
Investigating the impact of pre‑processing
techniques and pre‑trained word embeddings
in detecting Arabic health information on social
media
Yahya Albalawi1,2,3*  , Jim Buckley1,3 and Nikola S. Nikolov1,3 

Introduction
Due to the increased amount of data from user-generated content on social media, text
classification has become an important area of research in the last 10 years. This has
led researchers to apply text classification methods for analyzing sentiments and topics

Abstract 

This paper presents a comprehensive evaluation of data pre-processing and word
embedding techniques in the context of Arabic document classification in the domain
of health-related communication on social media. We evaluate 26 text pre-processings
applied to Arabic tweets within the process of training a classifier to identify health-
related tweets. For this task we use the (traditional) machine learning classifiers KNN,
SVM, Multinomial NB and Logistic Regression. Furthermore, we report experimental
results with the deep learning architectures BLSTM and CNN for the same text classifi-
cation problem. Since word embeddings are more typically used as the input layer in
deep networks, in the deep learning experiments we evaluate several state-of-the-art
pre-trained word embeddings with the same text pre-processing applied. To achieve
these goals, we use two data sets: one for both training and testing, and another for
testing the generality of our models only. Our results point to the conclusion that only
four out of the 26 pre-processings improve the classification accuracy significantly.
For the first data set of Arabic tweets, we found that Mazajak CBOW pre-trained word
embeddings as the input to a BLSTM deep network led to the most accurate classifier
with F1 score of 89.7%. For the second data set, Mazajak Skip-Gram pre-trained word
embeddings as the input to BLSTM led to the most accurate model with F1 score of
75.2% and accuracy of 90.7% compared to F1 score of 90.8% achieved by Mazajak
CBOW for the same architecture but with lower accuracy of 70.89%. Our results also
show that the performance of the best of the traditional classifier we trained is compa-
rable to the deep learning methods on the first dataset, but significantly worse on the
second dataset.

Keywords:  Deep learning, Health information, Pre-trained word embeddings, Social
media, Machine learning, Natural language processing, Twitter

Open Access

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Albalawi et al. J Big Data (2021) 8:95
https://doi.org/10.1186/s40537-021-00488-w

*Correspondence:
yahalbalawi@gmail.com
1 Department of Computer
Science and Information
Systems, University
of Limerick, Limerick, Ireland
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0003-4264-6355
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-021-00488-w&domain=pdf

Page 2 of 29Albalawi et al. J Big Data (2021) 8:95

[1–3], predicting gender [4–6], and detecting false news [7, 8]. Studies on social media
have indicated that, as a wide variety of people use this medium to share health informa-
tion [9, 10], the information provided is not always accurate [11, 12] and this is a huge
issue of concern. However, a precursor for studying the trustworthiness of health-related
tweets is the development of a model to detect health-related information posts on
social media.

Additional important reasons for devising a high-quality method for identifying
health-information posted on social media could include building and/or studying
health communication theories, evaluating health communication, and understanding
public concerns on social media during an outbreak [13–15]. Studies that built models
to detect (English) health information tweets were conducted by Paul et al. and Tuarob
et al. [16, 17], who developed machine-learning models to detect health-related informa-
tion on social media platforms.

Unfortunately, these models are highly language-dependent and, as they were not cre-
ated for the Arabic language, they cannot be directly applied to this language, an impor-
tant consideration given the prevalence of social media usage in Arabic countries [11].
For example, text normalization is one of the important steps in text classification. In
English, this might include normalizing capital letters to lowercase letters, yet there are
no lowercase and capital letters in Arabic; normalizing letters in Arabic involves nor-
malizing different forms of alefs (أ إ ا.)to (ا) or removing diacritics that are not used in
English. Thus, Maw et al. [18] pointed out that even if some algorithms perform well for
a particular language, they might yield worse results when applied to another language.

There have been many studies of text classification regarding Arabic natural language
processing on social media. Most of them are focused on sentiment analysis, and a num-
ber of literature surveys and systematic literature reviews have been conducted on this
Arabic-language-classification-specific task [1–3]. More specifically, Al-Rubaiee et al.
[19], Alayba et al. [20], and Alabbas et al. [21] conducted targeted sentiment-analysis
studies. Al-Rubaiee et al. [19] used sentiment analysis to evaluate a bank application.
They collected tweets about the bank service and labelled them as either positive or neg-
ative. They then pre-processed the tweets using various techniques and compared the
performance of the Support Vector Machine (SVM) and Naïve Bayes (NB) classifiers.
The best results were for SVM with an accuracy of 89.68%.

Similarly, Alayba et al. [20] collected tweets about health services in Saudi Arabia and
labelled them as positive or negative. The best results were achieved using stochastic
gradient descent with an accuracy of 91.87%. Moreover, Alabbas et al. [21] trained a
classifier to detect natural disasters by labelling tweets, some of which contained infor-
mation about a flood whereas others did not. They trained different classifiers, namely,
SVM with K-Nearest Neighbors (KNN), NB, and compared their performance. The best
model was SVM with an accuracy of 90.7%. Alayba and Alabbas studies are expanded on
in the next section.

Other Arabic-text classification work used social media data to detect hate speech
[22–24] and analyze crisis responses, such as in the event of a flood [25]. However,
there is a lack of studies based on detecting Arabic-language health-related tweets. In
this paper, we aim to derive a model to accurately detect Arabic language health data on
Twitter and test these models on data sets to evaluate the generality thereof.

Page 3 of 29Albalawi et al. J Big Data (2021) 8:95 	

Statistics show that Twitter is very popular with Arabic speakers, and that it is widely
used for sharing health-related information [9, 10]. As such, one of the goals of this
paper is to enrich the literature by providing technical details for the development of a
model to detect Arabic health-related tweets. Devising such a model can help research-
ers from many disciplines study health-related tweets in a more comprehensive manner
and will provide the foundation for empirical studies that are not conducted with a focus
on tweets with a specific origin only (where the origin serves as a means of determin-
ing their health-information focus by, for example, only considering tweets emanating
from specific health-tweet authors/organizations). For example, while Alnemer et al.
[12] extracted tweets from specific health-related Twitter accounts in order to study
health-related information on social media, Albalawi et al. [11] pointed out that there
are other users who also (more informally) tweet about health and that those should not
be ignored in an analysis of health tweets. A model that can automatically extract health-
related tweets can further the holistic study of health-related tweets without requiring
that specific health-related accounts are followed. Furthermore, providing the technical
details for the development of such a model will enrich the literature, not only for this
specific text classification task (i.e., extracting health-information tweets), but also for
other Arabic-text classification tasks.

This paper is structured as follows. First, we discuss related work in Sect. "Related
work". In Sect. "Methods", we describe the general methods used in this study, focus-
ing especially on the data sets and evaluation metrics employed. Section "First experi-
ment" reports on the study that assesses the impact of various pre-processings on
traditional machine learning techniques, when classifying health-related tweets. Subse-
quently, Sect. "Second experiment" describes a second study which looks at the impact
of different word embeddings on deep learning algorithms for the same purpose. Finally,
Sects. "Discussion" and "Conclusion" discuss and compare the results, drawing out con-
clusions from this work.

Related works
There is a vast body of literature on Arabic text classification for social media. Alayba
et al. [20] analyzed tweets to detect sentiment about services in Saudi Arabia. They col-
lected tweets using trending hashtags related to health services, and then they divided
their data sets into two categories: negative and positive. When processing the tweets,
they removed diacritics and Kashida and normalized three additional letters: إأا to ,.ا
 and they used unigram and bi-gram text extraction techniques with ;ى to ئ and ,ه to ة
Term Frequency–Inverse Document Frequency, hereafter TF-IDF, for feature selection.
They then compared the performance of seven algorithms and experimented with a
Convolutional Neural Network (CNN). The best results were achieved with a stochastic
gradient analysis and SVM, with an accuracy of 91.87. They did not use any stemming
methods during pre-processing.

Alabbas et al. [21] developed a model to detect a natural disaster in tweets, specifi-
cally a high-risk flood. To achieve this, they trained a classifier on labelled tweets; some
containing information about a flood and others that did not. They removed diacritics
from the text based on the assumption that most text is written without diacritics. In a
manner similar to that of Alayba, they used TF-IDF for feature selection. During their

Page 4 of 29Albalawi et al. J Big Data (2021) 8:95

study, Alabbas et al. investigated the performance of different classifiers, specifically the
NNET, SVM, KNN, Decision Tree (C4.5–J48), and NB algorithms. Unlike Alayba, they
also compared different stemming techniques for the Arabic language: no stemming,
light stemming, and prefix/suffix removal. They also normalized one letter, إأا to The .ا
authors concluded that SVM performs better than the other algorithms, and that most
of the algorithms included in the study perform better without stemming.

Boudad et al. [26] compared the performance of KNN, SVM and NB in sentiment
analysis for Arabic tweets. Moreover, they compared the impact of different types of
stemming, specifically light stemming and root stemming; and they also compared TF-
IDF to Binary Term Occurrence (BTO) for feature selection. They found that the best
accuracy is achieved with light stemming, the SVM classifier, and TF-IDF for feature
selection. During the normalization process, they normalized ه and ى in addition to
removing hashtags. It is not obvious whether their findings contradict those of Alabbas
et al. however, as the model in the earlier study was not trained without stemming.

Duwairi et al. [27] and Oussous et al. [28] studied the impact of root stemming and
light stemming in addition to stop word removal on sentiment analysis. While Ous-
sous et al. found that light stemming improves the accuracy, Duwairi et al. stated that
stemming and stop word removal do not improve the accuracy of their model. Further-
more, these studies have not investigated the impact of the other pre-processing tech-
niques discussed above. Although, Oussous et al. removed tashkeel, duplicate letters and
Kashida, they did not report the impact of such steps on the results of their model.

Abdulla et al. [29] built a model to detect the sentiment of tweets. They found that
light stemming decreases model accuracy, which supports the findings of Alabbas et al.
In comparison to Boudad et al., however, they only normalized two letters, ه and ا. Like
the studies mentioned above, they did not investigate the impact of normalizing letters
on the accuracy of their model.

Alakrot et al. [24] developed a model to detect hate speech in YouTube comments,
which they trained on 15,000 comments labelled as either positive or negative. They nor-
malized the same letters as Alabbas et al. [21] along with two additional letters, because
of the similar morphological sounds thereof. Their best model achieved an F1 score of
82%, and they reported the usefulness of stemming and normalization, which contra-
dicts Alabbas et al. [21] and Abdulla et al. [29].

As the studies described above suggest, there is no agreement on pre-processing steps
for the Arabic language as the researchers used different techniques when normalizing
the text. Alabbas et al. [21] only normalized one letter, إاأ; Boudad et al. [26] and Abdulla
et al. [29] only normalized ه ة; while Alayba et al. [20] and Alakrot et al. [24] normalized
other letters. Furthermore, both Boudad et al. [26] and Alakrot et al. [24] reported the
usefulness of stemming, while Alabbas et al. [21] and Abdulla et al. [29] found that stem-
ming decreased the accuracy of their models. These conflicting results lead to questions
as to which methods are the best for normalizing Arabic data sets, particularly for spe-
cific classification tasks.

In addition to traditional machine-learning algorithms, there has been a dramatic
increase in the number of studies that apply different deep-learning methods for tack-
ling the Arabic text classification task in the last few years. Some of these studies com-
pared deep-learning models, such as CNN and Long Short-Term Memory (LSTM), to

Page 5 of 29Albalawi et al. J Big Data (2021) 8:95 	

traditional machine-learning models. For example, Oussous et al. [30] compared four
models (NB, SVM, CNN and LSTM) to detect the sentiment of tweets. They also inves-
tigated the impact of pre-processing techniques, specifically normalizing, stop-word
removal, and stemming. They used traditional BTO as feature extraction for NB and
SVM, and they used Word2Vec for the word-embedding layer of the CNN and LSTM
models. They concluded that normalizing with light stemming improves the accuracy of
their model and that the CNN and LSTM classifiers perform better than the SVM and
NB ones. They only considered normalizing three letters: ة ,ي, and ا.

