
Novel sensitivity method for evaluating
the first derivative of the feed‑forward neural
network outputs
Ravi Kiran*  and Dayakar L. Naik 

Introduction
Multilayer feedforward neural networks (FFNN) are parameterized nonlinear models
that approximate a mathematical mapping between the input features and the output
target variables [1]. Although FFNNs are known to possess the potential for approximat-
ing various functions [2, 3], they are often treated as black-box models because of the
complexity involved in generating the closed-form expression of the learned function.
Sensitivity analysis can be performed to understand the relationship and influence of
each input on the output of a problem [4–7]. Sensitivity analysis is performed by exam-
ining the change in the target output when one of the input features is perturbed. In
other words, performing sensitivity analysis involves the computation of partial deriva-
tives of the outputs with respect to the inputs. While a larger magnitude of partial deriv-
ative suggests a drastic change in output with a small variation in the input, a smaller
magnitude of partial derivative suggests smaller sensitivity of the output to the input [4].

Abstract 

Evaluating the exact first derivative of a feedforward neural network (FFNN) output
with respect to the input feature is pivotal for performing the sensitivity analysis of
the trained neural network with respect to the inputs. In this paper, a novel method is
presented that computes the analytical quality first derivative of a trained feedforward
neural network output with respect to the input features without the need for back-
propagation. To this end, the complex step derivative approximation is illustrated, and
its implementation in the framework of the feedforward neural network is described.
Artificial datasets are generated, and the efficacy of the proposed method for both
regression and classification tasks is demonstrated. The results obtained for the regres-
sion task indicated that the proposed method is capable of obtaining analytical quality
derivatives, and in the case of the classification task, the least relevant features could be
identified.

Keywords:  Complex step derivative approximation (CSDA), Partial derivatives,
Regression, Classification, Backpropagation, Forward propagation

Open Access

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Kiran and Naik ﻿J Big Data (2021) 8:88
https://doi.org/10.1186/s40537-021-00480-4

*Correspondence:
ravi.kiran@ndsu.edu
Department of Civil &
Environmental Engineering,
North Dakota State
University, Fargo, ND 58105,
USA

http://orcid.org/0000-0001-8300-0767
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-021-00480-4&domain=pdf

Page 2 of 13Kiran and Naik ﻿J Big Data (2021) 8:88

In FFNNs the first derivative (i.e., ∂y
∂xk

 ) of the output y with respect to the kth input xk is
evaluated employing the backpropagation algorithm, which involves the application of
derivative chain rule [8–11]. Application of chain rule in this context is similar to the one
employed during the training of an FFNN where ∂E

∂wij
 is evaluated for backpropagating

the error with respect to the parametric weights wij of the network [12–15]. The goal of
this work is to evaluate the derivatives of the FFNN outputs with respect to the inputs
without the need for backpropagation employing numerical differentiation techniques.

Finite difference schemes are employed for evaluating numerical derivatives [16–18].
In finite difference schemes, the input features are perturbed one at a time (e.g. xk ) with
a finite step size ( h) and the change in the output of a trained FFNN is obtained. Popu-
larly employed finite difference schemes include finite difference approximation (FDA)
(see Eq. 1) and central finite difference approximation (CFDA) (see Eq. 2) methods,
which are given as follows.

Finite difference approximation (FDA)

Central finite difference (CFDA)

where x = (x1, x2, . . . xk , . . . xq)
′ ∈ R

q×1 are the inputs, q is the number of inputs, f (.)
is the function mapping the inputs to the output variable and, f ′(.) is the first partial
derivative approximation of f (.) with respect to the input xk . However, finite difference
schemes are prone to subtractive cancellation errors [19, 20]. Subtractive cancellation
errors are caused by subtracting two close numbers whose difference could be in the
order of the precision of the calculations. This scenario is inevitable in the case of finite
difference schemes due to the subtractive operation as seen in the numerators of Eq. 1
and Eq. 2 and the use of very low h values to lower the truncation errors [19]. With this,
an additional computational step to evaluate the ideal h value to minimize the truncation
error without increasing the subtractive cancellation error is necessary when finite dif-
ference schemes are evaluated. A novel differentiation scheme is necessary to avoid this
additional step and to achieve analytical quality derivatives by minimizing both trunca-
tion and subtractive cancellation errors.

