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Introduction
Applications of radiation monitoring systems range from the detection of unsecured 
radioactive sources in otherwise normal environments to situational awareness after 
a nuclear disaster. Fixed-position sensor systems are popular (cf. [1, 2]) and there is 
increasing use of mobile sensors—ground-based [3–6], on aerial platforms [6–8], or 
combinations of both [9, 10].

A two-stage radiation monitoring system has acquisition and digitization of sensor 
data in a first stage followed by data processing in a second stage (cf. [10]). This paper 
focuses on data processing where the digitized sensor data is matrices of Poisson counts. 
In many applications, an objective in the processing stage is detection and delineation of 
potential radiation hot spots which, in numerical terms, means

•	 discovering clusters of comparatively high radiation intensity in the digitized sensor 
data, and
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•	 quantifying the relative positions of the clusters.

We discuss a numerical computational method for this objective. The method is a com-
bination of commonplace algorithms (for example, the discrete Fourier transform) and 
relatively newer results in tensor math for numerical data.

The numerical output of this processing is convenient for visual display and for super-
imposing on other digitized data, such as registered visual images (cf. [11]) or geospatial 
maps of a region of interest. For example, ATAK [12–14] is an application for Android 
smartphones and tablets which uses GPS together with maps of an operational area to 
display real-time information to field personnel. GPS-registered localization of potential 
radiation hot spots can be transmitted from a centralized server to ATAK devices and 
superimposed on infrastructure maps for local situational awareness. Near real-time 
numerical computation is expected on fast, inexpensive Graphical Processing Units [15].

“Tensor factorization and phase congruency for 2D frames of Poisson data” section 
describes the Poisson assumptions about the digitized sensor data and introduces the 
two key numerical computations. The computations are discussed and illustrated by 
simulation in “Nonnegative tensor factorization: Poisson data” and “Phase congruency 
in a 2D grid” sections. “Conclusions” section is conclusions. The Appendix has succinct 
summaries of the two computations, with references that contain the algorithmic details.

Tensor factorization and phase congruency for 2D frames of Poisson data
Various systems output sensor data at discrete time stamps (cf. [2–4, 16, 17]) with dif-
ferent physical interpretations and different digital formats. This paper concentrates on 
digitized sensor data in the format of 2D matrices in which the data is total measured 
counts in a Poisson process [18]. An example of contemporary technology is a coded 
aperture system for which an output matrix of Poisson data is computed when the input 
data is Poisson (cf. [19–23]).

We will call the 2D data matrix a frame. Each frame is an X × Y  grid of independent 
Poisson counts. When a sequence of frames is generated over time, each frame has a dis-
crete time stamp or index marking its place in the sequence. We assume that the set-up 
for data-acquisition is the same for every frame in a sequence, in particular, the acquisi-
tion time interval for recording gross counts is the same and the points in the 2D grids 
remain registered with respect to the object or area being scanned.

Given n frames with individual time stamps t1 < t2 < · · · < tn , the 3D dataset D is the 
X × Y × n array in which the n frames are “stacked” in order 1, 2, ..., n. By assumption, 
background radiation is independent and identically distributed ( iid ) Poisson counts 
with fixed intensity �B at each grid point in D . A potential hot spot in D is a cluster or 
subgrid H of iid sample values which are greater on average than the iid sample val-
ues at neighboring grid points. Unless stated otherwise, it is assumed that the location, 
shape, and Poisson intensity �H of a hot spot H do not change in a sequence of frames. 
(Unshielding a hot spot and small shifts in position are discussed respectively in the 
short “Unshielding a source” and “Real or apparent motion of a hot spot” sections.)

Two numerical computations constitute our two-step procedure for detection and 
delineation of potential hot spots in dataset D : 
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1.	 nonnegative tensor factorization of 3D array D [24, 25].
2.	 phase congruency in pertinent 2D arrays [26–28].

The tensor factorization is computed to maximize a Poisson likelihood conditioned on 
the sample dataset D . This yields a second 3D array M to augment D ; then phase congru-
ency is computed for both D and M . The coordinates of closed contours in phase con-
gruency define the position and approximate outline of potential hot spots in D. Clusters 
in scatter plots of phase congruency are additional information.

