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Introduction
Semantic Web is an outcome of the vision of W3C of a ‘Web of Linked data’ [1]. The 
Linked data can be easily understood and accessed and; is represented by the Semantic 
Web [2]. Semantic Web provides ease of access to all information available on the World 
Wide Web (WWW) and represents it in a format that is understandable to both humans 
and machines. The Semantic Web is being put to good use for information retrieval [3]. 
The semantic web technologies are being used by many people in building vocabularies, 
writing data handling rules, and creating data stores on the web. The technologies like 
Web Ontology Language (OWL), RDF, and SPARQL Protocol and RDF Query Language 
(SPARQL) empower Linked data [4, 5]. The foundation to publish and link data is pro-
vided by the RDF while, SPARQL is the commonly accepted query language used for 
the Semantic Web. The Semantic Web data is structured and interoperable so it is eas-
ily shared and reused by heterogeneous applications across the Web [6]. Semantic Web 
has established RDF as the standard model for data interchange. The flexible nature of 
RDF is a result of its underlying graph-based model that makes it a popular and stand-
ard choice for data interchange on the Semantic Web. RDF is a key data representation 

Abstract 

Resource Description Framework (RDF) model owing to its flexible structure is increas-
ingly being used to represent Linked data. The rise in amount of Linked data and 
Knowledge graphs has resulted in an increase in the volume of RDF data. RDF is used 
to model metadata especially for social media domains where the data is linked. With 
the plethora of RDF data sources available on the Web, scalable RDF data management 
becomes a tedious task. In this paper, we present MuSe—an efficient distributed RDF 
storage scheme for storing and querying RDF data with Hadoop MapReduce. In MuSe, 
the Big RDF data is stored at two levels for answering the common triple patterns in 
SPARQL queries. MuSe considers the type of frequently occuring triple patterns and 
optimizes RDF storage to answer such triple patterns in minimum time. It accesses 
only the tables that are sufficient for answering a triple pattern instead of scanning the 
whole RDF dataset. The extensive experiments on two synthetic RDF datasets i.e. LUBM 
and WatDiv, show that MuSe outperforms the compared state-of-the art frameworks in 
terms of query execution time and scalability.

Keywords:  RDF, SPARQL, Hadoop, HDFS, MapReduce, Storage

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Chawla et al. J Big Data           (2021) 8:130  
https://doi.org/10.1186/s40537-021-00519-6

*Correspondence:   
espilli.cse@mnit.ac.in 
Department of Computer 
Science and Engineering, 
Malaviya National Institute 
of Technology, Jaipur, India

http://orcid.org/0000-0003-3971-4687
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-021-00519-6&domain=pdf


Page 2 of 26Chawla et al. J Big Data           (2021) 8:130 

format that helps to maintain data for the Semantic Web in a structured form [7–9]. 
So, RDF serves as a common format for integrating and sharing structured and semi-
structured data across various applications. The RDF format was earlier just used for 
representing data for the Semantic Web but, presently it is used to represent any high-
quality data connected by links. The RDF format provides a standard way to represent 
such data. With RDF any kind of information can be expressed with a uniform structure 
in a simple manner [10].

The Linked Open Data (LOD) movement has increased the amount of RDF data being 
published on the web. The representation of data in such a linked form enables knowl-
edge discovery [11]. Some of the popular search engines that provide support for RDF 
data are Google, Bing, etc. Linked data is being used to integrate data from different 
domains. This distributed data linked from different domains form a knowledge graph. 
Some of the popular knowledge graphs are Dbpedia, Freebase, YAGO, etc. [12]. RDF 
can be used to represent the data for social media platforms such as Twitter, LinkedIn, 
Facebook etc. [13]. RDF is also being widely used to represent and process data for spati-
otemporal data domains [14]. The Semantic Web approaches are increasingly being used 
to represent academic and research data. RDF is being used to represent metadata on 
the web such as for the web pages and the search engines. Many big companies such 
as Yahoo, Google, Microsoft, and Facebook are maintaining their metadata in a struc-
tured form using RDF. One of the websites that mostly uses Semantic Web technolo-
gies is the media company; British Broadcasting Corporation (i.e., the BBC). Thus, many 
real-world applications use RDF to represent their data collected from different sources 
in a standard format and for data integration. Some of the applications of LOD are BBC 
World Cup 2010 and 2012, Dbpedia, etc. Dbpedia is a linked data version of Wikipedia. 
RDF format is also being used in the field of life sciences to represent, integrate and ana-
lyze large biomedical datasets. Some of the RDF datasets are listed on the DataSetRDF-
Dumps page of the W3C. One such data collected from sensors and sensor observations 
available on this page is the Linked Sensor data containing 1.7 billion triples.

RDF data storage and processing on a single machine is becoming more challenging 
with the continuously increasing dataset size [15]. The “Big Semantic Web data” era is a 
result of the growing success of the Web of data initiatives and the Semantic Web. The 
very initial approaches for RDF data management are based on centralized architecture 
and thus have a high scalability overhead. Some examples of centralized RDF systems 
are RDF-3x, Jena, Hexastore, RDFDB, RDFStore, etc. These systems although are simple 
but they suffer from the common limitations of the centralized approaches [16].

Later, the focus shifted towards designing Distributed RDF systems for improving the 
performance of existing systems and to overcome the current limitation of scalability. 
The research was being diverted towards distributed RDF management to overcome the 
Big Semantic Web data challenge. The term scalability means the ability of a system to 
handle a large amount of data without any compromise in its performance. Some well-
known Distributed RDF systems are Virtuoso, Clustered TDB, Yars2, BigOWLIM, RDF-
Peers, etc. These distributed RDF databases have been an efficient solution to overcome 
the challenges of centralized RDF systems.

With advancements being made in the field of Distributed RDF databases and increase 
in amount of RDF data the drawbacks of Distributed RDF databases became more 
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evident. So researchers were working towards the improvement of existent Distributed 
RDF systems or building these Distributed systems from scratch. The major limitation 
of these systems is their prerequisite of a dedicated infrastructure. These systems are 
not cost-effective to constitute a scalable framework owing to their requirement for a 
large number of resources. Hence, efforts were being put towards leveraging commod-
ity-grade machines on the generic cloud platforms for large-scale RDF data processing. 
Because of these developments, the MapReduce framework was gaining popularity for 
building scalable RDF management systems for managing the large-scale RDF data and 
to overcome the existing challenges such as proposed by Mazumdar et al. [17].

