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Background
The Human Genome Project [1] and the International HapMap Project [2] have been 
widely considered as the scientific foundation for precision medicine [3]. Precision med-
icine uses an individual’s genetic makeup to determine how a doctor can tailor a patient’s 
therapy. An individual’s genetic makeup refers to the genotype of that individual, i.e., the 
complete set of genes, and in a narrower sense, refers to the alleles or variant forms of a 
gene. Thus, it is becoming critical to understand the genetic basis of common diseases, 
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such as which genes predispose an individual to disease and rare genetic variants that 
can alter gene function. Moreover, SNP expression levels are powerful indicators that 
can be used to distinguish genes across tissues. Many studies have associated variants 
such as SNPs with disease progression, e.g., cardiovascular risks [4], obesity [5], hypoxia 
(a condition characterized by a limited oxygen supply) [6, 7], and coronary artery disease 
[8]. Furthermore, most existing work has focused on developing disease prediction mod-
els based on SNPs associated with a single disease only, for example, breast cancer [9], 
inflammatory bowel disease [10], and obesity [11]. These studies use each SNP as a fea-
ture. A small number of SNPs are used as they are associated with a single disease. This 
is possible as a machine learning model derives its power from its ability to differentiate 
patterns from the data itself. Reference [12] is a recent survey that provides a detailed 
review of the different supervised machine learning algorithms for disease prediction.

However, we are not aware of any study that leverages the power of machine learning 
to identify patterns from a much larger number of SNPs, i.e., SNPs associated with mul-
tiple diseases, and then uses them to predict their respective genes. In particular, in this 
study, we focus on using patterns obtained from expression levels of SNPs in each gene 
of human tissue and uses them to predict their respective genes. Gene expression pro-
vides a means for an organism to produce gene products necessary for the organism to 
live. Variation in the significant gene expression levels can distinguish the gene and the 
tissue in which the gene is expressed. Tissue-specific gene expression, often determined 
by single nucleotide polymorphisms (SNPs), provides potential molecular markers or 
therapeutic targets for disease progression [13]. Therefore, SNPs are good candidates for 
identifying disease progression.

The GTEx portal provides essential data that can be used for machine learning algo-
rithms to mine valuable patterns from tissue-specific genes. The GTEx consortium is 
a community of more than a hundred researchers from various groups and countries 
working together to increase our understanding of how changes in genes affect human 
health and disease. This knowledge will improve health care for future generations [14]. 
In particular, the Common Fund started the GTEx Program in 2010. The GTEx portal 
that provides access to GTEx resources was launched in 2013 [15], and is still active. 
The GTEx portal catalogs genetic variation, including SNPs, to gene expression levels. 
Each gene has a set of SNPs associated with different expression levels, including p-val-
ues indicating the degree of significance. The lower the p-value, the more significant the 
SNP is associated with the gene. Currently, GTEx contains data on 49 different types 
of human tissues. Manual processing can be used to access the SNPs per gene or even 
SNPs for a group of genes. This becomes a labor-intensive task if many SNPs or even 
genes need to be analyzed.

The current bioinformatics literature uses gene regulatory network modeling to sum-
marize complex interactions between transcription factors, genes, and gene products 
[16]. In our work, we focus solely on SNP expression levels for gene prediction and not 
other interacting factors such as transcription factors. Thus, we cannot use gene reg-
ulatory network modeling to study the effects of the expression levels. In contrast to 
existing machine learning approaches that use each SNP as a feature for single disease 
prediction, we focus on tissue-specific gene expression across all 49 human tissues avail-
able in the GTEx portal. Tissue-specific gene expression may also be related to multiple 
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diseases, resulting in a large number of SNPs overlapping among tissues. For example, 
SNP rs142433332 from the DARS2 gene may be related to leukoencephalopathy with 
brain stem and spinal cord involvement and lactate elevation; gait imbalance; and hyper-
tensive disorder [17]. Moreover, single disease studies use multiple samples per gene due 
to the small number of candidate genes. On the other hand, it is impossible to have mul-
tiple samples per gene in our study as it is too costly. More specifically, our work involves 
305,572 tissue-specific genes.