Phase congruency is a frequency-based analysis based on well-known methods in dis-
crete math, including wavelets and discrete Fourier transforms. The tensor factorization 
is a relatively new development in tensor math. Computation with tensors is more com-
plex than with conventional 2D matrices, but the tensor factorization can reveal numeri-
cal relationships in higher dimensions.

Nonnegative tensor factorization: Poisson data
Notation and computed tensor M
Given the nonnegative integer array D , we compute a nonnegative real-number array 
M to maximize the conditional Poisson likelihood P(D|M) . The objective is localization 
of potential hot spots in D , to which end the computed array M augments the dataset 
D both for visual comparisons and for the computations in “Phase congruency in a 2D 
grid” section.

The array M is computed in tensor math. In computational linear algebra, an nth-order 
tensor is an n-dimensional array of real numbers [29–31]. Thus, the 64 × 64 × 20 data-
set D in the following  “Simulation” section is a 3rd-order tensor with indices 1 to 64 
in its tensor mode-1 and mode-2 (the first and second dimensions in the 3D array) and 
index 1 to 20 in its tensor mode-3 (the third dimension).

Computations in tensor math that minimize certain error functions have become 
important tools in applications involving real-number arrays of data (cf. [24, 25, 29, 32, 
33] and their references). “Nonnegative tensor factorization of Poisson data” section in 
Appendix is a succinct outline of the computation of the tensor M to maximize P(D|M) 
by solving an equivalent minimization problem [24, 25].

The computed tensor M has the same dimensions as the data tensor D . For short nota-
tion, let index i denote a 3D-location in tensor D. Let xi [or mi ] denote the value in D [or 
M ] at location i. A value mi in M is usually not a simple sample mean of the data D in 
any single dimension; however, the sum 

∑
i mi in M equals the sum 

∑
i xi in D , and the 

sample mean value µD of the entire dataset D is preserved in the projection of tensor M 
in each of its three modes:

The sample variance of M in each of its modes is smaller than the corresponding sample 
variance of D:

This tends to smooth the values in subgrids of similar values in M while sharpening the 
boundaries between adjacent subgrids of higher and lower values. Small subgrids or 

µD = µM1 = µM2 = µM3 .

σ 2
Mi

< σ 2
Di

for i = 1, 2, 3.
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point sources with insufficient sample count in D are not guaranteed to emerge strongly 
in M , especially if dominated by nearby subgrids with higher total counts. Overall, how-
ever, recurrent subgrids are accentuated more in M than in D , and this is an advantage in 
the computation of phase congruency in “Phase congruency in a 2D grid” section.

The optimal tensor M is computed in a factorized form for which the user must specify 
the number of components R [24, 25, 34]. We use R = 10 , a number found empirically for 
datasets in this paper such that changes in the numerical values computed in M are rela-
tively insignificant for R > 10.

Simulation

A dataset D is simulated as follows:

•	 Each frame is a 64 × 64 grid. Background radiation is simulated for each frame sepa-
rately as iid Poisson with intensity �B = 0.1 . For comparisons across different cases, the 
same simulated background frames are repeated in all examples.

•	 The dataset D is 64 × 64 × 20 , a 3D grid of 20 frames of independent Poisson random 
variables totaling approximately 82K samples. For reference, the sample mean of the 
20-frame background grid without hot spots is 0.0999 and the variance is 0.1001.

•	 To simulate a hot spot H, a subgrid is generated iid with Poisson intensity �H , �H > �B , 
and embedded in a background frame. Locations and shapes of hot spot subgrids within 
a 64 × 64 frame and across the 20 frames are described below. To compare results when 
hot spots are added or deleted, the same simulated values for a hot spot are used regard-
less of whether other hot spots are present.

•	 The simulated hot spot geometries are a point source, a 2× 2 subgrid, and a larger 
angled shape with different Poisson intensities in two parts.

Hot spots H1 and H2

Two hot spots H1 and H2 are embedded in each frame of the 3D grid of background sam-
ples. H1 is a point source—the same single grid point in each 64 × 64 frame with iid sample 
values at Poisson intensity �H1 = 4. H2 is a square 2× 2 subgrid with �H2 = �H1/4 = 1.

