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Introduction
The spread and susceptibility of cyberspace have necessitated its perpetual appraisal in 
terms of security. The world has witnessed enormous cyber-attacks such as data breaches 
that exposed millions of credit and debit card information to attackers, cyber warfare, 
corporate espionage, Internet of Things (IoT) attacks, social engineering attacks, crypto-
jacking attacks, etc. All successful attacks exploited the prevalent vulnerabilities in the 
systems. Besides other security mechanisms like firewalls, secure information storage, 
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authentication, and authorization techniques, an Intrusion Detection System (IDS) is 
also strongly recommended [1].

Some Intrusion Detection Systems observe network activity and warn if there is any 
suspicious event, while others also perform actions after detecting threats. IDSs are 
broadly classified into two categories, anomaly, and misuse, based on their detection 
criterion [2]. An anomaly-based IDS detects network intrusions by scrutinizing system 
activities and categorizing them as either normal or malicious. Most IDSs operate on 
misuse detection techniques i.e. looking and alarming for ’known patterns’ of the detri-
mental activity. Although accurate, this kind of IDS limits itself by looking up the list of 
recognized attacks. Its primary disadvantage is that it will not be effective for protection 
from any new attack whose signatures are not previously integrated. This leaves a major 
security gap in the system that can be easily exploited by an attacker to fool the IDS. 
There is a dire need to upgrade such an IDS frequently to detect new attack signatures 
and the already known ones.

Machine learning and deep learning are commonly used techniques to integrate an 
IDS with intelligence, allowing easy detection of all kinds of attacks, thus safeguarding 
the systems from all sorts of threats [3]. However, to build an efficient machine learning 
model for intrusion detection, selecting the right dataset is key. Various machine learn-
ing techniques that exist today are applied to publicly available IDS datasets, namely, 
DARPA [4], KDD 99 [5], KOYOTO [6], and NSLKDD [7]. The major drawback of the 
designed systems using the above datasets is that these datasets are old and do not 
reflect modern-day traffic trends.

Furthermore, many researchers have proposed machine learning models for IDS, with 
most of them considering accuracy as the most critical metric for evaluating the pro-
posed models. However, accuracy alone is insufficient to analyze a system’s performance 
because IDSs make predictions in real-time. Besides accuracy, evaluating an IDS on the 
time it may take to make a prediction (a.k.a. prediction latency) is also essential. How-
ever, while increasing the prediction accuracy, most researchers have not measured its 
impact on prediction latency. Moreover, along with accuracy and prediction latency, 
a high-performing IDS should have a high true positive prediction rate. False-positive 
(misclassified as an attack) and false negative (misclassified as benign) cannot be treated 
equally. While false positives can result in additional system resources, false negatives 
can debilitate the entire system. Thus, along with accuracy, recall rate and prediction 
latency are very important for evaluating an IDS model’s performance.

This paper proposes a novel machine learning approach to implement a fast and pre-
cise IDS using the latest CIC-IDS 2018 dataset to overcome the above research gaps. The 
major contributions of the paper are as follows.

• A realistic IDS that can effectively detect the majority of modern-day attacks.
• A hybrid feature selection approach optimized for low prediction latency.
• An IDS model using proposed Hybrid Feature Selection and the fast Light GBM 

machine learning algorithm gives promising results with better accuracy, recall rate, 
and low prediction latency.

• Deep insight into the comparison between the network parameters observed during 
the benign and the malicious sessions.
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The rest of the paper is organized as follows—section “Related work” reviews existing 
literature on intrusion detection using machine learning. Section “Research methodol-
ogy” discusses the methodology for the research including an extensive description of 
data preparation steps. Section “Results and analysis” discusses the results. The paper 
concludes with a summary of the findings in Sect. “Conclusion”.

Related work
Machine learning techniques [8] are widely used for building Intrusion Detection Sys-
tems. In this context, classification refers to the process of using machine learning 
algorithms to identify normal versus malicious activity within a dataset, representing 
network traffic, for designing an anomaly-based IDS. Zhou et al. [9] proposed an intelli-
gent Intrusion Detection System based on feature selection and ensemble classifier. They 
proposed the CFS-BA Ensemble method for multi-attack classification that uses cor-
relation for feature selection, then the ensemble classifier based on c4.5, Random For-
est (RF), and Forest by Penalizing Attributes (Forest PA) with Average of Probabilities 
(AOP) rule. They claimed that the classifier gives 99% accuracy for NSL KDD and CIC-
IDS 2017 Dataset. The major drawback of the proposed system is that the author has not 
evaluated the proposed model in terms of time efficiency. Saleh et al. [10] suggested a 
hybrid Intrusion Detection System based on prioritized k-Nearest Neighbors (kNN) and 
optimized Support Vector Machines (SVM) classifiers on three intrusion detection data-
sets: KDD Cup99, NSL-KDD, and koyotto 2006 + datasets. This hybrid Intrusion Detec-
tion System uses the Naïve Bayes feature selection method for dimensionality reduction 
of the data set and an optimized SVM for outlier detection. A prioritized kNN classi-
fier is then used for classification. The proposed method comprises 4 modules (i) Data 
pre-processing Module (DPM), (ii) Feature Selection Module (FSM), (iii) Outlier Rejec-
tion Module (ORM), and (iv) Decision-Making Module (DMM). The model uses feature 
effect identification and mutual effect identification to select relevant features based on 
accuracy, and training, and testing time. The major drawback of the suggested model is 
that old datasets were used by the author for evaluating the performance of the given 
model, these datasets do not reflect modern traffic patterns. Further, there are better 
time-efficient machine learning algorithms than those presented by the author.

The majority of the intrusion detection datasets are skewed, so many researchers 
have proposed techniques to balance the dataset to enhance the detection rate. Kara-
tas et al. [11] proposed a model that used SMOTE oversampling technique to balance 
the skewed classes in the CIC-IDS2018 dataset. The samples of the skewed classes are 
increased proportionately to the average sample size. Using this technique, they claim 
to have achieved an accuracy of 99% using RF, Decision Tree (DT), Adaboost, K Near-
est Neighbor (KNN), Gradient Boosting (GB), and Linear Discriminant Analysis (LDA). 
Techniques such as the Genetic Algorithm (GA) are also widely used in intrusion detec-
tion models. Though the author claims to have achieved 99% accuracy rate but, the sug-
gested model is not evaluated for time-based metrics. Aslahi-Shahri et al. [12] proposed 
a model that used the Genetic Algorithm- Support Vector Machine (GA-SVM) feature 
selection method. A hybrid algorithm is used for feature selection. The GA divides the 
selected features into three priorities. These features are further used for classification. 
With this approach, the authors claim to have achieved a true positive value of 0.973 on 
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the KDD cup99 dataset. The proposed model is evaluated on the KDD cup99 dataset 
which fails to reflect the modern-day traffic patterns.

