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Introduction
The rapid development of information systems leads to a growing amount of informa-
tion [1] that obtains massive stored data [2, 3]. In the presence of various types of data, 
events that are happened in the systems are stored in so-called event log [4]. Monitoring 
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business processes from a massive event log brings a challenge related to Big Data. Pro-
cess mining is a discipline of gathering the event log and processing the log into a pro-
cess model for monitoring, including capturing anomalies [5, 6] or bottlenecks [7]. The 
technique of constructing a process model by process mining is called process discovery.

There are several types of relationships which are formed by process discovery algo-
rithms. The sophisticated relationship is invisible tasks in non-free choice. This condi-
tion occurs when choice activities which involve invisible tasks are not a choice-free 
relation (their execution depends on previous activities). This research presents two 
business processes to give usage overview of invisible tasks in non-free choice.

A port implements two processes, i.e., handling imported goods and handling exported 
goods. In handling imported goods, several cranes lift containers on to the truck based 
on the types of containers. Cranes can put dry containers in the truck directly. On the 
other hand, there are previous tasks of moving reefer and uncontainer. For cranes to 
carry out appropriate activities, the process model must have makers for mapping con-
tainer determination and tasks to put on the truck. Those markers are called non-free 
choice. Each non-free choice relationship connects an activity with another activity; 
however, dry containers did not have a specific task before lifting on the truck. There-
fore, an invisible task is added to raise a non-free choice relationship for each type of 
containers. This condition is called invisible tasks in non-free choice (denoted as a black 
circle that relates to a non-free choice relationship in Fig. 1).

Another example is shown in Fig. 2. An invisible task should be added before finish 
transaction activity, so a non-free choice that connects payment with e-facture to print 
tax invoice and a non-free choice that connects direct payment to finish transaction are 
depicted in a process model of purchasing medical equipment. A black circle with a 
non-free choice relationship is an implementation of invisible tasks in non-free choice.

The process discovery algorithms have been developed rapidly to discover several 
types of relations [8–13]; however, seldom algorithms concern with invisible tasks in 
non-free choice. α$ [14] is the development of α algorithm that discovers a new issue, 
i.e., invisible tasks in non-free choice. α$ stores the dependencies of activities in the form 
of pairs of activities and collects traces of activities based on the event log and combines 
α++ rules and α# rules to construct invisible task in non-free choice. α$ has several rules 
for ordering relations. The rules check all pairs of activities because there is no informa-
tion of relations of those activities. The checking process produces high computing time.

Fig. 1  A process model of port container handling
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Graph-based process discovery algorithm was developed to minimize checking all pairs 
of activities for discovering a process model. This algorithm utilizes capabilities of a graph 
database to store activities and their relationships. Instead of observing pairs of activities, 
the graph-based process discovery algorithm observes their relationships directly. This 
method is effective because a relationship can be detected from other relationships. For 
example, the graph-based algorithm discovers parallel relationships based on occurrences 
of sequence relationships [15]. An invisible task is detected based on parallel relationships. 
Storing relationships can accelerate the computing time for discovery.

Existing graph-based process discovery algorithms have several drawbacks. First, they did 
not concern to discover invisible tasks in non-free choice. Secondly, those algorithms do 
not directly store event logs of the system in a graph database. Those algorithms need to 
convert the event log to graph database.

According to the difficulty of existing graph-based process discovery algorithms, the 
main contribution of this research is to propose GIT, the expansion of Graph-based Invis-
ible Task, for discovering invisible tasks in non-free choice by extending rules of existing 
graph-based algorithms and integrating an Enterprise Resource Planning (ERP) system 
with a graph database to store the event logs directly in the graph database.

GIT algorithm is evaluated based on the quality of obtained process models and the scal-
ability of algorithm. GIT algorithm is compared with α$ and α++ algorithms based on fit-
ness, precision, generalization, and simplicity [16] to measure the quality of the process 
models. Purchasing medical equipment processes are used to evaluate the quality of the 
model.

The time complexity and computing time are used to measure the scalability. There are 
several steps to measuring the computing time. First, a graph database that is used by GIT 
is compared with other databases, i.e., SQL and MongoDB, to stores streaming event logs 
and batch event logs. Secondly, the computing time of GIT algorithm is compared with the 
time of α$ and α++ based on several event logs with different number of activities. The aim 
of using several event logs to gain the capacity of processes which can be handled by those 
algorithms.