Figure 1a is a 3D bar plot of the sample mean of the 64 × 64 × 20 dataset D in its tensor 
mode-3, which is the 64 × 64 matrix of sample mean values in the 20 frames. Figure 1b is 
the corresponding plot for the mode-3 mean values of tensor M that maximizes the Poisson 
likelihood P(D|M).

As noted in “Notation and computed tensor M” section, the sample means are equal and 
the sample variance in a mode of D is larger than in the same mode of M . The sample mean 
is µD = µM = 0.1019 and the sample variances are

D M

mode-3 0.0103 0.0053
mode-2 0.0018 0.0008
mode-1 0.0017 0.0008
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Hot spots H1,H2,H3

Figure 2 is the same layout as Fig. 1 but adds an additional hot spot H3 , a right-angled 
subgrid with its two arms having different Poisson intensities. The intensity in the arm 
parallel to the mode-1 axis is �H1/8 = 0.5 and in the other arm is �H1/4 = 1 = �H2.

The sample mean is µD = µM = 0.1072 and the sample variances are

Phase congruency in a 2D grid
The method of phase congruency

Both the data tensor D and the optimal Poisson-likelihood tensor M in “Nonnega-
tive tensor factorization: Poisson data” section are discrete grids in which a potential 
hot spot is a subgrid of higher mean value embedded in a neighborhood of lower mean 
value. A method based on Fourier frequencies is used for automatic (unsupervised, non-
interactive) detection and delineation of these subgrids.

In practice, an unsupervised method should accommodate different ranges of numeri-
cal values in grids and diverse subgrid shapes. Phase congruency in a matrix of real 
numbers does this by computing agreement or congruency locally in a 2D grid in the 
frequency domain [26–28].

In the Fourier representation of signals, including multidimensional arrays of numeri-
cal data, the unique role of phase in locating “events” such as edges or points has long 
been recognized (cf. [35]). In conventional image processing, phase congruency assigns 

D M

mode-3 0.0150 0.0107
mode-2 0.0021 0.0010
mode-1 0.0022 0.0011

Fig. 1  3D bar plots for two hot spots H1,H2 . a Data tensor D . b Computed tensor M.

Fig. 2  3D bar plots for three hot spots H1,H2,H3 . a Data tensor D . b Computed tensor M.
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an invariant measure of significance to localized edges, lines, and corners [26–28, 36–
38]. For the numerical data in D and M , it reveals boundaries separating subgrids of 
higher average values from lower average values, thereby delineating clusters with higher 
sample means embedded in local neighborhoods of lower sample means. The coordi-
nates of closed contours in 2D phase congruency define the location and outline of a 
potential hot spot cluster.

Cluster boundaries in 2D grids are step discontinuities characterized by coherence 
in phase of Fourier frequency components at several scales and orientations. Kovesi’s 
refined algorithm [26] with noise compensation uses wavelets for local frequency infor-
mation at a fixed number of scales and filters at a fixed number of orientations. Given 
an X × Y  matrix, the computation returns an X × Y  array of values in the range 0 to 1 
where 0 indicates no significant “event” and 1 indicates high significance. Phase congru-
ency is a dimensionless, normalized measure, and the information in phase congruency 
covariance matrices is conveniently displayed as contour and scatter plots.

In practice, the user must assign parameters such as the number of wavelet scales and 
the number of orientations. “Phase congruency in 2D grids” section in Appendix lists 
the values recommended in the literature [26] and used in this paper.

Simulation

Two and three hot spots

Figure 3 shows phase congruency computed for the data D in Fig. 1 with the two hot 
spots H1 and H2 . Figure 3b is a contour plot for phase congruency in the 64 × 64 mode-3 
sample mean values, the sample values averaged over the 20 frames. The 2D grid 

Fig. 3  Phase congruency in data tensor D in Fig. 1. a, c Scatter plots for the 20 frames along mode-3. b 
3-level contour plot
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coordinates of the two closed contours in Fig. 3b define the location and outline of two 
potential hot spots.