In this study, a novel method for determining the analytical quality first derivative of
feedforward neural network outputs is proposed and implemented. To this end, the con-
cept of complex-step derivative approximation (CSDA) is described, and its ability to
circumventing the subtractive cancellation errors associated with other numerical differ-
entiation techniques is illustrated in "Complex-step derivative approximation (CSDA)"
section. Implementing CSDA in the framework of FFNN for regression and classifica-
tion tasks is demonstrated in "Implementation of CSDA in feed-forward neural net-
works" section, and future areas of improvement are mentioned in "Summary and future
work" section.

(1)

f ′
(
x1, x2, . . . xk , . . . xq

)
≈

(
f
(
x1, x2, . . . xk + h, . . . xq

)
− f

(
x1, x2, . . . xk , . . . xq

))

h

(2)

f ′
(
x1, x2, . . . xk , . . . xq

)
≈

(
f
(
x1, x2, . . . xk + h, . . . xq

)
− f

(
x1, x2, . . . xk − h, . . . xq

))

2h

Page 3 of 13Kiran and Naik ﻿J Big Data (2021) 8:88 	

Complex‑step derivative approximation (CSDA)
CSDA is a numerical differentiation technique proposed by Lyness and Moler [21].
CSDA was successfully implemented in various fields of engineering, including aer-
ospace [22–25], computational mechanics [26–28], estimation theory (e.g., second-
order Kalman filter) [29], etc., for performing sensitivity analysis and evaluating the
first-order derivatives. In this section, the mathematical description of CSDA to esti-
mate analytical quality first-order derivative of a single scalar variable scalar function
is provided [30].

Let f be an analytic function of a complex variable z . Also, assume that f is real on the
real axis. Then f has a complex Taylor series expansion which is expressed as

where, h is the step size and i2 = −1 . By taking the imaginary component of f (x + ih) ,
dividing it by the step size and truncating the higher-order terms in the Taylor series, the
CSDA for the first derivative can be expressed as

where Imag (*) denotes the imaginary component and O(h2) is the second-order trun-
cation error. It is interesting to note that there are no subtractive operations in Eq. 4,
which are inevitable in the finite difference approximations (see Eq. 1 and Eq. 2). The
absence of subtractive operations in the numerator ensures that the CSDA is not prone
to subtractive cancellation errors. Hence, a very small value of h can be chosen in order
to eliminate the truncation errors without the fear of subtractive cancellation errors. A
simple example is provided next, which illustrates the accuracy of CSDA over finite dif-
ference schemes.

Illustrative example

Consider a smooth function f (x) provided in Eq. 5. The exact first-order derivative of
the function computed at x = π

4 is given as 2.65580797029498.

The numerical first-order derivative of the above function is evaluated using all three
approximation methods, namely, finite difference approximation (Eq. 1), central finite
difference approximation (Eq. 2), and CSDA (Eq. 4). The step size h employed for the
purpose of computation ranged from 10−1 to 10−16 . The absolute error (ε ) for each step
size is then evaluated using Eq. 6, and the results are shown in Fig. 1.

where ̂f ′(x) is the approximate first derivative at x = π
4 for a chosen step size h and, f ′(x)

is the exact first derivative of function f (x) at x = π
4 .

(3)f (x + ih) = f (x)+ ihf ′(x)−
h2

2!
f ′′(x)−

h3

3!
f ′′′(x)+ · · ·

(4)f ′(x) =
Imag

(
f (x + ih)

)

h
+O(h2)

(5)f (x) =
ex + x3

π + cos(πx)

(6)ε =

∣∣∣ ̂f ′(x)− f ′(x)
∣∣∣

Page 4 of 13Kiran and Naik ﻿J Big Data (2021) 8:88

From Fig. 1, it can be noticed that the absolute error decreased initially for both
FDA and CFDA with the reduction in the step size. However, for step sizes less than
h = 10−8 for FDA and h = 10−5 for CFDA, the absolute error was found to increase. The
increase in the absolute error after a certain step size can be attributed to the subtrac-
tive operation in the numerator of finite difference schemes. On the contrary, in the case
of CSDA, the absolute error was not only found to decline with a reduction in step size
but approached a double float precision (~ 10−16 ) with a further decrease in the step size
beyond h = 10−7 . In other words, no subtractive cancellation errors were observed, and
hence analytical quality derivatives with errors reaching the precision employed were
obtained.