Motivation

The existing works on Big RDF Data storage generally store the RDF data on a single 
level in Hadoop. Most of the frameworks also do not take into account the type of triple 
patterns in a SPARQL query. Some of these frameworks are discussed in the “Related 
Work” section of this paper. Hence, such frameworks suffer from the huge costs in terms 
of time incurred during SPARQL Query Processing. These frameworks spend most of 
the time in scanning large two column VP tables created during Big RDF Storage. For 
example, in LUBM dataset the VP table for rdf:type predicate contains large number of 
records (and its size is ∼ 2GB ). This motivated us to design a storage scheme that mini-
mizes the size of these large tables and thus, reduces the scan space for query processing. 
The idea behind MuSe is to create another level of storage keeping into consideration the 
structure of triple patterns in a SPARQL query. This second level contains subtables that 
are directly scanned to generate intermediate results for predicate-object bound triple 
patterns. Hence, the minimum scan space requires less data scan time thereby, reducing 
the query execution time in MuSe.

Key contributions

Our work presents a multi-level RDF storage scheme for storing and processing Big RDF 
Data (or loarge scale RDF data) on Hadoop. The main contributions of this work are as 
follows:

•	 propose an efficient and scalable method, called MuSe; for storing Big RDF data on 
the Hadoop Distributed File System (HDFS).

•	 SPARQL queries are converted into a suitable format to be run as MapReduce jobs 
on the Big RDF data stored by MuSe on Hadoop.

•	 extensive experiments on two RDF datasets have been conducted to verify the query 
performance and scalability of our Big RDF data storage method.

From results we observe that on an average, MuSe outperforms the compared state-of-
the-art methods by an order of magnitude. The rest of this paper is organized as follows. 
Section 2 presents the frameworks designed for storage and querying of Big RDF Data. 
Section  3 describes the proposed storage and query processing architectures imple-
mented in MuSe for Big RDF data. In Section  4 we show our extensive experimental 
results. We finally conclude and discuss the future work in Section 5. The SPARQL que-
ries used for LUBM datasets in our experiments are given in Secion 6.
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Related work
This section discusses some of the existing distributed frameworks for storing and que-
rying large scale RDF data.

Graux et  al. [18] proposed SPARQLGX, a distributed RDF framework based on 
Apache Spark to evaluate SPARQL queries. With SPARQLGX the SPARQL queries can 
be executed on large scale data stored across multiple nodes in a cluster. SPARQLGX 
translates the SPARQL queries into Scala code that can directly be executed with the 
Spark API. This framework uses the vertical partitioned architecture proposed by Abadi 
et al. [19] for storing large scale RDF data. Thus, the RDF data is stored in two column 
tables having entries for only subject and object i.e. (s,o) for a triple (s,p,o) in the original 
RDF dataset. These tables are assigned the predicate name ‘p’ corresponding to which 
the s and o entries are stored. The advantage with this storage architecture is that it 
reduces the evaluation time of triple patterns in SPARQL queries where the predicate 
‘p’ is constant for eg. triple pattern (?s p ?o). And in practice, it has been observed that 
most SPARQL queries have triple patterns with a constant predicate. Thus, vertical par-
titioning storage strategy is quite suitable for RDF data, it reduces the dataset size and 
provides an indexation for the RDF data. SPARQLGX suffers from the drawback of read-
ing the entire dataset in order to compute statistics over the dataset. It does not take the 
query structure into account and reads only data related to that query. Thus, it also has 
the additional overhead of computing statistics prior to query processing.

Hassan et  al. [20] proposed two distributed data stores i.e. 3CStore and VPExp for 
storing large scale RDF data. These storage approaches are based on the vertical parti-
tioning strategy. 3CStore scheme uses a three-column layout for RDF data storage. The 
four possible correlations that can occur between two triple patterns based on the posi-
tion of their join variable based on their corresponding subject and object positions. 
These correlations are subject-subject (SS), subject-object (SO), object-subject (OS) and 
object-object (OO). On the basis of these correlations a subset of VP table with all the 
other VP tables using inner join is pre-computed. Then three-column stores are created 
for all the four correlations. The main objective of 3CStore storage model is to minimize 
the number of join operations and the input data size during SPARQL query evaluation. 
In VPExp approach, the input data size is minimized only for the rdf:type predicate. This 
predicate is quite common in the RDF datasets and it contains the most number of rows 
while vertical partitioning the RDF dataset. VPExp splits this predicate into the number 
of distinct objects that this predicate had. Thus, the goal of VPExp is to minimize the 
input data for the rdf:type predicate table when the triple pattern in a SPARQL query 
has rdf:type at the predicate position and the corresponding object is not a variable. It is 
observed that the proposed storage approach requires more storage space and a longer 
data loading time than the other architectures.

Chawla et  al. [9] proposed HyPSo, a hybrid partitioning strategy for processing 
SPARQL queries on Big RDF data. HyPSo combines vertical partitioning strategy for 
RDF storage with hash partitioning by subject. The proposed strategy improves SPARQL 
query performance by avoiding scanning of whole vertical partition to compute results. 
Here, all objects belonging to a subject are stored together thus, eliminating the over-
head of reading entire partition. The SPARQL queries are then executed according to 
this hybrid partitioning schema. The data is stored as flat files on HDFS. It converts the 
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SPARQL queries into Pig Latin queries to be executed on the stored RDF data. These 
Pig queries are internally executed as MapReduce jobs on HyPSo stored RDF data. This 
architecture has a drawback that RDF data belonging to a particular subject may be 
stored in different vertical partitioned tables on different nodes. Thus, the inter-node 
communication time may increase during query processing resulting in a degrade in the 
query performance. So, it is not efficient for all types of SPARQL queries

Schätzle et  al. [21] proposed Sempala, a scalable RDF framework for processing 
SPARQL queries on Hadoop. The Big RDF data is stored using Parquet, a columnar 
layout on Hadoop and Impala, a SQL query engine is used for query execution. Sem-
pala stores RDF data in a single unified property table and thus, efficiently answers star-
shaped pattern queries. Thus, with this storage schema all RDF properties used in the 
dataset are stored together thereby, reducing number of joins for a query. All queries can 
be answered using this single table. The drawback with this framework is that it is effi-
cient for star queries only and not for other query types.