Let NH denote the sum of the sample values in a potential hot spot H. The integer NH 
is the Poisson count observed in the subgrid H of the larger grid D . The counts enclosed 
by the respective contours of H1 and H2 in Fig. 3b are NH1 = 83 (sample mean 4.15 in 
the 20 frames) and NH2 = 92 (sample mean 1.15). The total count in D outside these two 
contours is 8010 (approximate background sample mean 0.098 in the 20 frames).

Phase congruency in the mode-1 and mode-2 projections is additional information. 
Figure 3a, c are scatter plots of phase congruency of the respective sample mean values 
(a) in the 20× 64 mode-2 projection retaining mode-3 and mode-1 axes and (c) in the 
64 × 20 mode-1 projection retaining mode-2 and mode-3 axes. These scatter plots are 
contour magnitudes with the extremes (lowest and highest) omitted. The mode-3 index 
steps from the newest frame 20 to the oldest frame 1, bottom-to-top in (a) and left-to-
right in (c).

Clusters for H1 and H2 in the scatter plots (a), (c) are irregular and incomplete but 
align with the hot spot contours in (b); however, clusters are also seen outside the true 
hot spots. These extra clusters are created by random events in the background Poisson 
process, specifically, by random “Poisson clumps” [39] of grid points with higher sample 
values than the neighboring values. These events occur randomly from frame to frame, 
but when averaged over all 20 frames, most counts are too small to emerge from back-
ground as phase congruency contours in (b).

Figure  4 shows phase congruency in the computed tensor M in the same layout as 
Fig. 3. The two closed contours in Fig. 4b correlate strongly with Fig. 3b; however, the 
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scatter plots in Fig. 4a, c have fewer random clusters and better delineation of the two 
hot spot clusters aligned with the contours in (b). The gaps in plots for H2 in frames 1 to 
7 in Fig. 4a and frames 3 to 6 in Fig. 4c are due to random samples in H2 with compara-
tively low values in those projections at those particular frames.

Figure  5 shows phase congruency in the data D in Fig.  2 with the three hot spots 
H1,H2,H3 . Figure 6 has the same layout for the computed tensor M . H1 is occluded by 
H3 in the 20× 64 projection in (a), but the count in H1 per frame accumulates in that 
mode-1 projection. The gap in scatter plot (a) at mode-1 indices 46 to 49 reflects the 
lower count in that arm of H3 without H1 . The other arm of H3 has Poisson intensity 1 
instead of 0.5 and averages twice the count.

The contours in Fig. 5b delineate the three subgrids H1,H2,H3 . Their respective counts 
are NH1 = 83 (sample mean 4.15 in the 20 frames), NH2 = 92 (sample mean 1.15), 
NH3 = 489 (sample mean 0.81). The total count in D outside these three subgrids is 7521 
(approximate background sample mean 0.093).

Unshielding a source

If a hot spot is heavily shielded by other material initially but the shielding is removed at 
some time stamp in a sequence of frames, clustering in mode-3 in tensors D and M facil-
itates detecting its unshielding. (Evolution might also occur, as in a sequence of frames 
of the uptake of a radiotracer by an organism [17]).

The data D in Fig. 7 has H2 shielded in frames 1 to 9, then unshielded in frames 10 to 
20. Figure 8 is the same layout for the computed tensor M. Qualitatively speaking, Fig-
ure 8 assists the localization of H2 with better definition in the scatter plots than Fig. 7.
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Real or apparent motion of a hot spot

There may be real or apparent movement of a hot spot in a sequence of frames. Reposi-
tioning a sensor array creates an apparent shift of a stationary source and misaligns with 
previous frames, but if the real or apparent motion is minor relative to the generation of 
frames, then the hot spot shift is small in consecutive frames in D.

Figures 9 and 10 show a small shift in H2 at frame 10. The dotted-line arrow in the con-
tour plot (b) indicates the direction of the shift. The scatter plots (a), (c) show the rela-
tively small shift in the H2 cluster beginning at mode-3 index 10 (frame 10), with fewer 
random clusters and better delineation in Fig. 10 than Fig. 9.