Many deep learning approaches are also proposed for building an efficient IDS. Lin 
et  al. [13] proposed a dynamic anomaly detection system that used Long Short-Term 
Memory (LSTM) and Attention Mechanism techniques to train the neural network. 
They have used the latest CIC-IDS 2018 dataset. Though the proposed approach by the 
author achieved an accuracy rate of 96.2% but the model is not evaluated for time effi-
ciency. Kanimozhi V, Prem Jacob [14] proposed an Artificial Neural Network model for 
detecting Botnet attacks using the CIC-IDS 2018 dataset. They claimed to have achieved 
an accuracy score of 99.97%. And an average area under ROC (Receiver Operator Char-
acteristic) curve 0.999. Though the model achieved high accuracy score of 99.97% but 
it is only for botnet detection. Moreover, the model is not evaluated in terms of time 
efficiency. Ma et al. [15] proposed SCDNN, based on Spectral Clustering (SC) and Deep 
Neural Network (DNN) algorithms. The proposed method was evaluated using the 
KDD-Cup99 and NSL-KDD datasets and a sensor network. The authors claimed that 
their proposed approach outperforms Backpropagation Neural Network (BPNN), SVM, 
RF, and Bayes tree models in attack detection accuracy. The disadvantage of the SCDNN 
is that its weight parameters and DNN layer thresholds must be tuned, and the clus-
ters’ k and parameters must be determined empirically rather than theoretically. Fur-
thermore, the model is tested using outdated datasets, and the suggested model’s time 
efficiency is not measured. Ferrag et al. [16] compared several deep learning techniques. 
Performance of DNN, Recurrent Neural Network, Restricted Boltzmann Machine, Deep 
Belief Networks, Convolutional Neural Networks, Deep Boltzmann Machine, and Deep 
autoencoders was compared on the latest CIC-IDS 2018 dataset. The experiment was 
carried out on just 5% of the complete dataset. The imbalance concerns in the skewed 
dataset were not addressed using any approach. Furthermore, the deep learning models 
were only assessed for recall rate and accuracy. Additional metrics like precision rate and 
F-Measure were missing. Atefinia and Ahmadi [17] proposed a DNN comprising a feed-
forward module, a restricted Boltzmann machine, and two Recurrent Neural Networks. 
The model was trained on the latest CIC-IDS 2018 dataset. No technique was used to 
balance the highly skewed CIC-IDS 2018 dataset. The results of the proposed approach 
on some of the attack categories in the CIC-IDS dataset were also missing. Vinayakumar 
et  al. [18] proposed distributed deep learning model for attack detection in network-
based intrusion detection system (NIDS) and host-based intrusion detection system 
(HIDS). The authors evaluated the efficacy of various machine learning algorithms 
and DNNs on various NIDS and HIDS datasets. A scalable hybrid intrusion detection 
framework called Scale-Hybrid-IDS-AlertNet (SHIA) was proposed by the author. The 
proposed framework is used to process a large amount of network-level and host-level 
events to identify various malicious characteristics and send appropriate alerts to the 
network administrator. In the given approach the highly skewed CIC-IDS 2018 dataset 
was not balanced using any method. The findings of the suggested method on several of 
the attack categories were also missing.

Advance learning algorithms such as Particle Swarm Optimization (PSO) and Extreme 
Learning are also used by some of the authors to enhance the efficiency of the Intrusion 
Detection Systems. Roshan et al. [19] proposed adaptive and online network intrusion 
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detection systems using Clustering and Extreme Machine Learning. The proposed Intru-
sion Detection System consists of three parts, the Clustering Manager, the Decision-
Maker, and the Update Manager. The Clustering Manager is used to cluster the training 
data, and the Decision-Maker is used to evaluate the clustering decisions and provide a 
correction proposal to the update manager. The suggested system is tested on the NSL-
KDD dataset, which is now obsolete. Ali et al. [20] proposed PSO-FLN, a fast learning 
model (FLN) based PSO. The performance of the proposed model is evaluated using the 
KDD99 dataset. The author claimed that the proposed approach outperformed various 
learning approaches. The suggested approach was unable to detect all forms of attacks 
and the model’s time efficiency was also not assessed.. Aburomman and Ibne Reaz [21] 
proposed the Support Vector machine—K Nearest Neighbor—particle swarm optimi-
zation (SVM-KNN-PSO) ensemble method for intrusion detection. They proposed an 
ensemble-based approach using experts. Each expert consists of five binary classifiers. 
The expert’s opinion is considered for every class. The voting is repeated for every obser-
vation for each classifier in the expert. Weighted majority voting is used to combine the 
results from various experts. The suggested model is tested using the KDD99 dataset, 
which does not reflect the current traffic trends.

Jin et al. [22] proposed a real-time intrusion detection system based on a parallel intru-
sion detection mechanism and LightGBM. The proposed model uses two approaches 
to achieve time efficiency without compromising the attack detection accuracy. Firstly, 
a light gradient boosting machine (LightGBM) is used as the intrusion detection algo-
rithm. Secondly, parallel intrusion detection is used to effectively analyze traffic data. 
Swift IDS is based on parallel intrusion detection algorithms that have communication 
and coordination overheads. Moreover, the proposed model is stable with a network 
speed of up to 1.26 Gbps.

The above research analysis is summarized in Table 1.
As listed in the above table, the majority of the research in this field is on old datasets 

that do not reflect modern-day attacks. Many researchers have considered accuracy as 
the most important metric to evaluate the performance of IDS, whereas sensitivity is 
a better metric as the impact of false positives and false negatives on IDS varies signifi-
cantly [23]. The majority of the previous research in this field has not evaluated the pre-
diction time of classifying a request as benign or malicious. Delays in the classification 
process can significantly affect the system’s performance and hamper the user experi-
ence. To overcome the above shortcomings in this field’s previous research, we propose a 
machine learning model that can detect modern-day attacks with a high attack detection 
rate and a low prediction latency.

Research methodology
The study follows the standard procedure in machine learning: (1) data collec-
tion, (2) data preparation, and (3) training a model on the data and evaluating model 
performance.

Data collection

CIC-IDS 2018 dataset was generated by Communications Security Establishment (CSE) 
& the Canadian Institute for Cybersecurity (CIC). The KDD CUP 99 and NSL-KDD 
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datasets list a few attack categories. In contrast, CIC-IDS 2018 dataset lists a new range 
of attacks generated from real-world traffic features such as Distributed Denial of Ser-
vice, Denial of Service, Brute Force, XSS, SQL Injection, Botnet, Web Attack, and Infil-
tration. This dataset is comprehensive, and it overcomes all the shortcomings of the 
previously used suboptimal datasets. CIC-IDS 2018 is a massive dataset that reflects 14 
modern-day attacks having more than 16 million rows and 80 features [24]. Some of the 
features are listed in Table 2. The complete list of the features is given in Appendix 1.

The CIC-IDS2018 dataset is a mix of malicious and benign traffic. The distribution of 
various attacks in the dataset is given in Fig. 1. The different attack categories present in 
the dataset are listed in Table 3.

Data preparation

Data preprocessing

In this initial stage, the dataset was pre-processed. Data wrangling was performed on 
the complete dataset to prepare the data for further computation. The dataset was then 
relabeled into just two classes: attack and benign. The null values were dropped from the 
dataset, reducing the count from 16.2 million to 16.1 million. Four columns, Timestamp, 
IP address, Flow Id, and Source Port were dropped from the dataset. The timestamp col-
umn recorded the attack time, whereas the IP address recorded the IP address of the 
source and the destination machine. The trained models should not be biased against 

Table 2 Some of the features in the CIC-IDS 2018 Dataset

Feature Description Feature Description

fl_dur Flow duration bw_iat_tot Total time between two packets sent in 
the backward direction

tot_fw_pk Total packets in the forward direction bw_iat_avg Mean of the time between two packets 
sent in the backward direction

tot_bw_pk Total packets in the backward direction bw_iat_std Standard deviation time between 
two packets sent in the backward 
direction

tot_l_fw_pkt Total size of the packet in the forward 
direction

bw_iat_max Maximum time between two packets 
sent in the backward direction

Fig. 1 Distribution of different categories of attacks in the dataset
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the IP address or time of the attack, so both the columns are dropped. The Source port 
column that had the port no of the source machine from where the attack is originated 
is also dropped.

As CIC-IDS 2018 dataset was highly skewed with 2,746,934 attacks and 13,390,235 
benign samples. Normal traffic data in the dataset is under-sampled to balance the data-
set that decreases the imbalance to an acceptable level, as given in Table 4. Further, the 
outliers of the dataset are removed using the Isolation Forest technique using 0.1 con-
tamination. After outlier removal, the dataset is reduced to 5.5 million samples.

Feature selection and dimensionality reduction

The basic and the most important step to build a machine learning model is feature 
selection. The main objective of feature selection is to select relevant features that can 
contribute to make the right prediction [9]. Feature selection and reduction of the unde-
sired features in a dataset is one of the most important factors that affect the efficiency 
of a classifier [25]. Unnecessary features in a model can not only decrease the accuracy 
but can also increase the prediction time. Therefore, feature selection is a vital step while 
designing a machine learning model as the dropping of important features as well as the 
inclusion of unnecessary features can affect the system’s performance.

