
MuSe: a multi‑level storage scheme for big
RDF data using MapReduce
Tanvi Chawla, Girdhari Singh and Emmanuel S. Pilli*   

Introduction
Semantic Web is an outcome of the vision of W3C of a ‘Web of Linked data’ [1]. The
Linked data can be easily understood and accessed and; is represented by the Semantic
Web [2]. Semantic Web provides ease of access to all information available on the World
Wide Web (WWW) and represents it in a format that is understandable to both humans
and machines. The Semantic Web is being put to good use for information retrieval [3].
The semantic web technologies are being used by many people in building vocabularies,
writing data handling rules, and creating data stores on the web. The technologies like
Web Ontology Language (OWL), RDF, and SPARQL Protocol and RDF Query Language
(SPARQL) empower Linked data [4, 5]. The foundation to publish and link data is pro-
vided by the RDF while, SPARQL is the commonly accepted query language used for
the Semantic Web. The Semantic Web data is structured and interoperable so it is eas-
ily shared and reused by heterogeneous applications across the Web [6]. Semantic Web
has established RDF as the standard model for data interchange. The flexible nature of
RDF is a result of its underlying graph-based model that makes it a popular and stand-
ard choice for data interchange on the Semantic Web. RDF is a key data representation

Abstract 

Resource Description Framework (RDF) model owing to its flexible structure is increas-
ingly being used to represent Linked data. The rise in amount of Linked data and
Knowledge graphs has resulted in an increase in the volume of RDF data. RDF is used
to model metadata especially for social media domains where the data is linked. With
the plethora of RDF data sources available on the Web, scalable RDF data management
becomes a tedious task. In this paper, we present MuSe—an efficient distributed RDF
storage scheme for storing and querying RDF data with Hadoop MapReduce. In MuSe,
the Big RDF data is stored at two levels for answering the common triple patterns in
SPARQL queries. MuSe considers the type of frequently occuring triple patterns and
optimizes RDF storage to answer such triple patterns in minimum time. It accesses
only the tables that are sufficient for answering a triple pattern instead of scanning the
whole RDF dataset. The extensive experiments on two synthetic RDF datasets i.e. LUBM
and WatDiv, show that MuSe outperforms the compared state-of-the art frameworks in
terms of query execution time and scalability.

Keywords:  RDF, SPARQL, Hadoop, HDFS, MapReduce, Storage

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Chawla et al. J Big Data (2021) 8:130
https://doi.org/10.1186/s40537-021-00519-6

*Correspondence:
espilli.cse@mnit.ac.in
Department of Computer
Science and Engineering,
Malaviya National Institute
of Technology, Jaipur, India

http://orcid.org/0000-0003-3971-4687
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-021-00519-6&domain=pdf

Page 2 of 26Chawla et al. J Big Data (2021) 8:130

format that helps to maintain data for the Semantic Web in a structured form [7–9].
So, RDF serves as a common format for integrating and sharing structured and semi-
structured data across various applications. The RDF format was earlier just used for
representing data for the Semantic Web but, presently it is used to represent any high-
quality data connected by links. The RDF format provides a standard way to represent
such data. With RDF any kind of information can be expressed with a uniform structure
in a simple manner [10].

The Linked Open Data (LOD) movement has increased the amount of RDF data being
published on the web. The representation of data in such a linked form enables knowl-
edge discovery [11]. Some of the popular search engines that provide support for RDF
data are Google, Bing, etc. Linked data is being used to integrate data from different
domains. This distributed data linked from different domains form a knowledge graph.
Some of the popular knowledge graphs are Dbpedia, Freebase, YAGO, etc. [12]. RDF
can be used to represent the data for social media platforms such as Twitter, LinkedIn,
Facebook etc. [13]. RDF is also being widely used to represent and process data for spati-
otemporal data domains [14]. The Semantic Web approaches are increasingly being used
to represent academic and research data. RDF is being used to represent metadata on
the web such as for the web pages and the search engines. Many big companies such
as Yahoo, Google, Microsoft, and Facebook are maintaining their metadata in a struc-
tured form using RDF. One of the websites that mostly uses Semantic Web technolo-
gies is the media company; British Broadcasting Corporation (i.e., the BBC). Thus, many
real-world applications use RDF to represent their data collected from different sources
in a standard format and for data integration. Some of the applications of LOD are BBC
World Cup 2010 and 2012, Dbpedia, etc. Dbpedia is a linked data version of Wikipedia.
RDF format is also being used in the field of life sciences to represent, integrate and ana-
lyze large biomedical datasets. Some of the RDF datasets are listed on the DataSetRDF-
Dumps page of the W3C. One such data collected from sensors and sensor observations
available on this page is the Linked Sensor data containing 1.7 billion triples.

RDF data storage and processing on a single machine is becoming more challenging
with the continuously increasing dataset size [15]. The “Big Semantic Web data” era is a
result of the growing success of the Web of data initiatives and the Semantic Web. The
very initial approaches for RDF data management are based on centralized architecture
and thus have a high scalability overhead. Some examples of centralized RDF systems
are RDF-3x, Jena, Hexastore, RDFDB, RDFStore, etc. These systems although are simple
but they suffer from the common limitations of the centralized approaches [16].

Later, the focus shifted towards designing Distributed RDF systems for improving the
performance of existing systems and to overcome the current limitation of scalability.
The research was being diverted towards distributed RDF management to overcome the
Big Semantic Web data challenge. The term scalability means the ability of a system to
handle a large amount of data without any compromise in its performance. Some well-
known Distributed RDF systems are Virtuoso, Clustered TDB, Yars2, BigOWLIM, RDF-
Peers, etc. These distributed RDF databases have been an efficient solution to overcome
the challenges of centralized RDF systems.

With advancements being made in the field of Distributed RDF databases and increase
in amount of RDF data the drawbacks of Distributed RDF databases became more

Page 3 of 26Chawla et al. J Big Data (2021) 8:130 	

evident. So researchers were working towards the improvement of existent Distributed
RDF systems or building these Distributed systems from scratch. The major limitation
of these systems is their prerequisite of a dedicated infrastructure. These systems are
not cost-effective to constitute a scalable framework owing to their requirement for a
large number of resources. Hence, efforts were being put towards leveraging commod-
ity-grade machines on the generic cloud platforms for large-scale RDF data processing.
Because of these developments, the MapReduce framework was gaining popularity for
building scalable RDF management systems for managing the large-scale RDF data and
to overcome the existing challenges such as proposed by Mazumdar et al. [17].

Motivation

The existing works on Big RDF Data storage generally store the RDF data on a single
level in Hadoop. Most of the frameworks also do not take into account the type of triple
patterns in a SPARQL query. Some of these frameworks are discussed in the “Related
Work” section of this paper. Hence, such frameworks suffer from the huge costs in terms
of time incurred during SPARQL Query Processing. These frameworks spend most of
the time in scanning large two column VP tables created during Big RDF Storage. For
example, in LUBM dataset the VP table for rdf:type predicate contains large number of
records (and its size is ∼ 2GB ). This motivated us to design a storage scheme that mini-
mizes the size of these large tables and thus, reduces the scan space for query processing.
The idea behind MuSe is to create another level of storage keeping into consideration the
structure of triple patterns in a SPARQL query. This second level contains subtables that
are directly scanned to generate intermediate results for predicate-object bound triple
patterns. Hence, the minimum scan space requires less data scan time thereby, reducing
the query execution time in MuSe.

