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Abstract

Sleep loss has been linked to heart disease, diabetes, cancer, and an increase in
accidents, all of which are among the leading causes of death in the United States.
Population-scale sleep studies have the potential to advance public health by help-
ing to identify at-risk populations, changes in collective sleep patterns, and to inform
policy change. Prior research suggests other kinds of health indicators such as depres-
sion and obesity can be estimated using social media activity. However, the inability to
effectively measure collective sleep with publicly available data has limited large-scale
academic studies. Here, we investigate the passive estimation of sleep loss through a
proxy analysis of Twitter activity profiles. We use “Spring Forward” events, which occur
at the beginning of Daylight Savings Time in the United States, as a natural experimen-
tal condition to estimate spatial differences in sleep loss across the United States. On
average, peak Twitter activity occurs 15 to 30 min later on the Sunday following Spring
Forward. By Monday morning however, activity curves are realigned with the week
before, suggesting that the window of sleep opportunity is compressed in Twitter data,
revealing Spring Forward behavioral change.

Keywords: Sleep, Sociotechnical systems, Daylight Savings, Twitter, Public health,
Twitter behavioral pattern

Introduction

The American Academy of Sleep Medicine recommends adults sleep 7 or more hours
per night [1]. However, studies show only 2/3 of adults sleep for this length of time con-
sistently. In 2014, the Centers for Disease Control and Prevention’s (CDC’s) Behavio-
ral Risk Factor Surveillance System suggested that between 28% and 44% of the adult
population of each state received less than the recommended 7 h of sleep [2]. Despite the
scientific consensus that adequate sleep is essential to health, many adults are sleeping
less than 7 h a night on average—a state referred to as short sleep. Results from the most
recent National Health Interview Survey determined that since 1985, the age-adjusted
average sleep duration has decreased, and the percentage of adults who experience short
sleep, on average, rose by 31% [3].
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Because adequate sleep is necessary for optimal cognition, short sleep is adverse
to productivity and learning, and reduces the human capacity to make effort- related
choices such as whether to take precautionary safety measures [4—6]. Short sleep’s
impact on human cognition is harmful in the workplace, and poses a pronounced and
distinct threat to public safety when operating a vehicle [7-10]. Short sleep is linked to
increased risk of serious health conditions, including heart disease, obesity, diabetes,
arthritis, depression, strokes, hypertension, and cancer [2, 11, 12], and a recent study
found that disrupted sleep is also associated with DNA damage [13]. The link between
sleep loss and cancer is so strong that the World Health Organization has classified night
shift work as “probably carcinogenic to humans” [14]. Socio-economic status is posi-
tively correlated with quality of sleep [15—18]. Due to such detrimental effects, and high
prevalence among the population, insufficient sleep accounts for between $280 and over
$400 billion lost in the United States every year [19].

Accurately measuring short sleep in a large population is difficult, and there is often a
trade-off between accuracy and the size of the study. Polysomnography—considered the
most accurate way to measure sleep—can only measure an individual’s sleep patterns in
a controlled laboratory setting [20, 21]. Large studies have relied on participants record-
ing their own sleep, but suffer from reporting bias [2, 22, 23].

Wearable technology can measure short sleep at the population scale, and has the
potential to measure short sleep accurately enough to study its association with adverse
health risks [4, 20, 24, 25]. One recent large sleep study enrolled 31,000 participants and
used sleep data from wearable devices along with participant’s interactions with a web
based search engine to compare sleep loss and performance [4]. The authors [4] showed
that measurements of cognitive performance (including keystroke and click latency)
vary over time, follow a circadian rhythm, and are related to the duration of participant’s
sleep, results that closely mirrored those from laboratory settings and validated their
methodology. Another study using wearables was able to analyze nine metrics of sleep,
including social jetlag, duration, and variability for 69,650 individuals [25]. The authors’
analysis of these metrics found gendered differences in sleep behaviors across the cohort
[25].

While promising in the long run, present studies that use wearable devices have limita-
tions. To infer from wearables that individuals are sleeping, data must first go through a
pipeline of preprocessing, feature extraction and classification. The pipeline for process-
ing sleep data is typically proprietary and dependent on the specific wearable used, and
changes to how data is processed can impact results [26]. Moreover, validation studies
have yet to explore the effectiveness of these devices across genders, ages, culture, and
health [26].