Fig. 2  A process model of purchasing medical equipment
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Related works
Existing methods of process discovery

Nowadays, many methods of process discovery are developed. There are two well-know 
methods, i.e. α [17] and Heuristic Miner [8].
α algorithm forms all unique sequences of activities into a process model. This algo-

rithm is expanded to other algorithms to handle several issues in discovering relation-
ships of activities. α+ [18] add rules of α for handling looping activities. Furthermore, 
α++ [14] and α# [19] expands rules of α+ with different purposes. α++ focuses to depict 
non-free choice; however, α# appends additional activities, called invisible prime tasks, 
in a process model to discover particular situations, i.e. skip, redo and switch. Thereafter, 
α

$ [4] introduces invisible tasks in non-free choice and combines α++ with α# to over-
come that recent issue. α and its expended algorithms do not consider noises, so those 
algorithms are suitable for noise-free event logs.

Heuristic Miner [8] is process discovery algorithm that modifies α by adding a thresh-
old to filter activities which will be formed in a process model. There are two aims of 
adding a threshold. First, the action can simplify an obtained process model based on 
logs containing huge activities and relationships. Activities which have appearance 
times less than the threshold will be abandoned, so the obtained process model only 
discover frequently executed activities. Secondly, the disposal of activities with occur-
rences less than the threshold can eliminates noises because noises raise rarely. Fodina 
[11] improves Heuristic Miner to create robust heuristic process discovery algorithm. In 
addition, Fodina also develops rules to handle invisible prime tasks.
α algorithm, as a pioneer process discovery algorithm, inspires the formation of new 

methods. HMM-Parallel Tasks [20] and CHMM-Invisible Tasks [21] modifies rules of 
α in the form of Hidden Markov Models. There are also graph-based α algorithm, such 
as Graph-based Parallel [15] and Graph-based Invisible Task [22]. Other algorithms are 
developed, such as Inductive Miner [9] and RPST [10]. Table  1 describes the existing 
algorithms which can discover types of relations depicted by the columns. The tick signs 
explain that the algorithms can discover the related relations depicted by the columns.

According to Table 1, existing graph-based process discovery algorithms had not con-
cern in invisible task in non-free choice. GIT algorithm as proposed algorithm of this 
research handles this type of relation.

Event log

An event log consists of several cases, which identify the executed processes. Each case 
has several attributes, such as identification of case (CaseId), name of activities (Activ-
ity), the execution time of the activities (Timestamp), and actors who carried out activi-
ties (Resource) [23]. For example, an event log ε = { {C1, A , 2018-08-05-15:54, Admin}, 
{C1, B , 2018-08-05-16:54, Customer}, {C1, D , 2018-08-05-16:54, Customer}, {C2, A , 
2018-08-06-15:54, Admin}, {C2, B , 2018-08-06-16:54, Customer}, {C2, D , 2018-08-06-
16:54, Customer}, {C3, A , 2018-08-07-15:54, Admin}, {C3, C , 2018-08-07-16:54, Cus-
tomer}, {C3, D , 2018-08-07-16:54, Customer}. The event log ε has three cases with id C1, 
C2, and C3. Both C1 and C2 have the same sequence of activities, which is A → B → D 
and C3 has A → C → D.
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An event log contains several traces, which are unique sequences of activities. The 
event log ε has (A → B → D)2 and (A → C → D)1 , where 2 and 1 identify the occur-
rence numbers. There are two traces of ε , i.e., (A → B → D) and (A → C → D).

Control‑flow patterns

The process model consists of two types of relations, namely sequence relations and 
parallel relations. Sequence relations are used to describe processes that run straight in 
sequence or sequentially, whereas the parallel relations are used to describe a branched 
process. There are three types of control-flow patterns [24] to represent parallel rela-
tions, namely AND, OR, and XOR [20, 25]. Table 2 shows examples of relations and dif-
ferences between control-flow patterns in graph models.