Key contributions

Our work presents a multi-level RDF storage scheme for storing and processing Big RDF
Data (or loarge scale RDF data) on Hadoop. The main contributions of this work are as
follows:

•	 propose an efficient and scalable method, called MuSe; for storing Big RDF data on
the Hadoop Distributed File System (HDFS).

•	 SPARQL queries are converted into a suitable format to be run as MapReduce jobs
on the Big RDF data stored by MuSe on Hadoop.

•	 extensive experiments on two RDF datasets have been conducted to verify the query
performance and scalability of our Big RDF data storage method.

From results we observe that on an average, MuSe outperforms the compared state-of-
the-art methods by an order of magnitude. The rest of this paper is organized as follows.
Section 2 presents the frameworks designed for storage and querying of Big RDF Data.
Section 3 describes the proposed storage and query processing architectures imple-
mented in MuSe for Big RDF data. In Section 4 we show our extensive experimental
results. We finally conclude and discuss the future work in Section 5. The SPARQL que-
ries used for LUBM datasets in our experiments are given in Secion 6.

Page 4 of 26Chawla et al. J Big Data (2021) 8:130

Related work
This section discusses some of the existing distributed frameworks for storing and que-
rying large scale RDF data.

Graux et al. [18] proposed SPARQLGX, a distributed RDF framework based on
Apache Spark to evaluate SPARQL queries. With SPARQLGX the SPARQL queries can
be executed on large scale data stored across multiple nodes in a cluster. SPARQLGX
translates the SPARQL queries into Scala code that can directly be executed with the
Spark API. This framework uses the vertical partitioned architecture proposed by Abadi
et al. [19] for storing large scale RDF data. Thus, the RDF data is stored in two column
tables having entries for only subject and object i.e. (s,o) for a triple (s,p,o) in the original
RDF dataset. These tables are assigned the predicate name ‘p’ corresponding to which
the s and o entries are stored. The advantage with this storage architecture is that it
reduces the evaluation time of triple patterns in SPARQL queries where the predicate
‘p’ is constant for eg. triple pattern (?s p ?o). And in practice, it has been observed that
most SPARQL queries have triple patterns with a constant predicate. Thus, vertical par-
titioning storage strategy is quite suitable for RDF data, it reduces the dataset size and
provides an indexation for the RDF data. SPARQLGX suffers from the drawback of read-
ing the entire dataset in order to compute statistics over the dataset. It does not take the
query structure into account and reads only data related to that query. Thus, it also has
the additional overhead of computing statistics prior to query processing.

Hassan et al. [20] proposed two distributed data stores i.e. 3CStore and VPExp for
storing large scale RDF data. These storage approaches are based on the vertical parti-
tioning strategy. 3CStore scheme uses a three-column layout for RDF data storage. The
four possible correlations that can occur between two triple patterns based on the posi-
tion of their join variable based on their corresponding subject and object positions.
These correlations are subject-subject (SS), subject-object (SO), object-subject (OS) and
object-object (OO). On the basis of these correlations a subset of VP table with all the
other VP tables using inner join is pre-computed. Then three-column stores are created
for all the four correlations. The main objective of 3CStore storage model is to minimize
the number of join operations and the input data size during SPARQL query evaluation.
In VPExp approach, the input data size is minimized only for the rdf:type predicate. This
predicate is quite common in the RDF datasets and it contains the most number of rows
while vertical partitioning the RDF dataset. VPExp splits this predicate into the number
of distinct objects that this predicate had. Thus, the goal of VPExp is to minimize the
input data for the rdf:type predicate table when the triple pattern in a SPARQL query
has rdf:type at the predicate position and the corresponding object is not a variable. It is
observed that the proposed storage approach requires more storage space and a longer
data loading time than the other architectures.

Chawla et al. [9] proposed HyPSo, a hybrid partitioning strategy for processing
SPARQL queries on Big RDF data. HyPSo combines vertical partitioning strategy for
RDF storage with hash partitioning by subject. The proposed strategy improves SPARQL
query performance by avoiding scanning of whole vertical partition to compute results.
Here, all objects belonging to a subject are stored together thus, eliminating the over-
head of reading entire partition. The SPARQL queries are then executed according to
this hybrid partitioning schema. The data is stored as flat files on HDFS. It converts the

Page 5 of 26Chawla et al. J Big Data (2021) 8:130 	

SPARQL queries into Pig Latin queries to be executed on the stored RDF data. These
Pig queries are internally executed as MapReduce jobs on HyPSo stored RDF data. This
architecture has a drawback that RDF data belonging to a particular subject may be
stored in different vertical partitioned tables on different nodes. Thus, the inter-node
communication time may increase during query processing resulting in a degrade in the
query performance. So, it is not efficient for all types of SPARQL queries

Schätzle et al. [21] proposed Sempala, a scalable RDF framework for processing
SPARQL queries on Hadoop. The Big RDF data is stored using Parquet, a columnar
layout on Hadoop and Impala, a SQL query engine is used for query execution. Sem-
pala stores RDF data in a single unified property table and thus, efficiently answers star-
shaped pattern queries. Thus, with this storage schema all RDF properties used in the
dataset are stored together thereby, reducing number of joins for a query. All queries can
be answered using this single table. The drawback with this framework is that it is effi-
cient for star queries only and not for other query types.

Punnoose et al. [23] propose Rya, a scalable RDF management system that provides
efficient support for SPARQL queries. The proposed system introduces storage, index-
ing and query processing methods for Big RDF data that support processing of SPARQL
queries on large scale RDF data. The proposed system Rya stores RDF data in triples
form in Accumulo, these triples are indexed across three tables that can satisfy all the
triple patterns. These three tables are SPO, POS and OSP. These are named according to
the order of the triples components stored. Such as the OSP table stores a triple in the
Row ID as (object, subject, predicate). These three table indexes are scanned to answer
a SPARQL query and it is observed to work fast in many situations. Rya suffers from the
limitation of replicating data multiple times for exploiting its index data storage archi-
tecture over all the possible elements. Thus, each of the three table indexes will be stored
multiple times.

Rohloff et al. [24] proposed SHARD, a high-performance massively scalable distrib-
uted system that uses the MapReduce framework. This information system, persists the
graph data as RDF triples and the SPARQL query language is used to respond to queries
over the system. The SHARD system is evaluated using the LUBM benchmark dataset
that is used for benchmarking RDF triple-stores. The design motivation for SHARD is
to provide the ability for persisting and rapidly querying large data graphs. In flat files
of SHARD, each line represents all the triples associated with a different subject. Thus,
SHARD stores RDF data in a simple and easy to read format. SHARD has the limitation
that it stores RDF data in plain files on HDFS. Thus, it needs to scan entire dataset dur-
ing SPARQL query processing. Also, the dataset may need to be scanned multiple times
in case a query contains multiple clauses.

Cossu et al. [25] proposed PRoST, Partitioned RDF on Spark Tables that stores Big
RDF data using a hybrid scheme by combining two popular RDF storage techniques i.e.
Binary and Property tables (Vertical Partitioning+Property Table). For processing the
query is first split up into several sub-parts and then each subquery is executed using the
most suitable storage approach. Then, next the results from the subqueries are joined
together to obtain the final result. As PRoST, stores the Big RDF data using two RDF
storage schemes (i.e. PT and VP) it occupies more storage space. And it is observed that
PRoST occupies double space than SPARQLGX [18].