It is worth noting that word embedding is a learning technique in natural language
processing that represents words with vectors [31], the dimensions of which are usu-
ally set prior to the word-embedding training. A high dimension vector offers a better
opportunity to represent the word semantics [22]. This technique uses geometric word
encoding based on how frequently words appear together [8]; thus, words with similar
meanings are represented with similar numbers. Yet, to be efficient, word embedding
need to be trained on large data sets [32]. Thus, researchers often use already existing
pre-trained word embedding as demonstrated by Mohaouchane et al. [33].

They [33] used the same data set that was used by Alakrot et al. [24], and they followed
similar pre-processing steps to Alakrot et al.. Mohaouchane et al. [33] used AraVec pre-
trained words [34] that were embedded as the input layer for a CNN, and they improved
the accuracy of detecting hate speech in this data set from an F1 score of 82 to a score of
84.05.

In contrast to the studies by Oussous et al. [30] and Mohaouchane et al. [33], Abdul-
lah et al. [35] developed a CNN-LSTM model to detect the emotion of tweets. Unlike
Oussous et al., Abdullah et al. [35] used AraVec pre-trained words embedding for their
input layer. They claimed that the normalizing and stemming steps did not improve the
performance of their model.

Similar to Abdullah et al. [35], Heikal et al. [36] developed a model that uses AraVec
pre-trained word embedding in the input layer. They also used different pre-processing
techniques by removing diacritics, repeated characters and punctuation. They assem-
bled a model that consisted of a CNN and LSTM architecture. The authors achieved an
F1 score of 64%, which they claimed outperforms a state-of-the-art algorithm.

The reason the above-mentioned studies [33, 35, 36] utilized customized pre-process-
ing techniques when using pre-trained word embeddings is unclear. According to Li
et al. [37], the ideal method to achieve the most improvement when using pre-trained
word embedding is to follow the same steps that were used for the corpus when creating
the embeddings vectors unless they are not well-documented. The pre-processing steps
to normalize the data sets when using AraVec pre-trained word embeddings are docu-
mented and were provided by the models of Soliman et al. [34].

Abuzayed and Elsayed [38] investigated the performance of classical and deep-
learning models when detecting hate speech in Arabic tweets. Their results showed
that the classical TF-IDF word representation performs better than word embedding
with classical algorithms, but the combined CNN-LSTM deep-learning architecture
performs better than the classical algorithm. This observation might help to answer
the question posed by Guellil et al. [39]: “Are deep-learning approaches really more

Page 6 of 29Albalawi et al. J Big Data (2021) 8:95

efficient than traditional approaches, such as SVM, NB, etc., for Arabic natural pro-
cessing?” (p. 9). This is a core research agenda for this work, but in the context of clas-
sifying/identifying health tweets in particular.

While Mohaouchane et al. [33], Abdullah et al. [35], and Heikal et al. [36] used
AraVec pre-trained words embedding, there are additional pre-trained Arabic word
embedding models that have been investigated. Alwehaibi and Roy [40] asserted that
pre-trained models require millions of words to be effectively trained; consequently,
they investigated the usefulness of the AraVec, fastText, and the ‘Altowayan and Tao’
[41] pre-trained word-embedding techniques for text classification. To compare
these classification approaches, they developed a CNN-LSTM deep neural network
model to predict the sentiment of tweets, and they found that the Altowayan and
Tao [41] pre-trained word-embedding method outperforms AraVec and fastText as
the authors’ best model achieved 93.5% accuracy when classifying texts into positive,
negative and neutral sentiment.

Utilizing a collection of 55 million tweets, Fouad et al. [42] developed their own
pre-trained word-embedding model by combining three popular techniques—Word-
2Vec Skip-Gram; Word2Vec Continuous Bag-of-Words (CBOW); and Global Vectors
(GloVe). Using the CNN architecture, they compared the performance of their pre-
trained word embeddings (ArWordVec) to that of AraVec pre-trained word-embed-
ding methods and found their pre-trained model outperformed the AraVec model.

Based on the literature identified above, Table 1 presents the pre-trained word-
embedding models that have been applied to the classification of Arabic texts.

It is worth noting that the majority of the studies reviewed above, which used Ara-
bic social media for text classification tasks, used SVM followed by NB. There is also
a recent trend of using deep-learning methods for Arabic text classification, where
CNN and LSTM architectures were primarily used as deep learning methods. This
observation is consistent with the findings of Oueslati et al. [43], who conducted a
review on the techniques used for sentiment analysis of Arabic-language tweets.

While several recent studies reported the effectiveness of using pre-trained words
as the embedding layer for deep-learning models, there have been only few compara-
tive studies of word-embedding techniques in the context of Arabic text mining. For
example, four different studies [33, 35, 36, 38] used AraVec, only, one study used fast-
Text [41], and no studies were found that used ArWordVec.

As for traditional methods, the majority of Arabic works have emphasized some
pre-processing techniques, such as stemming, but none of the studies discussed
determined the impact of normalizing Arabic letters or removing diacritics. Some
claimed these techniques negatively affect the classifier performance [44, 45] but did
not elaborate on or provide evidence for their assertions. Furthermore, there have
been no studies to date on the detection of Arabic health-related tweets on Twitter.

Thus, this paper aimed to investigate the impact of different pre-processing tech-
niques on model accuracy. An additional aim was to employ deep-learning methods
to compare the performances of pre-trained word-embedding techniques. This will
be carried out through a text-classification task focused on detecting Arabic-language
health-related tweets. Using these studies as pre-requisites, this study aimed to com-
pare the best classifiers developed using deep learning methods to best classifiers

Page 7 of 29Albalawi et al. J Big Data (2021) 8:95 	

developed using traditional machine learning (ML) methods to identify the overall
best-of-breed classification approach available for health tweet identification.

Methods
We derived two different approaches to achieve the aims of the study.

For the first objective, which concerned testing the impact of pre-processing tech-
niques on the accuracy of the predictive models, we tested 14 variants of normalizing
Arabic letters in addition to 12 pre-processing techniques (explained in Sect. 4.1) on
four different algorithms. These algorithms are among the most widely used algorithms
for text classification [46].

In the second experiment, which was performed to answer the second objective of this
study (comparing the performance of the CBOW/Skip-Gram variants of the four pre-
trained word embeddings presented in Table 1 using a deep learning approach) we spe-
cifically used CNN and the BLSTM (Bidirectional LSTM) architecture to compare these
pre-trained word embedding models. BLSTM and CNN are among the most used deep
learning architecture that have been applied to text classification problem [47, 48].

Lastly, we compared the accuracy of classifier models developed using traditional ML
methods to classifier models developed using deep learning methods. Figure 1 presents
an overview figure for this study.

Table 1  Pre-trained word embedding models

Pre-trained
word
embedding

Number of
documents

Sources Techniques Availability Pre-processing

fastText [45] 400 millions
tokens from
Wikipedia”, i.e.
400 million
Wikipedia
articles + “24
terabytes of raw
text data” from
Common Crawl

Common Crawl
and Wikipedia

CBOW with
sub-wording
techniques
applied to the
methods

Open Only tokenization

AraVec [34] 66.9 million
tweets and
320,636 docu-
ments from
Wikipedia

Twitter and Wiki-
pedia

CBOW and
Skip-Gram with
different n-gram
and unigram
features

Open Remove non-Arabic
letters. replace ة
with ه. Normal-
ize alef. remove
duplicates, Nor-
malize mentions,
URLs emojis

Mazajak [46] 250 million tweets Twitter CBOW and
Skip-Gram with
different n-gram

Open Removal URLs, Tash-
keel, emojis and
punctuation

ArWordVec [43] 55 million tweets Twitter CBOW and Skip-
Gram

Open Normalize men-
tions, URLs.
Remove tashkeel,
punctuation, Nor-
malize bare alef

Replace ى" with "ي",
Replace ؤ" with “ء",

Replace ئ" with ء",
Replace " ة with ه "

Page 8 of 29Albalawi et al. J Big Data (2021) 8:95

Data sets and model evaluation metrics

Generalization is the ability of a trained model to accurately categorize new data for
which it has not been previously seen/exposed [49]. Chung et al. [50] ⁠state that even
though most machine-learning-development data is divided into testing and train-
ing examples it is questionable whether a machine-learning model would hold in
a more general sense as both the training and the test data sets are usually derived
from the same environment. Thus, in addition to a first data set, on which each model
was trained and tested, we further tested each model on another data set on which
the models had not been trained. This data set included words related to COVID-
19 and was extracted between March 2020 and April 2020. It differs from the first
data set in two ways. Firstly, it was created at a different time-point and secondly,
it was extracted during a pandemic, which allowed the model to be tested more for
generally.

Next, we describe the process of creating the health lexicon used in extracting these
data sets, and then provide more details about each data set.

Health lexicon

The health lexicon, used for extracting health-related tweets, combines keywords
from three different sources in order to minimize bias [51]. These sources include are:

•	 an annotator—a graduate linguist and native Arabic speaker who reviewed health-
related accounts and hashtags to identify 110 health-related words.

•	 field experts—three medical doctors who are active on Twitter; they suggested
100 health-specific words that typically occur in health-related tweets.

•	 an existing health dictionary—we took 232 words from the Arabic health diction-
ary proposed by Collier et al. [52]. These 232 words are the only words out of all
968 words in the dictionary, that occur in the tweets we have collected.

First Experiment Second Experiment

Tradi�onal algorithms

Evalua�ng models on
second data set (unseen

data)

Results Results

BLSTM CNN

Pre-trained word
embedding evalua�on

Pre-trained word
embedding evalua�on

Evalua�ng models on
second data set
(unseen data)

Evalua�ng models on
second data set
(unseen data)

Second dataset tes�ng
1000 tweets

Discussion

First dataset 80%
training, 20 % tes�ng

Pre-processing techniques
evalua�on and model

op�miza�on

Fig. 1  Study overview

Page 9 of 29Albalawi et al. J Big Data (2021) 8:95 	

We then combined all the words. However, we found that there were still some words
not specific to health in the lexicon, resulting in a high number of false positive tweets.
Thus, similar to Hicks et al. [53], Prus et al. [54] and Zhang and Ahmed [55], we removed
these words. Our final lexicon consists of 263 Arabic health-related terms created from
the sources above. It is available at http://​tiny.​cc/​Arabi​cHeal​thLex​icon.

The first data set

Using the health lexicon described above, 297,928 tweets were collected (by employing
the Twitter Premium API). These are tweets posted between the 15th July and the 31st
August 2019. 5000 tweets were randomly sampled from the data set. These tweets were
independently classified by two annotators as either “health-related” or “not health-
related.” By following Shoukry and Rafael’s [56] procedure, a third annotator was brought
in whenever there was a disagreement between the two annotators.

Cohen’s kappa statistic for interrater reliability [57] demonstrated excellent agreement
between the two annotators independent coding (k = 0.84). As a result, 1,415 of the 5000
tweets (28.3%) were labelled as health related. Both models were trained on 80% of this
data set and were tested on the remaining 20%. This data set is available at http://​tiny.​cc/​
Albal​awiDS1.

Data set imbalance typically needs management [58]. At the algorithms level for tradi-
tional machine learning, we tried different models, as explained in Sect. 4.3. For exam-
ple, one of the algorithms we used, SVM, is known to be less impacted by imbalanced
data [59].

Another solution to handle an imbalanced data set is to rework the data sets by re-
sampling. However, reworking the data sets in this fashion would increase complexity,
and is not guaranteed to increase the model’s performance [60, 61]. In addition, the data
set that we used is only slightly imbalanced, with a ratio of 1.2:3. Sun et al. [59] states
that an imbalanced data set is one having “many more instances of certain classes than
others” with Somasundaram et al. [62] going further to suggest that “a dataset is consid-
ered to be imbalanced if one of its classes plays a huge dominance over the rest of the
classes.” The imbalance in our data set is not of that scale and Brownlee [63] states that
slightly imbalanced data sets should not be a concern: that typically such a classification
problem should be treated as classification problem with a balanced dataset.