Implementation of CSDA in feed‑forward neural networks
Obtaining a closed-form expression in feedforward neural networks (FFNN) is not only
challenging but also a tedious task. Nevertheless, CSDA can be implemented in the
framework of the feedforward neural network (FFNN) for evaluating the variation of the
output variable y ∈ R with respect to the change in an input xk ∈ R , where the subscript
k represents the kth input. The extended form of CSDA (see Eq. 4) applied to a multivari-
ate function can be expressed as

where x = (x1, x2, xk , xq)
′ ∈ R

q×1 are the input features, q is the number of input fea-
tures, f (.) is the function mapping the input features to the output target variable and,
f ′(.) is the first-order derivative approximation of f (.) with respect to the input feature
xk.

Implementation of CSDA in FFNN involves three steps (see Fig. 2): (1) configure and
train the FFNN for a given dataset, (2) perturb the input feature xk one at a time (see
Eq. 7) with an imaginary step size of ih ( where h ≪ 10−8 ) and perform the feedforward
operation on the trained FFNN and (3) obtain the output neuron’s imaginary component

(7)f ′
(
x1, x2, . . . xk , . . . xq

)
=

Imag
(
f
(
x1, x2, . . . xk + ih, . . . xq

))

h
+O

(
h2
)

1.E-16

1.E-13

1.E-10

1.E-07

1.E-04

1.E-01
1.E-161.E-131.E-101.E-071.E-041.E-01

N
or

m
al

iz
ed

 E
rro

r

Step Size h

CSDA

FDA

CFDA

Fig. 1  Illustration of the subtractive cancellation errors in finite difference methods and the CSDA. Both
FDA and CFDA suffer from subtractive cancellation errors unlike CSDA. The truncation errors in CSDA can
be minimized by choosing a very low h value. (CSDA: Complex-Step Derivative Approximation; FDA: Finite
Difference, and CFDA: Central Finite Difference Approximation)

Page 5 of 13Kiran and Naik ﻿J Big Data (2021) 8:88 	

with respect to the perturbed input and divide this component with the step size (h) .
Configuring the FFNN is a trial-and-error process that involves finding the appropri-
ate number of neurons and hidden layers in a network. A network is said to be con-
figured when it is capable of learning an approximate mathematical mapping between
the input features and the associated target variable such that it could be generalized to
the unseen data instances. Guidelines for choosing trial configurations of FFNN can be
found elsewhere [31]. For training the feedforward neural network, the backpropaga-
tion algorithm, in conjunction with the Levenberg–Marquardt optimization technique,
is employed in this study [32]. Note that the code for implementing the CSDA in FFNN
was written and executed in the MATLAB® environment.

Illustrative example

For illustrating the effectiveness of the CSDA in computing the first order derivative of
FFNN, a single variable function (see Eq. 8) commonly employed in CSDA literature
is chosen. A single hidden layer with 100 neurons is configured to train the FFNN and
the first order derivative is obtained at x = π

4 for step size of h = 10−15 . Both FDA and
CFDA are also employed on the same trained FFNN and first order derivative is obtained
for same step size. The results along with the exact solution is provided in Table 1. From
the Table 1 it is evident that the proposed methods result in least error (i.e., 2.9e−5)
when compared to existing methods FDA (i.e., 0.145) and CFDA (i.e., 2.2e−3).

Furthermore the derivatives are evaluated for all the x values using CSDA, FDA
and CFDA and is provided in Fig. 3. Comparison of exact solution and the first order

(8)f (x) =
ex

(cosx)3 + (sinx)3

Fig. 2  Schematic of steps involved for implementing CSDA in FFNN framework

Table 1  Comparison of error between CSDA and other existing methods

@ x = pi/4 Exact CSDA FDA CFDA

Output 3.10176 3.10167 3.55271 3.10862

Error – 2.9e−5 0.1454 2.2e−3

Page 6 of 13Kiran and Naik ﻿J Big Data (2021) 8:88

derivatives evaluated using CSDA, FDA and CFDA. From Fig. 3 it can inferred that the
proposed CSDA method predicts the analytical quality derivative that coincides with the
exact solution. However in the case of FDA and CFDA the derivatives are found to be
inaccurate due to subtractive cancellation errors.