Page 6 of 26Chawla et al. J Big Data (2021) 8:130

Schätzle et al. [26] proposed PigSPARQL, a system to process complex SPARQL
queries on a MapReduce cluster. PigSPARQL uses the Vertical Partitioning data stor-
age model. This framework makes use of the observation that a typical SPARQL query
has a bounded predicate in the triple pattern while, the subject and object are generally
variables. It uses vertical partitioning for storing large scale RDF data as this approach
reduces amount of RDF data required to be loaded for query execution. With this strat-
egy all RDF triples belonging to a predicate are stored in the same file and each predicate
has its own file. Also, it just requires a single mapreduce job in advance and it doesn’t
consume much disk space. From results, it was seen that this approach is a quite effec-
tive solution for improving SPARQL query performance so the authors suggested that it
can be extended for further improvement.

Multi‑Level Big RDF Storage Scheme (MuSe): Architecture
In this section, we first introduce the storage strategy used in our proposed approach,
MuSe. Then, we present the method of processing SPARQL queries on Big RDF data
stored using MuSe on HDFS. We also describe in detail how SPARQL queries are imple-
mented using Hadoop MapReduce on the HDFS.

Figure 1 depicts the architecture of MuSe. As depicted in the figure, the large scale
RDF data input by the user is stored on HDFS in Hadoop. MuSe stores this input data
at two levels i.e. Level I and Level II for improving SPARQL query performance. MuSe
is based on the vertical partitioning (VP) storage scheme for storing Big RDF data. At
Level I, triple patterns with bound predicates are processed in a SPARQL query. Level II,

Fig. 1  MuSe Architecture

Page 7 of 26Chawla et al. J Big Data (2021) 8:130 	

is used for processing triple patterns where the predicate and object are bound and the
subject is a variable. So, second level processes the triple patterns of the form (?s p o).
MuSe further simplifies the vertical partitioning scheme to reduce the search space of
predicate bound triple patterns in the SPARQL queries.

MuSe RDF Storage

The architecture of MuSe is based on the general observation that in SPARQL queries
generally the predicate is bound while the subject and object may be bound or unbound.
The different types of triple patterns in a SPARQL query are: (?s p o), (s ?p o), (s p ?o),
(?s ?p o), (s ?p ?o) and (?s p ?o) [27]. A triple pattern in the SPARQL query is imple-
mented either on Level I or Level II according to this observation. In MuSe, the data is
pre-processed by the user and this pre-processed data in N-Triples format is stored on
the HDFS. Further, MuSe stores this data at two levels for implementing individual triple
patterns during SPARQL query processing. On Level I, the simple vertical partitioning
(VP) storage scheme is used. So, here RDF data is stored in multiple two column tables.
The subject and object of our input RDF triples are stored in each column. Each table is
vertical partition table that is named by the predicate corresponding to which subjects
and objects are stored in that table. So Level I, stores table of format p(s,o) where table
name is represented by ‘p’ while (s,o) are stored in the two columns of these tables. Thus,
triple pattern of a SPARQL query in the form (?s p ?o), (s p ?o) and (?s p o) are imple-
mented at Level I of MuSe. The advantage with VP scheme is that it reduces the scan
space for processing SPARQL queries thereby improving query performance.

The need to further reduce scan space for improving SPARQL query performance
motivated us to propose MuSe storage model. Level II, in MuSe storage model fulfils the
requirement of reducing scan space for SPARQL queries having triples patterns where
both predicate and object are bound while subject is unbound. A SPARQL query, with
triple patterns of form (?s p o) can be easily implemented at Level II in lesser time. This
additional level reduces the scan space for such triple patterns in a SPARQL query. Here,
we further split a vertical partitioned table into smaller tables. Each predicate table is
divided into tables named by distinct objects in the predicate table. Thus, tables at level
II are of the form p[o(s)]. The smaller tables at this level are named by the object and
contain a single column with entries of all subjects belonging to that predicate-object
pair. This storage model of MuSe helps in minimizing the amount of scan space required
for processing SPARQL queries. Thus, triple patterns with a bound predicate-object pair
can be implemented at this level. The corresponding predicate table that matches with
the predicate of a triple pattern in SPARQL query will be accessed. The triple pattern will
be matched to its corresponding table by firstly matching the bound predicate in the first
pass and then matching the object in second pass.

In this way, only the entries matching to predicate-object pair in a triple pattern of our
SPARQL query will be retrieved. So only a small table will be scanned instead of scan-
ning an entire predicate table with many entries. For example, in (?s p o) triple pattern
firstly the predicate table ‘p’ will be retrieved in first pass. In second pass, the table ‘o’ will
be searched amongst the list of subtables present in table p. After, accessing the subtable
‘o’ all entries of this table will be retrieved as the intermediate results for this triple pat-
tern. Similarly, this process will be repeated for all such triple patterns in the SPARQL

Page 8 of 26Chawla et al. J Big Data (2021) 8:130

query. If there exists some other triple patterns where only predicate is bound in such
cases, intermediate results for these patterns will be retrieved by matching that predicate
with its corresponding VP table at Level I. This storage scheme is beneficial for differ-
ent types of SPARQL queries as the queries have multiple kinds of triple patterns. These
two levels in MuSe enable answering of SPARQL queries in minimum execution time by
selecting best possible storage model for different types of triple patterns. The RDF data
from level I is taken as input and is transformed to form subtables at level II. The RDF
data for both levels is stored on the HDFS. As the number of predicates in RDF data are
limited so, we choose vertical partitioning strategy for storage at Level I to store input
RDF data in multiple tables. Also, for storage at level II we choose to store subtables
named by object as triple patterns with bound predicate-object pair are more common
than those with bound subject-predicate pair.

As stated earlier, all other triple patterns where predicate is bound are implemented at
Level I as this strategy supports fast data access compared to executing triple patterns
on RDF data stored in a single file. MuSe is especially beneficial for large scale RDF data.
The different types of RDF data in N-Triples format can be well handled by MuSe. The
storage structure of MuSe requires that prior to running any SPARQL query the bound
terms for each triple pattern in the query must be analyzed for loading its correspond-
ing table or subtable during query execution. Accordingly, the table or subtable will be
loaded for a bound predicate in each triple pattern of the query. If an object is bound in
the triple pattern then its corresponding subtable will be loaded. Firstly, the main table
will be loaded after matching the predicate of triple pattern with our stored VP tables.
Then second, a subtable will be loaded after object corresponding to that predicate in
triple pattern is matched with available subtables under that main predicate table on
HDFS. This process is repeated for all triple patterns in the SPARQL queries. With the
addition of Level II, in MuSe storage scheme we try to solve the issue of scanning large
predicate tables for eg. predicate rdf:type in RDF datasets forms a large table. Thus, divi-
sion of such large tables into subtables provides ease of access to data especially in cases
where the data size is large and scan space needs to be reduced for minimizing query
response time. The advantage of MuSe storage scheme is that it is easy to implement and
is suitable for different types of SPARQL queries.

The subject entries are retrieved as intermediate results on implementing a triple pat-
tern with bound predicate-object pair in a SPARQL query. Similarly, for each triple pat-
tern in the SPARQL query these intermediate results are retrieved and are joined to form
final results of the query. The star-shaped SPARQL queries will especially be benefitted
from this storage scheme as in such queries the subject is unbound while both predicate
and object are bound. These star queries contain subject–subject (ss) joins.

