic emotions and neutral) from 213 images of 10 subjects. The 
Multimodal Asian Conversation Dataset [26] provides seven classifications of emotions 
(six basic emotions and neutral) from more than 100 minutes of videos of 5 subjects. 
Finally, the Indonesian Mixed emotion Dataset (IMED) [27] consists of 570 videos and 
66,819 Images categorised into seven single emotions (Anger, Disgust, Fear, Happy, Sad-
ness, Surprise and Neutral) and twelve mixed emotions [27].

Facial expression recognition with deep learning

The work in emotions recognition from facial expressions has been popular since dec-
ades ago, as the facial expression is one of the most natural and universal cues to be 
recognised [13, 28]. The general pipeline of the facial expressions recognition process is 
generally pre-processing, training, and evaluation. In the pre-processing phase, gener-
ally, face alignment, data augmentation, and face normalisation are performed [19, 28] 
before inputting all the images to the deep learning architecture for the training process. 
Several deep learning architectures can be used to train the recognition model. Convo-
lutional Neural Network (CNN) architecture is the most popular architecture used to 
train the model. It provides simple and straightforward training implementations. CNN 
architecture also provides a relatively high accuracy score for the model. Zhu et al. [29] 
proposed a hybrid attention cascade network for facial expression recognition with the 
highest accuracy of 98.46% in the CK+ dataset. Liu et al. [30] implements CNN for facial 
expressions recognition with the highest accuracy of 93.70% in the CK+ dataset. There 
are several CNN implementation to build emotions recognition model from facial cues, 
there are: [31] and [19].

Some architectures provides temporal aspects (e.g., sequences of images or videos) to 
the model trained, for example Recurrent Neural Network (RNN) [32, 33] and Tempo-
ral CNN [34, 35]. The architectures provide more superior results dealing with tempo-
ral information (for example, the onset, apex, and offset of the facial actions units or 
emotions activation). Finally, some researchers also explored generative models for facial 
expressions recognition. Kim et al. [36] proposed deep generative-contrastive networks 
for facial expression recognition with the highest accuracy of 97.93% in the CK+ data-
set. Cai et al. [37] also implements discriminative features for facial expression recogni-
tion with the highest accuracy of 94.39% in the CK+ dataset.

Proposed architectures
In this research, we propose a model with a depthwise separable convolutional neural 
network (see Figs.  1, 2). To evaluate the effectiveness of the proposed model, a simi-
lar network without separable modules was used to compare their performances (see 
Fig.  3). In addition, we also aimed to compare the implementation of global average 
pooling to the fully connected layers at the end of the network. In the global average 
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pooling layers, the spatial average of the features maps from the previous layers are fed 
into the classification layer (e.g., softmax) [9]. Research has shown that global average 
pooling has some advantages compared to the dense and flatten operation in the clas-
sical fully connected layer in the CNN architecture. Global average pooling is robust 
to spatial translations of the images and reduces overfitting problems [9]. Hence, there 
were four models evaluated in this research. Figures 1, 2 illustrate the visualisation of the 
architectures proposed and evaluated in this research.

Fig. 1  Architecture with separable convolution and AVG pooling (ARCH-1)

Fig. 2  Architecture with separable convolution and dense layers (ARCH-2)

Fig. 3  Baseline architecture ARCH-3 (left) with global AVG and ARCH-4 (right) with flatten
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Moreover, Tables 1, 2,  3, 4 demonstrate the details of every layer of the architec-
tures proposed and evaluated in this research. The goal of this research is to propose 
a lightweight architecture in CNN without sacrificing performance. The idea is to 

Table 1  Architecture with separable convolution and AVG pooling (ARCH-1)