Our initial exploration using each SNP as a feature for machine learning tissue-specific 
genes confirms the challenge presented by such a large number of genes. As expected, 
the machine learning model cannot be used for gene prediction as it produces very low 
accuracy (less than 1% for 1925 genes of the Brain amygdala tissue). To overcome this 
challenge, we implement natural language processing (NLP) techniques in machine 
learning to predict tissue-specific genes using their highly expressed SNPs. The most 
critical task in any NLP application is word segmentation [18]. Nevertheless, it is chal-
lenging, especially for text without explicit word boundary delimiters, such as Chinese, 
Japanese, or even DNA/protein sequences. Moreover, even for space-delimited text like 
English, relying on white space alone does not generally result in adequate segmentation 
[19].

Neural networks and many machine learning algorithms cannot handle non-numeri-
cal data [20, 21]. Thus, word embeddings, a technique that maps words from a vocabu-
lary into a vector of real numbers, are used [22]. The most common word embedding 
technique is k-mer counting [20, 23–25] due to its simplicity and efficiency, where low 
memory is used as long as the k-mer size k is small. In this technique, sample data is 
transformed into a sequence of k-mer words stored in a one-dimensional numerical vec-
tor [20]. A dictionary of k-mer words is then used to count the number of times each 
k-mer word occurs in the sample. The studies in [20, 23–25] use 5-mers on DNA bar-
code, ribosomal, splice, and promoter datasets. In contrast, the study in [26] proposes 
trimer usage while exploring DNA sequences wrapping around histone proteins in yeast 
datasets [27] as well as splice and promoter datasets. On the other hand, reference [28] 
is a survey of current gene prediction tools and recommends using hexamers, as were 
shown in 1992 [29] to be the most discriminative size in identifying protein-coding 
genes in DNA sequences.

Another important factor related to k-mer size is the number of k-mers to be used as 
a feature, i.e., the feature size. The feature size should be discriminating enough to be a 
feature, i.e., the degree of similarities between features of other genes must be low. Thus, 
determining the optimal feature size is also essential for this study.

Thus, we conclude from the above studies that determining optimal k-mer and feature 
sizes is still an open research question, with the answer depending on the dataset and 
purpose of the analysis. An optimal solution for one dataset or application is not neces-
sarily optimal for another dataset or application. The contributions of this paper include:

• Proposes a novel feature extraction algorithm based on highly expressed SNPs to 
select k-mers as features of varying sizes. This is because it becomes computationally 
expensive for a machine learning model to learn from a large number of features and 
genes.
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• Proposes optimal k-mer and feature sizes for tissue-specific gene prediction.
• Provides a comprehensive analysis of our experimental results on the GTEx tissue-

specific datasets. We show that patterns learned from SNP expression levels with the 
highest and lowest p-values contain similar discriminatory power.

Method
This section presents the datasets we analyze and the necessary preprocessing, feature 
extraction methods, classification, and evaluation metrics.

Datasets

To test the effectiveness of our approach, we downloaded all 49 tissues from the GTEx 
portal [30] and selected genes with at least 25 SNPs. Table 1 summarizes the tissue and 
the number of selected genes in each tissue. For example, thyroid tissue has the most 
genes (12,805), while the kidney cortex tissue has the least genes (615).