Social media may be an alternative way to measure sleep disturbances in a large popu-
lation, for example by studying the link between screen time and sleep [27, 28]. Research-
ers have found that Tweeting behavior can reveal “sleep-wake” behavior for individuals
as well as cities [29, 30]. In particular, the correlation between sustained low activity on
Twitter and sleep time as measured by conventional surveys has been validated against
data collected from the CDC on sleep deprivation [27]. The relationship between time of
onset of Twitter activity and wake time has been used to explore and demonstrate social
jetlag—the discrepancy between weekend and weekday sleep behavior [27, 31]. Other
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work has shown evidence of an increase in a user’s smart phone screen time as being
associated with an increase in short sleep [28]. Other mental and physical characteris-
tics have been measured from sociotechnical systems. Several instruments developed by
members of our research group including the Hedonometer [32], which measures popu-
lation sentiment through tweets, and the Lexicocalorimeter [33], which measures caloric
balance at the state level, have demonstrated an ability to infer population-scale health
metrics from Twitter data. Circadian rhythms in mood and cognitive processes have also
been inferred from tweets [34, 35]. Twitter data has also been used to identify users who
experience sleep deprivation and study the ways their social media interactions differ
from others [36].

In urban, industrialized societies where social timing is synced to clock time, Daylight
Savings- a biannual sudden upset to clock time- creates behavioral stability across sea-
sons [37, 38]. The onset of DST, Spring Forward, is associated with a 1 h sleep disrup-
tion due to the disconnect between the “human clock” and the mechanical clock [39].
Past work has used Daylight Savings as a natural experiment to show that a 1 h collec-
tive sleep loss event has large and quantifiable effects on health, safety, and the economy
[40-43], with two striking findings being a 1 day increase in heart attacks by 24% and a
loss of $31 billion on the NYSE, AMEX, and NASDAQ exchanges in the United States
[40, 44].

We hypothesize here that sleep loss is measurable in behavioral patterns on Twitter,
and changes in population-scale sleep patterns due to Spring Forward can be observed
through changes in these behavioral patterns. In what follows we describe the process by
which we used the local time of tweet posting to explore patterns in posting frequency
relative to time of day, and how these patterns were affected by the clock shift known as
Spring Forward. The data is described in detail, followed by the specific methodologies
employed to analyze the patterns in the frequency of posting. Then, we visualize and
describe the results before concluding with a discussion of limitation and implications.

Materials and methods

Data

We collected a 10% random sample of all public tweets—offered by Twitter’s Decahose
API—for Sundays and Mondays in the 4 weeks leading up to, the week of, and the 4
weeks following Spring Forward events during the years 2011-2014. Spring Forward is
defined as the instantaneous clock adjustment from 2 a.m. to 3 a.m. on the second Sun-
day of March each year. We included tweets in the study if the user who created the
tweet reported living in the U.S. in their bio, or if the tweet was geo-tagged to a GPS
coordinate within the U.S. [45]. With these conditions, we ended up selecting approxi-
mately 7% of the messages in the Decahose random sample for analysis [46]. The sample
was composed of 13.1 million tweets.

Twitter provided the time-zone from which each message was posted during the
period from 2011 to 2014 (for privacy purposes, Twitter discontinued publication of
time zone information in 2015). We used the time-zone to determine the local time
of posting for each tweet. Tweets for which the time-zone was incompatible with the
assigned location were discarded. This process enabled us to analyze the method on data
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for which the local time of posting is known. We binned tweets by 15 min increments
according to the local time of day they were posted.

Experimental setup

The Spring Forward event of Daylight Savings was used as a natural experiment in which
the control is behavior prior to the event, and the experiment is behavior directly after
the clock change and known sleep loss event. Change in Twitter posting behavior was
observed in this experiment. To estimate behavioral change associated with Daylight
Savings, we partitioned tweets into various groups, primarily a “Before Spring Forward”
(BSF) group and a “Spring Forward” (SF) group. To establish a convenient ‘control’ pat-
tern of behavior, all tweets posted on any of the four Sundays before the Spring Forward
event were classified as “Before Spring Forward” tweets. We classified the ‘experimental’
set of tweets posted on the Sunday coincident with the Spring Forward event as “Spring
Forward”. The above classification created, for every year, a 4:1 matching of before to
week of Spring Forward activity. We analyzed tweets posted 1-4 weeks following Spring
Forward separately to quantify relaxation to the original behavior.