Layer (type) Output shape Param # Connected to

input_1 (InputLayer) [(None, 48, 48, 1)] 0 None

conv2d (Conv2D) 32 conv2d[0][0]

batch_normalization (BN) (None, 48, 48, 8) 32 conv2d[0][0]

activation (Activation) (None, 48, 48, 8) 0 batch_normalization[0][0]

conv2d_1 (Conv2D) (None, 48, 48, 8) 576 activation[0][0]

batch_normalization_1 (BN) (None, 48, 48, 8) 32 conv2d_1[0][0]

activation_1 (Activation) (None, 48, 48, 8) 0 batch_normalization_1[0][0]

conv2d_2 (Conv2D) (None, 48, 48, 16) 1152 activation_1[0][0]

batch_normalization_2 (BN) (None, 48, 48, 16) 64 conv2d_2[0][0]

activation_2 (Activation) (None, 48, 48, 16) 0 batch_normalization_2[0][0]

conv2d_3 (Conv2D) (None, 48, 48, 16) 2304 activation_2[0][0]

batch_normalization_3 (BN) (None, 48, 48, 16) 64 conv2d_3[0][0]

max_pooling2d (MaxPooling2D) (None, 24, 24, 16) 0 batch_normalization_3[0][0]

activation_3 (Activation) (None, 24, 24, 16) 0 max_pooling2d[0][0]

separable_conv2d (SeparableConv) (None, 24, 24, 32) 656 activation_3[0][0]

batch_normalization_6 (BN) None, 24, 24, 32) 128 separable_conv2d[0][0]

activation_4 (Activation) (None, 24, 24, 32) 0 batch_normalization_6[0][0]

separable_conv2d_1 (SeparableConv) (None, 24, 24, 32) 1312 activation_4[0][0]

conv2d_4 (Conv2D) (None, 24, 24, 16) 256 activation_3[0][0]

batch_normalization_7 (BN) (None, 24, 24, 32) 128 separable_conv2d_1[0][0]

batch_normalization_4 (BN) (None, 24, 24, 16) 64 conv2d_4[0][0]

max_pooling2d_1 (MaxPooling2D) (None, 12, 12, 32) 0 batch_normalization_7[0][0]

conv2d_5 (Conv2D) (None, 12, 12, 32) 512 batch_normalization_4[0][0]

activation_5 (Activation) (None, 12, 12, 32) 0 max_pooling2d_1[0][0]

batch_normalization_5 (BN) (None, 12, 12, 32) 128 conv2d_5[0][0]

add (Add) (None, 12, 12, 32) 0 activation_5[0][0]

batch_normalization_5[0][0]

activation_6 (Activation) (None, 12, 12, 32) 0 add[0][0]

conv2d_6 (Conv2D) (None, 12, 12, 64) 18496 activation_6[0][0]

batch_normalization_8 (BN) (None, 12, 12, 64) 256 conv2d_6[0][0]

activation_7 (Activation) (None, 12, 12, 64) 0 batch_normalization_8[0][0]

conv2d_7 (Conv2D) (None, 12, 12, 64) 36928 activation_7[0][0]

batch_normalization_9 (BN) (None, 12, 12, 64) 256 conv2d_7[0][0]

max_pooling2d_2 (MaxPooling2D) (None, 6, 6, 64) 0 batch_normalization_9[0][0]

activation_8 (Activation) (None, 6, 6, 64) 0 max_pooling2d_2[0][0]

conv2d_8 (Conv2D) (None, 6, 6, 128) 73856 activation_8[0][0]

batch_normalization_10 (BN) (None, 6, 6, 128) 512 conv2d_8[0][0]

activation_9 (Activation) (None, 6, 6, 128) 0 batch_normalization_10[0][0]

conv2d_9 (Conv2D) (None, 6, 6, 128) 147584 activation_9[0][0]

batch_normalization_11(BN) (None, 6, 6, 128) 512 conv2d_9[0][0]

activation_10 (Activation) (None, 6, 6, 128) 0 batch_normalization_11[0][0]

conv2d_10 (Conv2D) (None, 6, 6, 7) 8071 activation_10[0][0]

global_average_pooling2d (GlobalAvg) (None, 7) 0 conv2d_10[0][0]

predictions (Activation) (None, 7) 0 global_average_pooling2d[0][0]
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Table 2  Architecture with separable convolution and dense layers (ARCH-2)