The second data set

The second data set used in this study consists of tweets posted between the 20th Febru-
ary and the 31st March 2020. First, we extracted 4,548,839 Arabic tweets using COVID-
19-related keywords and then applied our health lexicon to reduce the number of tweets.
Finally, we sampled and manually labelled 1,000 tweets from this data set, which is the
same number of tweets used for test from the first data set. In this sample, 188 tweets
are labelled as health related. We refer to this data set as unseen data in this paper as it
was not used in any way for training or evaluation of classifiers and it is collected from
a different time period compared to the first data set. This data set is available at http://​
tiny.​cc/​Albal​awiDS2.

http://tiny.cc/ArabicHealthLexicon
http://tiny.cc/AlbalawiDS1
http://tiny.cc/AlbalawiDS1
http://tiny.cc/AlbalawiDS2
http://tiny.cc/AlbalawiDS2

Page 10 of 29Albalawi et al. J Big Data (2021) 8:95

Please note we only share tweet IDs and the labels as the Twitter policy prevents the
content of the tweets to be redistributed, apart from tweets IDs, that can be used to
obtain the text of the tweets with the Twitter API [64].

Evaluation metrics

To evaluate the traditional algorithms, we used the F1 score. The F1 score is a recom-
mended metric for imbalanced data sets, while accuracy is the recommended metric for
a balanced data set [63]. To evaluate the final model in both experiments and make the
comparison between them, we used four metrics—recall, precision, F1 score, and accu-
racy. These are the most-used metrics to evaluate machine-learning model performance
[3, 65]. Yet, as per the first experiment and the recommendation of Brownlee [63], we
used F1 score as the decisive metric to select the best-of-breed model.

First experiment
The first experiment concerned traditional ML algorithms. It evaluated the importance
of different pre-processing techniques and their impact on classification.

Common pre‑processing techniques

By reviewing the literature, we were able to identify more than 26 pre-processings for
potential analysis: 14 variants of normalizing Arabic letters in addition to 12 techniques
have been applied in the pre-processing steps on Arabic-language social media data:

Tokenization

In the tokenization process, text is divided into units, and typically here, those units are
words. They are usually delimited by spaces or punctuation, and the results are referred
to as tokens [66].

Noise removal

Noise removal aims to eliminate unwanted characters from the text. In the literature, we
found the following techniques used:

Removal of non‑Arabic letters  Several of the aforementioned studies [21, 35, 67–69]
removed non-Arabic data from the text examples.

Removing numbers  Numbers do not always contribute additional information about the
text. We found three studies [70–72] that emphasized number removal from the sampled
texts.

Removing usernames, external links, and hashtags  Usernames, external links, and
hashtags are found in many tweets. Three of the cited studies [73–75] removed these
from the text.

Normalization

Normalization is a process that converts a list of words to a more uniform sequence [22].
In the literature, we found 5 techniques used for this:

Page 11 of 29Albalawi et al. J Big Data (2021) 8:95 	

Removal of punctuation  Punctuations marks typically do not add extra meaning to the
text, although punctuation sometimes has a useful meaning, especially when analysing
sentiment [76]. Eight of the previous studies [35, 67, 68, 77–81] removed the punctuation
from the examined text.

Removal of tashkeel (diacritics)  Diacritics are often used to represent short vowels,
gemination or nunation [82]. In Arabic there are 8 basic diacritics and if combined they
can form a total of 13 different diacritics [83]. Four of the previously described studies
[40, 75, 84, 85] removed diacritics.

Removing repeated characters  Because some users use repeated characters when they
want to emphasize something, researchers refer to this as the speech effect. Several of the
cited studies [67, 69, 72, 86, 87] removed these characters.

Removal of duplicate letters  The rationale for these removals is similar to that for
removing repeated characters. However, some argue that many Arabic words originally
contains repeated letters, so they only deleted characters if they occur more than twice.
An example of this is the work of Alqarafi et al. [80], who deleted duplicate letters if they
occurred more than twice.

Removing Kashida  Kashida, also known as tatweel, is a decorative element in Arabic
writing used to justify or stretch the text with a phonetic value [88]. We found two studies
[36, 45] that removed Kashida.

Arabic‑specific normalization

Arabic is considered a Semitic language, with script written from right to left. The Ara-
bic language has 28 letters. However, as some Arabic letters are phonetically similar,
users on social media frequently misspell words by using the wrong but phonetically
similar letters [24]. In addition to some phonetically similar letters, some letters can be
written in more than one form. This might be more apparent in the case of the alef vari-
ances “آإأ”, which are often written as a bare alef “ا”; possibly due to their similarity in
appearance [89, 90]. For example, the word “تنأ”, which means ’you’ in modern standard
Arabic, is commonly written as “تنا”, i.e. without the hamza “ء”, and some people might
even misspell it and write it as “تنإ”, with the hamza under the alef [91]. Thus, different
forms of alef are unified as a bare alef.

Hence, Arabic-specific normalization indicates that the normalization is specific to the
Arabic language as it directly deals with Arabic letters; therefore, it is not possible to
apply these Arabic-specific normalization techniques to other languages. In the litera-
ture, some researchers have normalized two letters, while others have normalized five
or six letters. Furthermore, the same letters are sometimes normalized in different ways.
For example, “ي” and ئ” have been replaced with “[92] ”ى, and “ءى” and “ئ” have been
replaced with “[78] ”ي. Table 2 summarizes the most-used techniques for normalizing
Arabic letters that were presented in the literature.

Please note that this study does not aim to be conclusive regarding all possible pre-
processing techniques. It focuses on pre-processing techniques commonly identified in
our literature review, and only those techniques. While this is not entirely systematic, it

Page 12 of 29Albalawi et al. J Big Data (2021) 8:95

does provide high coverage of work-to-date and it improves on current research prac-
tice where the basis for selecting pre-processing techniques is not presented explicitly
[27, 28, 76]. However, future work should consider this issue carefully, to incorporate
additional, relevant pre-processing techniques not yet considered, or only tangentially
considered, by the community.

Removing stop words

Many studies removed stop words. There are several methods of removal for Arabic stop
words. Examples of studies that removed stop words are [19, 35, 93].

Stemming

Stemming is the process used to get the stem from the word. To achieve this, three dif-
ferent techniques are used in the literature:

Light stemming  Light stemming is the process of removing the prefixes, infixes and clit-
ics from words. For light stemming, we used the Tashaphyne Python library [102]. This
method was used in three of the cited studies [19, 100, 103].

Root stemming  Root stemming, which is also called also heavy stemming, aims to
transform a word to its root [83]. It is usually faster to perform than lemmatization (see
Sect. 4.1.6.3). In Arabic, most word roots consist of three letters [104]. Thus, the results
of root-stemmed words will be mostly words made from three letters. For the root stem-
ming, we used the Tashaphyne Python library [102].

Lemmatization  Lemmatization has a similar aim as root stemming in that the aim is to
return a word to its origin; however, unlike root stemming, lemmatization uses a lexicon
or dictionary to map a word to its root. Thus, in the present study, to get the roots of Ara-
bic words, we mapped a word to its roots using the dictionary Qalsadi [105].

Table 2  Normalization techniques used by different researchers

Replace With Relevant studies

آ and ,إ ,أ Bare-alif ا [21, 24, 26, 71, 74, 92–97]

ى ي [23, 26, 78, 84, 93–98]

ئ and ي ى [92]

ئ and ءى ي [78]

ئ and ؤ ء [77, 94, 96, 99, 100]

ئ ى [85]

ة ه [20, 74, 85, 94–97, 99–101]

چ ج [100]

ڤ ف [100]

يء and ىء ئ [71]

ص س [24]

ض ظ [24]

ؤ و [71, 78, 99]

ـك ك [38, 77]

Page 13 of 29Albalawi et al. J Big Data (2021) 8:95 	

Feature extraction

The feature-extraction process transforms text into vectors [106]. Bags of words (BOW)
and TF-IDF are the two most-used methods for extracting features from the text. In
BOW, words frequencies are counted, and word position is ignored. TF-IDF is consid-
ered to be a statistical approach that is more sensitive for less-general words as TF meas-
ures term frequencies in the text, and IDF is a proxy for the importance of a term [107].

Classification algorithms used

Multinomial NB

NB is a probabilistic model, and in its basic version it is one the most-used algorithms in
text classification [108], including sentiment analysis [80, 109] and spam filtering [110].
In this work, we used the variation of NB knows as Multinominal NB (MNB) [111].

SVM

SVM, which is grounded in statistical learning theory, is one of the most popular ML
classification methods.

SVC and NuSVC are implementations of support vector machine classifiers. They
are quite similar and are both based on LIBSVM (Library for SVMs), which was
devised by Chang and Lin [112]. LinearSVC is based on the work of Fan et al. [113]
and is more flexible than SVC because it provides more options for penalties and
choices of loss functions [114]. In this study, we used LinearSVC.

Logistic regression

Logistic regression is a linear classifier that uses a hyperplane to separate two classes.
This algorithm was used in the present study to differentiate between health-related
and non-health-related tweets in accordance with the work of Dressel and Farid [115].

KNN

KNN, is fundamentally different from other algorithms discussed in this paper
because this algorithm memorizes the training data set rather than learning discrimi-
native functions, and it is thus classified as a memory-based approach [116].

Experiment setup and results

The setup of the first experiment consists of three phases. The baselines for each algorithm
were first developed. Each pre-processing technique was then individually tested on each of
the four algorithms, and the results were compared against the baseline for each algorithm.
It would be computationally expensive to apply all combinations of pre-processings for each
algorithm. Thus, the approach followed in this study is to evaluate each pre-processing tech-
nique with the four selected algorithms. We then apply the combination of pre-processing
techniques that best enhance the model performance in the second phase, using brute force
to combine the pre-processing techniques and find the best combination. Lastly, we choose
the best model with the best combination to evaluate on the second data set. Figure 2 illus-
trates these three phases and the flow of the first experiment.

Page 14 of 29Albalawi et al. J Big Data (2021) 8:95

Developing baselines

We trained four baselines models without applying any of 26 pre-processings. More-
over, we use Python Grid Search and Pipeline to tune hyperparameters as well as to
apply other pre-processing techniques that this paper does not assess, which are out-
lined in Table 3. Each algorithm has a number of hyperparameters that must be tuned,
so they are also “brute-forced”. The hyperparameters for each algorithm are outlined in
Appendix 1: Tables 9, 10, 11, and 12

Table 4 outlines the accuracy results achieved for the testing data set without applying any
pre-processing methods that this paper aimed to investigate. Hence, these models were used
as baselines to compare to the impact of pre-processing. It is important to note that these were
not used as a standard for further development; instead, we used the best achieved accuracy
as the baseline to judge whether other pre-processing methods improve the results or not.

Finally, we utilized four cross-validations during model development. We used Python
and the scikit-learn Version 0.22 library to conduct these experiments [117].

Using one pre‑processing method at a time

The accuracy of each algorithm without applying pre-processing techniques is used as
a baseline to compare with the performance of each of the pre-processing methods dis-
cussed in Sect. 3.1. We employed methods that are similar to those used by Symeonidis
et al. [76], who compared the impact of these pre-processing techniques on classifiers
trained for the sentimental analysis of English language. We applied one technique at a
time, applied to each of the four classification algorithms. The model that achieved the
most accurate results was then selected for further refinement, with all the pre-processing
combinations that were shown to enhance the accuracy of the model presented in Table 5.

Take, for example, the seven techniques that enhance the MNB classifier. All the possible
combinations of those seven were calculated by the following equation 2n, where n is the
number of pre-processing techniques. Therefore, we tried 128 variations as 27 = 128 . The
results of these experiment are found in Appendix 2.