Feature‑size‑based extraction method

If we take each k-mer as a feature, we generate a large number of features that make 
learning not only challenging but also computationally expensive. To perform 

Table 1 The 49 human tissues and their tissue-specific genes with at least 25 SNPs. A total of 
305,572 genes is listed

No. Tissue Gene No. Tissue Gene

1 Adipose subcutaneous 10,884 26 Esophagus mucosa 10,143

2 Adipose visceral omentum 8295 27 Esophagus muscularis 9862

3 Adrenal gland 4878 28 Heart atrial appendage 7142

4 Artery aorta 8533 29 Heart left ventricle 6286

5 Artery coronary 3625 30 Kidney cortex 615

6 Artery tibial 10,730 31 Liver 3287

7 Brain amygdala 1925 32 Lung 9536

8 Brain anterior cingulate cortex 2961 33 Minor salivary gland 2418

9 Brain caudate basal ganglia 4779 34 Muscle skeletal 9467

10 Brain cerebellar hemisphere 5947 35 Nerve tibial 12,662

11 Brain cerebellum 7204 36 Ovary 3105

12 Brain cortex 5418 37 Pancreas 6275

13 Brain frontal cortex 4179 38 Pituitary 5692

14 Brain hippocampus 3007 39 Prostate 4146

15 Brain hypothalamus 3050 40 Skin not sun exposed suprapubic 10,416

16 Brain nucleus accumbens basal ganglia 4722 41 Skin sun exposed lower leg 11,829

17 Brain putamen basal ganglia 3877 42 Small intestine terminal ileum 3481

18 Brain spinal cord cervical 2390 43 Spleen 6394

19 Brain substantia nigra 1646 44 Stomach 5344

20 Breast mammary 7003 45 Testis 12,612

21 Cells cultured fibroblasts 10,845 46 Thyroid 12,805

22 Cells EBV transformed lymphocytes 2551 47 Uterus 1817

23 Colon sigmoid 6688 48 Vagina 1816

24 Colon transverse 7417 49 Whole blood 8940

25 Esophagus gastroesophageal junction 6928
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dimensionality reduction on the set of k-mers, we propose using the number of k-mers 
in a particular range, which we call feature size, as shown in Fig. 1. The example shown 
in this figure demonstrates feature creation for the TSPAN6 gene indicated by the GEN-
CODE Gene ID, i.e., ENSG00000000003.14. First, all of the SNPs indicated by the ‘alt’ 
field are collected. Then, the SNPs are sorted based on the expression levels, indicated 
by the ‘pval_nominal’ field, before being concatenated into a string. Finally, features are 
created based on feature size.

While exploring several k-mer and feature sizes, we found that using three subsequent 
numbers as partition sizes gives enough discriminating power during the classification 
task. For example, the first feature consists of seven k-mers, i.e., “CCT CTG TGG GGG 
GGC GCA CAC”, the second feature consists of eight k-mers, i.e., “CCT CTG TGG 
GGG GGC GCA CAC ACC”, while the last feature consists of nine k-mers, i.e., “CCT 
CTG TGG GGG GGC GCA CAC ACC CCC”. Both the k-mer and feature sizes param-
eters can either underfit or overfit the machine learning model. Thus, the effects of vary-
ing these parameters are explored in the experiments.

The pseudocode of the feature-size-based feature extraction method is presented as 
Algorithm  1. Pseudocode FSE begins by reading all the SNPs per gene and then sort-
ing them based on the lowest p-value to extract the top x highly expressed SNPs. (Dur-
ing our initial explorations, we were not sure on the exact number of SNPs to use when 

Fig. 1 The overall idea of the feature-number-based extraction method is presented using an example gene 
that is indicated by its unique identifier, ENSG00000000003.14, which refers to the TSPAN6 gene. See in text 
for details
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selecting genes. Taking a larger number, such as 100 reduces the number of genes per 
tissue that are selected for our experimental datasets. Taking x = 25 yielded most genes 
in all tissues.) These SNPs are concatenated into a string. A sequence of k-mers is then 
generated, where the feature size, [a, b, c], is used to create a feature set, consisting of 
features of lengths a, b, and c, which we call the forward feature set. In contrast, the 
reverse feature set is created by sorting based on the highest p-value. Note that, because 
the largest feature size considered in our work is [10, 11, 12], we only need the 14 ( c + 2 , 
where c = 12 ) most highly expressed SNPs for feature creation. Source code is attached 
as additional supplementary material (Additional file 1: Code S1).