The number of P tables at Level I is equal to the number of distinct predicates in the
input RDF dataset; I. The number of P-O subtables is equal to the number of distinct
objects matching each distinct predicate in the input dataset. The number of distinct
predicates may vary for different datasets like WatDiv dataset contains more distinct
predicates than the LUBM dataset. For example, ‘n’ P tables will be built at Level I for a
dataset; I containing ‘n’ distinct predicates. And, suppose there are ‘m’ distinct objects
for each distinct predicate. Then, ‘nm’ number of P-O subtables will be built for each P
table. So, in all ‘n’ tables (P tables) will be stored at Level-I and ‘nm’ tables (P-O subtables)

Page 9 of 26Chawla et al. J Big Data (2021) 8:130 	

will be stored at Level-II. The space complexity of Algorithm 1 is O[(n-size)+(nm-size)].
The space occupied by MuSe depends on the size of P tables and P-O subtables. Thus, it
can be said that the amount of tables generated at levels I and II depends on the number
of predicates in the input RDF dataset. In worst case, there might be no bound predi-
cate in the query for which entire RDF dataset file needs to be loaded for query process-
ing. Then, this algorithm requires space equivalent to the size of input RDF data. Thus,
the space complexity of Algorithm 1 in worst case will be O(I-size). Time complexity of
MuSe storage depends on Table generation and Table loading time. Firstly, it will con-
sume some time to generate P and P-O subtables at both levels. Then, it will load tables
and subtables respective to the triple patterns in the input query. So, if there are ‘i’ dis-
tinct predicates and ‘j’ distinct predicate-object pairs in the query. Then, time complexity
of Algorithm 1 in average case is O[(n+nm)+(i+ij)] where, (n+nm) is table generation
time and (i+ij) is table loading time. The best case is when only ‘ij’ subtables need to be
loaded so best case time complexity is O[(n+nm)+(ij)]. The worst case happens when
entire RDF dataset file needs to be loaded as there is no bound predicate in the query.
Thus, worst case time complexity will be O(I). Algorithm 1, depicts the two level storage
of MuSe.

MuSe SPARQL query processing

MuSe is implemented using the Hadoop MapReduce framework for SPARQL query
processing. The input RDF data transformed to MuSe storage model is stored on the
HDFS and SPARQL queries in the form of MapReduce jobs are run on this RDF data.
As shown in Fig. 1, the SPARQL query is given as input by the user to the SPARQL
query processing module. In this module, the SPARQL query given as input is trans-
formed into a format suitable to be run on HDFS as the SPARQL queries cannot be
directly run on Hadoop. So, we transform the input SPARQL queries into Apache Pig

Page 10 of 26Chawla et al. J Big Data (2021) 8:130

format. The queries in this Pig Latin format are internally executed as a sequence of
MapReduce jobs. In these Pig queries, the data for both level I and level II is scanned
according to the type of triple pattern in the SPARQL query. For example, for a tri-
ple pattern [?X rdf:type ub:GraduateStudent] the subtable will be scanned by a writ-
ing a statement rdf:type = LOAD ‘/usr/local/hadoop/input/lubm100VP/rdf_type/
ub_GraduateStuden’ USING PigStorage(‘\t’) AS (s); in the Pig query. Here, all subject
entries in the subtable named ub_GraduateStudent will be retrieved as the subject
is variable or unbound denoted by (“?X”). And, for scanning a VP table for a triple
pattern in form [?X rdf:type ?Y] the statement rdf:type = LOAD ‘/usr/local/hadoop/
input/lubm100VP/rdf_type’ USING PigStorage(‘\t’) AS (s,o); will be written in the
Pig query. Here, all subject-object pair entries in the VP table named rdf_type will be
retrieved because both subject and object are unbound as denoted by (“X” and “Y”).

The SPARQL queries with bound objects in triple patterns are directly executed by
scanning the corresponding subtables for that objects thus reducing the data scan
space and hence access time. Hence, MuSe helps in improving the SPARQL query
performance by providing apt storage model according to the different types of triple
patterns in the query. For each subtable scanned corresponding to the predicate the
subject entries in the subtable are retrieved as intermediate results for the triple pat-
tern. Depending upon the triple patterns in a SPARQL query, the number of subtables
and VP tables required to be accessed may vary.

The intermediate results of each triple pattern are joined internally by the Pig query
and stored on HDFS to be later retrieved by the user. The purpose of each triple pat-
tern in a SPARQL query is to find the value of variables denoted by (“?”) in the triple
patterns. MuSe executes each triple pattern in the SPARQL query as a sub-query so
these subqueries are executed as a series of triple pattern matching operations. Thus,
variables in each triple pattern are retrieved by matching bindings with the input or
stored RDF dataset. The triple pattern matching algorithm used for SPARQL query
processing in MuSe is shown in Algorithm 2.

In case, the predicate is a variable (that is an uncommon scenario) then the entire
input file (in N-Triples format stored on HDFS) will be scanned to generate inter-
mediate results for the triple pattern in the query. For taking the original input file
as the source we only need to modify the translation process in the way the triple
patterns are treated in MuSe storage model. This is quite a time consuming process
and degrades SPARQL query performance. But according to our assumption the tri-
ple pattern in SPARQL queries have a bounded predicate so this scenario is unlikely
to happen. The object subtable will be retrieved after accessing the predicate table by
matching predicate of a triple pattern with the name of each VP table on the HDFS.
After this, the object in that triple pattern will be matched with the subtables in the
previously matched VP table. The reason to choose object-based subtables in Level II
of MuSe is that in a RDF dataset the number of distinct objects is less than the num-
ber of distinct subjects. So, if we choose a subject-based subtable scheme then these
subtables would be quite large in number and would be diffcult to handle. Also, the
bounded predicate-object pair is more common in the SPARQL queries than subject–
object pair. For example. the star-shaped queries have variable subjects in each triple
pattern.

Page 11 of 26Chawla et al. J Big Data (2021) 8:130 	

The space complexity of Algorithm 2, depends on intermediate results (IR) gener-
ated by each triple pattern on the input query. Thus, if there are ‘i’ triple patterns in
the query then its space complexity is O(IR-size1+IR-size2+....+IR-size i  ). Time com-
plexity of this algorithm depends on the time required for scanning P tables and P-O
subtables for processing each triple pattern of the query. In best case, MuSe triple
pattern matching algorithm needs to scan ‘ij’ subtables so best case time complexity is
O(ij). While, in average case it needs to scan ‘i’ tables as well as ‘ij’ subtables so aver-
age case time complexity is O(i+ij). In worst case, entire RDF dataset file needs to be
scanned. Thus, worst case time complexity is O(I). The complexities of Algorithms 1
and 2 are summarized in Table 1.

Table 1  Time and Space complexities of Algorithm 1 and 2

Algorithm Time Complexity Space Complexity

Algo 1 O[(n+nm)+(ij)] (Best Case) O[(n+nm)+(i+ij)] (Average Case) O(I)
(Worst Case)

O[(n-size)+(nm-size)]
(Best and Average
Case) O(I-size) (Worst
Case)

Algo 2 O(ij) (Best Case) O(i+ij) (Average Case) O(I) (Worst Case) O(IR-size1+IR-size2
+....+IR-size i  ) (Best,
Average and Worst
Case)

Page 12 of 26Chawla et al. J Big Data (2021) 8:130

Results and discussion
In this section, we discuss the experiments conducted on different large scale RDF data-
sets to test the performance of MuSe. We have carried out extensive experiments on
two popular RDF benchmark datasets i.e. LUBM and WatDiv to verify the efficiency and
scalability of MuSe and compared it with the state-of-the-art SHARD and PigSPARQL
frameworks. MuSe is also compared with a hybrid partitioning technique; HyPSo.
HyPSo partitions the Big RDF data and stores this partitioned Big RDF Data on HDFS.
All large scale RDF data input from the user and transformed with MuSe is stored on the
Hadoop Distributed File System (HDFS).