In what follows, the implementation of CSDA is demonstrated for regression and clas-
sification tasks using artificial datasets consisting of more than one variable.

Regression

The process of generating artificial datasets (from a known analytic function) for per-
forming regression is described in this subsection. The first-order derivative results are
then obtained from the CSDA implemented FFNN (see Eq. 7) and are compared with
the exact analytical derivatives of the known function.

Datasets and FFNN Configurations

Three different single scalar-valued functions are employed in this study to gener-
ate artificial datasets for the regression task (see Table 2). While the first two functions
R1,R2 have 3 input features x1, x2 and x3 , the third function R3 is chosen to have 4 input
features x1, x2, x3 and x4 , wherein the feature x4 represents the uniformly distributed
random noise added to the function R2 . Since the added noise x4 has no significant con-
tribution in evaluating the output of the function R3 , the mean of the first-order deriva-
tive with respect to x4 computed using CSDA would be expected to be zero. In other
words, the purpose of adding noise is to verify the proposed method’s ability to identify
the least relevant feature. The input features employed in the dataset are real-valued and
are independent of each other. In total, 2000 instances are randomly generated for each

Fig. 3  Comparison of exact solution and the first order derivatives evaluated using CSDA, FDA and CFDA

Table 2  Functions used to generate artificial datasets for regression

Function Exact derivatives

R1 : y = x41 + 2x32 + 3
√
x3

∂y
∂x1

= 4x31 ;
∂y
∂x2

= 6x22 ;
∂y
∂x3

= 3
2
√
x3

R2 : y = sin(πx1)+ ex2 + x23:
∂y
∂x1

= πcos(πx1);
∂y
∂x2

= ex2 ;
∂y
∂x3

= 2x3

R3 : y = sin(πx1)+ ex2 + x23 + 0.00001x4
∂y
∂x4

= 1e − 5

Page 7 of 13Kiran and Naik ﻿J Big Data (2021) 8:88 	

dataset from a uniform distribution of the feature values. The range of the values chosen
for each input feature for all three datasets is summarized in Table 3. These randomly
generated input features are then substituted in the respective functions R1,R2 andR3 to
obtain the associated target variables y for each dataset.

For obtaining a suitable FFNN configuration for each dataset, numerous trial configu-
rations with varying numbers of neurons and hidden layers were examined beforehand.
The trial configuration that resulted in a mean squared error (MSE) less than 1e−6 on
the validation dataset is chosen as the suitable configuration for training the datasets.
The final configuration of FFNN that was adapted to train dataset 1 is 1st hidden layer
(HL) (8 neurons)—2nd HL (5 neurons); dataset 2 is 1st HL (10 neurons)—2nd HL (5
neurons); and dataset 3 is 1st HL (10 neurons)—2nd HL (5 neurons). Note that a soft
plus function (see Fig. 4a) ( ln(1+ exp(�)) , where, � is the net input function of a neu-
ron) is used as an activation function for all the neurons in the hidden layers. The MSE
of trained FFNN associated with dataset 1, dataset 2, and dataset 3 are determined to be
8.2e−7, 5.6e−8, and 4.3e−7, respectively.

Comparison of CSDA‑FFNN output and the exact analytical derivative

CSDA is implemented on the trained FFNNs to evaluate the change in the predicted
output variable ŷ with respect to the input feature xj where j = 1, 2, and 3 for dataset
1 and dataset 2; and j = 1, 2, 3, and4 for dataset 3. Note that in CSDA implemented
FFNN, the predicted output ( ̂y ) is a complex variable. According to Eq. 7, only the imag-
inary component of ŷ is required for obtaining the first-order derivative. More precisely,
if g1, g2 and g3 indicates the approximate function (mapping x to ŷ ) learned by FFNN for
dataset 1, 2 and 3 , respectively, then the first-order derivative of g1, g2 and g3 with respect
to the feature xj are computed as

Table 3  Range of input features for generating regression dataset

Function Range of input features

R1 x1 ∼ U(0, 1); x2 ∼ U(1, 2); x3 ∼ U(0.5, 5)

R2 x1 ∼ U(−1, 1); x2 ∼ U(0, 5); x3 ∼ U(0, 3)

R3 x1 ∼ U(−1, 1); x2 ∼ U(0, 5); x3 ∼ U(0, 3); x4 ∼ U(0, 2)