There are numerous methods and techniques to minimize the data size [26]. Fea-
ture selection can be mainly classified into filter method, wrapper method, embed-
ded method. Filter methods use statistical tests like Fisher Score, Correlation, ANOVA 
(Analysis of Variance). The wrapper method is based on the performance of the model 
on the dataset. The wrapper method includes Forward Selection, Backward Elimination, 
and Exhaustive Feature Selection techniques. The embedded approach combines the Fil-
ter and the Wrapper method by performing feature selection and classification simulta-
neously. Besides the various feature selection techniques, dimensionality reduction can 

Table 3 The attacks in the dataset are broadly classified into 5 categories

Attack Description

Brute Force attack Brute Force is an exhaustive attack in which the hacker tries all the possible combina-
tions to break into a system

Denial of Service (DoS) DoS is one of the most common attacks in the cyber world. It is a cyber-attack in which 
the perpetrator launches an attack to make the victim machine or a resource unavail-
able to the users by flooding the target with massive traffic

Distributed Denial of 
Service ( DDoS)

DDoS is similar to DoS, and it disrupts the service of the victim machine by sending 
massive fake traffic to multiple devices on the network

Infiltration Attacks In this attack, the attacker successfully compromises the victim’s machine by exploiting 
the existing system’s vulnerabilities

SQL Injection Attacks The attacker uses SQL Injection attacks to retrieve unauthorized access to sensitive data 
by using SQL queries

Table 4 Attack and benign samples before and after data preprocessing

Before preprocessing After preprocessing

Attack 2,746,934 2,674,783

Benign 13,390,235 2,851,191
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be used for high dimensional datasets for reducing the number of inputs to the model. 
In this section, we propose a novel hybrid approach using Random Forest and Princi-
pal Component Analysis (PCA) to minimize the data set size while retaining important 
information.

Minimizing prediction latency using Hybrid Feature selection with Random Forests and PCA

An Artificial Intelligence(AI) model is useful only if it can be readily deployed in the 
real world. Predictions can be made both online and offline depending upon the appli-
cation’s context where the AI model is used. In synchronous online real-time predic-
tions where the sequence of further steps depends on the model’s prediction, time is also 
a very important parameter as prediction latency can significantly hamper the overall 
performance of the system. Prediction latency can be reduced at two levels: the model 
level and the serving level. At the model level, the latency can be decreased by reducing 
the number of input features or lowering the model’s complexity. At the serving level, 
the prediction lag can be reduced by caching the predictions. As intrusion detection 
requires forecasts in real-time, the proposed method aims at reducing the prediction 
lag at the model level. The number of features selected has a considerable impact on 
the execution time [27]. So, to reduce the prediction lag, hybrid feature selection is pro-
posed that decreases the no of input features while retaining the important information.

In this hybrid approach, first features are selected using Random Forests, and then 
dimensionality reduction is applied using PCA. The proposed method uses Random 
Forest for feature selection in the first step as Random Forest gives the highest accuracy 
as given in Table  9 followed by dimensionality reduction using PCA as PCA gave the 
least prediction latency. Feature selection for dimensionality reduction is applied to get 
better results by removing irrelevant features and redundant information [23]. The pro-
posed hybrid approach is faster in comparison to both Random Forests and PCA used 
individually. The approach follows the steps below.

1. Select the relevant features using Random Forests.
2. Compute principal components for the selected features in step 1 using PCA.
3. Select the topmost significant principal components for further training the model.

Feature selection using Random Forests

Many feature selection techniques are available but our proposed method using Random 
Forest as a part of the hybrid feature selection process due to the high accuracy obtained 
using this technique as listed in Table 9. Random Forests technique uses a collection of 
decision tree classifiers. Each tree in the forest is built by training it on a bootstrapped 
sample from the original dataset. The split attribute in the individual trees is purely ran-
dom and divides the dataset further into two classes based on impurity. Gini index or 
Information gain/entropy are used as impurity measures to split the data. While train-
ing the tree, it can be calculated how much each feature in the dataset affected the tree’s 
impurity. Feature importance is calculated based on the aggregate impurity measure of 
each feature in a tree in the forest.
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By using this method on the dataset, 37 most important features were extracted. 
These features are listed in Table 5.

Dimensionality Reduction using Principal Component Analysis (PCA)

To solve the problem of high dimensional datasets, the dimensionality reduction 
technique [28] is used. PCA technique is used to compress the massive dataset fea-
tures into a smaller subspace maintaining all the valuable information. PCA intends 
to discover the direction of max variance in high-dimensional information, and it 
reduces it into another subspace with equivalent or fewer measurements than the first 
one. Supposing that x is an eigenvector of the covariance matrix of PCA, the feature 
extraction result, for x, of an arbitrary sample vector a is

where x = [x1...xN ]T , a = [a1...aN ]T and N is the dimensionality of sample vectors [29].
Steps for using PCA for dimensionality reduction are as follows: 

1. Scaling The Continous Values

 It’s essential to scale the continuous variables before calculating PCA as the method 
is quite sensitive to variance of values in different variables.

2. Calculate The Covariance Matrix
 The covariance matrix is calculated to identify any relationship between the variables
3. Calculate The Eigenvalues And Eigen Vectors To Find The Principal Components
 Eigenvalues and eigenvectors are computed from the covariance matrix to calculate 

the given information’s principal components.
4. Feature Vector
 Based on the eigenvalues and eigenvectors calculated in step 4, the most significant 

principal components are selected for further processing.
PCA is applied on the dataset with 37 features selected after using the Random 

Forests approach. In this hybrid approach, 99.9% explained variance was given by 24 

(1)z = aTx =

∑N

i=1
aixi

Table 5 Selected features using Random Forests feature selection in the CIC-IDS 2018 Dataset

Selected features

Dst Port’ ’Flow IAT Max’ ’Fwd Pkts/s’ ’Init Bwd Win Byts’

’Flow Duration’ ’Flow IAT Min’ ’Bwd Pkts/s’ ’Fwd Seg Size Min’

’Tot Bwd Pkts’ ’Fwd IAT Tot’ ’Pkt Len Max’ ’Idle Mean’

’TotLen Fwd Pkts’ ’Fwd IAT Mean’ ’Pkt Len Mean’ ’Idle Max

’TotLen Bwd Pkts’ ’Fwd IAT Std’ ’RST Flag Cnt’ ’Flow Pkts/s’

’Fwd Pkt Len Max’ ’Fwd IAT Max’ ’ACK Flag Cnt’ ’Flow IAT Mean’

’Fwd Pkt Len Mean’ ’Fwd IAT Min’ ’Pkt Size Avg’ ’Fwd Header Len’

’Bwd Pkt Len Max’ ’Bwd IAT Std’ ’Fwd Seg Size Avg’ ’Bwd Header Len’

’Flow Byts/s’ ’Bwd IAT Max’ ’Subflow Fwd Byts’ ’Init Fwd Win Byts’

’Subflow Bwd Pkts’
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individual principal components. Whereas, when only PCA was applied to the entire 
CIC-IDS 2018 dataset, 40 significant principal components gave 99% variance.

Thus, the number of principal components dropped from 40 principal components to 
24 principal components. This hybrid approach reduces the number of principal com-
ponents by 40% in comparison to using just PCA. In comparison to Random Forests 
feature selection, the input to the model is reduced from 37 features to 24 principal com-
ponents, giving a decrease of 36.35%.

Training the classifier

For AI-based IDS to detect abnormal traffic trends, the system can be trained using 
machine learning algorithms. The literature offers various machine learning approaches. 
In this paper, five machine learning algorithms, namely, Random Forests, Extra Trees, 
XGBoost, KNN, Histogram Gradient Boosting, KNN, and LightGBM, are compared 
for Accuracy, Recall, Sensitivity, Specificity, F-Measure, model Building Time, and the 
Prediction Latency. The following paragraphs briefly discuss the machine learning 
algorithms.