Experimental setup and datasets

Our experiments are conducted on a cluster of 4 machines each equipped with 16GB
RAM, 2TB of disk space and Intel� Xeon(R) E3-1220 v6 processor. The cluster runs
Hadoop 2.9.0 with Pig 0.17.0 on Ubuntu 16.04 LTS operating system. The Lehigh Uni-
versity Benchmark (LUBM) dataset and Waterloo SPARQL Diversity Test Suite (Wat-
Div) v0.6 are used in our experiments. The WatDiv dataset is generated from WatDiv
binary given in the test suite. WatDiv dataset generated from its model file is in the
N-Triples format. We can specify the scale factor for setting the number of triples that
need to be generated for eg. a scale factor of 1 approximately generates 100K triples. In
our experiments we generate four WatDiv datasets containing approximately 10, 100,
200 and 400 million triples respectively as given in Table 2. The LUBM data generator
class is used for generating datasets of 10, 50, 100 and 1000 universities and the random
seed value is taken as 0 for data generation. In our evaluation, LUBM (n) means a LUBM
dataset with n number of universities. The statistics of these datasets used in our evalu-
ation are given in Table 2. The dataset generated from LUBM data generator is in OWL

Table 2  Dataset statistics

Dataset No. of triples Raw size Size on HDFS

LUBM (10) 1.31 million 230.8 MB 220.14 MB

LUBM (50) 6.86 million 1.2 GB 1.13 GB

LUBM (100) 13.82 million 2.5 GB 2.28 GB

LUBM (1000) 137.76 million 24.6 GB 22.94 GB

WatDiv (10M) 10.92 million 1.5 GB 1.44 GB

WatDiv (100M) 109.99 million 15.6 GB 14.53 GB

WatDiv (200M) 219.71 million 31.6 GB 29.47 GB

WatDiv (400M) 439.40 million 63.5 GB 59.13 GB

Page 13 of 26Chawla et al. J Big Data (2021) 8:130 	

format. This data is converted into N-Triples format using the rdfcat toolkit provided by
Jena. We have used ten LUBM queries for our evaluation as listed in Appendix. Among
these ten tested queries, Q1, Q3, Q4 and Q6 are the complex SPARQL queries. The star-
shaped LUBM queries are Q2, Q7, Q8, Q9 and Q10. And Q5, is a simple query having a
small input.

The Hadoop framework is an open source framework that supports distributed pro-
cessing of large datasets on a cluster of computers. The Hadoop MapReduce (MR) pro-
gramming model [28] provides a software framework for the distributed storage and
processing of large scale data or Big Data. With Hadoop framework the massive datasets
can be analyzed more quickly in parallel. The distributed file system of Hadoop known as
HDFS is used for data storage. HDFS splits the stored data in blocks and sends it to the
various nodes in a cluster. The MapReduce applications run on top of the data stored in
HDFS. The Hadoop cluster comprises of a master node and many slave nodes depending
upon the size of the cluster. In the cluster, the MapReduce processing is done at the slave
nodes and the final results are sent to the master node.

We have used Hadoop MapReduce framework for MuSe according to our require-
ment of storage and query processing of Big RDF Data. Similar, to other applications
MuSe uses HDFS for Big RDF Data storage and the MapReduce programming model for
retrieval of Big RDF data.

The LUBM datasets contain information related to the academic domain. LUBM is a
synthetic dataset. This benchmark dataset has been developed to evaluate the perfor-
mance of Semantic Web repositories in a systematic and standard manner. This bench-
mark uses the Univ-Bench ontology. This ontology describes the departments and
universities and the activities occuring in them [29]. The WatDiv dataset generator is
used to generate the synthetic benchmark WatDiv datasets. By executing this generator
different sized WatDiv datasets can be generated by setting different scale factors. The
diverse test workloads are generated for WatDiv i.e. Basic Testing, Extension to Basic
Testing (Incremental Linear and Mixed Linear Testing) and Stress Testing. The WatDiv
dataset for evaluating a system under diverse test workloads. The test queries available
with this dataset are used to focus on much wider aspects of query evaluation [30].

The term Big RDF Data or large scale RDF data refers to RDF datasets that are large in
size. These large RDF datasets cannot be handled by centralized RDF systems (i.e. triple-
stores). The centralized RDF engines are used for processing RDF datasets that are small
in size and can be processed on a single machine. The experimental datasets mostly used
in our work are large in size as centralized RDF architectures will not be able to handle
RDF data of such scale. The centralized RDF systems will either fail to process such large
data or they will be very slow in processing this scale RDF datasets. On the other hand, if
we process small scale (or as we say less volume) RDF data then centralized RDF engines
will prove to be effective. Thus, it can be said that the used datasets belong to Big Data.

Performance evaluation

We have generated datasets for our experiments from the available LUBM and WatDiv
Dataset generators. With these data generators we can generate datasets of different
sizes. The queries of WatDiv are categorized as Linear queries (L), Star queries (S) and
Snowflake queries (F). The existing basic template queries of WatDiv were used in our

Page 14 of 26Chawla et al. J Big Data (2021) 8:130

experiments. The efficiency of MuSe is compared on the basis of query execution time.
And the scalability is measured by carrying out experiments for MuSe on various scale
LUBM and WatDiv datasets.

(a) Efficiency
The different sized LUBM and WatDiv datasets input by user after pre-processing

are loaded on the HDFS as shown in Fig. 1. The query execution times of SHARD, Pig-
SPARQL (Plain RDF Data), PigSPARQL (VP) and HyPSo are shown in Table 3. We have
considered two cases for PigSPARQL framework first, where it stores Big RDF data in
Plain text files. And second, where it uses vertical partitioning storage strategy to store
Big RDF data in two column tables. The query response times on LUBM datasets for
10, 50, 100 and 1000 universities are recorded in Table 3a–d respectively. In Table 4, we
depict the query response times on WatDiv datasets, with Table 4a–d containing times
for 10, 100, 200 and 400 million triples respectively. Figures 2 and 3 shows the query
execution time comparison of MuSe with SHARD, PigSPARQL (Plain RDF Data), Pig-
SPARQL (VP) and HyPSo architectures for LUBM and WatDiv datasets respectively. Fig-
ure 2a–d illustrate the execution time comparison of MuSe on LUBM datasets of 10, 50,
100 and 1000 universities respectively. Also, a similar comparison of MuSe on WatDiv
datasets having 10M, 100M, 200M and 400M triples is shown in Fig. 3a–d respectively.