(a) (b)

Fig. 4  Activation function ( z ) employed for training FFNNs a Softplus (for regression) and b ReLU (for
classification)

Page 8 of 13Kiran and Naik ﻿J Big Data (2021) 8:88

where, q = 3 for dataset 1 and dataset 2, and q = 4 for dataset 3. Since there are 2000
instances in each dataset, the number of first-order derivatives evaluated with respect to
each feature xj is also 2000. The comparison between the first-order derivative evaluated
(for all 2000 instances) using CSDA implemented FFNN, and the exact analytical deriva-
tives are provided in Figs. 5 and 6. From Fig. 5, it is evident that the derivatives of the
approximation function g1 (for dataset 1) evaluated with respect to features x1, x2 and x3
using CSDA are in good agreement with the exact analytical derivatives ∂R1

∂x1
, ∂R1
∂x2

 and
∂R1
∂x3

 , respectively. Among all the data points for features x1, x2 and x3 , the maximum
absolute error ( ε ) (see Eq. 6) was found to occur at x1 = 1, x2 = 0.006074 and x3 = −1 .
Similarly, from Fig. 6 (a)-(c), it is evident that the derivatives of the approximation
function g2 evaluated with respect to x1, x2, and x3 using CSDA are also in good agree-
ment with the exact analytical derivatives ∂R2

∂x1
, ∂R2
∂x2

 and ∂R2
∂x3

 . Among all the data points
for features x1, x2 and x3 , the maximum absolute error ( ε ) was found to occur at
x1 = 0.9855, x2 = 1 and x3 = 0.0005 As mentioned earlier, in the case of function R3 (see
Fig. 6d) where the input feature x4 is least relevant, the first derivative with respect to
all values of x4 are found to be scattered above and below the exact analytical derivative
which is zero.

g ′1 =
Imag

(
g1
(
x1, .., xj + ih, ..xq

))

h
; g ′2 =

Imag
(
g2
(
x1, .., xj + ih, ..xq

))

h
;

g ′3 =
Imag

(
g3
(
x1, .., xj + ih, ..xq

))

h

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0 0.5 1 1.5

CSDA
Exact

0

5

10

15

20

25

30

1 1.5 2

CSDA
Exact

0.5

1

1.5

2

2.5

3

0 2 4

CSDA
Exact

(a) (b)

(c)

Fig. 5  Comparison of the exact analytical solution and the first derivative evaluated using CSDA
implemented FFNN for Dataset 1

Page 9 of 13Kiran and Naik ﻿J Big Data (2021) 8:88 	

Classification

Unlike the regression task, evaluating the derivatives in the case of the classifica-
tion task may not be feasible since the output of the FFNN is discrete (e.g., SoftMax
activation function outputs). However, considering the fact that the inputs fed to the
SoftMax activation neurons in the output layer are not discrete, the first-order deriva-
tives of such inputs could still be evaluated. These first-order derivatives will aid in
providing information about the importance of the input features. In this subsection,

-4

-3

-2

-1

0

1

2

3

4

-1 -0.5 0 0.5 1

CSDA
Exact

0

20

40

60

80

100

120

140

160

0 2 4 6

CSDA
Exact

0

1

2

3

4

5

6

7

0 1 2 3 4

CSDA
Exact

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0 1 2

CSDA
Exact

(a) (b)

(c) (d)

Fig. 6  Comparison of the exact analytical solution and the first derivative evaluated using CSDA
implemented FFNN for Dataset 2 (a, b, and c) and Dataset 3 (d)

Label 1

Label 2
Decision
Boundary

Fig. 7  Decision boundary learned by FFNN to classify the binary class artificial dataset

Page 10 of 13Kiran and Naik ﻿J Big Data (2021) 8:88

the process of generating an artificial dataset for demonstrating the implementation
of CSDA for classification tasks is described, and its significance in determining the
top features is illustrated.