Punnoose et al. [23] propose Rya, a scalable RDF management system that provides 
efficient support for SPARQL queries. The proposed system introduces storage, index-
ing and query processing methods for Big RDF data that support processing of SPARQL 
queries on large scale RDF data. The proposed system Rya stores RDF data in triples 
form in Accumulo, these triples are indexed across three tables that can satisfy all the 
triple patterns. These three tables are SPO, POS and OSP. These are named according to 
the order of the triples components stored. Such as the OSP table stores a triple in the 
Row ID as (object, subject, predicate). These three table indexes are scanned to answer 
a SPARQL query and it is observed to work fast in many situations. Rya suffers from the 
limitation of replicating data multiple times for exploiting its index data storage archi-
tecture over all the possible elements. Thus, each of the three table indexes will be stored 
multiple times.

Rohloff et  al. [24] proposed SHARD, a high-performance massively scalable distrib-
uted system that uses the MapReduce framework. This information system, persists the 
graph data as RDF triples and the SPARQL query language is used to respond to queries 
over the system. The SHARD system is evaluated using the LUBM benchmark dataset 
that is used for benchmarking RDF triple-stores. The design motivation for SHARD is 
to provide the ability for persisting and rapidly querying large data graphs. In flat files 
of SHARD, each line represents all the triples associated with a different subject. Thus, 
SHARD stores RDF data in a simple and easy to read format. SHARD has the limitation 
that it stores RDF data in plain files on HDFS. Thus, it needs to scan entire dataset dur-
ing SPARQL query processing. Also, the dataset may need to be scanned multiple times 
in case a query contains multiple clauses.

Cossu et  al. [25] proposed PRoST, Partitioned RDF on Spark Tables that stores Big 
RDF data using a hybrid scheme by combining two popular RDF storage techniques i.e. 
Binary and Property tables (Vertical Partitioning+Property Table). For processing the 
query is first split up into several sub-parts and then each subquery is executed using the 
most suitable storage approach. Then, next the results from the subqueries are joined 
together to obtain the final result. As PRoST, stores the Big RDF data using two RDF 
storage schemes (i.e. PT and VP) it occupies more storage space. And it is observed that 
PRoST occupies double space than SPARQLGX [18].
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Schätzle et  al. [26] proposed PigSPARQL, a system to process complex SPARQL 
queries on a MapReduce cluster. PigSPARQL uses the Vertical Partitioning data stor-
age model. This framework makes use of the observation that a typical SPARQL query 
has a bounded predicate in the triple pattern while, the subject and object are generally 
variables. It uses vertical partitioning for storing large scale RDF data as this approach 
reduces amount of RDF data required to be loaded for query execution. With this strat-
egy all RDF triples belonging to a predicate are stored in the same file and each predicate 
has its own file. Also, it just requires a single mapreduce job in advance and it doesn’t 
consume much disk space. From results, it was seen that this approach is a quite effec-
tive solution for improving SPARQL query performance so the authors suggested that it 
can be extended for further improvement.

Multi‑Level Big RDF Storage Scheme (MuSe): Architecture
In this section, we first introduce the storage strategy used in our proposed approach, 
MuSe. Then, we present the method of processing SPARQL queries on Big RDF data 
stored using MuSe on HDFS. We also describe in detail how SPARQL queries are imple-
mented using Hadoop MapReduce on the HDFS.

Figure  1 depicts the architecture of MuSe. As depicted in the figure, the large scale 
RDF data input by the user is stored on HDFS in Hadoop. MuSe stores this input data 
at two levels i.e. Level I and Level II for improving SPARQL query performance. MuSe 
is based on the vertical partitioning (VP) storage scheme for storing Big RDF data. At 
Level I, triple patterns with bound predicates are processed in a SPARQL query. Level II, 

Fig. 1  MuSe Architecture
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is used for processing triple patterns where the predicate and object are bound and the 
subject is a variable. So, second level processes the triple patterns of the form (?s p o). 
MuSe further simplifies the vertical partitioning scheme to reduce the search space of 
predicate bound triple patterns in the SPARQL queries.

MuSe RDF Storage

The architecture of MuSe is based on the general observation that in SPARQL queries 
generally the predicate is bound while the subject and object may be bound or unbound. 
The different types of triple patterns in a SPARQL query are: (?s p o), (s ?p o), (s p ?o), 
(?s ?p o), (s ?p ?o) and (?s p ?o) [27]. A triple pattern in the SPARQL query is imple-
mented either on Level I or Level II according to this observation. In MuSe, the data is 
pre-processed by the user and this pre-processed data in N-Triples format is stored on 
the HDFS. Further, MuSe stores this data at two levels for implementing individual triple 
patterns during SPARQL query processing. On Level I, the simple vertical partitioning 
(VP) storage scheme is used. So, here RDF data is stored in multiple two column tables. 
The subject and object of our input RDF triples are stored in each column. Each table is 
vertical partition table that is named by the predicate corresponding to which subjects 
and objects are stored in that table. So Level I, stores table of format p(s,o) where table 
name is represented by ‘p’ while (s,o) are stored in the two columns of these tables. Thus, 
triple pattern of a SPARQL query in the form (?s p ?o), (s p ?o) and (?s p o) are imple-
mented at Level I of MuSe. The advantage with VP scheme is that it reduces the scan 
space for processing SPARQL queries thereby improving query performance.

The need to further reduce scan space for improving SPARQL query performance 
motivated us to propose MuSe storage model. Level II, in MuSe storage model fulfils the 
requirement of reducing scan space for SPARQL queries having triples patterns where 
both predicate and object are bound while subject is unbound. A SPARQL query, with 
triple patterns of form (?s p o) can be easily implemented at Level II in lesser time. This 
additional level reduces the scan space for such triple patterns in a SPARQL query. Here, 
we further split a vertical partitioned table into smaller tables. Each predicate table is 
divided into tables named by distinct objects in the predicate table. Thus, tables at level 
II are of the form p[o(s)]. The smaller tables at this level are named by the object and 
contain a single column with entries of all subjects belonging to that predicate-object 
pair. This storage model of MuSe helps in minimizing the amount of scan space required 
for processing SPARQL queries. Thus, triple patterns with a bound predicate-object pair 
can be implemented at this level. The corresponding predicate table that matches with 
the predicate of a triple pattern in SPARQL query will be accessed. The triple pattern will 
be matched to its corresponding table by firstly matching the bound predicate in the first 
pass and then matching the object in second pass.