Conclusions
This paper presents a two-step, numerical computation for automatically localizing 
potential hot spots in matrices of gross Poisson counts: 

1.	 Given a 3D dataset D of 2D frames of Poisson count data, a 3D tensor factorization 
M is computed to maximize the conditional Poisson likelihood P(D|M) . The maxi-
mization of this likelihood is achieved by minimizing a Kullbach–Leibler divergence 
function [25, 40], specifically, M is computed in tensor math to minimize the func-
tion 

∑
i mi − xi logmi for index i over the nonnegative integers xi in D and the cor-

responding nonnegative reals mi in M.
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2.	 Phase congruency is computed for the two grids D and M projected in their three 
tensor modes. Phase congruency provides an invariant, normalized, numerical 
measure of “events” in D and in M . Kovesi’s method [26] incorporates compensation 
for noise, a weighting for the spread of local frequencies, and filtering attuned to step 
discontinuities in diverse orientations in the grids.

The computed tensor M augments the data tensor D for analysis of phase congruency. 
There is strong correlation between D and M in the contours of phase congruency in 
the sample mean values over a sequence of frames, but there are greater differences in 
the contours of phase congruency in the sample means along the axis of frames (along 
the capture-time index). Random clusters may occur in a sequence of frames in D due to 
Poisson clumping of background counts, even at a low Poisson rate. The computation of 
M tends to suppress these random clusters and reveal the contours of recurring clusters.

Areas of current research and development include: 

1.	 The mathematical relationship between background Poisson probabilities and the 
level sets of phase congruency in a grid D . The goal is a probability-based decision 
rule for potential hot spots based on results in Poisson Scan Statistics (cf. [41–43]). 
This work includes a characterization of false positives (random clusters incorrectly 
called hot spots) and false negatives (failures to detect true hot spot clusters). Bayes-
ian Spatial Scan Statistics [44] may yield lower error rates.

2.	 Fusion of data from multiple sources. Some applications have multiple radiation 
monitoring systems [9] or multi-modal sources of information [45]. In certain situa-
tions, tensor math facilitates the fusion of numerical data [46] into a composite situ-
ational map for a geospatial area.

The application in this paper is matrices of Poisson radiation data; however, the 
method is potentially useful in other applications involving matrices of nonnegative 
integer counts that are described by a Poisson probability law. We point out that if 
the average counts are small and the occurrences of high counts are rare events in a 
dataset, then a Poisson approximation might be justified by the so-called “Poisson law 
of small numbers” [47].

Appendix
Nonnegative tensor factorization of Poisson data

Background references in tensor computation with definitions, basic tensor math, 
and aspects of numerical algorithms include [29–33]. This section summarizes the 
nonnegative tensor factorization of a data tensor D of independent Poisson samples.

In contemporary numerical math, an nth-order tensor is an n-dimensional array of 
real numbers. In this terminology, a 1D vector is an order-1 tensor and an M1 ×M2 
matrix is an order-2 tensor. If tensor D is an M1 ×M2 × · · · ×Mn array, then its 
mode-1 index is the integer range 1 : M1 , its mode-2 index is 1 : M2 , ..., its mode-n 
index is 1 : Mn.
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Classic matrix computation is a starting point for developments in tensor com-
putation [30]. In particular, many aspects of Singular Value Decomposition (SVD) of 
matrices generalize to Higher-Order SVD (HOSVD) of nth-order tensors [29, 33]. Fur-
ther results in tensor math concern factorizations for least-squares error (LSE); spe-
cifically, given tensor D , the tensor D̂ is computed in a designated factorized form to 
minimize the norm ||D− D̂||F  [32, 33]. (The Frobenius norm ||Y||F  of tensor Y is the 
square root of the sum 

∑
i y

2
i  over all the values yi in Y [30]).

Implicit in using LSE for a rank-1 tensor factorization of D is an assumption of 
Gaussian variation in the data [24]. An alternative is to compute a Poisson model M 
for tensors of nonnegative counts which might be sparse [24, 25]. This includes non-
negative arrays of radiation data D which is Poisson in distribution.