Dataset Dataset Dataset

Number of features, n-
gram, feature selection

Number of features, n-
gram, feature selection

Number of features, n-
gram, feature selection

One pre-processing
method

Algorithm
hyperparameters

A subset of the seven pre-
processing methods that
enhance the model accuracy
from previous steps

Algorithm
hyperparameters

Best accuracy on
testing dataset

(baseline results)

Accuracy:
> Baseline: plus sign (+)
< Baseline: nega
ve sign (-)
= Baseline: no sign

Best accuracy on
testing dataset

Best CombinationOne Pre-Processing
Method at a TimeDeveloping Baselines

MNB hyperparameters

Br
ut

e
Fo

rc
e

Br
ut

e
Fo

rc
e

R
ep

ea
t 1

04
 ti

m
es

(4

 a
lg

or
ith

m
s

×
26

 p
re

-p
ro

ce
ss

in
g

to
 e

va
lu

at
e)

R
ep

ea
t f

ou
r t

im
es

 to
 d

et
er

m
in

e
th

e
ba

se
lin

e
ac

cu
ra

cy
 fo

r e
ac

h
al

go
rit

hm

Br
ut

e
Fo

rc
e

Fig. 2  Overview flowchart for the first experiment. (In the best combination, we only tried MNB as it was the
best algorithm from previous steps.)

Page 15 of 29Albalawi et al. J Big Data (2021) 8:95 	

As mentioned above, the results show that 7 pre-processing and normalization techniques
improved the MNB and logistic regression performance in terms of F1 score, 15 techniques
improved LinearSVC and 13 improved KNN. It is worth noting that Light Stemming, Lem-
matization and Remove repeated characters improved the F1 score in all the models we tried,
whereas Remove non-Arabic letters reduced the F1 score in all the models, as shown in Table 5.

Best combination

In the third phase, we used a brute-force algorithm to determine the best combinations
of the favourable pre-processing techniques discussed above. This phase focused on
MNB, as it achieved the best performance for all but one variant in the previous phases.

It is worth mentioning that, for the MNB model, not all the pre-processing tech-
niques listed in Table 5 as favourable were shown to be the most effective in combi-
nation. For example, out of the seven pre-processing techniques that improved the
MNB classifier, only four contributed to the best combination. In other words, after
experimenting with all the combinations, we found that MNB achieved the best F1
score with a combination of remove duplicate, remove Kashida, replacing ة with ه and
replacing ى with ي. This combination improved the F1 score from 86.0% to 87.9% on
the first data set. In terms of generalization, when we applied the best model on the
second data set, the accuracy of the algorithm sharply decreased to 60.54%, which
might be due to the fact there were words included that the algorithms had not seen
before. These results are shown in Table 6.

Second experiment
In the second experiment, we aimed to investigate four pre-trained word embedding
models for Arabic found in the literature using deep learning methods. These pre-
trained models were summarized in Table 1 above. We also aimed to compare the
best classifier model produced in this experiment to the best classifier model pro-
duced using tradition ML methods, as a result of the first experiment.

Table 3  Techniques used as brute-force algorithms in each attempt for all algorithms

Techniques used Parameters or range used

Number of features Ranges from 7,000 to 18,000

N-gram (1, 1), (1, 2), (1, 3), (1, 4)

Feature selection Count vectorizer and TF-IDF

Table 4  Baseline results for four algorithms used in this study

Algorithm N-gram Feature selection F1 score

LinearSVC 1 Term frequency 84 .0

Logistic regression 1, 2 TF-IDF 84.0

Multinomial NB 1, 2 TF-IDF 86.0

KNN 1, 2 TF-IDF 77.6

Page 16 of 29Albalawi et al. J Big Data (2021) 8:95

In the second experiment, we trained a classifier using a deep-learning approach.
As this work sought to generalize a model for new data, we use pre-trained words
as the input layer for the model. According to the literature and, as described in an
earlier section, there are four pre-trained word embedding models, all of which are
found in Table 1.

Using trained word-embedding models provides an opportunity for the classifier
to correctly classify words that were not seen in the training data set [118], which
solves the problem in traditional text classification that occurs when the classifier
fails upon encountering an unseen word [119]. For pre-processing text in the second
experiment, we employed the same steps provided by the authors of pre-trained word
embeddings models. According to Li et al. [37], the ideal method to achieve the most
improvement when using pre-trained word embedding is to follow the same steps
that were used for the corpus when creating the embeddings vectors.

Table 5  Accuracy (in percentages) of each of the pre-processing techniques used for the extracted
tweets

Plus sign ( +) indicate the technique improved the F1−score of the baseline model; negative sign(−) indicate the technique
decreased the F1-score; and cells without sign indicate the technique had no impact on the F1-score of the algorithm

Techniques used MNB Logistic
regression

LinearSVC KNN

Baseline models 86.0 84.0 84.0 77.6

1 Remove non-Arabic letters 85.4 − 83.6 − 82.8 − 76.7 −
2 Remove numbers 85.5 − 82.9 − 84.3 77.4 −
3 Remove usernames, external links,

and hashtags
85.2 − 83.2 − 83.4 − 78.1 + 

4 Remove punctuation 86.0 84.0 84.0 77.6

5 Remove diacritics 86.0 83.6 83.8 − 76.6 −
6 Remove repeated characters 86.4 +  84.3 +  84.9 +  79.2 + 

7 Remove duplicate letters 86.0 83.2 − 84.1 +  78.7 + 

8 Remove Kashida 86.3 +  83.8 − 84.6 +  78.0 + 

9 Replace إ,أ, and آ with ا 85.8 − 83.6 − 84.1 +  77.4 −
10 Replace ى with ي 86.7 +  84.0 84.6 +  77.9 + 

11 Replace ي and ئ with ى 86.8 +  84.0 84.2 +  78.0 + 

12 Replace ءى and ئ with ي 86.0 83.0 − 84.3 +  77.8 + 

13 Replace ؤ and ئ with ء 85.8 − 83.8 − 83.9 77.7 + 

14 Replace ئ with ى 86.0 84.0 84.3 +  77.6

15 Replace ة with ه 86.7 +  83.8 − 84.8 +  77.1 −
16 Replace چ with ج 86.0 84.0 84.0 77.6

17 Replace ڤ with ف 86.0 82.8 +  84.0 77.6

18 Replace ىء and يء with ئ 86.0 84.0 84.0 77.6

19 Replace ص with س 85.7 − 83.7 − 83.6 − 78.0 + 

20 Replace ض with ظ 86.0 83.6 − 84.0 77.9 + 

21 Replace ؤ with و 85.8 − 82.8 − 84.2 +  77.6

22 Replace ـك with ك 86.0 84.0 84.2 +  77.6

23 Remove stop words 85.2 − 84.4 +  83.4 − 76.6 −
24 Light Stemming 86.6 +  85.3 +  86.2 +  79.1 + 

25 Root stemming 84.4 − 85.2 +  85.1 +  77.8 + 

26 Lemmatization 86.7 +  86.2 +  86.5 +  80.1 + 

Page 17 of 29Albalawi et al. J Big Data (2021) 8:95 	

Models

We experimented with BLSTM and CNN architectures for the classification task in
order to compare the different pre-trained word-embedding techniques.

BLSTM

Assuming that the input to a neural network is a sequence of data, LSTM is a type of
recurrent neural network that is designed to learn and take advantage of dependen-
cies between parts of the input sequence. Text is a sequence of words, and the LSTM
architecture has been found to give good results in text classification tasks, specifi-
cally in its BLSTM variation, which learns dependencies on both past and future ele-
ments in the input sequence [120]. In this work, we experimented with an BLSTM
architecture similar to the one proposed by Soufan [121]. The BLSTM model begins
with an input and embedding layers to which a dropout layer is added, and this is fol-
lowed by the BLSTM layer with an added dropout layer. To reduce the dimension of
output from this model, a global max-pooling layer is used, as shown in Fig. 3

CNN

While CNN was originally proposed for image analysis, this deep learning architec-
ture was recently proven to perform effectively on many text classification problems;
in fact, it sometimes performs better than other approaches, including BLSTM [33,
122]. In this work, we proposed an architecture that is similar to that of Mohaou-
chane et al. [33], Heikal et al. [36] and Fouad et al. [42]. The proposed model begins
with input and embedding layers followed by three CNN layers, each of which con-
tains input and embeddings from the previous layer. Max-pooling layers are used
after each of the CNN layers to reduce the output dimensions, and all output from
these layers is concatenated and flattened before including a fully connected layer.
Figure 4 illustrates the architecture of the CNN model used in this study.

Hyperparameter tuning

There are different hyperparameters that must be tuned to optimize the perfor-
mance of the model. Several methods are suggested in the literature, including ran-
dom search, grid search, and the Bayes method [123, 124]. According to Hutter et al.
[123] and Feurer and Hutter [124], the Bayes method outperforms other tuning
methods. We therefore used the implantation of this algorithm in the Keras Tuner
Python library [125]. We limited each experiment to 200 rounds, and the model was

Table 6  Results for MNB classifier with the best combinations

Model Baseline Classifier Optimized classifier

Metrics Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy

First Dataset 87.5 84.6 86.0 91.6 89.1 86.6 87.9 92.7

Second Dataset 61.5 55.0 58.1 85.1 66.5 55.6 60.5 86.4

Page 18 of 29Albalawi et al. J Big Data (2021) 8:95

terminated if the rounds did not achieve optimal results, with only the best results
then used. Appendix 3: Table 13 outlines the best hyperparameters for the BLSTM
model, and in Appendix 3: Table 14 outlines the best hyperparameters for the CNN
model.

Results
Here we present the results of seven pretrained word embeddings that were used as
input layers for two architectures BLSTM and CNN, as shown in Table 1.

First model: BLSTM

It can be observed from Table 7 that, for the first data set, most of the pre-trained word-
embedding models caused the BLSTM to perform in a similar manner. The highest accu-
racy and F1 score achieved by BLSTM, with Mazajak CBOW, were 93.8% and 89.7%,
respectively. Mazajak CBOW also achieved the second-best recall and precision at 90.9%
and 88.52% respectively. The highest precision was achieved by ArWordVec CBOW at
91.87%, while the highest recall was achieved by AraVec Skip-Gram at 88.85%. It is also
noted that the performance of AraVec CBOW was the worst in terms of precision, F1
score and accuracy with results at 87.09%, 86.66% and 91.9%, respectively.

Similarly, on the second data set, it is shown in Table 8 that Mazajak CBOW had the
best precision and accuracy at 88.16% and 90.8%, respectively. Mazajak Skip-Gram
performed similarly to Mazajak CBOW on the second data set and achieved the best
recall at 74.6% and the best F1 score at 75.2%. Mazajak Skip-Gram achieved the sec-
ond-best accuracy at 90.7% as compared to 90.8% achieved by Mazajak CBOW, a dif-
ference of only 0.1%. Overall, it is noted from Table 7 that the best pretrained word
embedding model using BLSTM architectures for both data sets is Mazajak Skip-
Gram as it is had the second best F1 score on the first data set and the best F1 score
on the second data set. As explained in Sect. 2.2, the F1 score was used as a judgment
metric as F1 is more optimal for imbalanced data set [63].

Second model: CNN

In contrast, as shown in Table 8, for the first data set, AraVec Skip-Gram had the best
CNN performance with an accuracy of 92.7%, and F1 score of 88.01% and recall at
88.87%, as shown in Table 8. The best precision was achieved by ArWordVec CBOW
at 89.67%. The second-best model performance was Mazajak Skip-Gram for recall, F1
score and accuracy at 85.25%, 87.1% and 92.3%, respectively.

For the second data set, the best performance model was again AraVec Skip-Gram,
with 71.96% for recall, 74.32% for F1 score and 90.6% for the accuracy, while fastText
achieved the best precision at 84.12% but had the worst recall and F1 score at 56.08% and
67.3%, respectively.

When comparing pre-trained embedding models performance using the two archi-
tectures, the AraVec performance with either Skip-Gram or CBOW did not change
significantly between the two architectures, while the other pre-trained word embed-
dings Mazajak and ArWordVec both decreased. This caused AraVec Skip-Gram to
perform better using CNN architecture. Thus, to choose the overall best model for the

Page 19 of 29Albalawi et al. J Big Data (2021) 8:95 	

CNN architecture, it was found that CNN with AraVec Skip-Gram performed the best
in terms of the F1 score on the first and the second data sets, as shown in Table 8. In
addition, most of pre-trained word-embedding models performed better with BLSTM
architecture; therefore, BLSTM generally appears to perform better when detecting
Arabic-language health-related tweets in this study. This is particularly true with its best
embedding (Mazajak Skip-Gram) for both first and second data sets.