In this way, only the entries matching to predicate-object pair in a triple pattern of our 
SPARQL query will be retrieved. So only a small table will be scanned instead of scan-
ning an entire predicate table with many entries. For example, in (?s p o) triple pattern 
firstly the predicate table ‘p’ will be retrieved in first pass. In second pass, the table ‘o’ will 
be searched amongst the list of subtables present in table p. After, accessing the subtable 
‘o’ all entries of this table will be retrieved as the intermediate results for this triple pat-
tern. Similarly, this process will be repeated for all such triple patterns in the SPARQL 
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query. If there exists some other triple patterns where only predicate is bound in such 
cases, intermediate results for these patterns will be retrieved by matching that predicate 
with its corresponding VP table at Level I. This storage scheme is beneficial for differ-
ent types of SPARQL queries as the queries have multiple kinds of triple patterns. These 
two levels in MuSe enable answering of SPARQL queries in minimum execution time by 
selecting best possible storage model for different types of triple patterns. The RDF data 
from level I is taken as input and is transformed to form subtables at level II. The RDF 
data for both levels is stored on the HDFS. As the number of predicates in RDF data are 
limited so, we choose vertical partitioning strategy for storage at Level I to store input 
RDF data in multiple tables. Also, for storage at level II we choose to store subtables 
named by object as triple patterns with bound predicate-object pair are more common 
than those with bound subject-predicate pair.

As stated earlier, all other triple patterns where predicate is bound are implemented at 
Level I as this strategy supports fast data access compared to executing triple patterns 
on RDF data stored in a single file. MuSe is especially beneficial for large scale RDF data. 
The different types of RDF data in N-Triples format can be well handled by MuSe. The 
storage structure of MuSe requires that prior to running any SPARQL query the bound 
terms for each triple pattern in the query must be analyzed for loading its correspond-
ing table or subtable during query execution. Accordingly, the table or subtable will be 
loaded for a bound predicate in each triple pattern of the query. If an object is bound in 
the triple pattern then its corresponding subtable will be loaded. Firstly, the main table 
will be loaded after matching the predicate of triple pattern with our stored VP tables. 
Then second, a subtable will be loaded after object corresponding to that predicate in 
triple pattern is matched with available subtables under that main predicate table on 
HDFS. This process is repeated for all triple patterns in the SPARQL queries. With the 
addition of Level II, in MuSe storage scheme we try to solve the issue of scanning large 
predicate tables for eg. predicate rdf:type in RDF datasets forms a large table. Thus, divi-
sion of such large tables into subtables provides ease of access to data especially in cases 
where the data size is large and scan space needs to be reduced for minimizing query 
response time. The advantage of MuSe storage scheme is that it is easy to implement and 
is suitable for different types of SPARQL queries.

The subject entries are retrieved as intermediate results on implementing a triple pat-
tern with bound predicate-object pair in a SPARQL query. Similarly, for each triple pat-
tern in the SPARQL query these intermediate results are retrieved and are joined to form 
final results of the query. The star-shaped SPARQL queries will especially be benefitted 
from this storage scheme as in such queries the subject is unbound while both predicate 
and object are bound. These star queries contain subject–subject (ss) joins.

The number of P tables at Level I is equal to the number of distinct predicates in the 
input RDF dataset; I. The number of P-O subtables is equal to the number of distinct 
objects matching each distinct predicate in the input dataset. The number of distinct 
predicates may vary for different datasets like WatDiv dataset contains more distinct 
predicates than the LUBM dataset. For example, ‘n’ P tables will be built at Level I for a 
dataset; I containing ‘n’ distinct predicates. And, suppose there are ‘m’ distinct objects 
for each distinct predicate. Then, ‘nm’ number of P-O subtables will be built for each P 
table. So, in all ‘n’ tables (P tables) will be stored at Level-I and ‘nm’ tables (P-O subtables) 
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will be stored at Level-II. The space complexity of Algorithm 1 is O[(n-size)+(nm-size)]. 
The space occupied by MuSe depends on the size of P tables and P-O subtables. Thus, it 
can be said that the amount of tables generated at levels I and II depends on the number 
of predicates in the input RDF dataset. In worst case, there might be no bound predi-
cate in the query for which entire RDF dataset file needs to be loaded for query process-
ing. Then, this algorithm requires space equivalent to the size of input RDF data. Thus, 
the space complexity of Algorithm 1 in worst case will be O(I-size). Time complexity of 
MuSe storage depends on Table generation and Table loading time. Firstly, it will con-
sume some time to generate P and P-O subtables at both levels. Then, it will load tables 
and subtables respective to the triple patterns in the input query. So, if there are ‘i’ dis-
tinct predicates and ‘j’ distinct predicate-object pairs in the query. Then, time complexity 
of Algorithm 1 in average case is O[(n+nm)+(i+ij)] where, (n+nm) is table generation 
time and (i+ij) is table loading time. The best case is when only ‘ij’ subtables need to be 
loaded so best case time complexity is O[(n+nm)+(ij)]. The worst case happens when 
entire RDF dataset file needs to be loaded as there is no bound predicate in the query. 
Thus, worst case time complexity will be O(I). Algorithm 1, depicts the two level storage 
of MuSe.

MuSe SPARQL query processing

MuSe is implemented using the Hadoop MapReduce framework for SPARQL query 
processing. The input RDF data transformed to MuSe storage model is stored on the 
HDFS and SPARQL queries in the form of MapReduce jobs are run on this RDF data. 
As shown in Fig. 1, the SPARQL query is given as input by the user to the SPARQL 
query processing module. In this module, the SPARQL query given as input is trans-
formed into a format suitable to be run on HDFS as the SPARQL queries cannot be 
directly run on Hadoop. So, we transform the input SPARQL queries into Apache Pig 
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format. The queries in this Pig Latin format are internally executed as a sequence of 
MapReduce jobs. In these Pig queries, the data for both level I and level II is scanned 
according to the type of triple pattern in the SPARQL query. For example, for a tri-
ple pattern [?X rdf:type ub:GraduateStudent] the subtable will be scanned by a writ-
ing a statement rdf:type = LOAD ‘/usr/local/hadoop/input/lubm100VP/rdf_type/
ub_GraduateStuden’ USING PigStorage(‘\t’) AS (s); in the Pig query. Here, all subject 
entries in the subtable named ub_GraduateStudent will be retrieved as the subject 
is variable or unbound denoted by (“?X”). And, for scanning a VP table for a triple 
pattern in form [?X rdf:type ?Y] the statement rdf:type = LOAD ‘/usr/local/hadoop/
input/lubm100VP/rdf_type’ USING PigStorage(‘\t’) AS (s,o); will be written in the 
Pig query. Here, all subject-object pair entries in the VP table named rdf_type will be 
retrieved because both subject and object are unbound as denoted by (“X” and “Y”).