Analysis
We binned tweets by time in 15 min intervals starting at the top of the hour, and nor-
malized their frequencies by dividing by the total number of tweets posted on the corre-
sponding day. In this way, we establish a discrete description of the posting volume over
the course of a typical 24-h period.

We averaged the Before Spring Forward tweets over the four Sundays, and the 4 years

as follows:
2014 4
Cys(k
Togek) = (4 x4y Y SO EBE,
y=2011 s=1 S

where Cys (k) is the number of tweets in the K 15 min interval of the S Sunday of year
Y, Cys is the total number of tweets posted on that Sunday and year, and Tgsp (k) is the
average fraction of tweets posted in the k¥ 15 min interval of a Sunday prior to Spring
Forward,

We also normalized the Spring Forward tweets against daily activity:

2014
Tody =@ty W
Cy
Y=2011

These averages enabled us to aggregate more data, building a more reliable pattern of
daily activity, and decrease the susceptibility to daily variation. To reduce noise that
could depend on our choice of bin size and spatial scale, we smoothed normalized tweet
activity using Gaussian Process Regression (GPR) [47, 48]. We fit a GPR with a squared
exponential kernel and characteristic length scale of 150 min (a total of 10 bins of size
15-min) to normalized tweets. We chose a characteristic length of 150 min for consist-
ency with previous work [27]. Tikhonov regularization with an o penalty tuned manually
to 0.1 was included when finding weights wj to prevent overfitting [48]. GPR yielded a
smooth behavioral curve, B(f), of the functional form:
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96 1 tog\?
B(t) = gwk exp [—2k<150, 150) ] ,
where wy is a weight determined by the regression process, k is the squared-exponential
kernel (commonly called a radial basis), ¢ is the time in minutes since midnight (00:00),
and #; is the K 15 min interval of the day, i.e. £5 corresponds to 75 min past midnight, or
1:15 a.m. The sum to 96 refers to the number of 15 min intervals in a single 24 h period.

We generated behavioral curves B(¢) for the BSF and SF groups by state, and for the
U.S. in aggregate. To estimate behavioral change induced by a Spring Forward event,
we calculate two quantities from the behavioral curves: (i) the time of peak activity and
(ii) the time of the inflection point between the peak and trough. The inflection point is
referred to as a ‘twinflection’ point, and represents a point of diminishing losses in Twit-
ter activity for the night. Peak shift is defined as:

arg max {Bsg(t)} — arg max {Bpsp(¢)}
t t

and twinflection shift is defined as:
arg min { Bgp(¢) } — arg min {Bpgp(6) },
teN teN

where N = {t : arg max,B(t) < t < arg min,B(t)}. We were able to reliably measure
peak activity and twinflection because behavioral curves exhibited a consistent diurnal
wave structure: a rise in the evening corresponding to peak Twitter posting activity, fol-
lowed by a trough during typical sleeping hours, and a plateau throughout the day. Con-
traction of the trough associated with sleeping hours is considered to be reflective of lost
sleep opportunity, and may indicate sleep loss itself.

We measured the loss of sleep opportunity by calculating the peak and twinflection
times for the 4 weeks Before Spring Forward and the week of Spring Forward itself. We
then characterize differences between the BSF and SF measures for each state, and for
the total U.S., as a proxy for sleep loss.

Results

Our overall finding is that peak Twitter activity occurs 15-30 min later on the Sunday
evening immediately following Spring Forward for most states, with this shift varying
among states. By Monday morning, activity is back to normal, suggesting that the win-
dow of sleep opportunity is visibly compressed in Twitter behavior.