Layer (type) Output shape Param # Connected to

input_1 (InputLayer) [(None, 48, 48, 1)] 0 None

conv2d (Conv2D) (None, 48, 48, 8) 72 conv2d[0][0]

batch_normalization (BN) (None, 48, 48, 8) 32 conv2d[0][0]

activation (Activation) (None, 48, 48, 8) 0 batch_normalization[0][0]

conv2d_1 (Conv2D) (None, 48, 48, 8) 576 activation[0][0]

batch_normalization_1 (BN) (None, 48, 48, 8) 32 conv2d_1[0][0]

activation_1 (Activation) (None, 48, 48, 8) 0 batch_normalization_1[0][0]

conv2d_2 (Conv2D) (None, 48, 48, 16) 1152 activation_1[0][0]

batch_normalization_2 (BN) (None, 48, 48, 16) 64 conv2d_2[0][0]

activation_2 (Activation) (None, 48, 48, 16) 0 batch_normalization_2[0][0]

conv2d_3 (Conv2D) (None, 48, 48, 16) 2304 activation_2[0][0]

batch_normalization_3 (BN) (None, 48, 48, 16) 64 conv2d_3[0][0]

max_pooling2d (MaxPooling2D) (None, 24, 24, 16) 0 batch_normalization_3[0][0]

activation_3 (Activation) (None, 24, 24, 16) 0 max_pooling2d[0][0]

separable_conv2d (SeparableConv) (None, 24, 24, 32) 656 activation_3[0][0]

batch_normalization_6 (BN) None, 24, 24, 32) 128 separable_conv2d[0][0]

activation_4 (Activation) (None, 24, 24, 32) 0 batch_normalization_6[0][0]

separable_conv2d_1 (SeparableConv) (None, 24, 24, 32) 1312 activation_4[0][0]

conv2d_4 (Conv2D) (None, 24, 24, 16) 256 activation_3[0][0]

batch_normalization_7 (BN) (None, 24, 24, 32) 128 separable_conv2d_1[0][0]

batch_normalization_4 (BN) (None, 24, 24, 16) 64 conv2d_4[0][0]

max_pooling2d_1 (MaxPooling2D) (None, 12, 12, 32) 0 batch_normalization_7[0][0]

conv2d_5 (Conv2D) (None, 12, 12, 32) 512 batch_normalization_4[0][0]

activation_5 (Activation) (None, 12, 12, 32) 0 max_pooling2d_1[0][0]

batch_normalization_5 (BN) (None, 12, 12, 32) 128 conv2d_5[0][0]

add (Add) (None, 12, 12, 32) 0 activation_5[0][0]

batch_normalization_5[0][0]

activation_6 (Activation) (None, 12, 12, 32) 0 add[0][0]

conv2d_6 (Conv2D) (None, 12, 12, 64) 18496 activation_6[0][0]

batch_normalization_8 (BN) (None, 12, 12, 64) 256 conv2d_6[0][0]

activation_7 (Activation) (None, 12, 12, 64) 0 batch_normalization_8[0][0]

conv2d_7 (Conv2D) (None, 12, 12, 64) 36928 activation_7[0][0]

batch_normalization_9 (BN) (None, 12, 12, 64) 256 conv2d_7[0][0]

max_pooling2d_2 (MaxPooling2D) (None, 6, 6, 64) 0 batch_normalization_9[0][0]

activation_8 (Activation) (None, 6, 6, 64) 0 max_pooling2d_2[0][0]

conv2d_8 (Conv2D) (None, 6, 6, 128) 73856 activation_8[0][0]

batch_normalization_10 (BN) (None, 6, 6, 128) 512 conv2d_8[0][0]

activation_9 (Activation) (None, 6, 6, 128) 0 batch_normalization_10[0][0]

conv2d_9 (Conv2D) (None, 6, 6, 128) 147584 activation_9[0][0]

batch_normalization_11(BN) (None, 6, 6, 128) 512 conv2d_9[0][0]

activation_10 (Activation) (None, 6, 6, 128) 0 batch_normalization_11[0][0]

max_pooling2d_3 (MaxPooling2D) (None, 3, 3, 128) 0 activation_10[0][0]

flatten (Flatten) (None, 1152) 0 max_pooling2d_3[0][0]

dense (Dense) (None, 512) 590336 flatten[0][0]

dense_1 (Dense) (None, 512) 262656 dense[0][0]

prediction (Dense) (None, 7) 3591 dense_1[0][0]
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propose an architecture with a separable convolution process. The architecture will 
separate the spatial cross-correlations from the channel cross-correlations to learn 
richer and smaller features [10]. The architecture processes the depth (i.e., channel) 
and spatial (i.e., width and height) features of the input (i.e., images) separately. The 
depthwise separable convolution process has two processes [10]. The first process is 
called depthwise convolution, where the spatial features are extracted and handled 