The SPARQL queries with bound objects in triple patterns are directly executed by 
scanning the corresponding subtables for that objects thus reducing the data scan 
space and hence access time. Hence, MuSe helps in improving the SPARQL query 
performance by providing apt storage model according to the different types of triple 
patterns in the query. For each subtable scanned corresponding to the predicate the 
subject entries in the subtable are retrieved as intermediate results for the triple pat-
tern. Depending upon the triple patterns in a SPARQL query, the number of subtables 
and VP tables required to be accessed may vary.

The intermediate results of each triple pattern are joined internally by the Pig query 
and stored on HDFS to be later retrieved by the user. The purpose of each triple pat-
tern in a SPARQL query is to find the value of variables denoted by (“?”) in the triple 
patterns. MuSe executes each triple pattern in the SPARQL query as a sub-query so 
these subqueries are executed as a series of triple pattern matching operations. Thus, 
variables in each triple pattern are retrieved by matching bindings with the input or 
stored RDF dataset. The triple pattern matching algorithm used for SPARQL query 
processing in MuSe is shown in Algorithm 2.

In case, the predicate is a variable (that is an uncommon scenario) then the entire 
input file (in N-Triples format stored on HDFS) will be scanned to generate inter-
mediate results for the triple pattern in the query. For taking the original input file 
as the source we only need to modify the translation process in the way the triple 
patterns are treated in MuSe storage model. This is quite a time consuming process 
and degrades SPARQL query performance. But according to our assumption the tri-
ple pattern in SPARQL queries have a bounded predicate so this scenario is unlikely 
to happen. The object subtable will be retrieved after accessing the predicate table by 
matching predicate of a triple pattern with the name of each VP table on the HDFS. 
After this, the object in that triple pattern will be matched with the subtables in the 
previously matched VP table. The reason to choose object-based subtables in Level II 
of MuSe is that in a RDF dataset the number of distinct objects is less than the num-
ber of distinct subjects. So, if we choose a subject-based subtable scheme then these 
subtables would be quite large in number and would be diffcult to handle. Also, the 
bounded predicate-object pair is more common in the SPARQL queries than subject–
object pair. For example. the star-shaped queries have variable subjects in each triple 
pattern.
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The space complexity of Algorithm 2, depends on intermediate results (IR) gener-
ated by each triple pattern on the input query. Thus, if there are ‘i’ triple patterns in 
the query then its space complexity is O(IR-size1+IR-size2+....+IR-size i  ). Time com-
plexity of this algorithm depends on the time required for scanning P tables and P-O 
subtables for processing each triple pattern of the query. In best case, MuSe triple 
pattern matching algorithm needs to scan ‘ij’ subtables so best case time complexity is 
O(ij). While, in average case it needs to scan ‘i’ tables as well as ‘ij’ subtables so aver-
age case time complexity is O(i+ij). In worst case, entire RDF dataset file needs to be 
scanned. Thus, worst case time complexity is O(I). The complexities of Algorithms 1 
and 2 are summarized in Table 1.

Table 1  Time and Space complexities of Algorithm 1 and 2

Algorithm Time Complexity Space Complexity

Algo 1 O[(n+nm)+(ij)] (Best Case) O[(n+nm)+(i+ij)] (Average Case) O(I) 
(Worst Case)

O[(n-size)+(nm-size)] 
(Best and Average 
Case) O(I-size) (Worst 
Case)

Algo 2 O(ij) (Best Case) O(i+ij) (Average Case) O(I) (Worst Case) O(IR-size1+IR-size2
+....+IR-size i  ) (Best, 
Average and Worst 
Case)
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Results and discussion
In this section, we discuss the experiments conducted on different large scale RDF data-
sets to test the performance of MuSe. We have carried out extensive experiments on 
two popular RDF benchmark datasets i.e. LUBM and WatDiv to verify the efficiency and 
scalability of MuSe and compared it with the state-of-the-art SHARD and PigSPARQL 
frameworks. MuSe is also compared with a hybrid partitioning technique; HyPSo. 
HyPSo partitions the Big RDF data and stores this partitioned Big RDF Data on HDFS. 
All large scale RDF data input from the user and transformed with MuSe is stored on the 
Hadoop Distributed File System (HDFS).

Experimental setup and datasets

Our experiments are conducted on a cluster of 4 machines each equipped with 16GB 
RAM, 2TB of disk space and Intel� Xeon(R) E3-1220 v6 processor. The cluster runs 
Hadoop 2.9.0 with Pig 0.17.0 on Ubuntu 16.04 LTS operating system. The Lehigh Uni-
versity Benchmark (LUBM) dataset and Waterloo SPARQL Diversity Test Suite (Wat-
Div) v0.6 are used in our experiments. The WatDiv dataset is generated from WatDiv 
binary given in the test suite. WatDiv dataset generated from its model file is in the 
N-Triples format. We can specify the scale factor for setting the number of triples that 
need to be generated for eg. a scale factor of 1 approximately generates 100K triples. In 
our experiments we generate four WatDiv datasets containing approximately 10, 100, 
200 and 400 million triples respectively as given in Table 2. The LUBM data generator 
class is used for generating datasets of 10, 50, 100 and 1000 universities and the random 
seed value is taken as 0 for data generation. In our evaluation, LUBM (n) means a LUBM 
dataset with n number of universities. The statistics of these datasets used in our evalu-
ation are given in Table 2. The dataset generated from LUBM data generator is in OWL 

Table 2  Dataset statistics

Dataset No. of triples Raw size Size on HDFS

LUBM (10) 1.31 million 230.8 MB 220.14 MB

LUBM (50) 6.86 million 1.2 GB 1.13 GB

LUBM (100) 13.82 million 2.5 GB 2.28 GB

LUBM (1000) 137.76 million 24.6 GB 22.94 GB

WatDiv (10M) 10.92 million 1.5 GB 1.44 GB

WatDiv (100M) 109.99 million 15.6 GB 14.53 GB

WatDiv (200M) 219.71 million 31.6 GB 29.47 GB

WatDiv (400M) 439.40 million 63.5 GB 59.13 GB
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format. This data is converted into N-Triples format using the rdfcat toolkit provided by 
Jena. We have used ten LUBM queries for our evaluation as listed in Appendix. Among 
these ten tested queries, Q1, Q3, Q4 and Q6 are the complex SPARQL queries. The star-
shaped LUBM queries are Q2, Q7, Q8, Q9 and Q10. And Q5, is a simple query having a 
small input.