Given order-n tensor D of nonnegative integer counts, the tensor M is computed 
to maximize the conditional Poisson likelihood P(D|M) . M is a tensor of nonnegative 
real numbers the same size as D . Letting index i denote a 3D-location in D and xi [or 
mi ] the value in D [or M ] at i, then the likelihood P(D|M) is maximized by minimizing 
the function

the negative log of P(D|M) except for an additive constant that depends only on the 
dataset D . The set {mi} of local Poisson parameters in M optimizes P(D|M) assuming 
independent samples of Poisson random variables in D.

The iterative computation developed in [24, 25] computes the optimal tensor M 
in a rank-1 factorized form. For an nth-order tensor D and a user-specified number 
of components R, the method computes scalors αr for 1 ≤ r ≤ R and matrices A(i) of 
respective sizes Mi × R for 1 ≤ i ≤ n ; then the tensor M is

where a(i)r  is the rth column of matrix A(i) and ◦ is outer product. The outer product of n 
matrices creates an nth-order tensor.

Convergence of the iteration to a tensor M maximizing P(D|M) has been proved for 
mild conditions on the nonzero values in D (roughly, both the density of nonzero values 
and their spread with respect to the size of the component matrices A(i) must be ade-
quate) [24]. The implementation in MATLAB Tensor Toolbox version 2.6 [34] is a ver-
sion of the alternating Poisson regression in [25]. We used default values of the control 
parameters (see [34]) except that the stopping tolerance was 0.5e−03. Random number 
generation was reset to its default seed at the start of each run so that the iteration began 
with the same “randomized” initial tensor. As noted in “Nonnegative tensor factoriza-
tion: Poisson data” section, the number of components R = 10 for these datasets is an 
empirical value where, for R > 10 , the computed tensor M has relatively insignificant 
changes in numerical values.

Tensor factorization reveals multilinear relationships in a multidimensional numeri-
cal dataset. There are well-documented numerical methods to maximize conditional 

∑

i

mi − xi logmi,

M =

R∑

r=1

αra
(1)
r ◦ a(2)r ◦ · · · ◦ a(n)r
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Poisson likelihood without tensor math (cf. [21–23, 38, 40]), but a mathematical model 
of the source-to-detector projection of data is required.

Phase congruency in 2D grids

Phase congruency in 2D finds boundaries between subgrids of higher mean values and 
adjacent neighborhoods of lower mean values, or vice versa. When the grid is sample 
mean values from a spatial Poisson process like dataset D or from an array of Poisson 
parameters like computed tensor M , the boundaries delineate clusters of samples iid at 
higher Poisson intensities, or potential hot spots, embedded in background samples iid 
at a lower Poisson intensity. See [26–28] for details of phase congruency in 2D using 
wavelets. This section is a high level description and includes the control parameter set-
tings recommended in the literature [26].

The input matrix is an X × Y  grid. For each grid location, and each scale and orienta-
tion, the initial energy is found by convolving the 2D array with even-odd quadrature 
filters, then the results are processed in these steps: 

1.	 Randomness in phase due to noise is estimated. Noise-suppression parameter k = 2 
indirectly sets a reference for noise in phase that is subtracted locally.

2.	 To insure that the spread of frequencies is adequate, a sigmoid weighting function 
penalizes too few in-phase frequencies. Sigmoid function parameter c = 0.5 is the 
cut-off below which deemphasis kicks in, and parameter g = 10 controls the sharp-
ness of the function.

3.	 The adjusted energies are summed over all filter orientations and divided by the sum 
of the response amplitudes of the wavelets over all orientations and scales. This paper 
uses 4 wavelet scales and 6 filter orientations in 2D. To limit the spatial extent of 
the phase analysis in 2D, frequencies with wavelengths larger than �min = 3 are sup-
pressed.

The maximum and minimum moments of phase congruency covariance are X × Y  
matrices of phase information from all scales and orientations [28]. These matrices are 
computed in a suite of downloadable MATLAB programs [26] and their average is used 
in this paper. Phase congruency has been implemented for 3D grids [48] like dataset 
D ; however, the 3D computation and visualization are more complicated than 2D, and 
a preliminary evaluation did not show substantial changes in the outcomes for the 3D 
datasets in this paper.
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