Methodology
This research proposes an event log storage algorithm into a graph-database for direct 
process discovery without exporting event logs from the ERP database and transforming 
.csv file into .mxml or .xes. The storage algorithm will make the discovery process more 
efficient than previous methods. Figure 3 shows a comparison of the previous method 
with the proposed method. The first one shows the steps of process discovery proposed 
by Aalst [17, 26]. The event log needs to be extracted from the database in the form of 
.csv. Then, the .csv file needs to be converted into .mxml or .xes by using Disco Tool. 
.Mxml file is supported by ProM 5, and .xes file is supported by ProM 6. Then, the .mxml 
or .xes file is imported to ProM Tool to conduct process discovery. The second one 

Table 1  Algorithms of process discovery

Algorithms Types of relations

Sequence Looping XOR, AND OR Invisible prime 
task (Skip, 
Redo, Switch)

Non-free choice Invisible task in 
non-free choice

α [17] √ √

α+ [18] √ √ √

α++ [14] √ √ √ √

α# [19] √ √ √ √

α$ [4] √ √ √ √ √ √

Heuristic miner 
[8]

√ √ √

Fodina [11] √ √ √ √

HMM-parallel 
tasks [20]

√ √ √ √

CHMM-invisible 
tasks [21]

√ √ √ √ √

Graph-based 
parallel [15]

√ √ √ √

Graph-based 
invisible task 
[22]

√ √ √ √ √

Inductive miner 
[9]

√ √ √ √

RPST [10] √ √ √
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shows process discovery steps using graph-database Neo4J proposed by Darmawan et al. 
[27]. The event log needs to be extracted from the database in the form of .csv. Then, 
the .csv file is imported to Neo4J to conduct process discovery. The last one shows the 
steps for discovering the process model of the proposed method. By integrating Neo4J 
and ERP using Laravel, the event log stored in the database ERP is directly processed to 
execute process discovery.

The integration stage

The integration stage is connecting the ERP system with Neo4J, a graph database plat-
form, in storing an event log of the system directly in the form of a graph database. The 
used ERP system in this research is built by Laravel. This research uses ClientBuilder-
from the GraphAwareLibrary to start the integration and ClientBuilder to make a con-
nection between the system and the graph database.

Process discovery

a.	 The algorithm of logging stage

	 The logging stage in a graph-database starts when the user logs into the ERP system 
until the user logs out. The recording is done using the algorithm in Table 3. First, the 
algorithm checks the log that has been saved in Neo4J. If the last log is found in the 
graph-database, the login activity is entered in the last case + 1. However, if the last 
log is not found, then the login activity is recorded as the first case. The Neo4J con-

Table 2  Control-flow patterns in process model

Relations types The example of 
cases The representation of graph model 

Sequence [A, B, C, D]
[A, B, C, D] 
[A, B, C, D]

AND Split | 
AND Join

[A, B, C, D, E]
[A, B, D, C, E] 
[A, C, B, D, E] 
[A, C, D, B, E] 
[A, D, B, C, E] 
[A, D, C, B, E]

OR Split | OR 
Join 

[A, B, C, E]
[A, B, D, E] 
[A, C, B, E] 
[A, C, D, E] 
[A, D, B, E] 
[A, D, C, E] 

XOR Split | 
XOR Join

[A, B, E]
[A, C, E] 
[A, D, E]
[A, B, E] 
[A, C, E] 
[A, D, E]
[A, B, E]
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Fig. 3  The comparison process discovery methods. a The pioneer of process discovery method by Aalst et al. 
[17, 26], b the process discovery using graph-database [27], and c GIT process discovery model

Table 3  The algorithm of logging stage
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nection is made using the GraphAwarelibrary by connecting ClientBuilder from the 
GraphAware. At that moment, the current case will be included in the session to be 
used in later stages.

b.	 Constructing sequence relation and invisible task
	 Table 4 is used to discover sequence relations of the event log. GIT stores all vari-

ations of activities as nodes in the graph database. Then, GIT creates the sequence 
relations of those nodes based on activities of the event log (called an event). A 
sequence relation is discovered between an event and its next event with the same 
case id.

	 Cypher queries in Table 5 are a part of the GIT method. Based on Table 5, the steps 
of detecting skip, switch and redo invisible tasks are same. GIT algorithm chooses 
relations of activities based on its rules and inserts invisible tasks in the middle of 
those relations. The algorithm is implemented before control-flow pattern discovery.