Dataset and CSDA implementation

A binary class artificial dataset with input features x1, x2 and x3 is generated such that all
the instances belonging to class label 1 are enclosed within a cylinder of unit radius, and
the rest of the instances belonging to class label 2 are outside the cylinder (see Fig. 7). In
total, 1000 instances are generated for each class label. Note that the feature x3 is ran-
domly chosen from a uniformly distributed noise with a zero mean, which has the least
relevance in determining the class label. The purpose of including feature x3 is to dem-
onstrate that the proposed approach has the ability to identify the least significant fea-
tures. The parametric equations used to generate the datasets are.

where r1 ∼ U(0, 1) and θ1 ∼ U(0, 2π)

where r2 ∼ U(1, 2) and θ2 ∼ U(0, 2π)

It is important to note that all three input features are independent of one another.
Similar to the regression task, numerous trail configurations with a varying number of
neurons and hidden layers were examined beforehand to obtain a suitable FFNN con-
figuration, i.e., a configuration that has prediction accuracy > 98%. The configuration of
FFNN that was chosen to train the dataset is 1st HL (8 neurons)—2nd HL (5 neurons).
Note that Rectified Linear Unit (ReLU) (see Fig. 4(b)) ( max(0,�) , where � is the net
input function for a neuron) is used as an activation for all the neurons in the hidden lay-
ers and SoftMax function is used as an activation function for the neurons in the output
layer.

The first derivative of the two net input functions in the output layer (i.e. �o1 and
�o2 ) in FFNN with respect to input features x1, x2 and x3 are obtained for all the data
points using CSDA, and the sum of their absolute values (i.e., the sum of all 2000 data
points) are provided in Table 4. Considering that the first derivative (i.e. ∂�om

∂xj
 ) with

respect to each input feature xj represents the proxy measure of its significance, the
least relevant feature can be determined. In other words, the input feature that results
in the lowest magnitude of the first derivative will be considered as the least relevant
feature. From Table 4, it can be observed that the input feature x3 has the lowest

Class Label 1 : x1 = r1cos(θ1); x2 = r1sin(θ1); x3 ∼ U(0, 0.0001)

Class Label 2 : x1 = r2cos(θ2); x2 = r2sin(θ2); x3 ∼ 0.0001 ∗ U(0, 1)

Table 4  CSDA of net function in output neuron as a feature score

Input feature, j = 1 2 3

∂�o1
∂xj

0.5009 0.4935 0.0056

∂�o2
∂xj

− 0.5009 − 0.4935 − 0.0056

Page 11 of 13Kiran and Naik ﻿J Big Data (2021) 8:88 	

magnitude when compared to features x1 and x2 . Therefore feature x3 can be said to
be the least relevant feature. In order to verify if the feature x3 is irrelevant, the FFNN
is trained again with the exclusion of feature x3 and the confusion matrix is shown in
Table 5. From the confusion matrix, it is evident that the exclusion of feature x3 does
not influence the accuracy of classification. Furthermore the precision and recall were
also determined i.e., 0.99 and 0.98 respectively, and were noticed to be uninfluenced
by the exclusion of feature x3.

Summary and future work
In this study, a novel method is proposed to compute the analytical quality first deriva-
tive of the FFNN output with respect to the input features. The major drawback of pop-
ularly used finite difference approximation schemes is highlighted, and the concept of
CSDA is introduced in the context of neural network differentiation. The significance of
CSDA in circumventing subtractive cancellation errors is then illustrated using a simple
example wherein analytical quality first derivative was obtained along with a normalized
relative error approaching the double float precision. A step-by-step procedure involved
in extending CSDA to FFNN is provided, and its implementation in regression and clas-
sification tasks is demonstrated by employing artificial datasets generated from known
functions. FFNN’s are configured and trained using the trial-and-error process for all the
artificial datasets. The first derivative results that are obtained from the CSDA imple-
mented FFNN output for the regression task was found to be in good comparison with
the exact analytical derivatives of the known function. Owing to the discrete output in
the classification task, the CSDA was used only to obtain the derivatives of net input
function in the output neurons, and the least relevant features are identified. Note that
the advantage of the proposed method is that it evaluates the derivative only in one feed-
forward operation and does not require the evaluation of derivatives used in the back-
propagation. Hence, the derivatives can be obtained even after the neural networks are
deployed for specific applications.