We observe that the average query execution time of MuSe is less than the compared
state-of-the-art frameworks for both tested datasets. MuSe executes with an average
time gain of 86.2%, 78.8%, 20.9% and 14.9% over the SHARD, PigSPARQL (Plain RDF
Data), PigSPARQL (VP) and HyPSo architectures respectively for LUBM datasets. While
for WatDiv datasets, it shows an average time gain of 95.6%, 10.2% and 6.7% over the
PigSPARQL (Plain RDF Data), PigSPARQL (VP) and HyPSo architectures respectively.
The parser of SHARD framework does not support Watdiv queries so, we have com-
pared MuSe only with PigSPARQL and written “n/a” for the case of comparison with
SHARD. From the figures, we see that MuSe performs better than the other two frame-
works for all 10 queries tested on LUBM datasets. While, for WatDiv datasets its perfor-
mance degrades only in case of query S6 over PigSPARQL (VP). MuSe performs better
than PigSPARQL PigSPARQL (VP) for all other 7 queries tested on WatDiv datasets. We
have tested different shaped SPARQL queries i.e. snowflake (F2 and F4), Linear (L4) and
star-shaped (S2, S3, S4, S5 and S6) of WatDiv dataset on MuSe. It is observed that the
query time of S6 increases with increasing data size in case of WatDiv dataset. As the
overhead increases, with increasing dataset size so the response time for this query rises.
S6 is a star query with 3 triple patterns. But all three triple patterns are predicate-bound.
So, this query cannot leverage much benefits of the second level storage in MuSe. For S6,
three VP tables at Level I in MuSe need to be accessed to generate intermediate results
and answer this query. But overall the average query response time of MuSe is less than
(Plain RDF Data), PigSPARQL (VP) and HyPSo for the all the tested WatDiv datasets.

The comparatively poor performance of the compared frameworks can be attributed
to their use of simple standard storage methods for all types of queries. These architec-
tures do not leverage the advantage of known elements in triple patterns of a SPARQL
query. While MuSe considers this fact and takes account of this advantage into its archi-
tecture. MuSe prunes a part of invalid input data by utilizing the RDF properties embed-
ded in the triple patterns of SPARQL queries at Level I. It takes this a step forward by

Page 15 of 26Chawla et al. J Big Data (2021) 8:130 	

(a)

(b)

(c)

(d)
Fig. 2  Query Execution Times for LUBM datasets of 10, 50, 100 and 1000 universities respectively

Page 16 of 26Chawla et al. J Big Data (2021) 8:130

Ta
bl

e 
3 

Q
ue

ry
 e

xe
cu

tio
n

tim
es

 (i
n

m
ill

is
ec

on
ds

) f
or

 L
U

BM
 d

at
as

et
s

of
 1

0,
 5

0,
 1

00
 a

nd
 1

00
0

un
iv

er
si

tie
s

re
sp

ec
tiv

el
y

w
ith

 S
H

A
RD

, P
ig

SP
A

RQ
L

(V
P)

, H
yP

So
 a

nd
 M

uS
e

(a
) L

U
BM

 (1
0,

0)

Ti
m

e
(in

 m
ill

is
ec

on
ds

)

LU
BM

 (1
0,

0)

Q
ue

ry
Q

1
Q

2
Q

3
Q

4
Q

5
Q

6
Q

7
Q

8
Q

9
Q

10
A

M

SH
A

RD
21

38
10

17
63

58
17

33
37

20
86

27
14

01
32

14
62

68
18

25
10

21
67

33
35

66
09

30
34

36
21

17
82

Pi
gS

PA
RQ

L
(P

la
in

 R
D

F
D

at
a)

74
70

5
37

72
9

49
92

3
62

06
2

39
54

6
39

58
9

37
50

2
43

30
7

67
71

6
57

63
0

50
97

0.
9

Pi
gS

PA
RQ

L
(V

P)
58

81
4

17
47

8
29

37
2

46
02

1
26

09
7

34
23

3
17

36
2

17
44

7
22

48
5

22
56

6
29

18
7.

5

H
yP

So
47

56
4

17
55

3
29

48
2

46
95

6
24

30
0

29
38

9
12

45
1

17
55

1
22

53
0

17
66

6
26

54
4.

2

M
uS

e
41

32
0

12
78

4
23

75
9

36
52

3
18

64
5

29
44

8
17

58
4

17
67

9
17

75
4

17
76

1
23

32
5.

7

(b
) L

U
BM

 (5
0,

0)

Ti
m

e
(in

 m
ill

is
ec

on
ds

)

LU
BM

 (5
0,

0)

Q
ue

ry
Q

1
Q

2
Q

3
Q

4
Q

5
Q

6
Q

7
Q

8
Q

9
Q

10
A

M

SH
A

RD
22

77
38

19
65

15
19

54
49

23
57

07
15

52
06

16
12

63
19

64
32

23
62

61
40

65
86

38
43

49
23

95
50

.6

Pi
gS

PA
RQ

L
(P

la
in

 R
D

F
D

at
a)

19
75

56
14

75
51

13
45

47
17

66
38

11
45

89
12

22
31

14
25

74
17

75
95

29
82

27
24

30
29

17
54

53
.7

Pi
gS

PA
RQ

L
(V

P)
62

35
9

27
67

8
39

81
4

56
16

1
31

40
1

34
20

2
22

44
7

27
56

9
32

78
1

42
51

5
37

69
2.

7

H
yP

So
61

96
4

22
45

4
29

26
7

62
20

0
29

21
6

34
34

1
27

59
4

27
43

6
32

58
1

47
55

0
37

46
0.

3

M
uS

e
46

09
1

22
67

9
23

56
4

46
60

4
23

47
2

34
44

5
22

64
1

22
77

2
27

85
3

42
80

8
31

29
2.

9

(c
) L

U
BM

 (1
00

,0
)

Ti
m

e
(in

 m
ill

is
ec

on
ds

)

LU
BM

 (1
00

,0
)

Q
ue

ry
Q

1
Q

2
Q

3
Q

4
Q

5
Q

6
Q

7
Q

8
Q

9
Q

10
A

M

SH
A

RD
28

27
67

23
04

61
22

48
87

27
67

39
17

32
76

18
62

27
22

25
25

26
68

19
48

47
49

50
47

17
28

53
16

.7

Pi
gS

PA
RQ

L
(P

la
in

 R
D

F
D

at
a)

38
28

14
27

81
90

26
49

24
31

72
75

22
38

25
22

99
18

29
79

36
36

76
54

63
33

11
51

27
74

35
08

62
.1

Pi
gS

PA
RQ

L
(V

P)
87

56
4

47
50

4
44

37
8

76
40

1
44

17
2

49
60

0
42

46
3

47
46

5
52

59
6

77
73

4
56

98
7.

7

Page 17 of 26Chawla et al. J Big Data (2021) 8:130 	

Ta
bl

e 
3 

(c
on

tin
ue

d)

(c
) L

U
BM

 (1
00

,0
)

Ti
m

e
(in

 m
ill

is
ec

on
ds

)

LU
BM

 (1
00

,0
)

H
yP

So
67

12
9

42
44

6
40

72
8

82
04

0
34

12
5

49
42

6
42

57
7

42
44

8
52

61
5

72
53

7
52

60
7.

1

M
uS

e
51

19
7

37
93

4
33

62
3

56
24

3
19

89
7

47
15

4
37

62
3

37
82

1
49

07
7

72
78

2
44
33
5.
1

(d
) L

U
BM

 (1
00

0,
0)

Ti
m

e
(in

 m
ill

is
ec

on
ds

)

LU
BM

 (1
00

0,
0)

Q
ue

ry
Q

1
Q

2
Q

3
Q

4
Q

5
Q

6
Q

7
Q

8
Q

9
Q

10
A

M

SH
A

RD
19

33
22

9
16

93
50

6
18

61
07

4
16

36
97

8
10

34
25

8
14

36
26

8
17

96
99

0
20

45
57

8
36

47
88

1
44

34
75

7
21

52
05

1.
9

Pi
gS

PA
RQ

L
(P

la
in

 R
D

F
D

at
a)

34
04

06
4

40
75

06
0

29
36

27
2

35
63

58
0

22
49

13
3

23
64

29
1

40
12

03
0

51
72

34
8

66
81

19
4

59
23

12
7

40
38

10
9.