Table 3  Architecture with no-separable convolution, with AVG pooling (ARCH-3)

Layer (type) Output shape Param #

input_1 (InputLayer) [(None, 48, 48, 1)] 0

conv2d (Conv2D) (None, 48, 48, 8) 72

batch_normalization (BN) (None, 48, 48, 8) 32

activation (Activation) (None, 48, 48, 8) 0

conv2d_1 (Conv2D) (None, 48, 48, 8) 576

batch_normalization_1 (BN) (None, 48, 48, 8) 32

activation_1 (Activation) (None, 48, 48, 8) 0

conv2d_2 (Conv2D) (None, 48, 48, 16) 1152

batch_normalization_2 (BN) (None, 48, 48, 8) 32

activation_2 (Activation) (None, 48, 48, 16) 0

conv2d_3 (Conv2D) (None, 48, 48, 16) 2304

batch_normalization_3 (BN) (None, 48, 48, 8) 32

activation_3 (Activation) (None, 48, 48, 16) 0

conv2d_4 (Conv2D) (None, 48, 48, 16) 2304

batch_normalization_4 (BN) (None, 48, 48, 8) 32

max_pooling2d (MaxPooling2D) (None, 24, 24, 16) 0

activation_4 (Activation) (None, 24, 24, 16) 0

conv2d_5 (Conv2D) (None, 24, 24, 32) 4608

batch_normalization_5 (BN) (None, 48, 48, 8) 32

activation_5 (Activation) (None, 24, 24, 32) 0

conv2d_6 (Conv2D) (None, 24, 24, 32) 9216

batch_normalization_6 (BN) (None, 48, 48, 8) 32

max_pooling2d_1 (MaxPooling2D) (None, 12, 12, 32) 0

activation_6 (Activation) (None, 12, 12, 32) 0

conv2d_7 (Conv2D) (None, 12, 12, 64) 18432

batch_normalization_7 (BN) (None, 48, 48, 8) 32

activation_7 (Activation) (None, 12, 12, 64) 0

conv2d_8 (Conv2D) (None, 12, 12, 64) 36864

batch_normalization_8 (BN) (None, 48, 48, 8) 32

max_pooling2d_2 (MaxPooling2D) (None, 12, 12, 32) 0

activation_8 (Activation) (None, 6, 6, 64) 0

conv2d_9 (Conv2D) (None, 6, 6, 128) 73728

batch_normalization_9 (BN) (None, 48, 48, 8) 32

activation_9 (Activation) (None, 6, 6, 128) 0

conv2d_10 (Conv2D) (None, 6, 6, 128) 147456

batch_normalization_10 (BN) (None, 48, 48, 8) 32

activation_10 (Activation) (None, 6, 6, 128) 0

conv2d_11 (Conv2D) (None, 6, 6, 7) 8071

global_average_pooling2d (Global AVG) (None, 7) 0

predictions (Activation) (None, 7) 0
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within this process. The second process is called the pointwise convolution process, 
where the depth features (e.g., RGB channels) are extracted and handled within this 
process. In the depthwise convolution process, D number of X × X × D kernels were 
applied in the convolutional process towards M × N  inputs with D dimensions (e.g., 

Table 4  Architecture with-out separable convolution, with dense layers (ARCH-4)