It is important to note that feed-forward neural network was trained with the artifi-
cially generated data to learn these analytical functions so that the first-order deriva-
tives could be verified. Standard regression/classification datasets were not included
in this study since the closed form expression of the function that maps the input
variables to the target output is unknown in feed-forward neural networks which
may make it difficult to verify the analytical quality derivative. However, the authors
are currently working on implementing the proposed method on standard datasets.
Furthermore, in the future work, the authors intend to extend the proposed method

Table 5  Confusion matrix excluding feature x3

Predicted

Class label 1 Class label 2

Actual

 Class label 1 0.99 0.01

 Class label 2 0.02 0.98

Page 12 of 13Kiran and Naik ﻿J Big Data (2021) 8:88

to the multiple output regression problems and investigate the influence of differ-
ent activation functions. In addition, the derivatives evaluated using the proposed
method will be employed to perform feature selection on real datasets and validate
using the currently available methods.
Acknowledgements
Research presented in this paper was supported by the National Science Foundation under NSF EPSCoR Track-1
Cooperative Agreement OIA #1946202. Any opinions, findings, and conclusions, or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Authors’ contributions
RK: Conception, design of work, interpretation of results, revising the manuscript, and acquiring funding. DLN: execution,
data generation, coding, first draft preparation, interpretation of results, and revision of manuscript. Both authors read
and approved the final manuscript.

Funding
National Science Foundation under NSF EPSCoR Track-1 Cooperative Agreement OIA #1946202.

Availability of data and materials
All data generated or analysed during this study are included in this published article.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 6 March 2021 Accepted: 2 June 2021

References
	1.	 Zhang Z, Beck MW, Winkler DA, Huang B, Sibanda W, Goyal H. Opening the black box of neural networks: methods

for interpreting neural network models in clinical applications. Ann Transl Med. 2018;6:216–216. https://​doi.​org/​10.​
21037/​atm.​2018.​05.​32.

	2.	 Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Netw.
1989;2:359–66. https://​doi.​org/​10.​1016/​0893-​6080(89)​90020-8.

	3.	 Takahashi Y. Generalization and approximation capabilities of multilayer networks. Neural Comput. 1993;5:132–9.
https://​doi.​org/​10.​1162/​neco.​1993.5.​1.​132.

	4.	 Nourani V, Sayyah FM. Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation
process at different climatologic regimes. Adv Eng Softw. 2012;47:127–46. https://​doi.​org/​10.​1016/j.​adven​gsoft.​
2011.​12.​014.

	5.	 Cao M, Alkayem NF, Pan L, Novák D. Advanced methods in neural networks-based sensitivity analysis with their
applications in civil engineering. Artif Neural Netw Model Appl. 2016. https://​doi.​org/​10.​5772/​64026.

	6.	 Kowalski PA, Kusy M. Sensitivity analysis for probabilistic neural network structure reduction. IEEE Trans Neural Netw
Learn Syst. 2018;29:1919–32. https://​doi.​org/​10.​1109/​TNNLS.​2017.​26884​82.

	7.	 Cortez P, Embrechts MJ. Using sensitivity analysis and visualization techniques to open black box data mining mod-
els. Inf Sci (Ny). 2013;225:1–17. https://​doi.​org/​10.​1016/j.​ins.​2012.​10.​039.

	8.	 Engelbrecht AP, Cloete I. Sensitivity analysis algorithm for pruning feedforward neural networks. IEEE Int. Conf.
Neural Networks - Conf. Proc., vol. 2, IEEE; 1996, p. 1274–8. https://​doi.​org/​10.​1109/​icnn.​1996.​549081.

	9.	 Nguyen-Thien T, Tran-Cong T. Approximation of functions and their derivatives: a neural network implementation
with applications. Appl Math Model. 1999;23:687–704. https://​doi.​org/​10.​1016/​S0307-​904X(99)​00006-2.

	10.	 Hornik K, Stinchcombe M, White H. Universal approximation of an unknown mapping and its derivatives using
multilayer feedforward networks. Neural Netw. 1990;3:551–60. https://​doi.​org/​10.​1016/​0893-​6080(90)​90005-6.

	11.	 Hashem S. Sensitivity analysis for feedforward artificial neural networks with differentiable activation functions,
Institute of Electrical and Electronics Engineers (IEEE); 2003, p. 419–24. https://​doi.​org/​10.​1109/​ijcnn.​1992.​287175.

	12.	 Christopher MB. Neural networks for pattern recognition. Oxford: Oxford University Press; 1995.
	13.	 Ruck DW, Rogers SK, Kabrisky M. Feature selection using a multilayer perceptron. J Neural Netw Comput.