Discussion
For the first experiment, which was concerned with pre-processing techniques, the best
algorithm performance was achieved with 4 pre-processings out of a possible 26. Some
of the popular techniques presented in Table 5 used by other researchers, such as nor-
malizing alef and different types of stemming and removing numbers were not pre-pro-
cessing methods that improved the accuracy of our final model in the first experiment.

In the literature, there was a focus on studying the impact of stemming on algorithm
performance [24, 26, 28, 84]. Most studies found stemming increased the accuracy of the
baseline model [24, 26, 84], and this study is in agreement with theses previous studies.
Having said that, the best combination of the pre-processing techniques for our final
model outperformed any combination of pre-processing that included any type of stem-
ming, as shown in Appendix 2. It also important to note that, out the four pre-processing
techniques that were used in the final model, only one can be considered as not being an
Arabic specific pre-processing technique, which is the removal of the repeated character,
Normalizing the letters ي andه are Arabic specific. Likewise, the fourth pre-processing
technique removed Kashida, which is widely used by Arabic writers. This might suggest
that in text classification for the Arabic language, Arabic specific normalization tech-
niques might play a bigger role in improving the model performance compared to the
other general pre-processing techniques. This possibility also highlights the importance
of this study and the need for more studies to systemically assess the impact of normal-
izing Arabic specific techniques on the model performance of more data sets.

Nevertheless, we found that rarely used pre-processing techniques performed well in
improving the classifier model. For example, lemmatization was only used in one study
[46] in the literature reviewed in this paper. Yet, as it can be seen in Table 5, lemmatiza-
tion performed well with all four classifier models. Notwithstanding, it was not one of
the four techniques that improved the accuracy of the final best MNB model in the first
experiment. It is also worth noting that whereas the MNB classifier achieved an 87.7 F1
score on the first data set, its performance decreased on the second data set.

In the second experiment, we noted two observations. Firstly, there was no big dif-
ference between Mazajak Skip-Gram and Mazajak CBOW in their performance on the
first data set using BLSTM. This also applied for Mazajak Skip-Gram and CBOW with

Input Layer

ragged = false
sparse = false

Embedding

batch_input_shape =
null, 240
input_dim =
output_dim = 300

Dropout

rate =

Bidirectional

LSTM

implementation =

recurrent_activation

= sigmoid

Dropout

rate =
GlobalMaxPooling1D

Dense

activation =

sigmoid

input dense
format =“channels_last”

Fig. 3  BLSTM architecture

Page 20 of 29Albalawi et al. J Big Data (2021) 8:95

Fig. 4  CNN architecture

Table 7  Results of BLSTM using different pre-trained word embeddings on the first and second
data sets

Bold numbers indicate the best value while underlined numbers represent the second-best value

First data set Second data set

Precision Recall F1 score Accuracy Precision Recall F1 score Accuracy

AraVec Skip-Gram 89.14 88.85 89 93.3 82.19 63.49 71.64 90.5

AraVec CBOW 87.09 86.23 86.66 91.9 79.35 65.08 71.51 90.27

Mazajak Skip-Gram 90.27 88.2 89.22 93.5 75.81 74.6 75.2 90.7

Mazajak CBOW 90.9 88.52 89.7 93.8 88.19 59.26 70.89 90.8
fastText 89 87.54 88.26 92.9 83.2 57.67 68.13 89.8

ArWordVec Skip-Gram 89.6 87.54 88.56 93.1 71.76 64.55 67.97 88.5

ArWordVec CBOW 91.87 85.25 88.44 93.2 76.92 68.78 72.63 90.2

Page 21 of 29Albalawi et al. J Big Data (2021) 8:95 	

BLSTM on the second data set. Furthermore, this also applied for Mazajak and ArWord-
Vec using the CNN architecture. In contrast, there was a noted difference when we com-
pared the performance of AraVec CBOW to Skip-Gram: AraVec Skip-Gram performed
better than AraVec CBOW in both architectures. The second observation is the AraVec
performance slightly decreased between the two architectures, whereas the Mazajak,
ArWordVec and fasText had a more notable decrease. This caused AraVec to perform
better using CNN architecture than other pretrained word embedding models on the
first data set. Furthermore, on the second data set using the CNN architecture, AraVec
Skip-Gram performance had a negligible increase compared to BLSTM architecture.

When comparing deep-learning methods to traditional algorithms, the results for the first
data set indicated that the BLSTM architecture with all pretrained model embeddings per-
formed better than the MNB classifier except for AraVec CBOW, where the MNB classifier
performed better. When models using the CNN architecture, were compared to the MNB
classifier, it is found that the MNB classifier performed better than most CNN classifiers,
except for the CNN classifier that used AraVec Skip-Gram as an input layer, as is reported
in Tables 6 and 8. The CNN classifier that used AraVec as an input layer performed identi-
cally in terms of accuracy at 92.7% and only marginally different for F1 score at 88.01% com-
pared to 87.9%, where AraVec Skip-Gram performed better than the MNB classifier.

In the second data set, however, the CNN and BLSTM models both performed bet-
ter with all the pre-trained word-embedding models than did the MNB classifier. The
results suggest that the MNB classifier for the first data set is comparative to some deep
learning methods, but all the deep learning methods outperformed the MNB classifier
on the second data set, this data set representing more generalized, unseen data. This
might contribute to answering the question in the literature that Guellil et al. posed [39]:
“Are deep-learning approaches really more efficient than traditional approaches?”. The
answer, as determined in this experiment seems to be “yes” with regard to generality.

Table 8  Results of CNN model using different pre-trained word embeddings in the first and second
data sets. Bold numbers indicate the best value while underlined numbers represent the second-
best value

Bold numbers indicate the best value while underlined numbers represent the second-best value

First data set Second data set

Precision Recall F1 score Accuracy Precision Recall F1 score Accuracy

AraVec Skip-Gram 88.16 87.87 88.01 92.7 76.84 71.96 74.32 90.6
AraVec CBOW 87.46 84.59 86 91.6 78.31 63.49 70.18 89.8

Mazajak Skip-Gram 89.04 85.25 87.1 92.3 78.26 66.67 72 90.2

Mazajak CBOW 89.44 83.28 86.25 91.9 81.05 65.61 72.51 90.6

fastText 87.46 84.59 86 91.6 84.12 56.08 67.3 89.7

ArWordVec Skip-Gram 85.76 82.95 84.33 90.6 70.56 67.2 68.83 88.5

ArWordVec CBOW 89.67 79.67 84.38 91 78.57 64.02 70.55 89.9

Page 22 of 29Albalawi et al. J Big Data (2021) 8:95

Limitations and strengths
Previous researchers concerned with evaluating pre-processing tasks considered only
different types of stemming and stop words removal [27, 28]. Even in English, a recent
study only compared 16 pre-processing techniques [76], here we have reviewed the lit-
erature and identified 14 variants of normalizing Arabic letters in addition to 12 pre-
processing techniques that have been used for Arabic classification tasks. Future study
should focus on investigating the impact of pre-processing on more than one data set. It
should also focus on the impact of Arabic-specific normalization.

It should be noted that other newer deep learning techniques, such as autoencod-
ers to learn features, or transformer-based language model such as BERT (Bidirec-
tional Encoder Representations from Transformers [126] and, for Arabic, AraBERT
[127]) may well outperform the models used here. However, the focus of this study is
to use common deep learning architectures with pre-trained word embeddings and
compare them with common traditional machine learning models frequently used in
the related literature.

Another limitation is in Phase 3 in the first experiment (Fig. 2). Although we used
brute force in combing the pre-processing techniques and carried out 128 experiments
for this task, we did not consider the order in which the pre-processing techniques
were applied, which might have had an impact on the results. It is also possible that
different combinations applied to different traditional approaches may have yielded
more significant gains and thus led to other approaches overtaking MNB.

Conclusion
The goal of this paper was to evaluate the impact of pre-processing techniques on tra-
ditional algorithms, and we discovered that most of the techniques did not improve
the accuracy of the baseline model. In addition, three out of four pre-processing tech-
niques used in the final model for the first experiment are language specific. For the
deep learning methods, we found that the BLSTM architecture performed better than
the CNN architecture and the MNB classifier. BLSTM with Mazajak CBOW pre-
trained word embedding performed the best on the first data set, while BLSTM with
Mazajak Skip-Gram performed the best with unseen data. Overall, it was found that
BLSTM with Mazajak Skip-Gram pre-trained word embedding was the best model
with an F1 score of 89.22% for the first data set and 75.2% for the second data set.

Page 23 of 29Albalawi et al. J Big Data (2021) 8:95 	

Appendices
Appendix 1

MNB

See Table 9.

SVM

See Table 10.

LG

See Table 11.

KNN

See Table 12.

Table 9  Hyperparameters optimized for NB

Hyperparameters ’tfidf__norm’ ’clf__alpha’

Range (’l1’, ’l2’), [1, 1e-1, 1e-2]

Table 10  Hyperparameters optimized for SVM

Hyperparameters ’clf__C’ ’clf__loss’

Range [.05, .12, .25, .5, 1, 2, 4] [’squared_hinge’,’hinge’]

Table 11  Hyperparameters optimized for LG

Hyperparameters ’clf__C’ ’clf__loss’

Range [0.001,0.01,0.1,1,10,100] [’l1’,’l2’]

Table 12  Hyperparameters optimized for KNN

Hyperparameters clf__algorithm clf__n_neighbors clf__leaf_size

Range [’auto’, ’kd_tree’] [2, 4, 6, 8, 9, 10, 11, 12] [2, 9, 16, 20, 26, 31, 50, 70]

Page 24 of 29Albalawi et al. J Big Data (2021) 8:95

Appendix 2

File 1: results of the evaluation of the best functions.

Appendix 3

See Tables 13 and 14.

Abbreviations
SVM: Support vector machine; NB: Naïve Bayes; KNN: K-Nearest Neighbors; TF-IDF: Term Frequency–Inverse Document
Frequency; CNN: Convolutional Neural Network; BTO: Binary Term Occurrence; LSTM: Long Short-Term Memory; CBOW:
Continuous Bag-of-Words; ML: Machine Learning; BLSTM: Bidirectional Long Short-Term Memory; MNB: Multinomial NB.

Acknowledgements
We would like to thank Dr Yousef Albalawi and Mr Hamdan Albalawi for their valuable advice.

Table 13  Optimal hyperparameters of the CNN

CNN_
Mazajak sg

CNN_
Mazajak
cbow

CNN_
fasttext

CNN_
arwordvec
sg

CNN_
arwordvec
cbow

Cnn arvec
sg

Cnn arvec
cbow

cov_filter 32 32 1 1 32 1 32

cov_filter1 32 32 1 32 32 32 32

cov_filter2 1 32 1 32 32 1 32

cov_kernel 32 32 32 32 32 1 1

cov_kernel1 1 1 32 1 32 32 32

cov_kernel2 1 1 1 1 32 1 1

pool_filter 32 32 1 32 1 1 1

cov1_activa-
tion

relu sigmoid relu relu relu sigmoid relu

cov1_activa-
tion1

relu relu relu relu sigmoid relu relu

cov1_activa-
tion2

sigmoid relu relu relu relu relu relu

dropout_1 0.0 0.0 0.6 0.600 0.600 0.300 0.000

dense_units 380 20 20 20.000 380.000 20.000 380.000

Dense acti-
vatino

relu relu sigmoid relu relu sigmoid sigmoid

dropout_2’:
0.0

0.0 0.000 0.5 0.0 0.0 0.5 0.0

learning_rate 0.01 0.001 0.001 0.001 0.001 0.001 0.001

Batch size 40 40 40 40 40 40 300

Table 14  Optimal hyperparameters of the BLSTM

Mazajak sg Mazajak
cbow

Fasttext ArWordVec
sg

ArWordVec
cbow

arvec sg AraVec cbow

Neurons 280 360 20 500 500 500 500

Drop rate 0.2 0 0.5 0.3 0.2 0.5 0.2

Drop rate 0.2 0 0 0.2 0 0 0

Learning rate 0.001 0.001 0.01 0.001 0.001 0.01 0.01

Batch size 120 40 40 300 300 40 300

Page 25 of 29Albalawi et al. J Big Data (2021) 8:95 	

Authors’ contributions
All authors have equal contribution. All authors read and approved the final manuscript.