In Fig. 1, we plot B(¢) for the subset of posts containing the words ‘breakfast, ‘Tunch,
and ‘dinner’ for the period beginning 6 a.m. on Sunday and ending 9 p.m. on Monday,
both before (solid) and the weeks of (dashed) Spring Forward events. These curves were
constructed for states observing Eastern Time (top row) and Pacific Time (bottom row).
These regions were chosen as they are the zones with the greatest spatial difference
among zones with significant data density. Observing a shift in behavior for each assures
us that these shifts are not limited to a particular geographic region of the country.

Meal-related language reveals a daily pattern of behavior in which peak volume occurs
around the time that meal typically takes place. On an average Sunday, breakfast is most
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Fig. 1 Diurnal collective attention to meals quantified by normalized usage of the words ‘breakfast’lunch,
and dinner’for states observing Eastern Time (top) and Pacific Time (bottom), for the weeks before (solid) and
of (dashed) Spring Forward. The x-axis represents the interval between 6 a.m. Sunday and 9 p.m. Monday
local time. Counts for tweets containing each individual word were tallied in 15 min increments, normalized
by the total number of tweets mentioning that word, and smoothed using Gaussian Process Regression to
create a “Normalized Activity” curve. Each day has a clear pattern for frequency of meal name appearance

in tweets, with the peak for breakfast, lunch, and dinner occurring in the respective order of the meals
themselves. For each of the meals, we observe a slight forward shift in the peak following Spring Forward,
suggesting that meals are taking place later than usual on the corresponding Sunday. By Monday, the peak
for each meal name appears to be aligned with the week before, with the exception of ‘dinner’on the west
coast, which is still a bit later

mentioned at 10:30 a.m., lunch at 1:15 p.m., and dinner at 6:45 p.m. in Eastern Time
Zone states (see Fig. 1). On the average Monday, breakfast mentions peak at 10:45 a.m.,
lunch peaks at 1:30 p.m., and dinner at 7:15 p.m. Breakfast and Lunch are mentioned
more often on Sunday than on Monday.

There is essentially no discussion of meals during the period from 2 a.m. to 6 a.m.
These plots also exhibit a small forward shift in time following Spring Forward, suggest-
ing that each meal was tweeted about, and probably eaten, later in the day on Sunday.
The effect is greater on the East Coast, and disappears on both coasts by Monday.

Broadening from messages mentioning specific meals to all messages, daily activity
plots of Bpsr and Bgr reveal a regular diurnal pattern of behavior that is consistently
shifted forward in time the evening following Spring Forward events. Figure 2 shows
this shift for the year 2013, but the results were similar for other years.

Panel (a) suggests overall activity across the U.S. peaks around 9 p.m. on Sundays
before Spring Forward (red circles), and experiences a minimum around 5am. The peak
shifts approximately 45 min later on the Sunday of Spring Forward (blue squares) before
synchronizing again by early morning Monday. In panel (b) California is used as an
illustrative example of these patterns existing at the state level, and the smooth behav-
ioral pattern constructed using Gaussian Process Regression. The pattern is similar to
that observed for the entire country, with the exception of a slightly reduced amplitude.
Twinflection points are illustrated by black squares in panels (b) and (c).

Figure 2 demonstrates evidence that there is a shift in the peak time spent interact-
ing with Twitter on Sunday evening following Spring Forward, relative to prior Sundays.
Given the absence of a corresponding delay in interaction Monday morning, we infer a

decrease in sleep opportunity experienced on Sunday night.
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Fig. 2 Twitter activity behavioral curves B (t). a Normalized count of tweets posted from a location within
the United States between 12 p.m. Sunday and 12 p.m. Monday before (red) and the week of (blue) the 2013
Spring Forward Event. The time recorded for the tweet is that local to the author. Though the pattern of
behavior is preserved following Daylight Savings, peak activity is translated forward in time. b The same plot,
with location of tweet origin restricted to the state of California. California is the state for which we have the
most data, and therefore the most representative behavior profile after smoothing with Gaussian Process
Regression (lines). We note that Fig. 5 shows behavioral curves for all states. ¢ The smoothed behavioral
pattern for California during the hours of 9 p.m. to 3 a.m. Pacific Time. Activity peaks are denoted by vertical
dashed lines, and twinflection points are marked by squares. To estimate the behavioral shift in time, we
compute the distance along the temporal axis between these pairs of lines/points. California’s BSF peakis 1 h
earlier than the SF peak

To explore the spatial distribution of the behavioral changes induced by Spring For-
ward, in Fig. 3 we map the time of peak Twitter activity on Sunday night for each state
before (top) and the week of (bottom) Spring Forward, averaged across the years 2011-
2014. On the Sundays leading up to Spring Forward (top), peak twitter activity occurs
near either 10 p.m. for states on the East Coast, or 9:15 p.m., for most of the other states.
The week of Spring Forward, nearly all states exhibit peak activity later in the night.