	 The next step is the discovery of the control-flow patterns, i.e., AND, OR, and XOR, 
as can be seen in Table 6. Control-flow patterns, that is described in Table 6, are used 
to determine types of parallel relations. Parallel relations can be divided into three 
types, which are XOR, AND, and OR. XOR relations only allows one activity to be 
executed in a process. AND relations allow all activities to be executed. Lastly, OR 
relations are relations between XOR and AND, and it only allows parallel activities 
that are not categorized into XOR and AND relations. Each relation is divided into 
two forms, which are split and join. A split happens when there are multiple activi-
ties to be chosen. A join happens when multiple activities that can be chosen in split 
relations are closing into one or more activities.

	 The last step is the discovery of invisible tasks in non-free choice. Non-free-choice 
relation connects an activity in one choice relation with another activity in the next 
choice relation. This relation shows that the next activity of choice relation can-

Table 4  The algorithm of GIT for discovering sequence relations

where:

event : activity in the event log

nodeAsact : node of graph database as activity

count_event-1: the number of events minus 1 in the event log

count_variants_activities: the number of variaties of activities that are arranged into a process model in the graph database

event[i]CaseID : CaseID of an i-order event

nodeAsact
[

j
]

Name
 : name of activity in the graph database
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not be freely chosen and is influenced by the activity of the previous choice rela-
tion. Figure 2 is an example of non-free-choice relation and discovery by using GIT. 
As depicted in Fig. 2, a node Print Tax Invoice and an additional node, i.e., Invisible 
Task, cannot be freely chosen even though the relation between Make Payment to 
Invisible Task and Make Payment to Print Tax Invoice are XORSPLIT; instead, the 
choice of the node Print Tax Invoice can only be taken if the previous activity taken 
is a node Payment with E-Facture and choice of the Invisible Task can only be taken 
if the previous activity taken is a node Direct Payment. Non-free-choice relation is 
represented by NONFREECHOICE relation. Using the algorithm in Table  7, GIT 
algorithm finds some nodes with outgoing relation of XORJOIN, some nodes with 
ingoing relation of XORSPLIT, detect invisible task, and lastly match them against 
some nodes inside activity label which has the same name.

Results and discussion
Results

This research evaluates GIT algorithm based on two aspects, which are the quality of 
obtained model and the scalability. The quality is measured based on fitness [28], preci-
sion [29], generalization, simplicity. The fitness value is obtained by counting the number 

Table 5  The algorithm of GIT for invisible prime task discovery

where:

x: node of graph database as invisible task

[:SPLIT]: a split relation of activities (XORSplit, ORSplit or ANDSplit)

[:JOIN]: a join relation of activities (XORJoin, ORJoin or ANDJoin)

[:INVISIBLE]: a temporary relation to determine the need for invisible tasks

size(): the number of occurrences of the specified relation in the graph database
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Table 6  The algorithm of GIT for discovering control-flow patterns

where:

n: node of the graph database as activity

a, b: other node in the model

nodesAfter: all nodes after node n

nodesBefore: all nodes before node n
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of cases described in the model divided by the total cases in the event log. The precision 
value is obtained by counting the number of traces discovered in the model divided by 
the number of traces present in the event log. Generalization and simplicity are meas-
ured based on equations in [16].

The scalability is measured according to computing time and maximum number of 
traces algorithm could handle. This research divides computing time as computing time 
of storing event logs and computing time of discovering process models. A graph data-
base as the chosen database of GIT is compared with SQL and MongoDB to measure 
computing time of storing logs. The discovery computing time of GIT is compared with 
those times of other algorithms: α$ and α++.

There are four event logs which are used in the evaluation. The first event log is gen-
erated from a medical store that already implemented Enterprise Resource Planning 
(ERP) system. The reason of choosing this event log is the processes are executed in the 
ERP system which is integrated with graph-based platform, i.e., Neo4j by using integra-
tion methods (explained in “The integration stage” section). Thereupon, the event log is 
noise-free. GIT algorithm refers to rules of α algorithm, so this algorithm is suitable with 
noise-free logs. The other event logs are obtained from BPI Challenge [30–32]. Those 
event logs are chosen to measure scalability because they consist of high number of 
traces and cases.

The result of GIT algorithm to discover processes in the first event log is shown 
in Fig. 4. The full name of activities presented in Fig. 4 is shown in Table 8. In Fig. 4, 

Table 7  The algorithm of GIT for discovering invisible task in non-free choice

where:

n: node of the graph database as activity

a, b: other node in the model

path: all path from b to a and connected by n on case[j]
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the non-free choice relations occur between activity Direct Payment and an invisible 
task and between activity Payment with E-facture and Print Tax Invoice. Thus, this 
research is verified to be able to detect invisible task in non-free choice.