Funding
This work was supported, in part, by Taibah University, Al-Ula, Saudi Arabia, and by a Grant from the Science Foundation
Ireland (Grant Number: 13/RC/2094).

Availability of data and materials
The data sets are available to public and can be found in: https://​tinyu​rl.​com/​79uyk​b5z

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Computer Science and Information Systems, University of Limerick, Limerick, Ireland. 2 Department
of Computer and Information Sciences, College of Arts and Science, University of Taibah, Al‑Ula, Saudi Arabia. 3 The Irish
Software Research Centre, Lero, University of Limerick, Limerick, Ireland.

Received: 13 March 2021 Accepted: 23 June 2021

References
	 1.	 Kanan T, Sadaqa O, Aldajeh A, Alshwabka H, Dolime WA, AlZu’bi S et al., editors. A review of natural language

processing and machine learning tools used to analyze arabic social media. In: 2019 IEEE Jordan International
Joint Conference on Electrical Engineering and Information Technology (JEEIT); 2019 9–11 April 2019.

	 2.	 Al-Ayyoub M, Nuseir A, Alsmearat K, Jararweh Y, Gupta B. Deep learning for arabic nlp: a survey. J Comput Sci.
2018;26:522–31. https://​doi.​org/​10.​1016/j.​jocs.​2017.​11.​011.

	 3.	 Abo MEM, Raj RG, Qazi A. A review on arabic sentiment analysis: state-of-the-art, taxonomy and open research
challenges. IEEE Access. 2019;7:162008–24. https://​doi.​org/​10.​1109/​ACCESS.​2019.​29515​30.

	 4.	 Alrifai K, Rebdawi G, Ghneim N. Arabic tweeps gender and dialect prediction: notebook for pan at clef 2017.
CEUR Workshop Proceedings2017. p. 1–9.

	 5.	 HaCohen-Kerner Y, Yigal Y, Shayovitz E, Miller D, Breckon T, editors. Author profiling: Gender prediction from
tweets and images: notebook for pan at clef 2018. CEUR Workshop Proceedings; 2018.

	 6.	 Alrifai K, Rebdawi G, Ghneim N. Comparison of machine learning approaches in arabic tweeps gender predic-
tion. Int J Sci Technol Res. 2019;8(11):2892–5.

	 7.	 Alkhair M, Meftouh K, Smaïli K, Othman N. An arabic corpus of fake news: collection, analysis and classification.
Communications in Computer and Information Science 2019. p. 292–302.

	 8.	 Kaliyar RK, Goswami A, Narang P, Sinha S. Fndnet—a deep convolutional neural network for fake news detec-
tion. Cogn Syst Res. 2020;61:32–44. https://​doi.​org/​10.​1016/j.​cogsys.​2019.​12.​005.

	 9.	 El Tantawi M, Bakhurji E, Al-Ansari A, AlSubaie A, Al Subaie HA, AlAli A. Indicators of adolescents’ preference to
receive oral health information using social media. Acta Odontol Scand. 2019;77(3):213–8. https://​doi.​org/​10.​
1080/​00016​357.​2018.​15368​03.

	 10.	 Hamasha AA, Alghofaili N, Obaid A, Alhamdan M, Alotaibi A, Aleissa M, et al. Social media utilization among dental
practitioner in Riyadh, Saudi Arabia. Open Dentistry J. 2019. https://​doi.​org/​10.​2174/​18742​10601​91301​0101.

	 11.	 Albalawi Y, Nikolov NS, Buckley J. Trustworthy health-related tweets on social media in Saudi Arabia: tweet meta-
data analysis. J Med Internet Res. 2019;21(10): e14731. https://​doi.​org/​10.​2196/​14731.

	 12.	 Alnemer KA, Alhuzaim WM, Alnemer AA, Alharbi BB, Bawazir AS, Barayyan OR, et al. Are health-related tweets
evidence based? Review and analysis of health-related tweets on twitter. J Med Internet Res. 2015;17(10): e246.
https://​doi.​org/​10.​2196/​jmir.​4898.

	 13.	 Park H, Reber BH, Chon M-G. Tweeting as health communication: Health organizations’ use of twitter for health
promotion and public engagement. J Health Commun. 2016;21(2):188–98. https://​doi.​org/​10.​1080/​10810​730.​
2015.​10584​35.

	 14.	 Park HW, Park S, Chong M. Conversations and medical news frames on twitter: infodemiological study on covid-19
in south korea. J Med Internet Res. 2020;22(5): e18897. https://​doi.​org/​10.​2196/​18897.

	 15.	 Lazard AJ, Scheinfeld E, Bernhardt JM, Wilcox GB, Suran M. Detecting themes of public concern: a text min-
ing analysis of the centers for disease control and prevention’s ebola live twitter chat. Am J Infect Control.
2015;43(10):1109–11. https://​doi.​org/​10.​1016/j.​ajic.​2015.​05.​025.

	 16.	 Paul MJ, Dredze M. Discovering health topics in social media using topic models. PLoS ONE. 2014;9(8): e103408.
https://​doi.​org/​10.​1371/​journ​al.​pone.​01034​08.

https://tinyurl.com/79uykb5z
https://doi.org/10.1016/j.jocs.2017.11.011
https://doi.org/10.1109/ACCESS.2019.2951530
https://doi.org/10.1016/j.cogsys.2019.12.005
https://doi.org/10.1080/00016357.2018.1536803
https://doi.org/10.1080/00016357.2018.1536803
https://doi.org/10.2174/1874210601913010101
https://doi.org/10.2196/14731
https://doi.org/10.2196/jmir.4898
https://doi.org/10.1080/10810730.2015.1058435
https://doi.org/10.1080/10810730.2015.1058435
https://doi.org/10.2196/18897
https://doi.org/10.1016/j.ajic.2015.05.025
https://doi.org/10.1371/journal.pone.0103408

Page 26 of 29Albalawi et al. J Big Data (2021) 8:95

	 17.	 Tuarob S, Tucker CS, Salathe M, Ram N. Discovering health-related knowledge in social media using ensembles of
heterogeneous features. In: Proceedings of the 22nd ACM international conference on Information & Knowledge
Management; San Francisco, California, USA2013. p. 1685–90.

	 18.	 Maw M, Balakrishnan V, Rana O, Ravana SD. Trends and patterns of text classification techniques: a systematic
mapping study. Malays J Comput Sci. 2020;33(2):102–17. https://​doi.​org/​10.​22452/​mjcs.​vol33​no2.2.

	 19.	 Al-Rubaiee H, Qiu RX, Li DY. Identifying mubasher software products through sentiment analysis of Arabic tweets.
In: 2016 international conference on industrial informatics and computer systems; 2016.

	 20.	 Alayba AM, Palade V, England M, Iqbal R. Arabic language sentiment analysis on health services. In: 1st interna-
tional workshop on arabic script analysis and recognition; 2017. p. 114–8.

	 21.	 Alabbas W, al-Khateeb HM, Mansour A, Epiphaniou G, Frommholz I. Classification of colloquial Arabic tweets in
real-time to detect high-risk floods. In: International conference on social media, wearable and web analytics;
2017. p. 1–8.

	 22.	 Faris H, Aljarah I, Habib M, Castillo P. Hate speech detection using word embedding and deep learning in the
Arabic language context. In: Proceedings of the 9th international conference on pattern recognition applications
and methods; 2020. p. 453–60.

	 23.	 Albadi N, Kurdi M, Mishra S, editors. Are they our brothers? Analysis and detection of religious hate speech in the
Arabic twittersphere. In: 2018 IEEE/ACM international conference on advances in social networks analysis and
mining (ASONAM); 2018 28–31 Aug. 2018.

	 24.	 Alakrot A, Murray L, Nikolov NS. Towards accurate detection of offensive language in online communication in
arabic. Procedia Comput Sci. 2018;42:315–20.

	 25.	 Shannag FB, Hammo BH. Lessons learned from event detection from Arabic tweets: the case of Jordan flash floods
near dead sea. In: 2019 IEEE Jordan international joint conference on electrical engineering and information
technology (JEEIT); 9–11 April 2019; 2019. p. 806–11.

	 26.	 Boudad N, Faizi R, Thami ROH, Chiheb R. Sentiment classification of Arabic tweets: a supervised approach. J Mob
Multimedia. 2017;13(3–4):233–43.

	 27.	 Duwairi R, El-Orfali M. A study of the effects of preprocessing strategies on sentiment analysis for Arabic text. J Inf
Sci. 2014;40(4):501–13. https://​doi.​org/​10.​1177/​01655​51514​534143.

	 28.	 Oussous A, Lahcen AA, Belfkih S. Impact of text pre-processing and ensemble learning on arabic sentiment analy-
sis. In: Proceedings of the 2nd international conference on networking, information systems and security. Rabat,
Morocco: Association for Computing Machinery; 2019. p. 1–9.

	 29.	 Abdulla NA, Ahmed NA, Shehab MA, Al-Ayyoub M, Al-Kabi MN, Al-rifai S. Towards improving the lexicon-based
approach for Arabic sentiment analysis. Int J Inf Technol Web Eng. 2014;9(3):55–71. https://​doi.​org/​10.​4018/​ijitwe.​
20140​70104.

	 30.	 Oussous A, Benjelloun F-Z, Lahcen AA, Belfkih S. Asa: A framework for Arabic sentiment analysis. J Inf Sci.
2019;46(4):544–59. https://​doi.​org/​10.​1177/​01655​51519​849516.

	 31.	 Mikolov T, Chen K, Corrado G, Dean J, editors. Efficient estimation of word representations in vector space. In: ICLR:
Proceeding of the international conference on learning representations workshop; 2013; Arizona, USA.

	 32.	 Sultana J, Usha Rani M, Farquad MAH. An extensive survey on some deep-learning applications. In: Venkata
Krishna P, Obaidat MS, editors. Emerging research in data engineering systems and computer communications.
Singapore: Springer Singapore; 2020. p. 511–9.

	 33.	 Mohaouchane H, Mourhir A, Nikolov NS, editors. Detecting offensive language on Arabic social media using deep
learning. In: 2019 sixth international conference on social networks analysis, management and security (SNAMS);
2019 22–25 Oct. 2019.

	 34.	 Soliman AB, Eissa K, El-Beltagy SR. Aravec: a set of arabic word embedding models for use in arabic nlp. Procedia
Comput Sci. 2017;117:256–65. https://​doi.​org/​10.​1016/j.​procs.​2017.​10.​117.

	 35.	 Abdullah M, AlMasawa M, Makki I, Alsolmi M, Mahrous S. Emotions extraction from Arabic tweets. Int J Comput
Appl. 2018. https://​doi.​org/​10.​1080/​12062​12X.​2018.​14823​95.

	 36.	 Heikal M, Torki M, El-Makky N. Sentiment analysis of Arabic tweets using deep learning. Procedia Comput Sci.
2018;142:114–22.

	 37.	 Li H, Caragea D, Li X, Caragea C. Comparison of word embeddings and sentence encodings as generalized
representations for crisis tweet classification tasks. In: Innovating for resilience—1st international conference on
information systems for crisis response and management Asia Pacific; Auckland, New Zealand: Massey Univer-
isty2018. p. 480–93.

	 38.	 Abuzayed A, Elsayed T. Quick and simple approach for detecting hate speech in Arabic tweets. In: Proceedings of
the 4th workshop on open-source Arabic Corpora and processing tools, with a shared task on offensive language
detection; may; Marseille, France: European Language Resource Association; 2020. p. 109–14.

	 39.	 Guellil I, Saâdane H, Azouaou F, Gueni B, Nouvel D. Arabic natural language processing: an overview. J King Saud
Univ Comput Inform Sci. 2019. https://​doi.​org/​10.​1016/j.​jksuci.​2019.​02.​006.

	 40.	 Alwehaibi A, Roy K, editors. Comparison of pre-trained word vectors for arabic text classification using deep learn-
ing approach. In: 2018 17th IEEE international conference on machine learning and applications (ICMLA); 2018
17–20 Dec. 2018.