Random Forest

Random Forests(RF) was propounded by Breiman [30]. RF is an ensemble of decision 
tree classifiers where each tree contributes its vote to predict the result. Random forests 
are an effective tool in prediction. Random Forests do not overfit the data as per the law 
of large numbers. Random forest is built by combining the results of decision trees in the 
forest. Each decision tree is trained on a randomly selected column of a bootstrapped 
subset of the original dataset. The model is then cross-validated using the out-of-bag 
samples.

Extra trees

Extra trees are Extremely Randomized Trees that use ensemble techniques to aggre-
gate numerous decor-related trees in the forest for the final output [31]. It is different 
from other tree-based ensembles as the cut points for splitting the nodes are selected 
absolutely randomly, and trees are not grown on a bootstrapped sample instead on the 
complete learning sample. Extra trees are computationally more efficient than Random 
Forest.

XGB classifier

XGB is Extreme Gradient Boosting, basically, a tree-based ensemble that uses Gradi-
ent Boosting for enhancing speed and performance. XGB optimizes the Gradient Boost-
ing by Tree Pruning, Regularization, Parallel Processing, and handling missing values to 
avoid overfitting. It uses parallel tree learning based on a Sparsity-Aware algorithm and a 
Cache-Aware block structure for tree learning. It supports Gradient Boosting, Stochas-
tic Gradient Boosting, and Regularized Gradient Boosting with L1 and L2 regulariza-
tion. XGB computes much faster with lesser resources, 10× faster than the scikit library 
[32].
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LightGBM

LightGBM is a boosting framework proposed by Microsoft in 2017. This framework fea-
tures improved performance, speed, and power than Xgboost. Under the hood, Micro-
soft’s new model is a collection of multiple Decision Trees. Its method to calculate the 
variation gain is different from other Gradient Boosting Decision tree models. LightG-
BM’s method occurs under strong and weak learners (big and small gradients, gi). For 
arranging the training instances, the absolute value of their gradients is used, organized 
in descending order. LightGBM uses Gradient-based One-Side Sampling (GOSS) and 
Exclusive Feature Bundling (EFB) for faster processing and is 20 times faster in compari-
son to Gradient Boosting Decision tree with the same Accuracy [33].

Histogram based gradient boosting

Gradient Boosting is an ensemble of decision trees but is slow for training the models. 
But the training process of the trees can be significantly enhanced by binning the con-
tinuous input variables. Gradient boosting that uses the binning technique to speed up 
the model training are histogram-based Gradient Boosting ensembles. It is inspired by 
LightGBM by Microsoft and is currently available in the scikit library.

k‑ nearest neighbor (KNN)

kNN [10] is a supervised machine learning algorithm. A class in the kNN classifier is 
predicted based on the most frequent classes among the k neighbors. The k nearest 
neighbors are selected based on the distance between the data point and the original 
samples in the dataset. Euclidean, Manhattan, or Minkowski functions may be used for 
calculating the distance between points as given in the equations below.

N is the dataset’s size, p is an integer with positive values, and  xp and  yp are the data 
coordinates.

Evaluation metrics

The proposed system’s performance is evaluated using metrics: Accuracy, Precision, 
Recall, F- Measure, model Training Time, and Prediction Latency. These metrics are cal-
culated with the following Eqs. (5, 6, 7, 8, 9) using different negative and positive cases as 
TP—True positive, TN—True Negative, FP—False Positive, N—alse Negative.

Accuracy is the percentage of samples correctly predicted as benign and attack.

(2)Euclidean =

√

∑N

p=1

(

xp − yp
)2

(3)Manhattan =

∑N

p=1

∣

∣xp − yp
∣

∣

(4)Minkowski =

(

∑N

p=1

(∣

∣xp − yp
∣

∣

)k
)

1
k
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Sensitivity is the percentage of samples correctly classified as attacks out of all the 
attack samples.

Specificity is the percentage of samples correctly classified as benign out of all the 
benign samples.

Precision is the percentage of correctly classified samples of attacks out of all the sam-
ples classified as attacks.

F-Measure is the harmonic mean of both precision and recall.

Security managers tend to eliminate false negatives in a system for greater security 
and improved results, even if false positives are increased [23]. False positives result in 
the use of additional resources, whereas false negatives can debilitate the entire system. 
Prediction latency for classification is also of paramount importance in real-time Intru-
sion Detection systems as delay in classification can greatly hamper the user experience. 
Thus, for building an efficient IDS, it is essential to strike the right balance of attack pre-
diction efficiency and prediction latency.

Model building time and prediction latency are calculated for all the models. The time 
is calculated by finding the difference between the start and the end time on the server 
while training and testing the classifier in each fold during tenfold cross-validation. The 
time is calculated for the training and testing of 552,345 samples in each fold.

Prediction performance and the prediction latency of the trained models using differ-
ent feature selection techniques and machine learning algorithms are compared in Sect. 
“Result and analysis”.

Experimental setup

All the experiments are conducted on the latest CIC-IDS 2018 dataset. k-fold Cross-Val-
idation with the value of k as 10 was used to reduce the uncertainty of the findings due 
to the random generation of training and testing samples. Each fold was further divided 

(5)Accuracy =
TP + TN

TP + FN + TN + FP

(6)Senstivity =
TP

TP + FN

(7)Specificity =
TN

TN + FP

(8)Percision =
TP

TP + FP

(9)F −Measure = 2 ∗
Precision ∗ Senstivity

Precision+ Senstivity

Prediction latency = Average time taken to predict the class for test set in each fold.

Training time = Average time taken to train the model per fold.
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into training and testing samples. The proposed system was implemented using the 
Scikit Library in Python. All the experiments are performed on the cloud using AWS. 
The cloud instance configuration used for the experimentation is 32 vcpu(Virtual CPU) 
and 256 GB RAM. Complete experiment environment details are given in Table 6.

Results and analysis
Descriptive analysis of CIC‑IDS 2018 dataset

In this section an in-depth analysis of features of the dataset was performed. This paper 
lists a comparison of 10 features. This analysis has given a deep insight into how mali-
cious and benign traffic varies in various network attacks.

Feature analysis

a) Destination port The destination port is the port no of the target machine. Figure 2 
exhibits the port numbers used during various attacks. It is observed that port 80 is 
the most attacked port as approximately 65% of attacks were made on this port. 98% 
of BOT attacks were on port 8080. 75% of Brute Force attacks were performed on 
port 80, 20% on port 500, and remaining on various other ports. 97% of the Brute 
Force XSS sessions were performed on Port 80. All DoS, DDoS, FTP Bruteforce, and 

Table 6 Experiment environment configuration

Hardware Properties

VCPU 32

Platform Amazon 
Linux(Version 
31.0)

Memory 256 GB

Internal storage 24* 1980 GB

Network performance 25 GIGABIT

Fig. 2 Ports used during various attacks
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SQL Injection attacks were performed on port no 80. All SSH Brute Force attacks 
used port no 22. Infiltration attacks were performed using various ports. The top 10 
ports used during the infiltration attacks are listed in Fig. 3. Maximum infiltration 
attacks were performed on port no 53.

b) Table  7 describes salient features identified in the CIC-IDS 2018 dataset, where 
Q1-First quartile- the lowest 25% of the values, Q2-Second quartile- values between 
25.1% and 50%(median), Q3-Third quartile: values between 51 and 75% (above the 
median), Q4-The top 25% of values

Key analytical outcomes of feature analysis based on CIC-IDS 2018 dataset are as 
follows:

1) 65% of attackers used port no 80 to perform the attack
2) Benign sessions have a higher rate of flow Bytes/s in comparison to malicious ses-

sions.
3) 50% of attack sessions in the dataset had 0 flow bytes/s
4) 50% of the malicious sessions had empty packets sent to the server
5) In 50% of the malicious sessions, no packet was sent back from the server to the 

attacker
6) The average number of packets in a sub-flow in the forward and backward direction 

is zero
7) The number of bytes sent in the initial window in the forward direction on average is 

higher in attack sessions in comparison to benign sessions

Results justifying reduced prediction latency using hybrid feature selection technique