The Hadoop framework is an open source framework that supports distributed pro-
cessing of large datasets on a cluster of computers. The Hadoop MapReduce (MR) pro-
gramming model [28] provides a software framework for the distributed storage and 
processing of large scale data or Big Data. With Hadoop framework the massive datasets 
can be analyzed more quickly in parallel. The distributed file system of Hadoop known as 
HDFS is used for data storage. HDFS splits the stored data in blocks and sends it to the 
various nodes in a cluster. The MapReduce applications run on top of the data stored in 
HDFS. The Hadoop cluster comprises of a master node and many slave nodes depending 
upon the size of the cluster. In the cluster, the MapReduce processing is done at the slave 
nodes and the final results are sent to the master node.

We have used Hadoop MapReduce framework for MuSe according to our require-
ment of storage and query processing of Big RDF Data. Similar, to other applications 
MuSe uses HDFS for Big RDF Data storage and the MapReduce programming model for 
retrieval of Big RDF data.

The LUBM datasets contain information related to the academic domain. LUBM is a 
synthetic dataset. This benchmark dataset has been developed to evaluate the perfor-
mance of Semantic Web repositories in a systematic and standard manner. This bench-
mark uses the Univ-Bench ontology. This ontology describes the departments and 
universities and the activities occuring in them [29]. The WatDiv dataset generator is 
used to generate the synthetic benchmark WatDiv datasets. By executing this generator 
different sized WatDiv datasets can be generated by setting different scale factors. The 
diverse test workloads are generated for WatDiv i.e. Basic Testing, Extension to Basic 
Testing (Incremental Linear and Mixed Linear Testing) and Stress Testing. The WatDiv 
dataset for evaluating a system under diverse test workloads. The test queries available 
with this dataset are used to focus on much wider aspects of query evaluation [30].

The term Big RDF Data or large scale RDF data refers to RDF datasets that are large in 
size. These large RDF datasets cannot be handled by centralized RDF systems (i.e. triple-
stores). The centralized RDF engines are used for processing RDF datasets that are small 
in size and can be processed on a single machine. The experimental datasets mostly used 
in our work are large in size as centralized RDF architectures will not be able to handle 
RDF data of such scale. The centralized RDF systems will either fail to process such large 
data or they will be very slow in processing this scale RDF datasets. On the other hand, if 
we process small scale (or as we say less volume) RDF data then centralized RDF engines 
will prove to be effective. Thus, it can be said that the used datasets belong to Big Data.

Performance evaluation

We have generated datasets for our experiments from the available LUBM and WatDiv 
Dataset generators. With these data generators we can generate datasets of different 
sizes. The queries of WatDiv are categorized as Linear queries (L), Star queries (S) and 
Snowflake queries (F). The existing basic template queries of WatDiv were used in our 
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experiments. The efficiency of MuSe is compared on the basis of query execution time. 
And the scalability is measured by carrying out experiments for MuSe on various scale 
LUBM and WatDiv datasets.

(a) Efficiency
The different sized LUBM and WatDiv datasets input by user after pre-processing 

are loaded on the HDFS as shown in Fig. 1. The query execution times of SHARD, Pig-
SPARQL (Plain RDF Data), PigSPARQL (VP) and HyPSo are shown in Table 3. We have 
considered two cases for PigSPARQL framework first, where it stores Big RDF data in 
Plain text files. And second, where it uses vertical partitioning storage strategy to store 
Big RDF data in two column tables. The query response times on LUBM datasets for 
10, 50, 100 and 1000 universities are recorded in Table 3a–d respectively. In Table 4, we 
depict the query response times on WatDiv datasets, with Table 4a–d containing times 
for 10, 100, 200 and 400 million triples respectively. Figures  2 and 3 shows the query 
execution time comparison of MuSe with SHARD, PigSPARQL (Plain RDF Data), Pig-
SPARQL (VP) and HyPSo architectures for LUBM and WatDiv datasets respectively. Fig-
ure 2a–d illustrate the execution time comparison of MuSe on LUBM datasets of 10, 50, 
100 and 1000 universities respectively. Also, a similar comparison of MuSe on WatDiv 
datasets having 10M, 100M, 200M and 400M triples is shown in Fig. 3a–d respectively.

We observe that the average query execution time of MuSe is less than the compared 
state-of-the-art frameworks for both tested datasets. MuSe executes with an average 
time gain of 86.2%, 78.8%, 20.9% and 14.9% over the SHARD, PigSPARQL (Plain RDF 
Data), PigSPARQL (VP) and HyPSo architectures respectively for LUBM datasets. While 
for WatDiv datasets, it shows an average time gain of 95.6%, 10.2% and 6.7% over the 
PigSPARQL (Plain RDF Data), PigSPARQL (VP) and HyPSo architectures respectively. 
The parser of SHARD framework does not support Watdiv queries so, we have com-
pared MuSe only with PigSPARQL and written “n/a” for the case of comparison with 
SHARD. From the figures, we see that MuSe performs better than the other two frame-
works for all 10 queries tested on LUBM datasets. While, for WatDiv datasets its perfor-
mance degrades only in case of query S6 over PigSPARQL (VP). MuSe performs better 
than PigSPARQL PigSPARQL (VP) for all other 7 queries tested on WatDiv datasets. We 
have tested different shaped SPARQL queries i.e. snowflake (F2 and F4), Linear (L4) and 
star-shaped (S2, S3, S4, S5 and S6) of WatDiv dataset on MuSe. It is observed that the 
query time of S6 increases with increasing data size in case of WatDiv dataset. As the 
overhead increases, with increasing dataset size so the response time for this query rises. 
S6 is a star query with 3 triple patterns. But all three triple patterns are predicate-bound. 
So, this query cannot leverage much benefits of the second level storage in MuSe. For S6, 
three VP tables at Level I in MuSe need to be accessed to generate intermediate results 
and answer this query. But overall the average query response time of MuSe is less than 
(Plain RDF Data), PigSPARQL (VP) and HyPSo for the all the tested WatDiv datasets.