Classification

We chose the multinomial naive Bayes (MNB) classifier due to its computational effi-
ciency and optimality for classification tasks even when the conditional independence 
assumption is invalid [31, 32]. Moreover, it is known to outperform even more sophisti-
cated classification methods, such as decision trees and k-nearest neighbors [33].

For the first experiment, we used forward and reverse feature sets on the MNB classi-
fier on two tissues: Adipose subcutaneous, representing a large dataset (10,884 genes), 
which we refer to as Test-1; and a small dataset, Brain amygdala (1925 genes), which we 
refer to as Test-2. These tissues are also chosen because they are quite distinct in that one 
represents adipose subcutaneous samples from the leg while the other represents neural 
tissues sampled from a structure deep within the brain. The purpose of this experiment 
was twofold. First, it determines the top x number of SNPs required for the gene predic-
tion. Second, it determines the optimal k-mer and feature sizes without underfitting or 
overfitting the machine learning model.

To further gauge the performance of the selected k-mer and feature sizes, we tested 
the machine learning model on all 49 human tissues shown in Table 1 , which we refer 
to as Test-3, as a second experiment. Finally, the last experiment explores the efficacy of 
the k-mer and feature sizes on the 175 genes common to all tissues, resulting in a dataset 
comprising 8575 genes, which we refer to as Test-4. This experiment is different from the 
other two experiments as it shows the discriminative power of SNPs expression levels to 
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identify genes across different tissues. In other words, even though different tissues may 
express the same gene, the SNP expression level of the gene may be different and may 
be used to classify the tissues. These distinguishing genes are important as they are also 
potential biomarkers related to a disease or tissue.

Evaluation metrics

We evaluated our experiments using two machine learning evaluation metrics: accuracy 
and F1-score. All values were between 0 and 1. Accuracy is a metric tied to precision 
and recall. High precision and recall scores show that the classifier gives accurate results 
(high precision), and the majority of the results are positive (recall). The F1-score con-
siders both precision and recall by taking their harmonic mean. A micro-average con-
siders each sample equally, whereas a macro-average considers each class equally. The 
former is preferable for imbalanced datasets, and the latter is preferable for balanced 
datasets. Both the micro- and macro-averages will report the same scores if the datasets 
are balanced. This paper reports the macro-average F1-scores as each gene has the same 
number of features.

Machine learning models automatically learn patterns from a certain amount of train-
ing and may adapt too much to the dataset’s peculiarities during training. Thus, it is 
crucial to evaluate the model on a dataset that is unseen during training. However, the 
common approach of dividing the dataset into separate training and test subsets does 
not make the most efficient use of data. An alternative is the stratified k-fold cross-vali-
dation technique. This technique ensures that each fold is a good representative of each 
class by splitting the dataset into k equal parts known as folds, and k training/test cycles 
are performed. For each cycle, a fold is set aside for testing, and the remaining k-1 folds 
are used for training. The reported evaluation score is the average of scores obtained 
during each cycle. All data is eventually used for both training and testing, but each test 
set’s data is never accessible to the model during training for that test set [34]. Thus, the 
feature extraction algorithm was evaluated using stratified-3-fold cross-validation as we 
have three features per gene. Furthermore, we evaluated the efficiency of our method in 
time-space tradeoff using total run time and peak RAM usage.

Results and discussion
Experiments were conducted on the Test-1, Test-2, Test-3, and Test-4 datasets on an 
otherwise ideal 3.1 GHz Dual-Core Intel Core i5 with 16 GB main memory. The operat-
ing system was macOS Big Sur.