In addition to improving optimization metrics, reducing the models’ prediction latency 
is particularly necessary for machine learning models to be deployed in the real-time 
environment. The previous research done in this field is based on just optimizing met-
rics, whereas reducing the prediction latency in real-time is missing [34]. This paper pro-
poses a hybrid feature selection technique using Random Forests and PCA that lowers 
the prediction latency of different machine learning algorithms. In this approach, first, 
essential features are calculated using Random Forests feature selection. Then, Principal 

Fig. 3 Ports used in Infiltration attacks
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components are computed for the selected features in the first step. Finally, significant 
principal components are selected for building the model. This hybrid approach reduces 
the complexity of the model by lowering the number of inputs to the model. With the 
hybrid approach, 24 principal components gave 99.9% variance. Whereas 40 principal 
components gave 99.9% variance using PCA. This reduction in the input features to the 
model reduces the time taken by the model. The proposed approach is evaluated for 
prediction latency using various machine learning algorithms such as Random Forests, 
Extra Trees, XGBoost, Histogram Based Gradient Descent, LightGBM, kNN. Table  8 
lists the model training time and the prediction latency. The calculated results are the 
mean of the values computed in each fold during k-fold cross-validation.

Table 8 Performance classification for the proposed Hybrid Feature Selection with tenfold 
validation

Bold values indicate the reduction in prediction time

Machine 
learning 
algorithm

Feature 
selection

Model 
training time 
(in secs)

Prediction time 
(in secs) batch 
prediction for 
test set

Percentage 
decrease 
in model 
building time 
using hybrid 
approach (%)

Percentage 
decrease in 
prediction 
latency using 
hybrid approach 
(%)

Histogram Based 
Gradient 
Descent

PCA 62.91809869 0.387566 34.74 22.46

Hybrid 
(RF + PCA)

41.05721924 0.300503

ExtraTrees PCA 27.95780349 0.353288 17.94 2.25

Hybrid 
(RF + PCA)

22.94263474 0.345334

RandomForest PCA 126.6453106 0.352546 27.93 4.03

Hybrid 
(RF + PCA)

91.27173629 0.33835

XGBoost PCA 156.5729681 0.329168 52.68 44.52

Hybrid 
(RF + PCA)

74.09030104 0.182613

KNN PCA 129.2284153 310.8692 18.58 40.03

Hybrid 
(RF + PCA)

105.2205418 186.4265

LightGBM PCA 7.37608552 0.143057 31.36 3.53

Hybrid 
(RF + PCA)

5.062662244 0.138008

Table 9 Performance of Hybrid Feature Selection with other feature selection/dimensionality 
reduction techniques

Feature 
selection/
dimensionality 
reduction

Model 
building 
time

Prediction 
latency

Accuracy 
(%)

Recall (%) Precision 
(%)

Specificity 
(%)

F‑measure 
(%)

Random Forests 13.77661 1.443783 97.89 96.03 99.40 99.46 97.69

LightGBM 11.12578 1.210907 97.81 96.12 99.40 99.45 97.73

Logistic Regres-
sion with L2

14.36824 1.44417 97.57 96.03 98.98 99.05 97.48

PCA 7.376086 0.143057 97.82 96.12 99.40 99.44 97.73

Hybrid Feature 
Selection 
(RF + PCA)

5.062662 0.138008 97.73 96.06 99.33 99.42 97.57
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From the results in Table 8, LightGBM is the fastest model with a prediction time of 
1.38008 s using the proposed hybrid feature selection approach. As shown in Table 8, 
the proposed Hybrid Feature selection is more rapid than models using just PCA. The 
bold values indicate the reduction in model training time and prediction time using the 
proposed approach. The prediction latency is decreased from 44.52% to 2.25%, and the 
model building time from 52.68% to 17.94% in various algorithms using the proposed 
hybrid approach.

Analysis of the results in comparison to other feature selection methods

To further evaluate our proposed approach, it is compared with well-known feature 
selection methods, namely (Random Forests, Logistic Regression using regularization, 
LightGBM, and PCA by experimenting on the CIC-IDS 2018 dataset. These methods 
were selected due to their popular utilization in the domain. We evaluate the results 
using six metrics: Prediction Latency, Accuracy, Recall, Precision, Specificity, and 
F-Measure. Table  9 shows the performance of our proposed hybrid feature selection 
approach with other feature selection methods.

As evident from the above table, the hybrid feature selection outperforms other feature 
selection techniques with the least prediction latency and prediction performance as good 
as the other techniques. While observing Prediction Latency and model Building Time, 
the worst feature selection method in this context is the Logistics Regression with L2.

Analysis of the proposed model with the other machine learning algorithms.

To evaluate our proposed model’s performance, experiments were conducted using dif-
ferent machine learning algorithms, namely, Random Forests, Extra Trees, XGBoost, 
Histogram Gradient Boosting and kNN, and LightGBM on CIC-IDS 2018 dataset. It is 
observed that dimensionality reduction techniques are faster in comparison to the other 
feature selection methods as shown in Table 9. All the machine learning algorithms are 
compared using PCA and the proposed Hybrid Feature selection method. Table 10 pre-
sents the attack detection performance comparing the prediction latency and optimizing 
metrics and for various machine learning algorithms.

Table 10 Comparison of the Proposed model with other machine learning algorithms

Feature 
selection

Prediction 
latency

Accuracy 
(%)

Recall (%) Precision 
(%)

Specificity 
(%)

F‑measure 
(%)

Histogram Gra-
dient Boosting

PCA 0.387566 97.64 96.19 98.93 99.02 97.54

Hybrid 0.300503 97.80 96.04 99.36 99.43 97.67

ExtraTrees PCA 0.353288 92.81 93.77 91.72 91.89 92.74

Hybrid 0.345334 91.98 93.24 90.26 90.85 91.72

RandomForest PCA 0.352546 97.65 95.99 99.16 99.2 97.55

Hybrid 0.33835 97.34 95.67 98.74 98.88 97.18

XGBoost PCA 0.329168 97.50 95.61 99.24 99.30 97.39

Hybrid 0.182613 96.97 94.79 98.82 98.96 96.77

KNN PCA 310.8692 97.47 96.30 98.49 98.59 97.38

Hybrid 186.4265 97.68 96.16 98.96 99.0 97.54

Light 
GBM + Hybrid 
feature selec-
tion

PCA 0.143057 97.82 96.12 99.40 99.44 97.73

hybrid 0.138008 97.72 96.06 99.33 99.42 97.57
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As shown in Table 9, LightGBM and Histogram Gradient Boosting outperform other 
classifiers with the highest accuracy rate of 97.72 and 97.8% respectively. Whereas tak-
ing into consideration Prediction Latency, LightGBM is 87% more time-efficient than 
Histogram Based Boosting. A balanced model with high predictive performance and low 
latency rate is considered to be the best. So, considering both recall rate and prediction 
latency LightGBM using the proposed hybrid feature selection is the best model with 
a 97.7% accuracy rate, 99.3% precision rate, and 96% recall rate with a low prediction 
latency.