Looking at Texas as an individual example, before Spring Forward we see peak activity
around 9:15 p.m. local time, and the week of Spring Forward it occurs at 10:15 p.m. local
time. While Texas is one of the latest peaks observed on the evening following Spring
Forward, several other states are up late as well including Oklahoma, Georgia, and Mis-
sissippi each peaking around 10:15 p.m.

In the Additional file 1, we show maps estimating the time of peak activity for each of
the individual 9 weeks centered on Spring Forward (see Additional file 1: Fig. S1). There
is some week-to-week variation, most notably in the second week prior to Spring For-
ward, which was the night of the Academy Awards for three of the 4 years. By 4 weeks
after Spring Forward, the peak activity map has relaxed to roughly the same pattern as
BSE.

The magnitude of the forward shift in behavior illustrated in Fig. 3 is considered a
proxy for the loss of sleep opportunity on the Sunday night following Spring Forward.

We used two distinct methods to estimate this magnitude, namely the peak shift and
the twinflection shift. A comparison of the spatial estimates made using each method
are shown in Fig. 4.

Panel (a) illustrates the average shift in peak activity observed for 2011-2014 by com-
puting the difference between the pair of maps in Fig. 3 (bottom minus top). There is
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Fig. 3 Time of peak Twitter activity on Sunday night for each state before (top) and the week of (bottom)
Spring Forward for the four events observed between 2011 and 2014. Before Spring Forward (BSF), the time
of peak activity occurs around 10 p.m. most states in the Eastern Time Zone, and around 9:15-9:30 p.m. for
most of the other states. The week of Spring Forward (SF), peak Twitter activity occurs between 0 and 60 min
later for each state, with the exception of Alaska, Nebraska, and Hawaii for which the peak occurred earlier.
Texas has the latest peak at 10:15 p.m. local time, a shift of 60 min forward compared with prior Sundays. We
note again that the BSF estimates are based on the aggregation of four Sundays prior to Spring Forward,
while the SF estimates are based on the Sunday coincident with Spring Forward, and are therefore estimated
using roughly 1/4 of the data. [49]

clear spatial variation in the shift in time on the night of Spring Forward, while most
states exhibit a positive forward shift some exhibit none, and Alaska, Hawaii, and
Nebraska show a negative shift. The peak in Twitter behavior for the east and west coasts
occurred 0—30 min later Sunday night, while it occurred 30—-60 min later for the central
U.S. (Fig. 4a).

Figure 4b estimates the change using twinflection, namely the change in concav-
ity of the behavior activity curve from down to up. Every state except Hawaii, Alaska,
and Wyoming exhibits a shift forward in time, and with similar spatial regularity. When
measured with twinflection shift, Texas and Mississippi are seen to have the greatest
temporal shift following Spring Forward. Texans were tweeting 105 min later than usual
following a Spring Forward event. Most of the east and west coast states were measured
as tweeting 15 to 30 min later (Fig. 4b). Both measures agreed on a positive shift for the
country as a whole. However, the two measures yielded different results for the magni-
tude of these shifts, with twinflection shift generally estimating a more positive shift.