The comparatively poor performance of the compared frameworks can be attributed 
to their use of simple standard storage methods for all types of queries. These architec-
tures do not leverage the advantage of known elements in triple patterns of a SPARQL 
query. While MuSe considers this fact and takes account of this advantage into its archi-
tecture. MuSe prunes a part of invalid input data by utilizing the RDF properties embed-
ded in the triple patterns of SPARQL queries at Level I. It takes this a step forward by 
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(a)

(b)

(c)

(d)
Fig. 2  Query Execution Times for LUBM datasets of 10, 50, 100 and 1000 universities respectively



Page 16 of 26Chawla et al. J Big Data           (2021) 8:130 

Ta
bl

e 
3 

Q
ue

ry
 e

xe
cu

tio
n 

tim
es

 (i
n 

m
ill

is
ec

on
ds

) f
or

 L
U

BM
 d

at
as

et
s 

of
 1

0,
 5

0,
 1

00
 a

nd
 1

00
0 

un
iv

er
si

tie
s 

re
sp

ec
tiv

el
y 

w
ith

 S
H

A
RD

, P
ig

SP
A

RQ
L 

(V
P)

, H
yP

So
 a

nd
 M

uS
e

(a
) L

U
BM

 (1
0,

0)

Ti
m

e 
(in

 m
ill

is
ec

on
ds

)

LU
BM

 (1
0,

0)

Q
ue

ry
Q

1
Q

2
Q

3
Q

4
Q

5
Q

6
Q

7
Q

8
Q

9
Q

10
A

M

SH
A

RD
21

38
10

17
63

58
17

33
37

20
86

27
14

01
32

14
62

68
18

25
10

21
67

33
35

66
09

30
34

36
21

17
82

Pi
gS

PA
RQ

L 
(P

la
in

 R
D

F 
D

at
a)

74
70

5
37

72
9

49
92

3
62

06
2

39
54

6
39

58
9

37
50

2
43

30
7

67
71

6
57

63
0

50
97

0.
9

Pi
gS

PA
RQ

L 
(V

P)
58

81
4

17
47

8
29

37
2

46
02

1
26

09
7

34
23

3
17

36
2

17
44

7
22

48
5

22
56

6
29

18
7.

5

H
yP

So
47

56
4

17
55

3
29

48
2

46
95

6
24

30
0

29
38

9
12

45
1

17
55

1
22

53
0

17
66

6
26

54
4.

2

M
uS

e
41

32
0

12
78

4
23

75
9

36
52

3
18

64
5

29
44

8
17

58
4

17
67

9
17

75
4

17
76

1
23

32
5.

7

(b
) L

U
BM

 (5
0,

0)

Ti
m

e 
(in

 m
ill

is
ec

on
ds

)

LU
BM

 (5
0,

0)

Q
ue

ry
Q

1
Q

2
Q

3
Q

4
Q

5
Q

6
Q

7
Q

8
Q

9
Q

10
A

M

SH
A

RD
22

77
38

19
65

15
19

54
49

23
57

07
15

52
06

16
12

63
19

64
32

23
62

61
40

65
86

38
43

49
23

95
50

.6

Pi
gS

PA
RQ

L 
(P

la
in

 R
D

F 
D

at
a)

19
75

56
14

75
51

13
45

47
17

66
38

11
45

89
12

22
31

14
25

74
17

75
95

29
82

27
24

30
29

17
54

53
.7

Pi
gS

PA
RQ

L 
(V

P)
62

35
9

27
67

8
39

81
4

56
16

1
31

40
1

34
20

2
22

44
7

27
56

9
32

78
1

42
51

5
37

69
2.

7

H
yP

So
61

96
4

22
45

4
29

26
7

62
20

0
29

21
6

34
34

1
27

59
4

27
43

6
32

58
1

47
55

0
37

46
0.

3

M
uS

e
46

09
1

22
67

9
23

56
4

46
60

4
23

47
2

34
44

5
22

64
1

22
77

2
27

85
3

42
80

8
31

29
2.

9

(c
) L

U
BM

 (1
00

,0
)

Ti
m

e 
(in

 m
ill

is
ec

on
ds

)

LU
BM

 (1
00

,0
)

Q
ue

ry
Q

1
Q

2
Q

3
Q

4
Q

5
Q

6
Q

7
Q

8
Q

9
Q

10
A

M

SH
A

RD
28

27
67

23
04

61
22

48
87

27
67

39
17

32
76

18
62

27
22

25
25

26
68

19
48

47
49

50
47

17
28

53
16

.7

Pi
gS

PA
RQ

L 
(P

la
in

 R
D

F 
D

at
a)

38
28

14
27

81
90

26
49

24
31

72
75

22
38

25
22

99
18

29
79

36
36

76
54

63
33

11
51

27
74

35
08

62
.1

Pi
gS

PA
RQ

L 
(V

P)
87

56
4

47
50

4
44

37
8

76
40

1
44

17
2

49
60

0
42

46
3

47
46

5
52

59
6

77
73

4
56

98
7.

7



Page 17 of 26Chawla et al. J Big Data           (2021) 8:130 	

Ta
bl

e 
3 

(c
on

tin
ue

d)

(c
) L

U
BM

 (1
00

,0
)

Ti
m

e 
(in

 m
ill

is
ec

on
ds

)

LU
BM

 (1
00

,0
)

H
yP

So
67

12
9

42
44

6
40

72
8

82
04

0
34

12
5

49
42

6
42

57
7

42
44

8
52

61
5

72
53

7
52

60
7.

1

M
uS

e
51

19
7

37
93

4
33

62
3

56
24

3
19

89
7

47
15

4
37

62
3

37
82

1
49

07
7

72
78

2
44
33
5.
1

(d
) L

U
BM

 (1
00

0,
0)

Ti
m

e 
(in

 m
ill

is
ec

on
ds

)

LU
BM

 (1
00

0,
0)

Q
ue

ry
Q

1
Q

2
Q

3
Q

4
Q

5
Q

6
Q

7
Q

8
Q

9
Q

10
A

M

SH
A

RD
19

33
22

9
16

93
50

6
18

61
07

4
16

36
97

8
10

34
25

8
14

36
26

8
17

96
99

0
20

45
57

8
36

47
88

1
44

34
75

7
21

52
05

1.
9

Pi
gS

PA
RQ

L 
(P

la
in

 R
D

F 
D

at
a)

34
04

06
4

40
75

06
0

29
36

27
2

35
63

58
0

22
49

13
3

23
64

29
1

40
12

03
0

51
72

34
8

66
81

19
4

59
23

12
7

40
38

10
9.