9

Pi
gS

PA
RQ

L
(V

P)
41

78
14

34
28

50
27

94
80

42
93

38
15

66
59

26
44

06
37

44
63

35
32

11
40

79
84

68
29

30
37

09
13

.5

H
yP

So
30

64
73

33
27

50
25

94
41

40
76

24
13

93
76

23
93

64
32

75
57

32
78

69
36

81
36

64
81

52
33

56
74

.2

M
uS

e
24

16
69

30
80

34
16

38
77

26
67

95
18

69
9

21
97

26
30

30
92

30
29

26
36

63
52

67
32

49
28

64
41

.9

Page 18 of 26Chawla et al. J Big Data (2021) 8:130

(a)

(b)

(c)

(d)
Fig. 3  Query Execution Times for WatDiv datasets of 10M, 100M, 200M and 400M triples respectively

Page 19 of 26Chawla et al. J Big Data (2021) 8:130 	

Table 4  Query execution times (in milliseconds) for WatDiv datasets having 10M, 100M, 200M and
400M triples respectively on PigSPARQL (VP), HyPSo and MuSe

(a) WatDiv (10M)

Time (in milliseconds)

WatDiv (10M)

Query F2 F4 L4 S2 S3 S4 S5 S6 AM

SHARD n/a n/a n/a n/a n/a n/a n/a n/a n/a

PigSPARQL
(Plain RDF
Data)

246241 262222 73103 143164 143029 142829 143057 108101 157718.25

PigSPARQL
(VP)

41814 35394 19015 18764 12864 12656 23725 18811 22880.375

HyPSo 35890 30998 18782 18459 12662 12754 19317 19399 21032.625

MuSe 35454 30170 18714 18487 12817 12603 18575 18526 20668.25

(b) WatDiv (100M)

Time (in milliseconds)

WatDiv (100M)

Query F2 F4 L4 S2 S3 S4 S5 S6 AM

SHARD n/a n/a n/a n/a n/a n/a n/a n/a n/a

PigSPARQL
(Plain RDF
Data)

2187767 2397936 749082 1530010 1729115 1742344 1737574 1185536 1657420.5

PigSPARQL
(VP)

55424 44676 19521 28557 17753 17705 23674 28763 29509.125

HyPSo 50932 39609 23813 24304 17840 17686 18674 33488 28293.25

MuSe 50443 39517 18576 23612 17877 12580 18630 30198 26429.125

(c) WatDiv (200M)

Time (in milliseconds)

WatDiv (200M)

Query F2 F4 L4 S2 S3 S4 S5 S6 AM

SHARD n/a n/a n/a n/a n/a n/a n/a n/a n/a

PigSPARQL
(Plain RDF
Data)

4553259 5030129 1617483 3451818 3369584 2830872 3242667 2854154 3368745.75

PigSPARQL
(VP)

71569 59640 18611 35576 22760 22920 23855 33565 36062

HyPSo 60645 54645 19233 33618 22662 17673 23610 48578 35083

MuSe 55474 49729 18420 28527 22692 17648 18523 43604 31827.125

(d) WatDiv (400M)

Time (in milliseconds)

WatDiv (400M)

Query F2 F4 L4 S2 S3 S4 S5 S6 AM

SHARD n/a n/a n/a n/a n/a n/a n/a n/a n/a

PigSPARQL
(Plain RDF
Data)

10367268 11318178 2879308 5415441 5480759 5439132 5958496 3835103 6336710.625

PigSPARQL
(VP)

100681 84799 30176 53830 44135 32761 33451 48506 53542.375

HyPSo 100479 74878 18792 48922 37674 27738 33659 73528 51958.75

MuSe 95461 74731 18407 43547 32737 27646 23487 68674 48086.25

Page 20 of 26Chawla et al. J Big Data (2021) 8:130

similary pruning the RDF objects bound in SPARQL queries at Level II. Thus, reducing
or postponing a large number of Cartesian operations. PigSPARQL also does pruning
but, it only prunes the RDF properties and not the other bound elements in a SPARQL
query. While, SHARD performs no pruning and simply stores all RDF data in a single
file by hashing on the subject. It is also seen that SHARD cannot evaluate multiple triple
patterns in a single MapReduce job. HyPSo is designed keeping structure of some par-
ticular SPARQL queries into consideration. It only works well for those types of SPARQL
queries and thus, its average performance is low as compared to MuSe. The storage and
triple pattern matching algorithm used by MuSe is much better than that used by the
other two frameworks as it prunes a large amount of invalid RDF data prior to and dur-
ing query processing.

(b) Scalability
We compared MuSe with PigSPARQL (VP) and HyPSo. We carried out the scalability

comparison experiments on various scale LUBM and WatDiv datasets. When the data-
set size increases for LUBM and WatDiv the query time of all three methods increases
and MuSe was always the best one. Figures 4 and 5 shows the scalability comparison
of MuSe on LUBM and WatDiv datasets respectively. Figure 4a–d depict the scalabil-
ity comparison on LUBM datasets for queries Q1, Q3, Q4 and Q8 respectively. Simi-
larly, Figure 5a–d depict the scalability comparison on WatDiv datasets for queries F2,
F4, S2 and S5 respectively. From these figures, we can observe that as the scale of data-
sets increases, the query time of PigSPARQL (VP) and HyPSo increases dramatically.
In contrast, for MuSe the growth rate of query time changes slightly. These extensive
experiments were carried out on various sized LUBM datasets i.e. LUBM10, LUBM50,
LUBM100 and LUBM1000. Similary, scalability was tested on different sized WatDiv
datasets with 10, 100, 200 and 400 million triples. These experiments were conducted
on 4 queries of LUBM i.e. Q1, Q3, Q4 and Q8. And for WatDiv the 4 queries tested are
F2, F4, S2 and S5. It is seen that SHARD performs worst than the other compared meth-
ods. The query performance of MuSe for almost all tested queries maintains to be low
in comaprison to the other architectures with increasing size of WatDiv datasets. Thus,
confirming that MuSe works well for large scale RDF data and scales well with data size.

Conclusion and future work
In this paper, we proposed MuSe: a Multi-Level Storage Scheme for Big RDF Data Using
MapReduce. It is a two level Storage scheme for efficiently answering triple pattern
matching SPARQL queries on Big RDF data using MapReduce. The proposed method
takes advantage of the fact that mostly the predicate and object are the bound elements
in triple patterns of a SPARQL query. MuSe RDF Storage component stores large scale
data on Hadoop and its SPARQL query processing component processes the translated
SPARQL queries as MapReduce jobs. Our extensive experiments on different sized
RDF datasets verify the efficiency and scalability of our method which outperforms
SHARD, PigSPARQL and HyPSo. The simple architecture of MuSe can easily be imple-
mented and deployed across a Hadoop cluster. In future, we will investigate the effect
of SPARQL query optimization strategies on performance improvement of MuSe. We
would include the triple pattern reordering method for optimizing SPARQL queries in
MuSe and observe its effect on improvement in SPARQL query performance.

Page 21 of 26Chawla et al. J Big Data (2021) 8:130 	

(a)

(b)

(c)

(d)
Fig. 4  Data Scalability on LUBM datasets for queries Q1, Q3, Q4 and Q8 respectively

Page 22 of 26Chawla et al. J Big Data (2021) 8:130

(a)

(b)

(c)

(d)
Fig. 5  Data Scalability on WatDiv datasets for queries F2, F4, S2 and S5 respectively

Page 23 of 26Chawla et al. J Big Data (2021) 8:130 	

Appendix
LUBM Queries

Page 24 of 26Chawla et al. J Big Data (2021) 8:130

Page 25 of 26Chawla et al. J Big Data (2021) 8:130 	

Acknowledgements
We sincerely thank the reviewers and the Editor for their valuable suggestions.