The Test-1 dataset comprises 10,884 genes. Both the forward and reverse feature sets 
consisting of 32,652 features each, used about the same run time (< 2 minutes) and peak 
memory (< 2.2 GB) with varying k-mer and feature sizes. Generally, underfitting occurs 
with a k-mer size of 2, and overfitting occurs with k-mer sizes of 4 and 5. The fit is opti-
mal with a k-mer size of 3. In regards to feature sizes, underfitting occurs with feature 
sizes [7, 8, 9] and below. In contrast, overfitting occurs with feature size [10, 11, 12], and 
possibly [9, 10, 11]. The fit is always optimal with feature size [8, 9, 10]. See Table 2a for 
details.

Likewise, in Table 2b, we show the same measures for the Test-2 dataset, consisting of 
1925 genes. The forward and reverse feature sets comprising 5,775 features each, used 
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Table 2 Effect of varying k-mer and feature sizes on the Adipose subcutaneous tissue representing 
the Test-1 dataset and the Brain amygdala tissue representing the Test-2 dataset

(a) Adipose subcutaneous tissue

k‑mer size Feature size Feature set

Forward Reverse

Acc F1 Time Mem Acc F1 Time Mem

2 [6, 7, 8] 0.25 0.19 104 1906 0.26 0.20 105 1905

[7, 8, 9] 0.38 0.31 102 1907 0.39 0.32 102 1907

[8, 9, 10] 0.51 0.44 101 1908 0.51 0.44 104 1907

[9, 10, 11] 0.61 0.54 109 1908 0.61 0.54 102 1906

[10, 11, 12] 0.68 0.62 112 1907 0.68 0.61 106 1906

3 [6, 7, 8] 0.84 0.80 103 1923 0.85 0.82 104 1924

[7, 8, 9] 0.93 0.91 103 1924 0.94 0.93 105 1924

[8, 9, 10] 0.97 0.97 104 1924 0.98 0.97 102 1924

[9, 10, 11] 0.99 0.99 105 1925 0.99 0.99 106 1925

[10, 11, 12] 0.99 0.99 106 1926 1.00 0.99 106 1925

4 [6, 7, 8] 0.97 0.96 103 1986 0.97 0.97 105 1987

[7, 8, 9] 0.99 0.99 104 1987 0.99 0.99 106 1988

[8, 9, 10] 1.00 1.00 105 1988 1.00 1.00 104 1988

[9, 10, 11] 1.00 1.00 106 1990 1.00 1.00 106 1990

[10, 11, 12] 1.00 1.00 108 1990 1.00 1.00 108 1990

5 [6, 7, 8] 0.99 0.99 106 2242 0.99 0.99 104 2242

[7, 8, 9] 1.00 1.00 107 2244 1.00 1.00 106 2243

[8, 9, 10] 1.00 1.00 106 2245 1.00 1.00 107 2245

[9, 10, 11] 1.00 1.00 109 2245 1.00 1.00 109 2245

[10, 11, 12] 1.00 1.00 109 2247 1.00 1.00 110 2246

(b) Brain amygdala tissue

k‑mer size Feature size Feature set

Forward Reverse

Acc F1 Time Mem Acc F1 Time Mem

2 [6, 7, 8] 0.58 0.51 15 196 0.59 0.52 15 196

[7, 8, 9] 0.70 0.63 13 196 0.69 0.63 13 196

[8, 9, 10] 0.76 0.71 13 196 0.77 0.72 13 196

[9, 10, 11] 0.81 0.76 13 196 0.81 0.76 13 196

[10, 11, 12] 0.84 0.79 13 196 0.84 0.80 14 196

3 [6, 7, 8] 0.97 0.96 13 199 0.97 0.96 13 199

[7, 8, 9] 0.99 0.98 13 199 0.99 0.99 13 199

[8, 9, 10] 1.00 0.99 13 199 1.00 0.99 13 199

[9, 10, 11] 1.00 1.00 13 199 1.00 1.00 13 199

[10, 11, 12] 1.00 1.00 13 199 1.00 1.00 13 199

4 [6, 7, 8] 0.99 0.99 13 210 1.00 0.99 13 210

[7, 8, 9] 1.00 1.00 14 210 1.00 1.00 13 210

[8, 9, 10] 1.00 1.00 13 211 1.00 1.00 14 211

[9, 10, 11] 1.00 1.00 13 211 1.00 1.00 13 211

[10, 11, 12] 1.00 1.00 13 211 1.00 1.00 14 211

5 [6, 7, 8] 1.00 1.00 13 256 1.00 1.00 14 256

[7, 8, 9] 1.00 1.00 14 256 1.00 1.00 14 256