Figure  5 shows the comparison of results from the previous methods with the 
method proposed in this study. All fitness and simplicity values of all algorithms are 
1.000. α++ obtains lowest precision value, at 0.8644. On the other hand, α++ gains 
highest generalization value, at 0.9682. Both of α$ and GIT has same values for preci-
sion and generalization, accounting for 1.000 and 0.9681, respectively.

In addition to comparing the quality of obtained results, the time complexity of the 
algorithms is measured. The time complexity of α$ is O(n4) [33], while the time com-
plexity of GIT is O(n3), with the explanation steps as listed in Table 9.

Tables 10 and 11 show the result of storing computing time and discover computing 
time based on six event logs. Those event logs are three event logs from BPI Chal-
lenge, processes of a medical store, and chosen processes of the medical store.

This research calculates storing computing time by two types of event logs, i.e., 
batch event logs and streaming event logs. MySQL obtains lower computing times in 
batch event logs with average 1.092 s and streaming event logs with 0.0068 s. On the 
other hand, graph database has highest storing computing time in batch event logs, at 
6071.5 s and has low storing computing time, at 0.0730 s. Contrary to graph database, 

Fig. 4  The process model by GIT algorithm



Page 13 of 17Sarno et al. J Big Data           (2021) 8:113 	

MongoDB has low storing computing time of batch logs but highest time of stream-
ing event logs.

Based on Table 11, GIT can handle more numbers of event logs than α$ and α++ . 
The highest number traces which can be discovered by GIT algorithm is 981. On the 
other hand, α$ and α++ can discovery processes with maximum number 99 traces.

Table 8  List of activity names initialized in Fig. 4

No Alias Real task name No Alias Real task name

1 UL User login 24 BI Buy items

2 OD Open discount 25 IEP Input expedition price

3 SDE Set discount end time 26 PI Purchasing items

4 SDN Set discount name 27 PE Payment with E-facture

5 SDT Set discount type 28 MP Make payment

6 SDS Set discount start time 29 LN Print tax invoice

7 SAD Set amount of discount 30 FT Finish transaction

8 FD Finish discount 31 DP Direct payment

9 UL User logout 32 OC Open capital

10 OS Open selling 33 IMN Input modal name

11 CI Choose item 34 IMA Input modal amount

12 CPT Choose payment type 35 TE Type explanation

13 CCT​ Choose customer type 36 FM Finish modal

14 SI Sell item 37 OW Open warehouse

15 OGL Open general ledger 38 CP Choose product

16 CAC​ Choose account code 39 CC Choose category

17 CAG​ Choose account group 40 IPN Input product name

18 CAP Choose account parent 41 IP Insert picture

19 FAN Fill account name 42 IB Input barcode

20 AA Add account 43 IPP Input purchase price

21 OP Open purchasing 44 ISP Input selling price

22 CS Choose supplier 45 FP Finish product

23 CE Choose expedition

Fig. 5  Result comparison between the previous methods and the proposed method
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Discussion

Quality of obtained process model

The quality result of obtained process models by GIT, α++ and α$ is presented in Fig. 5. 
α++ has the lowest precision because this algorithm cannot describe non-free choice 
relationships, so several traces generated by its process model are not stored in the event 
log. Those traces decrease the precision value of α++ . GIT and α$ has high precision 
because those algorithms can depict invisible tasks in non-free choice. Generalization 
values of GIT and α$ are smaller than α++ because invisible tasks.

Table 9  Comparison of algorithm complexity

GIT algorithm

Steps Complexity

Storing and creating sequence relations of activities (Table 4) O
(

n
2
)

Creating invisible prime tasks (Table 5) O
(

n
2
)

Creating parallel relations, i.e., XOR, OR, and AND (Table 6) O
(

n
3
)

Creating parallel relations, i.e., XOR, OR, and AND (Table 7) O
(

n
3
)

Total complexity O(n3)

Table 10  Result of storing computing time

where:

UC1: an event log of processes starting user login activity to open selling activity in medical store

UC2: an event log of processes starting user login activity to open purchasing activity in medical store

UC3: an event log of domestic declarations [32]

UC4: an event log of whole processes in medical store

UC5: an event log of hospital log [31]