Comparative analysis of the proposed model and the recently cited work

Jin et  al. [22] proposed Swift IDS based on parallel intrusion detection technique and 
time-efficient LightGBM model for attack classification. Though the proposed model 
is time efficient but parallel processing of different phases is subjected to communica-
tion and coordination overheads. Parallel intrusion detection is achieved by dividing the 
intrusion detection cycle into four phases namely the data acquisition phase, data pre-
processing phase, decision-making phase, and response phase. The first and the second 
data preprocessing phases can start simultaneously without waiting for the first decision 
phase to end. In general with intervals ranging from t2 to tN, the Nth data acquisition 
phase, the (N-1)th data preprocessing phase, and the (N-2)th decision-making phase 
can be executed parallelly. Further to ensure the stability of the parallel intrusion detec-
tion system the conditions T1 > T2 and T1 > T3 should be fulfilled. Where T1, T2, and 
T3 respectively is the time taken by data acquisition, data preprocessing, and decision-
making. Thus, the stability of the proposed model is dependent upon the speed of the 
network. On 8 core physical machines, the proposed model is stable with a network 
speed up to 1.26 Gbps. A comparison of our proposed approach and swift IDS is done in 
Table 11. 

a. Ferrag [16]

 On the CIC-IDS 2018 dataset, Ferrag [16] examined several deep learning models 
intrusion detection. The experiment was conducted on only 5% of the whole dataset, 

Table 11 Comparison of the proposed model with existing Swift IDS

Method Drawbacks

Swift IDS LightGBM + parallel Intrusion Detec-
tion

The stability of parallel detection 
depends upon the network 
speed

Proposed model LightGBM + Hybrid feature selection Independent of network speed

Table 12 List of hyperparameters for Deep Learning models

Hyperparameters

1 Value Learning rate (LR) 0.5

2 Hidden nodes (HN) 15

3 Batch size 1000
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resulting in a relatively limited number of attack occurrences. Furthermore, while all 
the models were assessed for attack detection accuracy, other performance measures 
such as Precision rate, F-Measure were missing. A comparison is made between the 
deep discriminative models DNN, RNN, and CNN and the proposed approach in the 
table. Prediction latency and accuracy were evaluated for deep learning approaches 
with hyperparameters listed in Table  12. For comparing the model’s performance, 
the prediction latency was evaluated on the AWS cloud by replicating the proposed 
models as per the given parameters by the author [16] using the configuration listed 
in Table 5.

 As per the results by Ferrag [16], the model with the above hyperparameters resulted 
in the lowest training time. The deep learning model with these hyperparameters is 
taken as the base model for comparison with our proposed approach as time com-
plexity increases with more hidden nodes and a lesser learning rate.

 It is evident from the above results in Table 13 that our proposed model outperforms 
the Deep Neural Network approaches as proposed by Ferrag [16]. The time complex-
ity of the proposed approach is much lower in comparison to deep learning models 
with a higher accuracy rate. 

b. Leevy [35]
 Leevy [35] explored the impact of ensemble feature selection on the performance of 

seven classifiers: Decision Tree (DT), Random Forest (RF), Naive Bayes (NB), Logis-
tic Regression (LR), Catboost, LightGBM, and XGBoost using the CSE-CIC-IDS2018 

Table 13 Comparison of the proposed model with existing Deep learning model [16]

Deep learning approach Accuracy (%) Prediction 
latency (S)

Deep Neural Network (DNN) 96.653 9.496

Recurrent neural networks (RNN) 96.886 11.3063

Convolutional neural networks (CNN) 96.913 37.36531

Proposed Model (Hybrid feature selection + Light GBM) 97.73 0.138008

Table 14 Comparison of the proposed model with Ensemble Feature Selection + Light GBM [35]

Technique F1‑Score Prediction 
latency (S)

Ensemble Feature Selection + Light GBM 95.8 123.36

Hybrid Feature Selection + Light GBM (proposed) 97.57 0.138008

Table 15 Comparison of the proposed model with Lin et al. [13]

Models Sensitivity (%) Accuracy (%) Prediction time

Deep Learning method using LSTM 96 96.2 13.880 s

Hybrid Feature Selection + Light GBM 
(proposed)

96 97.73 0.138008 s
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dataset. Using the proposed approach, Light GBM outperforms all the other classi-
fiers using the ensemble feature selection technique. A comparison is made between 
this approach and our proposed approach in the Table 14. For comparing the model 
performance, the time was evaluated on the AWS cloud by replicating the proposed 
models as per the given parameters by the author using AWS configuration listed in 
Table 5. 

 As evident from the results in Table  14 our proposed approach outperformed the 
given model both in terms of accuracy and prediction latency.

c. Lin et al.[13]
 To further measure our proposed system’s performance, a comparison is made 

between our work and recent work (Lin et al. [13]) in Table 15. For evaluating the 
model’s performance, the prediction time was computed on the AWS cloud by rep-
licating the proposed models as per the given parameters by the author using the 
configuration listed in Table 5.

The proposed model and the referenced model in Table 9 have used the CIC-IDS 2018 
dataset. As listed in Table  15, the proposed model outperformed the Deep Learning 
method using LSTM in terms of Sensitivity, Accuracy as well as Prediction Latency. The 
methodology used in both models is presented in Table 16.

The compared model is trained on 2 million samples, whereas our proposed model 
is trained on 5.5 million samples. The proposed model has achieved a surge of 1.5% in 
Accuracy rate in comparison to the existing model, and there is a huge improvement in 
Prediction time.

Based on the above results our proposed model using Hybrid Feature Selection and 
LightGBM ensures a high prediction rate with low prediction latency resulting in 
improved user experience and security with faster, precise detections.

Conclusions
Our research’s main objective is an intelligent IDS with a feasible balance of high attack 
detection rate and low prediction latency. In this paper, the latest CIC-IDS 2018 data-
set is used that truly reflects modern-day traffic. We proposed a novel hybrid approach 
for time-efficient feature selection that reduces the prediction latency of the model. In 
this approach, first, the features are selected using Random Forests, then dimensional-
ity reduction using PCA is applied to the selected essential features. This reduces the 
dataset considerably while retaining vital information. This approach lessens the predic-
tion latency by reducing the model’s complexity due to a lesser number of the model’s 
inputs. The proposed method reduces the prediction latency from 44.52% to 2.25%, and 

Table 16 Comparison of the methodology of the proposed model with the deep learning 
model by Lin et al. [13]

Reference Proposed

Technique Deep Learning method using 
LSTM + AM Reference

Machine learning using hybrid feature 
selection approach and LightGBM 
model

Dataset CIC-IDS 2018 CIC-IDS 2018

No. of the samples 2 million random samples 5.5 million samples

Skeweness handling Used SMOTE and under-sampling Used under-sampling of normal traffic
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the model building time from 52.68% to 17.94% in various algorithms on the CIC-IDS 
2018 dataset. Further, LightGBM, a fast gradient boosting framework, is used for attack 
classification. The resulting model is more accurate with a better attack detection rate, 
lower lag. It has a 97.73% accuracy rate, and it outperforms the results obtained in previ-
ous research in this field. In addition to having a high accuracy rate, the proposed model 
offers low prediction latency. Besides this, an in-depth analysis of the network param-
eters of benign and malicious sessions on the CIC-IDS 2018 dataset was made. Key find-
ings of the analysis were (1) 65% of attackers used port no 80 to perform the attack. (2) 
Benign sessions have a higher flow duration compared to malicious sessions. (3) 50% of 
attack sessions in the dataset had 0 flow bytes/s (4) 50% of the malicious sessions had 
empty packets sent to the server. (5) In 50% of the hostile sessions, no packet was sent 
back from the server to the attacker.

In our future work, we plan to work on a multiclassification dataset to classify indi-
vidual attacks correctly.

Appendix 1
See Table 17. 