[8, 9, 10] 1.00 1.00 14 256 1.00 1.00 14 256

[9, 10, 11] 1.00 1.00 14 256 1.00 1.00 14 256

[10, 11, 12] 1.00 1.00 14 270 1.00 1.00 14 256
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similar run times ( ≤ 15 seconds) and peak memory ( ≤ 270 MB) with varying k-mer and 
feature sizes. It is worthwhile to mention that even though this is a much smaller dataset, 
underfitting still occurs with a k-mer size of 2, while overfitting still occurs with k-mer 
sizes 4 and 5. The fit is still optimal with a k-mer size of 3. In contrast to the results seen 
in Test-1, the Test-2 model overfits with feature size [8, 9, 10]. The fit is always optimal 
with feature size [7, 8, 9].

As a result, we conclude that k-mer size 3 is an optimal fit for the machine learning 
model, whereas the optimal feature size scales with the number of genes. Both the for-
ward and reverse feature sets in the two datasets gave similar accuracy and F1-scores 
which shows that using the SNPs with the highest and lowest p-values contains similar 
discriminatory power.

Table 3 shows the effects of varying feature sizes on the Test-3 dataset of 49 human 
tissues when the k-mer size is set to 3. As expected, a smaller feature size is a good fit for 
tissue with fewer genes compared to a tissue with a more significant number of genes 
where a larger feature size is a better fit. Generally, depending on the number of genes 
and the purpose of the analysis, feature sizes greater than [6, 7, 8] but less than [9, 10, 11] 
is an optimal fit for the machine learning model. A similar observation was seen for the 
reverse feature set and is attached as Additional file 2: Table S1.

The purpose of the final experiment is different from the previous experiments, as it 
focuses on the ability of the expression levels of SNPs to differentiate common genes 
that exist across the 49 human tissues. Table  4 summarizes the results for the Test-4 
dataset comprising 8,575 genes when k-mer of size 3 is used. In this case, we conclude 
that feature size [9, 10, 11] is an optimal fit for the machine learning model.

Conclusions
Our results demonstrate that our approach yields practical performance results on real-
world SNP datasets. A total of 25 SNPs is sufficient to represent the highly expressed 
SNPs as both the forward and reverse feature sets gave similar accuracy and F1-scores. 
Generally, a k-mer of size 3 is an good fit while other k-mer sizes either underfit or over-
fit the machine learning model. On the other hand, in regards to feature sizes, depending 
on the number of genes and the purpose of the analysis, feature sizes [7, 8, 9] and [8, 9, 
10] are typically optimal for the machine learning model. We also show that variation 
in the significant gene expression levels can distinguish the genes and the tissues the 
genes are expressed in. These distinguishing genes are potential molecular markers or 
therapeutic targets for disease progression. Therefore, these genes are good candidates 
for identifying potential SNPs associated with disease progression for future studies.