UC6: BPI challenge 2012 [30]

Type of 
event log

Used cases Total case Total traces Total 
events

Computing time of storing (s)

Graph-
database

MySQL-
CSV

MongoDB-
CSV

Batch UC1 120 6 840 0.420 0.082 0.083

UC2 48 48 552 0.655 0.655 0.660

UC3 10,500 99 56,437 1473.815 2.162 121.050

UC4 306 303 3084 3.511 0.065 1.600

UC5 1143 981 150,291 5782.133 1.510 104.140

UC6 13,087 4366 262,200 29,168.472 2.079 386.080

Mean 6071.501 1.092 102.269

Streaming UC1 120 6 840 (Mean) 
0.0085

(Mean) 
0.0040

(Mean) 0.0070

UC2 48 48 552 (Mean) 
0.0165

(Mean) 
0.0060

(Mean) 1.2450

UC3 10,500 99 56,437 (Mean) 
0.0572

(Mean) 
0.0080

(Mean) 1.3400

UC4 306 303 3084 (Mean) 
0.0251

(Mean) 
0.0050

(Mean) 1.0820

UC5 1143 981 150,291 (Mean) 
0.0923

(Mean) 
0.0070

(Mean) 1.1040

UC6 13,087 4366 262,200 (Mean) 
0.1622

(Mean) 
0.0110

(Mean) 1.0400

Mean 0.0730 0.0068 0.9697



Page 15 of 17Sarno et al. J Big Data           (2021) 8:113 	

Scalability

This research measures the scalability based on storing processes and discovery pro-
cesses. The results of Table 10 shows graph database can handle huge event logs; how-
ever, the consuming time is fantastic. In batch event logs, the storing computing time 
by graph database is 6000 times of MySQL and 59 times of MongoDB. The long storing 
computing time by graph database will resulting in a spike in overall GIT runtime. Opti-
mizing storing computing time by graph database is an important thing that must be 
studied further in the future.

Table  11 shows the discovery computing time and also maximum traces algorithm 
could discover. GIT algorithm has highest number of traces that can be handled among 
other algorithms; however, the limit traces of GIT is only 981 traces. The main reason of 
GIT inability to discover more than 900 traces because GIT determine sequence rela-
tionships based on all cases, not all traces. In the future work, clustering cases to obtain 
traces is needed before discovery processes are executed.

Conclusion
This research proposes an algorithm called GIT algorithm, which utilizes a graph data-
base to model invisible tasks in non-free choice efficiently. The capability of storing rela-
tions in a graph database can simplify the rules of process discovery because several 
relations of a process model can be constructed based on other discovered relations. 
GIT algorithm improves Graph-based Invisible Task by combining non-free choice rules 
with invisible task rules from Graph-based Invisible Task.

This research compares GIT algorithm to α$ and α++ based on the qualities of their 
models. The chosen quality measurements are fitness, precision, generalization and sim-
plicity. The experiments show that GIT and α$ has highest values of fitness and preci-
sion, which are 1. This research calculates computing time and time complexity of GIT 
and α$ and computing time of graph database, MySQL, and MongoDB. Graph database 
gains highest storing computing time of batch event logs; however, this database obtains 
low storing computing time of streaming event logs. The complexity of α$ is O(n4) ; 
meanwhile, the complexity of GIT is O(n3) . Based on 99 traces, GIT algorithm discov-
ers a process model 42 times faster than α++ and 43 times faster than α$ . GIT algorithm 
can also handle 981 traces, while α++ and α$ has maximum traces at 99 traces. It can be 
concluded that the process discovery of GIT algorithm is more efficient than that of α$ 
algorithm, and the graph database is suitable on the streaming event log.

Table 11  Result of discovering computing time

Used cases Total case Total traces Total events Computing time of discovery (s)

GIT α
++

α
$

UC1 120 6 840 0.520 0.405 0.405

UC2 48 48 552 0.849 0.610 1.200

UC3 10,500 99 56,437 11.971 504.000 520.000

UC4 306 303 3084 2.978 (error) (error)

UC5 1143 981 150,291 323.855 (error) (error)

UC6 13,087 4366 262,200 (error) (error) (error)
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The future work of this research is optimizing storing processes in the graph database 
and clustering processes as the input of discovery processes. Those subjects should be 
analyzed further to increase the scalability of GIT algorithm.
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