Table 17  List of features in the CIC-IDS 2018 Dataset

Feature Description Feature Description

fl_dur Flow duration bw_iat_tot Total time between two packets sent 
in the backward direction

tot_fw_pk Total packets in the forward direction bw_iat_avg Mean time between two packets sent 
in the backward direction

tot_bw_pk Total packets in the backward direc-
tion

bw_iat_std Standard deviation time between 
two packets sent in the backward 
direction

tot_l_fw_pkt Total size of packet in forward direc-
tion

bw_iat_max Maximum time between two packets 
sent in the backward direction

fw_pkt_l_max Maximum size of packet in forward 
direction

idl_max Maximum time a flow was idle before 
becoming active

fw_pkt_l_min Minimum size of packet in forward 
direction

bw_iat_min Minimum time between two packets 
sent in the backward direction

fw_pkt_l_avg Average size of packet in forward 
direction

fw_psh_flag Number of times the PSH flag was set 
in packets travelling in the forward 
direction (0 for UDP)

fw_pkt_l_std Standard deviation size of packet in 
forward direction

bw_psh_flag Number of times the PSH flag was set 
in packets travelling in the backward 
direction (0 for UDP)

Bw_pkt_l_max Maximum size of packet in backward 
direction

fw_urg_flag Number of times the URG flag was set 
in packets travelling in the forward 
direction (0 for UDP)

Bw_pkt_l_min Minimum size of packet in backward 
direction

bw_urg_flag Number of times the URG flag was set 
in packets travelling in the backward 
direction (0 for UDP)

Bw_pkt_l_avg Mean size of packet in backward 
direction

fw_hdr_len Total bytes used for headers in the 
forward direction

Bw_pkt_l_std Standard deviation size of packet in 
backward direction

bw_hdr_len Total bytes used for headers in the 
forward direction

fl_byt_s flow byte rate that is number of 
packets transferred per second

fw_pkt_s Number of forward packets per 
second
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Abbreviations
LightGBM: Light Gradient Boosting Machine; IDS: Intrusion Detection System; RF: Random Forest; Forest PA: For-
est by Penalizing Attributes; AOP: Average of Probabilities; DT: Decision Tree; kNN: K Nearest Neighbor; GB: Gradient 
Boosting; LDA: Linear Discriminant Analysis; SMOTE: Synthetic Minority Oversampling Technique; GA-SVM: Genetic 

Table 17 (continued)

Feature Description Feature Description

fl_pkt_s flow packets rate that is number of 
packets transferred per second

bw_pkt_s Number of backward packets per 
second

fl_iat_avg Average time between two flows pkt_len_min Minimum length of a flow

fl_iat_std Standard deviation time two flows pkt_len_max Maximum length of a flow

fl_iat_max Maximum time between two flows pkt_len_avg Mean length of a flow

fl_iat_min Minimum time between two flows pkt_len_std Standard deviation length of a flow

fw_iat_tot Total time between two packets sent 
in the forward direction

pkt_len_va Minimum inter-arrival time of packet

fw_iat_avg Mean time between two packets 
sent in the forward direction

fin_cnt Number of packets with FIN

fw_iat_std Standard deviation time between 
two packets sent in the forward 
direction

syn_cnt Number of packets with SYN

fw_iat_max Maximum time between two pack-
ets sent in the forward direction

rst_cnt Number of packets with RST

fw_iat_min Minimum time between two pack-
ets sent in the forward direction

pst_cnt Number of packets with PUSH

down_up_ratio Download and upload ratio ack_cnt Number of packets with ACK

pkt_size_avg Average size of packet urg_cnt Number of packets with URG 

fw_seg_avg Average size observed in the forward 
direction

cwe_cnt Number of packets with CWE

bw_seg_avg Average size observed in the back-
ward direction

ece_cnt Number of packets with ECE

fw_byt_blk_avg Average number of bytes bulk rate in 
the forward direction

subfl_fw_byt The average number of bytes in a sub 
flow in the forward direction

fw_pkt_blk_avg Average number of packets bulk rate 
in the forward direction

subfl_bw_pkt The average number of packets in a 
sub flow in the backward direction

fw_blk_rate_avg Average number of bulk rates in the 
forward direction

subfl_bw_byt The average number of bytes in a sub 
flow in the backward direction

bw_byt_blk_avg Average number of bytes bulk rate in 
the backward direction

fw_win_byt Number of bytes sent in initial window 
in the forward direction

bw_pkt_blk_avg Average number of packets bulk rate 
in the backward direction

bw_win_byt # of bytes sent in initial window in the 
backward direction

bw_blk_rate_avg Average number of bulk rate in the 
backward direction

Fw_act_pkt # of packets with at least 1 byte of 
TCP data payload in the forward 
direction

subfl_fw_pk The average number of packets in a 
sub flow in the forward direction

fw_seg_min Minimum segment size observed in 
the forward direction

tot_l_fw_pkt Total size of packet in forward direc-
tion

atv_avg Mean time a flow was active before 
becoming idle

fw_pkt_l_max Maximum size of packet in forward 
direction

atv_std Standard deviation time a flow was 
active before becoming idle

atv_max Maximum time a flow was active 
before becoming idle

idl_min Minimum time a flow was idle before 
becoming active

atv_min Minimum time a flow was active 
before becoming idle

fl_dur Flow duration

idl_avg Mean time a flow was idle before 
becoming active

tot_fw_pk Total packets in the forward direction

idl_std Standard deviation time a flow was 
idle before becoming active

tot_bw_pk Total packets in the backward direc-
tion
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Algorithm- Support Vector Machine; PSO: Particle Swarm optimization; LSTM: Long Short-Term Memory; ROC: Receiver 
Operator Characteristic; ANOVA: Analysis of Variance; PCA: Principal Component Analysis; GOSS: Gradient-based One-
Side Sampling; DNN: Deep Neural Network; RNN: Reccurent Neural network; CNN: Convulational Neural Network; BPNN: 
Backpropagation Neural Network; SC: Spectral Clustering.

Acknowledgements
Not applicable.

Authors’ contributions
SS did the experimentation. GS analyzed and interpreted the data. KKC was a major contributor in writing the manu-
script. All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
The dataset analyzed during the current study is available at https:// www. unb. ca/ cic/ datas ets/ ids- 2018. html.

Declarations

Ethics approval and consent to participate.
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 25 January 2021   Accepted: 5 August 2021

References
 1. Ahmadian Ramaki A, Rasoolzadegan A, Javan JA. A systematic review on intrusion detection based on the Hidden 

Markov Model. Stat Anal Data Mining ASA Data Sci J. 2018;11(3):111–34.
 2. Joldzic O, Djuric Z, Vuletic P. A transparent and scalable anomaly-based DoS detection method. Comput Netw. 

2016;104:27–42. https:// doi. org/ 10. 1016/j. comnet. 2016. 05. 004.
 3. Kaja N, Shaout A, Ma D. An intelligent intrusion detection system. Appl Intell Volume. 2019;49:3235–47. https:// doi. 

org/ 10. 1007/ s10489- 019- 01436-1.
 4. Thomas C, Sharma V, Balakrishnan N. Usefulness of DARPA dataset for intrusion detection system evaluation. Pro-

ceedings Volume 6973, Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security. 2008. 
https:// doi. org/ 10. 1117/ 12. 777341

 5. Siddique K, Akhtar Z, Aslam Khan F, Kim Y. KDD Cup 99 data sets: a perspective on the role of data sets in network 
intrusion detection research. Computer. 2019;52(2):41–51. https:// doi. org/ 10. 1109/ mc. 2018. 28887 64.

 6. Song J, Takakura H, Okabe Y, Eto M, Inoue D, Nakao K. Statistical analysis of honeypot data and building of Kyoto 
2006+ dataset for NIDS evaluation. Proc First Workshop Building Anal Datasets Gathering Exp Returns Secur. 
2011;2011:29–36. https:// doi. org/ 10. 1145/ 19786 72. 19786 76.

 7. Ingre B, Yadav A. Performance analysis of NSL-KDD dataset using ANN. 2015 International Conference on Signal 
Processing and Communication Engineering Systems. 2015. https:// doi. org/ 10. 1109/ spaces. 2015. 70582 23

 8. Ridwan MA, Radzi NAM, Abdullah F, Jalil YE. Applications of machine learning in networking: a survey of current 
issues and future challenges. IEEE Access. 2021;9:52523–56. https:// doi. org/ 10. 1109/ ACCESS. 2021. 30692 10.

 9. Zhou Y, Cheng G, Jiang S, Dai M. Building an efficient intrusion detection system based on feature selection and 
ensemble classifier. Comput Netw Volume. 2020. https:// doi. org/ 10. 1016/j. comnet. 2020. 107247.

 10. Saleh AI, Talaat FM, Labib LM. A hybrid intrusion detection system (HIDS) based on prioritized k-nearest neigh-
bors and optimized SVM classifiers. Artif Intell Rev. 2017;51:403–43. https:// doi. org/ 10. 1007/ s10462- 017- 9567-1.