	 41.	 Altowayan AA, Tao L. Word embeddings for arabic sentiment analysis. In: Proceedings—2016 IEEE international
conference on big data, big data 2016; 2016. p. 3820–5.

	 42.	 Fouad MM, Mahany A, Aljohani N, Abbasi RA, Saeed-Ul H. Arwordvec: efficient word embedding models for Arabic
tweets. Soft Comput. 2020;24(11):8061–8. https://​doi.​org/​10.​1007/​s00500-​019-​04153-6.

	 43.	 Oueslati O, Cambria E, HajHmida MB, Ounelli H. A review of sentiment analysis research in Arabic language. Futur
Gener Comput Syst. 2020;112:408–30. https://​doi.​org/​10.​1016/j.​future.​2020.​05.​034.

	 44.	 Abdullah M, Hadzikadicy M, Shaikhz S. Sedat: Sentiment and emotion detection in Arabic text using cnn-lstm
deep learning. In: 2018 17th IEEE international conference on machine learning and applications (ICMLA); 17–20
Dec. 2018; 2018. p. 835–40.

https://doi.org/10.22452/mjcs.vol33no2.2
https://doi.org/10.1177/0165551514534143
https://doi.org/10.4018/ijitwe.2014070104
https://doi.org/10.4018/ijitwe.2014070104
https://doi.org/10.1177/0165551519849516
https://doi.org/10.1016/j.procs.2017.10.117
https://doi.org/10.1080/1206212X.2018.1482395
https://doi.org/10.1016/j.jksuci.2019.02.006
https://doi.org/10.1007/s00500-019-04153-6
https://doi.org/10.1016/j.future.2020.05.034

Page 27 of 29Albalawi et al. J Big Data (2021) 8:95 	

	 45.	 Alali M, Sharef NM, Murad MAA, Hamdan H, Husin NA. Narrow convolutional neural network for Arabic dialects
polarity classification. IEEE Access. 2019;7:96272–83. https://​doi.​org/​10.​1109/​ACCESS.​2019.​29292​08.

	 46.	 Ghallab A, Mohsen A, Ali Y. Arabic sentiment analysis: a systematic literature review. Appl Comput Intell Soft Com-
put. 2020. https://​doi.​org/​10.​1155/​2020/​74031​28.

	 47.	 Lulu L, Elnagar A. Automatic arabic dialect classification using deep learning models. In: Shaalan K, ElBeltagy SR,
editors. Arabic computational linguistics. Procedia computer science, 2018. p. 262–9.

	 48.	 Srinivasulu K. Health-related tweets classification: a survey. In: Proceedings of International Conference on Recent
Trends in Machine Learning, IoT, Smart Cities and Applications: Springer; 2021. p. 259–68.

	 49.	 Bishop CM. Pattern recognition and machine learning. Information science and statistics. New York: Springer;
2006.

	 50.	 Chung Y, Haas PJ, Upfal E, Kraska T. Unknown examples & machine learning model generalization. ArXiv.
2018;abs/1808.08294.

	 51.	 Collis J, Hussey R. Business research: a practical guide for undergraduate and postgraduate students. London:
Macmillan Education UK; 2014.

	 52.	 Collier N, Goodwin RM, McCrae J, Doan S, Kawazoe A, Conway M et al. An ontology-driven system for detecting
global health events. In: Proceedings of the 23rd international conference on computational linguistics; Beijing,
China: Association for Computational Linguistics; 2010. p. 215–22.

	 53.	 Hicks A, Hogan WR, Rutherford M, Malin B, Xie M, Fellbaum C et al. Mining twitter as a first step toward assess-
ing the adequacy of gender identification terms on intake forms. In: Annual Symposium proceedings; 2015. p.
611–20.

	 54.	 Pruss D, Fujinuma Y, Daughton AR, Paul MJ, Arnot B, Albers Szafir D, et al. Zika discourse in the americas: a multilin-
gual topic analysis of twitter. PLoS ONE. 2019;14(5): e0216922. https://​doi.​org/​10.​1371/​journ​al.​pone.​02169​22.

	 55.	 Zhang Z, Ahmed W. A comparison of information sharing behaviours across 379 health conditions on twitter. Int J
Public Health. 2019;64(3):431–40. https://​doi.​org/​10.​1007/​s00038-​018-​1192-5.

	 56.	 Shoukry A, Rafea A. Sentence-level arabic sentiment analysis. In: 2012 international conference on collaboration
technologies and systems (CTS); 21–25 May 2012; 2012. p. 546–50.

	 57.	 Cohen J. Weighted kappa: nominal scale agreement provision for scaled disagreement or partial credit. Psychol
Bull. 1968;70(4):213. https://​doi.​org/​10.​1037/​H0026​256.

	 58.	 Roccetti M, Delnevo G, Casini L, Mirri S. An alternative approach to dimension reduction for pareto distributed
data: a case study. J Big Data. 2021;8(1):1–23. https://​doi.​org/​10.​1186/​s40537-​021-​00428-8.

	 59.	 Sun Y, Wong AKC, Kamel MS. Classification of imbalanced data: a review. Int J Pattern Recognit Artif Intell.
2009;23(04):687–719. https://​doi.​org/​10.​1142/​s0218​00140​90073​26.

	 60.	 Batista GEAPA, Prati RC, Monard MC. A study of the behavior of several methods for balancing machine learning
training data. SIGKDD Explor Newsl. 2004;6(1):20–9. https://​doi.​org/​10.​1145/​10077​30.​10077​35.

	 61.	 Sun A, Lim E-P, Liu Y. On strategies for imbalanced text classification using svm: a comparative study. Decis Sup-
port Syst. 2009;48(1):191–201. https://​doi.​org/​10.​1016/j.​dss.​2009.​07.​011.

	 62.	 Somasundaram A, Reddy US. Data imbalance: Effects and solutions for classification of large and highly imbal-
anced data. In: Proceedings of the 1st international conference on research in engineering, computers and
technology; 2016. p. 1–16.

	 63.	 Brownlee J. Imbalanced classification with python: Better metrics, balance skewed classes, cost-sensitive learning.
Machine Learning Mastery; 2020.

	 64.	 Twitter. Developer agreement and policy. 2020. https://​devel​oper.​twitt​er.​com/​en/​devel​oper-​terms/​agree​ment-​
and-​policy. Accessed 06 Mar 2021.

	 65.	 Forman G. An extensive empirical study of feature selection metrics for text classification. J Mach Learn Res.
2003;3(MAR):1289–305.

	 66.	 Barnaghi P, Ghaffari P, Breslin JG. Opinion mining and sentiment polarity on twitter and correlation between
events and sentiment. In: 2016 IEEE second international conference on big data computing service and applica-
tions (BigDataService); 29 March–1 April 2016; 2016. p. 52–7.

	 67.	 Abdellaoui H, Zrigui M. Using tweets and emojis to build tead: an Arabic dataset for sentiment analysis. Computa-
cion Y Sistemas. 2018;22(3):777–86. https://​doi.​org/​10.​13053/​CyS-​22-3-​3031.

	 68.	 Abo MEM, Shah NAK, Balakrishnan V, Kamal M, Abdelaziz A, Haruna K et al. Ssa-sda: subjectivity and sentiment
analysis of sudanese dialect Arabic. In: International conference on computer and information sciences; 2019. p.
206–10.

	 69.	 Abozinadah EA, Jones JH, Jr. A statistical learning approach to detect abusive twitter accounts. ACM International
Conference Proceeding Series; 2017. p. 6–13.

	 70.	 Hussien WA, Tashtoush YM, Al-Ayyoub M, Al-Kabi MN. Are emoticons good enough to train emotion classifiers of
arabic tweets? In: 2016 7th international conference on computer science and information technology; 2016. p.
1–6.

	 71.	 Mahmoud A, Elghazaly T. Using twitter to monitor political sentiment for Arabic slang. Studies in Computational
Intelligence; 2018. p. 53–66.

	 72.	 Almanie T, Aldayel A, Alkanhal G, Alesmail L, Almutlaq M, Althunayan R. Saudi mood: a real-time informative tool
for visualizing emotions in Saudi Arabia using twitter. In: 21st Saudi computer society national computer confer-
ence; 2018.

	 73.	 Abuelenin S, Elmougy S, Naguib E. Twitter sentiment analysis for arabic tweets. Advances in Intelligent Systems
and Computing; 2018. p. 467–76.

	 74.	 Alzu’bi S, Badarneh O, Hawashin B, Al-Ayyoub M, Alhindawi N, Jararweh Y. Multi-label emotion classification for
Arabic tweets. In: Sixth international conference on social networks analysis, management and security (SNAMS);
2019. p. 499–504.

	 75.	 Samy AE, El-Beltagy SR, Hassanien E. A context integrated model for multi-label emotion detection. Procedia
Comput Sci. 2018;142:61–71.

https://doi.org/10.1109/ACCESS.2019.2929208
https://doi.org/10.1155/2020/7403128
https://doi.org/10.1371/journal.pone.0216922
https://doi.org/10.1007/s00038-018-1192-5
https://doi.org/10.1037/H0026256
https://doi.org/10.1186/s40537-021-00428-8
https://doi.org/10.1142/s0218001409007326
https://doi.org/10.1145/1007730.1007735
https://doi.org/10.1016/j.dss.2009.07.011
https://developer.twitter.com/en/developer-terms/agreement-and-policy
https://developer.twitter.com/en/developer-terms/agreement-and-policy
https://doi.org/10.13053/CyS-22-3-3031

Page 28 of 29Albalawi et al. J Big Data (2021) 8:95

	 76.	 Symeonidis S, Effrosynidis D, Arampatzis A. A comparative evaluation of pre-processing techniques and their
interactions for twitter sentiment analysis. Expert Syst Appl. 2018;110:298–310. https://​doi.​org/​10.​1016/j.​eswa.​
2018.​06.​022.

	 77.	 Baali M, Ghneim N. Emotion analysis of Arabic tweets using deep learning approach. J Big Data. 2019. https://​doi.​
org/​10.​1186/​s40537-​019-​0252-x.

	 78.	 Ismail R, Omer M, Tabir M, Mahadi N, Amin I. Sentiment analysis for Arabic dialect using supervised learning. In:
International conference on computer, control, electrical, and electronics engineering (ICCCEEE); 12–14 Aug. 2018;
2018. p. 1–6.

	 79.	 Nayel HA, Medhat W, Rashad M. Benha@idat: Improving irony detection in Arabic tweets using ensemble
approach. In: CEUR workshop proceedings; 2019. p. 401–8.

	 80.	 Alqarafi A, Adeel A, Hawalah A, Swingler K, Hussain A. A semi-supervised corpus annotation for saudi sentiment
analysis using twitter. In: Lecture notes in computer science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics); 2018. p. 589–96.

	 81.	 Al-Saif H, Al-Dossari H. Detecting and classifying crimes from Arabic twitter posts using text mining techniques. Int
J Adv Comput Sci Appl. 2018;9(10):377–87. https://​doi.​org/​10.​14569/​ijacsa.​2018.​091046.

	 82.	 Maamouri M, Bies A, Kulick S. Diacritization: A challenge to arabic treebank annotation and parsing. In: Proceed-
ings of the conference of the machine translation SIG of the British Computer Society; 2006. p. 35–47.

	 83.	 El Gayar N, Suen CY. Computational linguistics, speech and image processing for Arabic language. World Scientific;
2019.

	 84.	 Oussous A, Lahcen AA, Belfkih S. Improving sentiment analysis of moroccan tweets using ensemble learning. In:
Tabii Y, Lazaar M, AlAchhab M, Enneya N, editors. Big data, cloud and applications, bdca 2018. Communications in
computer and information science, 2018. p. 91–104.

	 85.	 Oumi NA, Safadi LA, Chorfi H, editors. Mining tweets to indicate hidden/potential networks. In: 2018 21st Saudi
Computer Society National Computer Conference (NCC); 2018 25–26 April 2018.

	 86.	 Abdelhade N, Soliman THA, Ibrahim HM. Detecting twitter users’ opinions of arabic comments during various
time episodes via deep neural network. In: Advances in intelligent systems and computing; 2018. p. 232–46.