Authors’ contributions
TC and ESP designed the study. TC performed the experiments in addition to writing the manuscript. All authors
reviewed and edited the manuscript. All authors read and approved the final manuscript.

Funding
No funds have been received from any agency for this research.

Availability of data and materials
The data used to support the finding of this study are available from the corresponding author upon request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 25 May 2021 Accepted: 12 September 2021

References
	1.	 Gandon F. A survey of the first 20 years of research on semantic Web and linked data. Revue des Sciences et Tech-

nologies de l’Information-Série ISI: Ingénierie des Systèmes d’Information. 2018.
	2.	 Hassanzadeh O. Introduction to Semantic Web Technologies & Linked Data. University of Toronto. 2011.
	3.	 Shah U, Finin T, Joshi A, Cost RS, Matfield J. Information retrieval on the semantic web. In: Proc. of the Eleventh

International Conference on Information and Knowledge Management, McLean Virginia, USA, pp. 461–68. 2002.
	4.	 Prasad JR, Shelke PM, Prasad RS. Semantic Web Technologies. Cham: Springer; 2021. pp. 35–57.
	5.	 Santana LHZ, Mello RDS. Persistence of RDF Data into NoSQL: A Survey and a Unified Reference Architecture. IEEE

Transactions on Knowledge and Data Engineering. 2020; pp. 1–20.
	6.	 Cardoso J, Sheth A. The Semantic Web and its applications. In: Semantic Web Services. Processes and Applications.

Cham: Springer; 2006. pp. 3–33.
	7.	 Chawla T, Singh G, Pilli ES, Govil M. Storage, partitioning, indexing and retrieval in Big RDF frameworks: a survey.

Computer Sc Rev. 2020;38: pp. 1–41.
	8.	 Chawla T, Singh G, Pilli ES. JOTR: Join-Optimistic Triple Reordering Approach for SPARQL Query Optimization on Big

RDF Data. In: 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT),
Bengaluru, India, pp. 1–7, 2018, IEEE.

	9.	 Chawla T, Singh G, Pilli ES. HyPSo: Hybrid Partitioning for Big RDF Storage and Query Processing. In: Proceedings of
the ACM India Joint International Conference on Data Science and Management of Data, Kolkata, India. ACM; 2019.
pp. 188–94.

	10.	 Wylot M, Hauswirth M, Cudré-Mauroux P, Sakr S. RDF data storage and query processing schemes: A survey. ACM
Computing Surveys (CSUR). 2018;51(4):1–36.

	11.	 Bouchelouche K, Ghomari AR, Zemmouchi-Ghomari L. Open Government Data (OGD) Publication as Linked Open
Data (LOD): A Survey. Open Government. 2021;10:1.

	12.	 Ji S, Pan S, Cambria E, Marttinen P, Philip SY. A Survey on Knowledge Graphs: Representation, Acquisition, and Appli-
cations. In: IEEE Transactions on Neural Networks and Learning Systems. 2021; pp. 1–27.

Page 26 of 26Chawla et al. J Big Data (2021) 8:130

	13.	 Kulcu S, Dogdu E, Ozbayoglu AM. A survey on semantic web and big data technologies for social network analysis.
In: IEEE International Conference on Big Data (Big Data), Washington DC, USA. 2016. pp. 1768–1777.

	14.	 Zhang F, Lu Q, Du Z, Chen X, Cao C. A comprehensive overview of RDF for spatial and spatiotemporal data manage-
ment. The Knowledge Engineering Review. 2021. pp. 1–36.

	15.	 Cheng L, Kotoulas S. Scale-out processing of large RDF datasets. IEEE Trans Big Data. 2015;1(4):138–50.
	16.	 Pan Z, Zhu T, Liu H, Ning H. A survey of RDF management technologies and benchmark datasets. J Ambient Intel-

ligence Humanized Computing. 2018;9(5): pp. 1693–704.
	17.	 Mazumdar S, Scionti A. Fast execution of RDF queries using Apache Hadoop, pp. 1–33. Elsevier: Amsterdam. 2020.
	18.	 Graux D, Jachiet L, Geneves P, Layaïda N. SPARQLGX: Efficient distributed evaluation of sparql with apache spark. In:

The 15th International Semantic Web Conference (ISWC), Kobe, Japan. Springer; 2016. pp. 80–87.
	19.	 Abadi DJ, Marcus A, Madden SR, Hollenbach K. SW-Store: a vertically partitioned DBMS for Semantic Web data

management. VLDB J. 2009;18(2):385–406.
	20.	 Hassan M, Bansal SK. RDF Data Storage Techniques for Efficient SPARQL Query Processing Using Distributed Com-

putation Engines. In: International Conference on Information Reuse and Integration for Data Science (IRI), Salt Lake
City, USA, 2018. pp. 323–30.

	21.	 Schätzle A, Przyjaciel-Zablocki M, Neu A, Lausen G. Sempala: interactive SPARQL query processing on hadoop. In:
International Semantic Web Conference, Riva del Garda, Italy, Springer; 2014. pp. 164–79.

	22.	 Ranichandra Dharmaraj C, Tripathy B. Adaptive mechanism for distributed query processing and data loading using
the RDF data in the cloud. Int J Commun Syst. 2018;31(15):1–12.

	23.	 Punnoose R, Crainiceanu A, Rapp D. SPARQL in the cloud using Rya. Inform Syst. 2015;48: 181–95.
	24.	 Rohloff K, Schantz RE. High-performance, massively scalable distributed systems using the MapReduce software

framework: the SHARD triple-store. In: Programming Support Innovations for Emerging Distributed Applications,
Reno, Nevada, ACM; 2010. pp. 1–4.

	25.	 Cossu M, Färber M, Lausen G. Prost: Distributed execution of sparql queries using mixed partitioning strategies. In:
21st International Conference on Extending Database Technology (EDBT), Vienna, Austria, ACM; 2018. pp. 1–5.

	26.	 Schätzle A, Przyjaciel-Zablocki M, Lausen G. PigSPARQL: Mapping SPARQL to pig latin. In: Proc. of the International
Workshop on Semantic Web Information Management, Athens, Greece, ACM; 2011. pp. 1–4.

	27.	 Chawla T, Singh G, Pilli ES, Govil M (2016) Research issues in RDF management systems. In: International Conference
on Emerging Trends in Communication Technologies (ETCT), Dehradun, India, IEEE, pp. 1–5

	28.	 Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Commun ACM. 2008;51(1):107–13.
	29.	 Guo Y, Pan Z, Heflin J. LUBM: A benchmark for OWL knowledge base systems. J Web Semantics. 2005;3(2–3):158–82.
	30.	 Aluç G, Hartig O, Özsu MT, Daudjee K. Diversified stress testing of RDF data management systems. In: International

Semantic Web Conference, Riva del Garda, Italy, Springer; 2014. pp. 197–212.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	MuSe: a multi-level storage scheme for big RDF data using MapReduce
	Abstract
	Introduction
	Motivation
	Key contributions

	Related work
	Multi-Level Big RDF Storage Scheme (MuSe): Architecture
	MuSe RDF Storage
	MuSe SPARQL query processing

	Results and discussion
	Experimental setup and datasets
	Performance evaluation

	Conclusion and future work
	Acknowledgements
	References