In this paper, we have (1) proposed a novel feature extraction algorithm based on fea-
ture sizes; (2) proposed an optimal k-mer of size 3 and feature size [7, 8, 9] or [8, 9, 10] 
depending on the number of genes and the application for tissue-specific genes predic-
tion; and (3) provided a comprehensive analysis of the experimental results. We have 

Table 2 (continued)
Total run time is reported in seconds and peak memory usage in megabytes. Accuracy indicated by Acc and F1‑Score 
indicated by F1
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Table 3 Effects of varying feature sizes on all the Test-3 dataset when k-mer size is 3 for the forward 
feature set

Tissue Feature size

[6, 7, 8] [7, 8, 9] [8, 9, 10] [9, 10, 11] [10, 11, 
12]

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Adipose subcutaneous 0.84 0.80 0.93 0.91 0.97 0.97 0.99 0.99 0.99 0.99

Adipose visceral omentum 0.87 0.84 0.95 0.94 0.98 0.97 0.99 0.99 0.99 0.99

Adrenal gland 0.91 0.89 0.96 0.95 0.98 0.98 0.99 0.99 1.00 1.00

Artery aorta 0.86 0.83 0.95 0.93 0.98 0.97 0.99 0.98 0.99 0.99

Artery coronary 0.94 0.92 0.98 0.97 0.99 0.99 1.00 0.99 1.00 1.00

Artery tibial 0.84 0.81 0.93 0.92 0.97 0.96 0.99 0.98 0.99 0.99

Brain amygdala 0.96 0.96 0.98 0.98 0.99 0.99 1.00 1.00 1.00 1.00

Brain anterior cingulate cortex 0.94 0.93 0.97 0.97 0.99 0.99 1.00 0.99 1.00 1.00

Brain caudate basal ganglia 0.92 0.90 0.97 0.96 0.99 0.98 0.99 0.99 1.00 1.00

Brain cerebellar hemisphere 0.90 0.88 0.96 0.95 0.98 0.98 0.99 0.99 1.00 0.99

Brain cerebellum 0.88 0.85 0.96 0.95 0.98 0.98 0.99 0.99 1.00 0.99

Brain cortex 0.91 0.89 0.97 0.96 0.99 0.98 0.99 0.99 1.00 1.00

Brain frontal cortex 0.93 0.91 0.97 0.96 0.99 0.98 0.99 0.99 1.00 1.00

Brain hippocampus 0.94 0.93 0.98 0.98 0.99 0.99 1.00 0.99 1.00 1.00

Brain hypothalamus 0.95 0.93 0.98 0.97 0.99 0.99 1.00 1.00 1.00 1.00

Brain nucleus accumbens basal ganglia 0.92 0.90 0.97 0.96 0.99 0.99 0.99 0.99 1.00 1.00

Brain putamen basal ganglia 0.93 0.91 0.98 0.97 0.99 0.99 1.00 0.99 1.00 1.00

Brain spinal cord cervical 0.96 0.95 0.98 0.98 0.99 0.99 1.00 1.00 1.00 1.00

Brain substantia nigra 0.97 0.96 0.99 0.98 0.99 0.99 1.00 1.00 1.00 1.00

Breast mammary 0.89 0.86 0.95 0.94 0.98 0.98 0.99 0.99 1.00 0.99

Cells cultured fibroblasts 0.84 0.81 0.93 0.92 0.97 0.97 0.99 0.98 0.99 0.99

Cells EBV transformed lymphocytes 0.94 0.93 0.98 0.97 0.99 0.99 1.00 0.99 1.00 1.00

Colon sigmoid 0.89 0.86 0.96 0.94 0.98 0.97 0.99 0.99 0.99 0.99

Colon transverse 0.88 0.85 0.95 0.93 0.98 0.97 0.99 0.99 1.00 0.99

Esophagus gastroesophageal junction 0.89 0.86 0.96 0.95 0.98 0.98 0.99 0.99 0.99 0.99