	 87.	 Al-Wehaibi RN, Khan MB. Predicting arabic tweet popularity by use of data and text mining techniques. In: MEDES
2014—6th international conference on management of emergent digital ecosystems, Proceedings; 2014. p.
183–9.

	 88.	 Habash N, Soudi A, Buckwalter T. On arabic transliteration. In: Soudi A, Bosch Avd, Neumann G, editors. Arabic
computational morphology: knowledge-based and empirical methods. Dordrecht: Springer Netherlands; 2007. p.
15–22.

	 89.	 Elayeb B, Bounhas I. Arabic cross-language information retrieval: a review. ACM Trans Asian Low-Resour Lang Inf
Process. 2016;15(3):1–44. https://​doi.​org/​10.​1145/​27892​10.

	 90.	 Xu J, Fraser A, Weischedel R. Empirical studies in strategies for arabic retrieval. In: Proceedings of the 25th annual
international ACM SIGIR conference on Research and development in information retrieval; Tampere, Finland:
Association for Computing Machinery; 2002. p. 269–74.

	 91.	 Wang H, Hanafy A, Bahgat M, Noeman S, Emam OS, Bommireddipalli VR, editors. A system for extracting senti-
ment from large-scale Arabic social data. 2015 First International Conference on Arabic Computational Linguistics
(ACLing); 2015 17–20 April 2015.

	 92.	 Alahmary RM, Al-Dossari HZ, Emam AZ, IEEE. Sentiment analysis of saudi dialect using deep learning techniques.
In: 2019 international conference on electronics, information, and communication. IEEE international conference
on electronics information and emergency communication, 2019. p. 562–7.

	 93.	 Alsaif H, Alotaibi T. Arabic text classification using feature-reduction techniques for detecting violence on social
media. Int J Adv Comput Sci Appl. 2019;10(4):77–87. https://​doi.​org/​10.​14569/​ijacsa.​2019.​01004​09.

	 94.	 Al-Twairesh N, Al-Negheimish H. Surface and deep features ensemble for sentiment analysis of Arabic tweets. IEEE
Access. 2019;7:84122–31. https://​doi.​org/​10.​1109/​ACCESS.​2019.​29243​14.

	 95.	 El-Fishawy N, Hamouda A, Attiya GM, Atef M. Arabic summarization in twitter social network. Ain Shams Eng J.
2014;5(2):411–20. https://​doi.​org/​10.​1016/j.​asej.​2013.​11.​002.

	 96.	 El-Naggar N, El-Sonbaty Y, El-Nasr MA, editors. Sentiment analysis of modern standard Arabic and Egyptian dialec-
tal Arabic tweets. In: 2017 Computing Conference; 2017 18–20 July 2017.

	 97.	 Al-Osaimi S, Badruddin KM. Role of emotion icons in sentiment classification of Arabic tweets. In: MEDES 2014—
6th International Conference on Management of Emergent Digital EcoSystems, Proceedings; 2014. p. 167–71.

	 98.	 Aldayel HK, Azmi AM. Arabic tweets sentiment analysis - a hybrid scheme. J Inf Sci. 2016;42(6):782–97. https://​doi.​
org/​10.​1177/​01655​51515​610513.

	 99.	 Atoum JO, Nouman M. Sentiment analysis of Arabic Jordanian dialect tweets. Int J Adv Comput Sci Appl.
2019;10(2):256–62. https://​doi.​org/​10.​14569/​IJACSA.​2019.​01002​34.

	100.	 Elshakankery K, Ahmed MF. Hilatsa: A hybrid incremental learning approach for Arabic tweets sentiment analysis.
Egypt Inform J. 2019;20(3):163–71. https://​doi.​org/​10.​1016/j.​eij.​2019.​03.​002.

	101.	 Al-Smadi M, Jaradat Z, Al-Ayyoub M, Jararweh Y. Paraphrase identification and semantic text similarity analysis in
Arabic news tweets using lexical, syntactic, and semantic features. Inf Process Manage. 2017;53(3):640–52. https://​
doi.​org/​10.​1016/j.​ipm.​2017.​01.​002.

	102.	 Zerrouki T. Tashaphyne, Arabic light stemmer. 2020. https://​pypi.​org/​proje​ct/​Tasha​phyne/.
	103.	 Elghazaly T, Mahmoud A, Hefny HA. Political sentiment analysis using twitter data. In: ACM international confer-

ence proceeding series; 2016. p. 1–5.
	104.	 Nizar YH. Introduction to Arabic natural language processing. Introduction to Arabic natural language processing.

Morgan & Claypool; 2010.
	105.	 Zerrouki T. Towards an open platform for arabic language processing: École nationale supérieure d’informatique;

2020.

https://doi.org/10.1016/j.eswa.2018.06.022
https://doi.org/10.1016/j.eswa.2018.06.022
https://doi.org/10.1186/s40537-019-0252-x
https://doi.org/10.1186/s40537-019-0252-x
https://doi.org/10.14569/ijacsa.2018.091046
https://doi.org/10.1145/2789210
https://doi.org/10.14569/ijacsa.2019.0100409
https://doi.org/10.1109/ACCESS.2019.2924314
https://doi.org/10.1016/j.asej.2013.11.002
https://doi.org/10.1177/0165551515610513
https://doi.org/10.1177/0165551515610513
https://doi.org/10.14569/IJACSA.2019.0100234
https://doi.org/10.1016/j.eij.2019.03.002
https://doi.org/10.1016/j.ipm.2017.01.002
https://doi.org/10.1016/j.ipm.2017.01.002
https://pypi.org/project/Tashaphyne/

Page 29 of 29Albalawi et al. J Big Data (2021) 8:95 	

	106.	 Alhaj YA, Al-qaness MA, Dahou A, Elaziz MA, Zhao D, Xiang J. Effects of light stemming on feature extraction and
selection for arabic documents classification. In: Recent advances in nlp: The case of arabic language. Springer;
2020. p. 59–79.

	107.	 Srinivasa-Desikan B. Natural language processing and computational linguistics: a practical guide to text analysis
with python, gensim, spacy, and keras. Packt Publishing Ltd; 2018.

	108.	 Junejo KN, Karim A, Hassan MT, Jeon M. Terms-based discriminative information space for robust text classifica-
tion. Inf Sci. 2016;372:518–38. https://​doi.​org/​10.​1016/j.​ins.​2016.​08.​073.

	109.	 Al-Horaibi L, Khan MB. Sentiment analysis of arabic tweets using text mining techniques. In: Proceedings of SPIE—
the international society for optical engineering; 2016. p. 288–92.

	110.	 Raj RJR, Srinivasulu S, Ashutosh A, editors. A multi-classifier framework for detecting spam and fake spam mes-
sages in twitter. In: 2020 IEEE 9th international conference on communication systems and network technologies
(CSNT); 2020 10–12 April 2020.

	111.	 Gallagher C, Furey E, Curran K. The application of sentiment analysis and text analytics to customer experience
reviews to understand what customers are really saying. Int J Data Warehous Mining (IJDWM). 2019;15(4):21–47.
https://​doi.​org/​10.​4018/​ijdwm.​20191​00102.

	112.	 Chang C-C, Lin C-J. Libsvm: a library for support vector machines. ACM Trans Intell Syst Technol. 2011;2(3):1–27.
https://​doi.​org/​10.​1145/​19611​89.​19611​99.

	113.	 Fan R-E, Chang K-W, Hsieh C-J, Wang X-R, Lin C-J. Liblinear: a library for large linear classification. J Mach Learn Res.
2008;9(1):1871–4. https://​doi.​org/​10.​1145/​13906​81.​14427​94.

	114.	 Al-Azani S, El-Alfy ESM. Using word embedding and ensemble learning for highly imbalanced data sentiment
analysis in short arabic text. Procedia Comput Sci. 2017;109:359–66.

	115.	 Dressel J, Farid H. The accuracy, fairness, and limits of predicting recidivism. Sci Adv. 2018. https://​doi.​org/​10.​1126/​
sciadv.​aao55​80.

	116.	 Raschka S, Mirjalili V. Python machine learning: Machine learning and deep learning with python, scikit-learn, and
tensorflow, 2nd edition. Packt Publishing; 2017.

	117.	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in python. J
Mach Learn Res. 2011;12:2825–30.

	118.	 Yenigalla P, Kar S, Singh C, Nagar A, Mathur G. Addressing unseen word problem in text classification. Berlin:
Springer; 2018. p. 339–51.

	119.	 Elekes Á, Di Stefano AS, Schäler M, Böhm K, Keller M. Learning from few samples: lexical substitution with word
embeddings for short text classification. 2019: IEEE. p. 111–9.

	120.	 Gulli A, Kapoor A, Pal S. Deep learning with tensorflow 2 and keras: regression, convnets, gans, rnns, nlp, and more
with tensorflow 2 and the keras api. Packt Publishing, Limited; 2019.

	121.	 Soufan A. Deep learning for sentiment analysis of Arabic text. In: Proceedings of the ArabWIC 6th annual interna-
tional conference research track. Rabat, Morocco: Association for Computing Machinery; 2019. p. 1–8.

	122.	 Elnagar A, Al-Debsi R, Einea O. Arabic text classification using deep learning models. Inform Process Manage. 2020.
https://​doi.​org/​10.​1016/j.​ipm.​2019.​102121.

	123.	 Hutter F, Lücke J, Schmidt-Thieme L. Beyond manual tuning of hyperparameters. KI - Künstliche Intelligenz.
2015;29(4):329–37. https://​doi.​org/​10.​1007/​s13218-​015-​0381-0.

	124.	 Feurer M, Hutter F. Hyperparameter optimization. In: Hutter F, Kotthoff L, Vanschoren J, editors. Automated
machine learning: Methods, systems, challenges. Cham: Springer International Publishing; 2019. p. 3–33.

	125.	 O’Malley T, Bursztein E, Long J, Chollet F, Jin H, Invernizzi L. Hyperparameter tuning with keras tuner. 2019. https://​
github.​com/​keras-​team/​keras-​tuner.

	126.	 Devlin J, Chang MW, Lee K, Toutanova K. Bert: Pre-training of deep bidirectional transformers for language under-
standing. In: NAACL HLT 2019—2019 conference of the North American chapter of the association for computa-
tional linguistics: human language technologies—proceedings of the conference; 2019, p. 4171–86.

	127.	 Antoun W, Baly F, Hajj H. Arabert: Transformer-based model for arabic language understanding. Marseille: Euro-
pean Language Resource Association; 2020. p. 9–15.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.ins.2016.08.073
https://doi.org/10.4018/ijdwm.2019100102
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1145/1390681.1442794
https://doi.org/10.1126/sciadv.aao5580
https://doi.org/10.1126/sciadv.aao5580
https://doi.org/10.1016/j.ipm.2019.102121
https://doi.org/10.1007/s13218-015-0381-0
https://github.com/keras-team/keras-tuner
https://github.com/keras-team/keras-tuner

	Investigating the impact of pre-processing techniques and pre-trained word embeddings in detecting Arabic health information on social media
	Abstract
	Introduction
	Related works
	Methods
	Data sets and model evaluation metrics
	Health lexicon
	The first data set
	The second data set

	Evaluation metrics

	First experiment
	Common pre-processing techniques
	Tokenization
	Noise removal
	Removal of non-Arabic letters
	Removing numbers
	Removing usernames, external links, and hashtags

	Normalization
	Removal of punctuation
	Removal of tashkeel (diacritics)
	Removing repeated characters
	Removal of duplicate letters
	Removing Kashida

	Arabic-specific normalization
	Removing stop words
	Stemming
	Light stemming
	Root stemming
	Lemmatization

	Feature extraction
	Classification algorithms used
	Multinomial NB
	SVM
	Logistic regression
	KNN

	Experiment setup and results
	Developing baselines
	Using one pre-processing method at a time
	Best combination

	Second experiment
	Models
	BLSTM
	CNN
	Hyperparameter tuning

	Results
	First model: BLSTM
	Second model: CNN

	Discussion
	Limitations and strengths
	Conclusion
	Acknowledgements
	References