Layer (type) Output shape Param #

input_1 (InputLayer) [(None, 48, 48, 1)] 0

conv2d (Conv2D) (None, 48, 48, 8) 72

batch_normalization (BN) (None, 48, 48, 8) 32

activation (Activation) (None, 48, 48, 8) 0

conv2d_1 (Conv2D) (None, 48, 48, 8) 576

batch_normalization_1 (BN) (None, 48, 48, 8) 32

activation_1 (Activation) (None, 48, 48, 8) 0

conv2d_2 (Conv2D) (None, 48, 48, 16) 1152

batch_normalization_2 (BN) (None, 48, 48, 8) 32

activation_2 (Activation) (None, 48, 48, 16) 0

conv2d_3 (Conv2D) (None, 48, 48, 16) 2304

batch_normalization_3 (BN) (None, 48, 48, 8) 32

activation_3 (Activation) (None, 48, 48, 16) 0

conv2d_4 (Conv2D) (None, 48, 48, 16) 2304

batch_normalization_4 (BN) (None, 48, 48, 8) 32

max_pooling2d (MaxPooling2D) (None, 24, 24, 16) 0

activation_4 (Activation) (None, 24, 24, 16) 0

conv2d_5 (Conv2D) (None, 24, 24, 32) 4608

batch_normalization_5 (BN) (None, 48, 48, 8) 32

activation_5 (Activation) (None, 24, 24, 32) 0

conv2d_6 (Conv2D) (None, 24, 24, 32) 9216

batch_normalization_6 (BN) (None, 48, 48, 8) 32

max_pooling2d_1 (MaxPooling2D) (None, 12, 12, 32) 0

activation_6 (Activation) (None, 12, 12, 32) 0

conv2d_7 (Conv2D) (None, 12, 12, 64) 18432

batch_normalization_7 (BN) (None, 48, 48, 8) 32

activation_7 (Activation) (None, 12, 12, 64) 0

conv2d_8 (Conv2D) (None, 12, 12, 64) 36864

batch_normalization_8 (BN) (None, 48, 48, 8) 32

max_pooling2d_2 (MaxPooling2D) (None, 12, 12, 32) 0

activation_8 (Activation) (None, 6, 6, 64) 0

conv2d_9 (Conv2D) (None, 6, 6, 128) 73728

batch_normalization_9 (BN) (None, 48, 48, 8) 32

activation_9 (Activation) (None, 6, 6, 128) 0

conv2d_10 (Conv2D) (None, 6, 6, 128) 147456

batch_normalization_10 (BN) (None, 48, 48, 8) 32

activation_10 (Activation) (None, 6, 6, 128) 0

max_pooling2d_3 (MaxPooling2D) (None, 12, 12, 32) 0

flatten (Flatten) (None, 1152) 0

dense (Dense) (None, 512) 590336

dense_1 (Dense) (None, 512) 262656

dense_1 (Dense) (None, 512) 262656
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RGB channels). The output will be Y × Y × D features maps. While in the pointwise 
convolution process, P number of 1× 1× D kernels were applied to the convolutional 
process towards the inputs (i.e., Y × Y × D feature maps). The output will result in 
Y × Y × P feature maps. For examples see Fig. 1 and Table 1. The kernel used in this 
research was X = 3× X = 3× D = 32 towards M = 24 × N = 24 inputs with D = 1 
(black and white) or D = 3 (RGB) and the output will be Y = 24 × Y = 24 × D = 32 
feature maps (with same padding setting), in the first separable process (Table 1 see 
separable_conv2d and Fig. 1 see lower block of separable process). Moreover, in the 
another separable process (the residual, Fig. 1 see upper block of residual), the kernel 
used was 1× 1× D = 16 towards the inputs of Y = 24 × Y = 24 inputs with D = 1 
(black and white) or D = 3 (RGB) and the output will be Y = 24 × Y = 24 × D = 16 
feature maps (with same padding setting, Table 1 see conv2d_4).