Figure 4c, d illustrate the amount of data contributing to calculations for the behav-
ioral curves, and the density of this data with respect to each state’s population. Idaho,
Alaska, Hawaii, Montana, Wyoming, North Dakota, South Dakota, and Vermont were
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Fig. 4 The magnitude of Twitter behavioral shift following a Spring Forward event, averaged for the 4 years
from 2011 to 2014. a Shift measured using behavioral curve peaks, the difference between the pair of maps
in Fig. 3 (bottom minus top). Texas is estimated to have experienced the greatest time shift. The effect of
Spring Forward is more pronounced in the South, and center of the country. Alaska, Nebraska, and Hawaii
have negative shifts. b The same map, but with measurements calculated using twinflection shift instead. The
states most affected are Texas and Mississippi, where the shift was 105 and 75 min respectively. Hawaii and
Alaska are estimated to have negative shifts (15, and 30 min respectively). Twinflection shift produces similar
spatial results to peak shift, with greater shift estimates. ¢ The number of tweets posted from each state in the
period after Spring Forward. California and Texas both contributed over 200,000 tweets, while Alaska, Hawaii,
Idaho, Wyoming, Montana, North Dakota, South Dakota, Wyoming, Delaware, New Hampshire, Maine and
Vermont each produced less than 10,000 tweets. (d) The density of data used to establish the experimental
pattern of behavior, as measured by tweets per capita. This measurement reflects the ability of the data to
capture the behavior of the tweeting population of each state. While Idaho, Wyoming, Montana, Utah and
South Dakota have relatively little data compared to their populations, the remaining states have similar data
density, with somewhere between five and eleven tweets per thousand residents, with the exception of the
District of Columbia which has 35. Note: both panels (c) and (d) use logarithmically spaced colorbars

the states offering the smallest amount of data, and subsequently have the highest poten-
tial for a poor behavioral curve model fit. Wyoming was unique in that in 2013 for the
24 h observation window on the week of Spring Forward there were no tweets meeting
inclusion requirements, making conclusions about this state particularly tenuous.

Though the amount of data available for California and Texas is much greater than the
other states, when considering their large population size we find their twitter activity
per capita to be similar to most other states. Based on our estimate of tweets per capita,
we expect behavioral curves for most states to be more or less equally representative of
their tweeting populations.

Looking at the diurnal cycle of Twitter activity for each individual state, we see
remarkable consistency. Figure 5 shows the 24 h period spanning noon Sunday to noon
Monday local time for the year 2012. Plots for the other 3 years exhibit similar behavior.

Page 9 of 17
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Fig. 6 Peak activity time (local) for Super Bowl Sunday, 5 weeks prior to Spring Forward, averaged over the
years 2011 to 2014. Activity exhibits a clear resemblance to the U.S. timezone map, with a peak near 9 p.m.
Eastern Time just following the halftime performance. The data suggests a national collective synchronization
in attention. Green Bay Packers d. Pittsburgh Steelers (2011), New York Giants d. New England Patriots (2012),
Baltimore Ravens d. San Francisco 49ers (2013), and Seattle Seahawks d. Denver Broncos (2014). Performers
included The Black Eyed Peas, Usher, and Slash (2011), Madonna, LMFAQ, Cirque du Soleil, Nicki Minaj, M.LA.,,
and Cee Lo Green (2012), Beyoncé, Destiny’s Child (2013), and Bruno Mars, Red Hot Chili Peppers (2014).

We note that the colormap here the same as the scale used for 3, with blue colors included to reflect the
relatively early times of the peaks relative to the other weeks

Before Spring Forward (red), most states show a peak between 9:15 and 10:00 p.m., local
time. The week of Spring Forward (blue), nearly all states have a peak after 9:30 p.m.
While states differ slightly in the time of peak, and magnitude of shift in the peak, most
exhibit a clear positive shift (see Additional file 1: Fig. S3). By Monday morning, nearly
all curves have re-aligned. We also consistently observe higher peaks for the BSF curves
which we believe to be driven by televised events such as the Oscars. The Sunday of
Spring Forward does not have a regularly scheduled popular television event, and as a
result the SF curves have lower amplitude.

Both the peak and twinflection demonstrate that it is possible to observe a measurable
decrease in the amount of sleep opportunity people in the United States receive on aver-
age due to Spring Forward. They also both demonstrate uneven geographic distribution
of the effect of Spring Forward, and therefore the ability to determine geographic dispar-
ity in sleep loss.

We also discovered that the Super Bowl occurred exactly 5 weeks prior to Spring For-
ward in each of the years studied. This annual event watched by over 100 million indi-
viduals in the U.S. caused peak Twitter activity to synchronize at roughly the same time
nationally, around 9 p.m. Eastern, during the second half of the football game. The map
in Fig. 6 shows the time of peak activity for each state on Super Bowl Sunday, averaged
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over the years 2011 to 2014. The colormap is the same as the scale used for 3, with the
additional cooler range brought in capture the time of peak relative to the usual times.