Esophagus mucosa 0.85 0.82 0.94 0.92 0.97 0.97 0.99 0.98 0.99 0.99

Esophagus muscularis 0.85 0.82 0.94 0.93 0.98 0.97 0.99 0.98 0.99 0.99

Heart atrial appendage 0.88 0.86 0.95 0.94 0.98 0.97 0.99 0.99 1.00 0.99

Heart left ventricle 0.91 0.88 0.96 0.95 0.98 0.98 0.99 0.99 1.00 1.00

Kidney cortex 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Liver 0.94 0.92 0.97 0.97 0.99 0.98 1.00 1.00 1.00 1.00

Lung 0.86 0.82 0.94 0.93 0.98 0.97 0.99 0.98 0.99 0.99

Minor salivary gland 0.95 0.94 0.98 0.97 0.99 0.99 1.00 0.99 1.00 1.00

Muscle skeletal 0.86 0.82 0.94 0.92 0.98 0.97 0.99 0.99 0.99 0.99

Nerve tibial 0.82 0.78 0.92 0.90 0.97 0.96 0.99 0.98 0.99 0.99

Ovary 0.94 0.93 0.98 0.97 0.99 0.99 1.00 1.00 1.00 1.00

Pancreas 0.90 0.87 0.96 0.95 0.98 0.98 0.99 0.99 1.00 0.99

Pituitary 0.91 0.88 0.96 0.95 0.99 0.98 0.99 0.99 1.00 1.00

Prostate 0.93 0.91 0.97 0.97 0.99 0.98 1.00 0.99 1.00 1.00

Skin not sun exposed suprapubic 0.84 0.80 0.93 0.92 0.97 0.96 0.99 0.98 0.99 0.99

Skin sun exposed lower leg 0.84 0.80 0.93 0.91 0.97 0.96 0.99 0.98 0.99 0.99

Small intestine terminal ileum 0.94 0.92 0.98 0.97 0.99 0.99 1.00 0.99 1.00 1.00

Spleen 0.89 0.86 0.95 0.94 0.98 0.98 0.99 0.99 1.00 0.99

Stomach 0.91 0.88 0.96 0.95 0.98 0.98 0.99 0.99 1.00 1.00

Testis 0.83 0.79 0.93 0.91 0.97 0.96 0.99 0.98 0.99 0.99
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shown that patterns learned from SNP expression levels with the highest and lowest 
p-values contain similar discriminatory power.
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Accuracy indicated by Acc and F1‑Score indicated by F1

Table 3 (continued)

Tissue Feature size

[6, 7, 8] [7, 8, 9] [8, 9, 10] [9, 10, 11] [10, 11, 
12]

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Thyroid 0.82 0.78 0.92 0.90 0.97 0.96 0.98 0.98 0.99 0.99

Uterus 0.96 0.95 0.99 0.98 0.99 0.99 1.00 1.00 1.00 1.00

Vagina 0.97 0.96 0.99 0.98 0.99 0.99 1.00 1.00 1.00 1.00

Whole blood 0.86 0.83 0.94 0.93 0.98 0.97 0.99 0.99 0.99 0.99

MEAN 0.90 0.88 0.96 0.95 0.98 0.98 0.99 0.99 1.00 0.99

STDEV 0.05 0.06 0.02 0.02 0.01 0.01 0.00 0.00 0.00 0.00

MIN 0.82 0.78 0.92 0.90 0.97 0.96 0.98 0.98 0.99 0.99

MAX 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 4 Effects of varying feature size on a dataset that comprises of all the common genes that 
exist across of all the 49 human tissues

The k‑mer size is set to 3. Accuracy indicated by Acc and F1‑Score indicated by F1

Feature size Featureset

Forward Reverse

Acc F1 Acc F1

[6, 7, 8] 0.82 0.78 0.87 0.84

[7, 8, 9] 0.91 0.89 0.95 0.93

[8, 9, 10] 0.95 0.94 0.98 0.97

[9, 10, 11] 0.97 0.97 0.99 0.99

[10, 11, 12] 0.98 0.98 1.00 0.99
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