9

Pi
gS

PA
RQ

L 
(V

P)
41

78
14

34
28

50
27

94
80

42
93

38
15

66
59

26
44

06
37

44
63

35
32

11
40

79
84

68
29

30
37

09
13

.5

H
yP

So
30

64
73

33
27

50
25

94
41

40
76

24
13

93
76

23
93

64
32

75
57

32
78

69
36

81
36

64
81

52
33

56
74

.2

M
uS

e
24

16
69

30
80

34
16

38
77

26
67

95
18

69
9

21
97

26
30

30
92

30
29

26
36

63
52

67
32

49
28

64
41

.9



Page 18 of 26Chawla et al. J Big Data           (2021) 8:130 

(a)

(b)

(c)

(d)
Fig. 3  Query Execution Times for WatDiv datasets of 10M, 100M, 200M and 400M triples respectively
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Table 4  Query execution times (in milliseconds) for WatDiv datasets having 10M, 100M, 200M and 
400M triples respectively on PigSPARQL (VP), HyPSo and MuSe

(a) WatDiv (10M)

Time (in milliseconds)

WatDiv (10M)

Query F2 F4 L4 S2 S3 S4 S5 S6 AM

SHARD n/a n/a n/a n/a n/a n/a n/a n/a n/a

PigSPARQL 
(Plain RDF 
Data)

246241 262222 73103 143164 143029 142829 143057 108101 157718.25

PigSPARQL 
(VP)

41814 35394 19015 18764 12864 12656 23725 18811 22880.375

HyPSo 35890 30998 18782 18459 12662 12754 19317 19399 21032.625

MuSe 35454 30170 18714 18487 12817 12603 18575 18526 20668.25

(b) WatDiv (100M)

Time (in milliseconds)

WatDiv (100M)

Query F2 F4 L4 S2 S3 S4 S5 S6 AM

SHARD n/a n/a n/a n/a n/a n/a n/a n/a n/a

PigSPARQL 
(Plain RDF 
Data)

2187767 2397936 749082 1530010 1729115 1742344 1737574 1185536 1657420.5

PigSPARQL 
(VP)

55424 44676 19521 28557 17753 17705 23674 28763 29509.125

HyPSo 50932 39609 23813 24304 17840 17686 18674 33488 28293.25

MuSe 50443 39517 18576 23612 17877 12580 18630 30198 26429.125

(c) WatDiv (200M)

Time (in milliseconds)

WatDiv (200M)

Query F2 F4 L4 S2 S3 S4 S5 S6 AM

SHARD n/a n/a n/a n/a n/a n/a n/a n/a n/a

PigSPARQL 
(Plain RDF 
Data)

4553259 5030129 1617483 3451818 3369584 2830872 3242667 2854154 3368745.75

PigSPARQL 
(VP)

71569 59640 18611 35576 22760 22920 23855 33565 36062

HyPSo 60645 54645 19233 33618 22662 17673 23610 48578 35083

MuSe 55474 49729 18420 28527 22692 17648 18523 43604 31827.125

(d) WatDiv (400M)

Time (in milliseconds)

WatDiv (400M)

Query F2 F4 L4 S2 S3 S4 S5 S6 AM

SHARD n/a n/a n/a n/a n/a n/a n/a n/a n/a

PigSPARQL 
(Plain RDF 
Data)

10367268 11318178 2879308 5415441 5480759 5439132 5958496 3835103 6336710.625

PigSPARQL 
(VP)

100681 84799 30176 53830 44135 32761 33451 48506 53542.375

HyPSo 100479 74878 18792 48922 37674 27738 33659 73528 51958.75

MuSe 95461 74731 18407 43547 32737 27646 23487 68674 48086.25
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similary pruning the RDF objects bound in SPARQL queries at Level II. Thus, reducing 
or postponing a large number of Cartesian operations. PigSPARQL also does pruning 
but, it only prunes the RDF properties and not the other bound elements in a SPARQL 
query. While, SHARD performs no pruning and simply stores all RDF data in a single 
file by hashing on the subject. It is also seen that SHARD cannot evaluate multiple triple 
patterns in a single MapReduce job. HyPSo is designed keeping structure of some par-
ticular SPARQL queries into consideration. It only works well for those types of SPARQL 
queries and thus, its average performance is low as compared to MuSe. The storage and 
triple pattern matching algorithm used by MuSe is much better than that used by the 
other two frameworks as it prunes a large amount of invalid RDF data prior to and dur-
ing query processing.

(b) Scalability
We compared MuSe with PigSPARQL (VP) and HyPSo. We carried out the scalability 

comparison experiments on various scale LUBM and WatDiv datasets. When the data-
set size increases for LUBM and WatDiv the query time of all three methods increases 
and MuSe was always the best one. Figures  4 and  5 shows the scalability comparison 
of MuSe on LUBM and WatDiv datasets respectively. Figure 4a–d depict the scalabil-
ity comparison on LUBM datasets for queries Q1, Q3, Q4 and Q8 respectively. Simi-
larly, Figure  5a–d depict the scalability comparison on WatDiv datasets for queries F2, 
F4, S2 and S5 respectively. From these figures, we can observe that as the scale of data-
sets increases, the query time of PigSPARQL (VP) and HyPSo increases dramatically. 
In contrast, for MuSe the growth rate of query time changes slightly. These extensive 
experiments were carried out on various sized LUBM datasets i.e. LUBM10, LUBM50, 
LUBM100 and LUBM1000. Similary, scalability was tested on different sized WatDiv 
datasets with 10, 100, 200 and 400 million triples. These experiments were conducted 
on 4 queries of LUBM i.e. Q1, Q3, Q4 and Q8. And for WatDiv the 4 queries tested are 
F2, F4, S2 and S5. It is seen that SHARD performs worst than the other compared meth-
ods. The query performance of MuSe for almost all tested queries maintains to be low 
in comaprison to the other architectures with increasing size of WatDiv datasets. Thus, 
confirming that MuSe works well for large scale RDF data and scales well with data size.

Conclusion and future work
In this paper, we proposed MuSe: a Multi-Level Storage Scheme for Big RDF Data Using 
MapReduce. It is a two level Storage scheme for efficiently answering triple pattern 
matching SPARQL queries on Big RDF data using MapReduce. The proposed method 
takes advantage of the fact that mostly the predicate and object are the bound elements 
in triple patterns of a SPARQL query. MuSe RDF Storage component stores large scale 
data on Hadoop and its SPARQL query processing component processes the translated 
SPARQL queries as MapReduce jobs. Our extensive experiments on different sized 
RDF datasets verify the efficiency and scalability of our method which outperforms 
SHARD, PigSPARQL and HyPSo. The simple architecture of MuSe can easily be imple-
mented and deployed across a Hadoop cluster. In future, we will investigate the effect 
of SPARQL query optimization strategies on performance improvement of MuSe. We 
would include the triple pattern reordering method for optimizing SPARQL queries in 
MuSe and observe its effect on improvement in SPARQL query performance.
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(a)

(b)

(c)

(d)
Fig. 4  Data Scalability on LUBM datasets for queries Q1, Q3, Q4 and Q8 respectively
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(d)
Fig. 5  Data Scalability on WatDiv datasets for queries F2, F4, S2 and S5 respectively
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