In addition, the global average pooling process also enormously reduce the number 
of parameters while maintaining the spatial translations in the images. The proposed 
architecture (ARCH-1) has 292,862 trainable parameters (a total of 293,951 parameters), 
four times smaller than the other similar architectures. Figure 1 illustrates the proposed 
architecture with separable convolution layers and a global average pooling process. The 
first feature extraction process has 13 layers of alternating convolutional, batch normali-
sation, max pooling, and activation (i.e., ReLu) layers. The ReLu function is described as 
Relu(x) = max(0, x) . The next process is divided into two separable processes. The first 
separable process has seven layers of alternating separable convolution, batch normalisa-
tion, max pooling, and activation (i.e., ReLu) layers. The second separable process is four 
residual layers with alternating convolutional and batch normalisation layers. The first 
separable process has 3× 3 kernel, while the second process (i.e., the residual layers) has 
1× 1 kernel. The next layers consist of 16 layers of alternating convolutional, batch nor-
malisation, max pooling, and activation (i.e., ReLu) layers. Finally, the classification layers 
have a global average pooling and an activation layer (i.e., Softmax) . In the global aver-
age pooling, an input with M × N × D tensor is reduced to a 1× 1× D tensor by taking 
the average of all M × N  values [9, 38]. The dimension of the activation layer depends 
on the k number of classes (i.e., 1× k , with k ∈ {0, . . . , 6} in this case). Table 1 shows the 
details of each layer in the architectures with the input of 48× 48× 1 tensors. To com-
pare the performances, the proposed model was compared with a similar architecture 
from ARCH-1 architecture. The architecture (ARCH-2) has flatten and dense layers in 
the classification layers instead of the global average pooling layer. Figure 2 demonstrates 
the architecture of ARCH-2. The networks are similar with ARCH-1, with Max Pooling, 
flatten, two dense, and activation (i.e., Softmax) layers as the classification layers. The 
architecture has 1,142,463 parameters with 1,141,375 trainable parameters, almost four 
times larger than the proposed architecture (ARCH-1). Table 2 shows the details of each 
layers in the architectures with the input of 48× 48× 1 tensors. Moreover, two more 
architectures, with no separable convolution layers implemented, were also explored in 
this paper as a comparison. One architecture (ARCH-3) using a global average pooling 
and activation (i.e., Softmax) layers as the classification layers, while the other (ARCH-
4) use max pooling, flatten, two dense, and activation (i.e., Softmax see Eq. 1) layers as 
the classification layers. Table 3 illustrates the details of the ARCH-3 layers with 305,807 
trainable parameters from a total of 306,831 parameters. Table 4 illustrates the details of 
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the ARCH-4 layers with 1,154,319 trainable parameters from a total of 1,155,343 param-
eters with the input of 48× 48× 1 tensors.

Experimental settings
Datasets

Three facial expressions datasets were used to evaluate the proposed architectures, they 
are: The Extended Cohn-Kanade Dataset (CK+) [21], The Facial Expressions Recogni-
tion 2013 (FER-2013) Dataset [22], and Indonesian Mixed emotion Dataset (IMED) [27]. 
The CK+ dataset consists of almost 600 FACS-coded sequences with seven classifica-
tions of emotions: Angry, Disgust, Fear, Happy, Sadness, Surprise, and Contempt [21]. 
In this research, the proposed architectures were only used to classify the seven emo-
tions, and the AU coding and classification was not used. The second dataset used in 
this research was the FER-2013, which consists of 35,685 facial expressions images [22]. 
The dataset is categorised into seven emotions: Happiness, Neutral, Sadness, Anger, Sur-
prise, Disgust, Fear. The third dataset used in this research was the Indonesian Mixed 
emotion Dataset (IMED), where it consists of 570 videos and 66,819 Images categorised 
into seven single emotions (Anger, Disgust, Fear, Happy, Sadness, Surprise and Neutral) 
and twelve mixed emotions [27]. In this research, the proposed architectures were only 
used to classify the seven single emotions ( k ∈ {0, . . . , 6} ). The datasets were augmented 
to enrich the data for training and validation sets. The augmented process is thoroughly 
explained in the next sub-section.

Pre‑processing and initial hyper‑parameters settings

Several pre-processing processes were applied to the dataset before being trained with 
the proposed architectures. First, face detection and localisation were applied to find 
and crop the face from the images. In the next step, face alignment was applied to the 
cropped images, and finally, a normalisation was also applied to all the images. To enrich 
the data, a data augmentation technique was also implemented for all the datasets. The 
images were rotated with 20 rotation ranges, shifted, zoomed, and flipped horizontally. 
The datasets then were split into 86-88% for training and 12–14% of validation (test) 
sets. A total of 81,954 augmented images were used as training (72,520) and validation 
(9434) sets. Specifically, the augmented FER2013 dataset has 57,418 training images and 
7178 validation images. The augmented CK+ dataset has 1308 training images and 186 
validation images. Finally, the augmented Indonesian Mixed emotion Dataset (IMED) 
has 13,794 training images and 2070 validation images. As the initial settings, the learn-
ing rate was set to 0.01 and reduced by a factor of 10 every time the model loss encoun-
tered a plateau during the learning process. The datasets were trained in a maximum of 
200 epochs and 256 of batch size (10 for CK+ dataset) with an early stopping method 
if there was no significant improvement in the loss of the model. To avoid overfitting, 
an L2 regularisation of 0.2 and dropout of 0.5 were applied to the models. All the pro-
posed architectures implement Adam as the training optimiser (see Eq. 2). The ( θt+1 is 
the update of the weights at time t + 1 . The weights were optimised from the previous 

(1)Softmax(xi) =
exp(xi)

∑

j exp(xj)
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weights ( θt ), learning rate α , the Exponential Moving Average (EMA) of the gradient 
∇f (xt) ( m̂t ), Exponential Moving Average (EMA) of the gradient ∇f (xt) ( ̂vt ). Finally, to 
prevents the weights are being divided by zero, a regularisation ( ǫ ) is used.