The map bears a remarkable resemblance to the timezone map, demonstrating a syn-
chronization of collective attention across the country. Data from Super Bowl Sunday
was not included in the Before Spring Forward data, as it does not accurately reflect the
spatial distribution of typical posting behavior on a Sunday evening.

Discussion

Technically speaking, Spring Forward occurs very early Sunday morning, and the instan-
taneous clock adjustment from 2 a.m. to 3 a.m. is witnessed by very few waking indi-
viduals. In addition, we speculate that the majority of individuals do not set an alarm
clock for Sunday morning. As a result, we expect that the hour lost to Spring Forward
will be felt by our bodies most meaningfully on Monday morning. Indeed, we are likely
to experience the Monday morning alarm as occurring an hour early, as Spring Forward
shortens the time typically reserved for sleep opportunity Sunday night by 1 h.

Considering the correlation between screen time and lack of sleep, the Sunday evening
shift, and the corresponding Monday morning re-synchronization, we observe evidence
that sleep opportunity is lost in some states on the evening of Spring Forward. By esti-
mating the magnitude and spatial distribution of the shift in Twitter behavioral curves,
we have approximated a lower bound on sleep loss at the state level.

Our pair of measurement methodologies have a Pearson correlation coefficient of
0.575, and a Spearman correlation coefficient of 0.467 (see Additional file 1: Fig S3).
While they produced slightly different estimates of the magnitude of temporal shift in
behavior, the resulting geographic profiles of sleep loss were similar. Both suggest that
states along the coast are least affected by Spring Forward, while Texas and the states
surrounding it to the North and East are the most affected.

Peak shift suggests the temporal shift in behavior due to Spring Forward generally
less than the actual clock shift (1 h). California, the state for which we have the most
data and therefore the most representative behavior profile after smoothing, was
found to have a peak shift of 30 min.

Considering the clock adjustment of exactly 1 h, both measurements are plausibly
directly representative of sleep lost, however the differing magnitudes of the measure-
ments indicate that future work should clarify the relationship between these meas-
urements and actual shifts. Twinflection measured similar shifts for most states, but
for a few estimated larger effects. While California was measured as having the same
30 min shift, Texas, the state for which we have the second most data, was estimated
by twinflection to be delayed by an additional 45 min.

Twinflection measured a small forward shift for the state of Arizona, which does
not observe DST. This could indicate that the twinflection method overestimates the
behavioral shift. It is also possible that a shift in behavior could occur for residents of
Arizona, as a result of their connections to those in neighboring states, and in their
former timezone. In example, some residents likely work in bordering states, and are
forced to observe DST, and some will likely engage in more online activity and discus-
sion when their peers are present- those peers being initially established by a shared



Linnell et al. J Big Data (2021) 8:121 Page 13 of 17

time of activity. This we believe to be an important distinction between Arizona and
Hawaii, which also does not observe DST.

Hawaii is measured to have gained sleep opportunity by both accounts. Lacking the
observation of DST, neighboring states, and other states in the same timezone, it is
plausible that behavior in Hawaii would be unlike any other state, and be more inde-
pendent of behaviors in other states. However, Hawaii’s results should be considered
tentative at best, given the sparsity of data available. This sparsity of data and relative
independence from other states is shared with Alaska, the other state with a meas-
ured sleep opportunity gain by both measures. Caution should likewise be extended
to measurements ascribed to South Dakota, North Dakota, Wyoming, Idaho, Mon-
tana, Vermont, New Hampshire, Rhode Island, Delaware, and Maine. These states
have smaller populations, less population density, and lower volume of tweets. As a
result, the behavioral curves associated with these states are less reliable.

Discrepancies in available data were determined to be largely accounted for by dif-
ferences in population. Thus, we expect results for each state (exclusive of those men-
tioned earlier) to be comparably reliable in their representation of sleep loss for the
state as a whole.