 11. Karatas G, Demir O, Sahingoz OK. Increasing the performance of machine learning-based IDSs on an imbal-
anced and up-to-date dataset. IEEE Access. 2020;8:32150–62. https:// doi. org/ 10. 1109/ access. 2020. 29732 19.

 12. Aslahi-Shahri B, Rahmani R, Chizari M, Maralani A, Eslami M, Golkar M, et al. A hybrid method consisting of GA 
and SVM for intrusion detection system. Neural Comput Appl. 2015;27(6):1669–76.

 13. Lin P, Ye K, Xu C-Z. Dynamic network anomaly detection system by using deep learning techniques. Cloud 
Comput CLOUD 2019. 2019. https:// doi. org/ 10. 1007/ 978-3- 030- 23502-4_ 12.

 14. Kanimozhi V, Prem Jacob T. Artificial Intelligence based Network Intrusion Detection with hyper-parameter 
optimization tuning on the realistic cyber dataset CSE-CIC-IDS2018 using cloud computing. ICT Express. 
2019;5(3):211–4. https:// doi. org/ 10. 1016/j. icte. 2019. 03. 003.

 15. Ma T, Wang F, Cheng J, Yu Y, Chen X. A hybrid spectral clustering and deep neural network ensemble algorithm 
for intrusion detection in sensor networks. Sensors. 2016;16(10):1701. https:// doi. org/ 10. 3390/ s1610 1701.

 16. Ferrag MA, Maglaras L, Moschoyiannis S, Janicke H. Deep learning for cyber security intrusion detection: 
approaches, datasets, and comparative study. J Inform Security Appl. 2020;50:102419. https:// doi. org/ 10. 1016/j. 
jisa. 2019. 102419.

https://www.unb.ca/cic/datasets/ids-2018.html
https://doi.org/10.1016/j.comnet.2016.05.004
https://doi.org/10.1007/s10489-019-01436-1
https://doi.org/10.1007/s10489-019-01436-1
https://doi.org/10.1117/12.777341
https://doi.org/10.1109/mc.2018.2888764
https://doi.org/10.1145/1978672.1978676
https://doi.org/10.1109/spaces.2015.7058223
https://doi.org/10.1109/ACCESS.2021.3069210
https://doi.org/10.1016/j.comnet.2020.107247
https://doi.org/10.1007/s10462-017-9567-1
https://doi.org/10.1109/access.2020.2973219
https://doi.org/10.1007/978-3-030-23502-4_12
https://doi.org/10.1016/j.icte.2019.03.003
https://doi.org/10.3390/s16101701
https://doi.org/10.1016/j.jisa.2019.102419
https://doi.org/10.1016/j.jisa.2019.102419


Page 28 of 28Seth et al. J Big Data           (2021) 8:111 

 17. Atefinia R, Ahmadi M. Network intrusion detection using multi-architectural modular deep neural network. J 
Supercomput. 2020. https:// doi. org/ 10. 1007/ s11227- 020- 03410-y.

 18. Vinayakumar R, Alazab M, Soman KP, Poornachandran P, Al-Nemrat A, Venkatraman S. Deep learning approach 
for intelligent intrusion detection system. IEEE Access. 2019;7:41525–50. https:// doi. org/ 10. 1109/ access. 2019. 
28953 34.

 19. Roshan S, Miche Y, Akusok A, Lendasse A. Adaptive and online network intrusion detection system using clustering 
and Extreme Learning Machines. J Franklin Inst. 2018;355(4):1752–79. https:// doi. org/ 10. 1016/j. jfran klin. 2017. 06. 006.

 20. Ali MH, al Mohammed, B. A. D., Ismail, A., & Zolkipli, M. F. . A new intrusion detection system based on fast learn-
ing network and particle swarm optimization. IEEE Access. 2018;6:20255–61. https:// doi. org/ 10. 1109/ access. 
2018. 28200 92.

 21. Aburomman A, Ibne RM. A novel SVM-kNN-PSO ensemble method for intrusion detection system. Appl Soft 
Comput. 2016;38:360–72.

 22. Jin D, Lu Y, Qin J, Cheng Z, Mao Z. SwiftIDS: Real-time intrusion detection system based on LightGBM and parallel 
intrusion detection mechanism. Comput Security. 2020;97:101984. https:// doi. org/ 10. 1016/j. cose. 2020. 101984.

 23. Liao H-J, Richard Lin C-H, Lin Y-C, Tung K-Y. Intrusion detection system: a comprehensive review. J Netw Comput 
Appl. 2013;36(1):16–24. https:// doi. org/ 10. 1016/j. jnca. 2012. 09. 004.

 24. Thakkar A, Lohiya R. A review of the advancement in intrusion detection datasets. Procedia Comput Sci Volume. 
2020;167:636–45. https:// doi. org/ 10. 1016/j. procs. 2020. 03. 330.

 25. Aljawarneh S, Aldwairi M, Yassein M. Anomaly-based intrusion detection system through feature selection analysis 
and building hybrid efficient model. J Comput Sci. 2018;25:152–60.

 26. Varma RKP, Kumari VV, Kumar SS. A survey of feature selection techniques in intrusion detection system: a soft 
computing perspective. Progress Comput Anal Netw. 2018. https:// doi. org/ 10. 1007/ 978- 981- 10- 7871-2_ 75.

 27. Stiawan D, Idris MY, Bamhdi AM, Budiarto R. CIC-IDS-2017 dataset feature analysis with information gain for anomaly 
detection. IEEE Access. 2020;8:132911–21. https:// doi. org/ 10. 1109/ access. 2020. 30098 43.

 28. Partridge M, Calvo R. Fast dimensionality reduction and simple PCA. Intell Data Anal. 1998;2(1–4):203–14. https:// doi. 
org/ 10. 1016/ s1088- 467x(98) 00024-9.

 29. Song F, Guo Z, Mei D. Feature selection using principal component analysis. 2010 Int Conf Syst Sci Eng Design 
Manufacturing Inform. 2010. https:// doi. org/ 10. 1109/ icsem. 2010. 14.

 30. Breiman L. Random forests. Mach Learn. 2001;45:5–32. https:// doi. org/ 10. 1023/A: 10109 33404 324.
 31. Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Mach Learn. 2006;63:3–42. https:// doi. org/ 10. 1007/ 

s10994- 006- 6226-1.
 32. Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining. p. 785–794. https:// doi. org/ 10. 1145/ 29396 72. 29397 85.
 33. Ke G, Meng Q, Finely T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y. LightGBM: A highly efficient gradient boosting decision 

tree. advances in neural information processing systems 30 (NIP 2017); 2017.
 34. Leevy JL, Khoshgoftaar TM. A survey and analysis of intrusion detection models based on CSE-CIC-IDS2018 Big Data. 

J Big Data. 2020. https:// doi. org/ 10. 1186/ s40537- 020- 00382-x.
 35. Leevy JL, Hancock J, Zuech R, Khoshgoftaar TM. Detecting cybersecurity attacks across different network features 

and learners. J Big Data. 2021. https:// doi. org/ 10. 1186/ s40537- 021- 00426-w.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s11227-020-03410-y
https://doi.org/10.1109/access.2019.2895334
https://doi.org/10.1109/access.2019.2895334
https://doi.org/10.1016/j.jfranklin.2017.06.006
https://doi.org/10.1109/access.2018.2820092
https://doi.org/10.1109/access.2018.2820092
https://doi.org/10.1016/j.cose.2020.101984
https://doi.org/10.1016/j.jnca.2012.09.004
https://doi.org/10.1016/j.procs.2020.03.330
https://doi.org/10.1007/978-981-10-7871-2_75
https://doi.org/10.1109/access.2020.3009843
https://doi.org/10.1016/s1088-467x(98)00024-9
https://doi.org/10.1016/s1088-467x(98)00024-9
https://doi.org/10.1109/icsem.2010.14
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1186/s40537-020-00382-x
https://doi.org/10.1186/s40537-021-00426-w