To create uniform inputs of the images between those three datasets, we resize all the 
images to 48× 48× 1 dimension. Four architectures were explored in this research, 
resulting in 12 sets of results (three datasets for each architecture). Table 5 illustrates the 
settings differences between architectures. ARCH-1 is the proposed architecture, and 
the others were used as the comparison for the performance evaluation. Both ARCH-1 
and ARCH-2 have separable layers, where ARCH-1 implements global average pooling 
in the classification layers and ARCH-2 implements flatten layers. Both ARCH-3 and 
ARCH-4 have no separable layers, where ARCH-3 implements global average pooling in 
the classification layers and ARCH-4 implements flatten layers. The initial inputs for all 
architectures are N number of images with 48× 48× 1 tensors, and the outputs are N 
number of images with 1× 7 tensors.

Results and discussions
The proposed architecture (ARCH-1) was evaluated with three datasets (see “Experi-
mental settings”). In addition, the proposed architecture was also compared with three 
other architectures with the same datasets. Table  5 demonstrates the overview of the 
settings of the architectures that were explored in this research. Tables 1, 2,  3, 4 illus-
trate the details of the networks’ layers. The model training process took more than 20 
h of total training time with Titan V GPU for all combination architectures and data-
sets, with an average training time of 1.72 h. The longest training time was 3.91 h, with 
ARCH-4 as the architecture and IMED as the dataset. The fastest training time was 
0.217 h (13.02 min), with ARCH-1 as the architecture and CK+ as the dataset. Overall, 
ARCH-1 provides the fastest training time compared to the other architectures, with 
the average training time for all datasets was 0.841 h (50.44 minutes). Meanwhile, the 
longest training time was achieved by ARCH-4 with an average training time of 2.633 
h. The results demonstrate that overall the ARCH-1 provides 70% faster training time 
compared to the other architectures. Another alternative in fast training time is ARCH-
3, with an average of 1.013 h training times for all datasets. ARCH-1 has 292,862 train-
able parameters, while ARCH-3 has 305,807 trainable parameters. Although the training 
parameters are extremely compressed, the proposed architecture is capable of learning 
the important features from the data resulting in the best accuracy compared to the 
other architectures. Figure  4 illustrates the visualisation of the feature maps from the 
convolutional layer(conv2d_4) of ARCH-1 architecture.

(2)θt+1 = θt −
α

√

v̂t + ǫ
m̂t

Table 5  Architectures setting

Global Avg Flatten

Separable ARCH-1 ARCH-2

No separable ARCH-3 ARCH-4
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Figure 5 demonstrate the overview results from all combinations of the architectures 
and the datasets. The results demonstrate ARCH-1 architecture excel in all datasets 
compared to the other architectures. From the datasets perspective, CK+ provides the 
best results across all the architectures. Overall, ARCH-1 architecture provides the best 
training accuracy scores across all the datasets with an average training accuracy score 
of 88.9%, followed by ARCH-3 architecture that gives an average training accuracy score 
of 86.8%. ARCH-4 architecture takes third place with the average training accuracy 
score of 84.7%, while ARCH-2 architecture shows the lowest training accuracy scores 
across all the datasets with an average training accuracy score of 83.9%. The best testing 
accuracy was achieved by ARCH-1 trained with CK+ dataset with the training accu-
racy score of 99.4%. The lowest score achieved by ARCH-4 architecture was trained with 
the FER2013 dataset with the training accuracy score of 62.3%. Architectures trained 

Fig. 4  Conv2D activation filters visualisation of ARCH-1

Fig. 5  Overall results
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with CK+ and IMED datasets provide excellent results ( > 90% ), while the architectures 
trained with the FER2013 dataset provide the lowest score among the other datasets 
( 61.3−−70.3 ). The proposed architecture, ARCH-1, also achieved higher results com-
pared to the existing architecture proposed in the literature. ARCH-1 also achieved a 
higher training accuracy score compared to one of the best results with CNN architec-
ture from the literature, where Ding et al. [39] achieved 98.6% of training accuracy score 
and Zhang et al. [40] achieved 98.9% of training accuracy score. Moreover, the proposed 
architecture also achieved a higher training accuracy score compare with the literature 
that existed, where Liliana et  al. [27] achieved 84.52% of training accuracy score with 
Support Vector Machine (SVM) as the classifier algorithm.