Incremental future work in this area could investigate state specific sleep loss
related to Spring Forward events, which would allow further clarification of the rela-
tionship between the magnitude of behavioral shifts on Twitter and population sleep
loss. Other directions might include looking at other sleep opportunity interrup-
tion events such as the end of Daylight Savings in November, where we are ostensi-
bly given an additional hour of sleep opportunity. Our findings suggest that the sleep
behavior associated with other annual events including New Year’s Eve and Thanks-
giving ought to be visible through tweets. This and other works would also benefit
from exploration of the relationship between measurements of sleep opportunity as
given by social media activity and actual sleep duration. More ambitiously, proxy data
such as this could be verified by matching wearable measurements of sleep (e.g. Fit-
bit) with social media accounts.

Our study suffers from several limitations associated with our data source, we describe
a few such examples here. The geographic location users provide in their Twitter bio is
static and unlikely to be updated when traveling. As a result, user locations (time zone,
state) inferred from this field will not always reflect their precise location. The GPS
tagged messages included in our analysis will not suffer from this same uncertainty. Fur-
thermore, the tweeting population of each state is likely to have complicated biases with
respect to their representation of the general population [50].

Our dataset likely contains automated activity. Indeed, an entire ecology of algorith-
mic tweets evolved during the period in which we collected data for this study. How-
ever, we expect the majority of this activity to be scheduled using software that updates
local time automatically in response to Daylight Savings. As such, this ‘bot’ type activity
should largely serve to reduce our estimate of the time shift exhibited by humans.

As we showed for the Super Bowl, live televised events (e.g. sports, awards shows)
have the potential to be a forcing mechanism to synchronize our collective attention
throughout the week, and especially on Sunday evenings. Indeed, many individuals
take to Twitter as a second screen during such events to interact with other viewers. In
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addition, streaming services such as Netflix and HBO often release new episodes of pop-
ular shows on Sunday night to align with peak consumption opportunity. These cultural
attractions exert a temporal organizing influence on our leisure behavior, and the Spring
Forward disturbance translates this synchronization forward in time.

It is worth noting that early March is a rather dull time of year for popular professional
sports in the United States. While the National Basketball Association and National
Hockey League are finishing up their regular seasons, the National Football League is
in its off-season and Major League Baseball beginning pre-season exercises. Arguably
the most engaging live-televised sporting contests taking place in early March are the
NCAA College Basketball Conference Championship games, with March Madness hap-
pening weeks after Spring Forward.

In 2014, the Academy Awards were hosted by Ellen DeGeneres on Sunday March 2.
Her famous selfie tweet containing many famous actors was posted that evening, a mes-
sage which held the record for most retweeted status update for several years [51]. The
event happened the week before Spring Forward, and led to anomalous behavior com-
pared with all other Sundays we looked at.

Since Spring Forward only occurs once per year, the specific language of the tweets is
highly dependent on events occurring on that specific day. The variability in daily events
and susceptibility of affect to these daily events makes study of the actual language in the
tweets unreliable.

Finally, Twitter (and other social media companies) have access to much higher fidel-
ity information regarding user activity than we have analyzed here. We are not able to
analyze consumption activity on the site, e.g. when individual messages are interacted
with via views, likes, or clicks. These forms of interaction with the Twitter ecosystem are
likely to occur chronologically following the final posting of a message in the evening,
and prior to the initial posting of a message in the morning. As a result, we expect our
estimate of the sleep opportunity lost due to Spring Forward to be a lower bound.

Conclusion

Privacy preserving passive measurement of daily behavior has tremendous potential
to transform population-scale human activity into public health insight. The present
study leverages a natural experiment in sleep loss to identify behavioral adaptation
from Twitter data. It demonstrates a proof-of-concept along the path to a far more
ambitious goal: construction of an ‘Insomniometer’ capable of real-time estimation
of large-scale sleep duration and quality. Which cities in the U.S. slept well last night?
Which states are increasingly suffering from insomnia? Answers to questions like
these are not available today, but could lead to better public health surveillance in
the near future. For example, communities exhibiting disrupted sleep in a collective
pattern may be in the early stages of the outbreak of the flu or some other virus. Cur-
rent methodologies for answering these questions are not scalable, but social media,
mobile devices, and wearable fitness trackers offer a new opportunity for improved
monitoring of public health.
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