Figures 6, 7, 8 demonstrate the best model in each dataset trained in the best architec-
ture (ARCH-1). Figure 6 illustrates the model accuracy and loss (from Adam’s optimiser) 
in the FER dataset training and testing phase using ARCH-1 (the best architecture). The 
training stopped at 102 epochs when the model could not learn more information from 
the dataset. The model achieved the best training accuracy of 70.5%, testing accuracy of 
70.3%, training loss (loss during training phase—towards training set) of 0.91%, and test-
ing loss (loss during validation/testing phase—towards validation/test set) of 1.13%. Fig-
ure 7 shows the model accuracy and loss accuracy and loss in CK+ dataset training and 
testing phase using the best architecture (ARCH-1). The model achieved the best train-
ing accuracy of 99.4%, testing accuracy of 99.4%, training loss of 0.13%, and testing loss 

Fig. 6  Training and testing accuracy and loss of ARCH-1 with FER2013 dataset

Fig. 7  Training and testing accuracy and loss of ARCH-1 with CK dataset
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of 0.13%. The training stopped at 162 epochs, where the training and testing accuracy 
and loss started to converge at 93 epochs. Finally, Figure 8 demonstrates the model accu-
racy and loss accuracy and loss in the IMED dataset training and testing phase using the 
best architecture (ARCH-1). The model achieved the best training accuracy of 97.1%, 
testing accuracy of 96.4%, training loss of 0.35%, and testing loss of 0.39%. The training 
stopped at 164 epochs when the model could not learn significant information from the 
dataset.

Conclusion and future work
This research proposed a separable convolutional neural network with global average 
pooling to enhance real-time emotion classification experiences while also improving 
performance. The proposed methods were evaluated with three datasets and compared 
with three other architectures. The proposed architecture (ARCH-1) is empirically per-
forming better in terms of training speed and accuracy. The results have shown that the 
number of trainable parameters was tremendously reduced compare to the other simi-
lar architectures. The training times were also reduced to 6–71% compared to similar 
architectures. In addition, the proposed architecture achieved up to 13% better accu-
racy compared to the other architectures, with the same dataset and settings. In gen-
eral, ARCH-2 performed the worst results compared to all architectures explored in this 
research. The best accuracy achieved belonged to ARCH-1 with CK+ dataset (99.4%), 
while ARCH-4 achieved the worst accuracy with the FER2013 dataset (62.3%).

Moreover, the architecture with dense and flatten layers resulted in lower accuracy 
and a slower training process. The limitation of this research is that the architectures 
were only implemented to train a specific task (i.e., facial expressions) and were only 
used to train black and white (1-D Channel). The proposed architecture can be used in 
the other classification tasks with a similar performance level if using the same settings 
described in this paper. In the future, the proposed architecture will also be trained and 
evaluated with a more significant number of images and the larger number of image 
dimensions. The combination of the datasets seems interesting to be explored in the 
future. The datasets have similar emotions labels and might provide more variation to 
the models as IMED consists of Asian (i.e., Indonesian) faces, while FER and CK+ con-
sist of the majority of Caucasian faces. The models created in this research will also be 
implemented to a device with limited computing power (e.g., raspberry, robot) and to 

Fig. 8  Training and testing accuracy and loss of ARCH-1 with IMED dataset
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a complex system (e.g., virtual humans [4, 7]). Finally, the temporal aspect or features 
can also be considered as the future direction for improving the proposed architecture. 
Different onset, peak, and offset activation times of expressions resulted in a different 
semantics meaning of emotions (e.g., acted and spontaneous expressions).

Abbreviations
FACS: Facial action coding system; AU: Action unit; CNN: Convolutional neural networks; FER: Facial expression recogni-
tion; SVM: Support vector machine.
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