1990;2:48–8.
	14.	 Bo L, Wang L, Jiao L. Multi-layer perceptrons with embedded feature selection with application in cancer classifica-

tion. Chin J Electron. 2006;15:832–5.
	15.	 Gasca E, Sánchez JS, Alonso R. Eliminating redundancy and irrelevance using a new MLP-based feature selection

method. Pattern Recognit. 2006;39:313–5. https://​doi.​org/​10.​1016/j.​patcog.​2005.​09.​002.

https://doi.org/10.21037/atm.2018.05.32
https://doi.org/10.21037/atm.2018.05.32
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1162/neco.1993.5.1.132
https://doi.org/10.1016/j.advengsoft.2011.12.014
https://doi.org/10.1016/j.advengsoft.2011.12.014
https://doi.org/10.5772/64026
https://doi.org/10.1109/TNNLS.2017.2688482
https://doi.org/10.1016/j.ins.2012.10.039
https://doi.org/10.1109/icnn.1996.549081
https://doi.org/10.1016/S0307-904X(99)00006-2
https://doi.org/10.1016/0893-6080(90)90005-6
https://doi.org/10.1109/ijcnn.1992.287175
https://doi.org/10.1016/j.patcog.2005.09.002

Page 13 of 13Kiran and Naik ﻿J Big Data (2021) 8:88 	

	16.	 Montaño JJ, Palmer A. Numeric sensitivity analysis applied to feedforward neural networks. Neural Comput Appl.
2003;12:119–25. https://​doi.​org/​10.​1007/​s00521-​003-​0377-9.

	17.	 Güne¸ A, Baydin G, Pearlmutter BA, Siskind JM. Automatic differentiation in machine learning: a survey. J Mach Learn
Res. 2018;18.

	18.	 Jerrell ME. Automatic differentiation and interval arithmetic for estimation of disequilibrium models. Comput Econ.
1997;10:295–316. https://​doi.​org/​10.​1023/A:​10086​33613​243.

	19.	 Driscoll TA, Braun RJ. Fundamentals of Numerical Computation. 2017.
	20.	 Boudjemaa R, Cox MG, Forbes AB, Harris PM. Report to the National Measurement Directorate, Department of Trade

and Industry From the Software Support for Metrology Programme Automatic Differentiation Techniques and their
Application in Metrology. 2003.

	21.	 Lyness JN, Moler CB. Numerical Differentiation of Analytic Functions. SIAM J Numer Anal. 1967;4:202–10. https://​doi.​
org/​10.​1137/​07040​19.

	22.	 Martins J, Sturdza P, Alonso J, Martins JR, Alonso JJ. The complex-step derivative approximation. ACM Trans Math
Softw Assoc Comput Mach. 2003;29:245–62. https://​doi.​org/​10.​1145/​838250.​838251.

	23.	 Conolly J, Lake M. Geographical information systems in archaeology. Cambridge: Cambridge University Press; 2006.
p. 338.

	24.	 Campbell AR. Numerical Analysis of Complex-Step Differentiation in Spacecraft Trajectory Optimization Problems.
2011.

	25.	 Lai KL, Crassidis JL. Extensions of the first and second complex-step derivative approximations. J Comput Appl Math.
2008;219:276–93. https://​doi.​org/​10.​1016/j.​cam.​2007.​07.​026.

	26.	 Kiran R, Khandelwal K. Automatic implementation of finite strain anisotropic hyperelastic models using hyper-dual
numbers. Comput Mech. 2015;55:229–48. https://​doi.​org/​10.​1007/​s00466-​014-​1094-1.

	27.	 Kiran R, Li L, Khandelwal K. Complex perturbation method for sensitivity analysis of nonlinear trusses. J Struct Eng.
2017;143:04016154. https://​doi.​org/​10.​1061/​(asce)​st.​1943-​541x.​00016​19.

	28.	 Kiran R, Khandelwal K. Complex step derivative approximation for numerical evaluation of tangent moduli. Comput
Struct. 2014;140:1–13. https://​doi.​org/​10.​1016/j.​comps​truc.​2014.​04.​009.

	29.	 Lai KL, Crassidis JL, Cheng Y, Kim J. New complex-step derivative approximations with application to second-order
Kalman filtering. Collect. Tech. Pap. - AIAA Guid. Navig. Control Conf., vol. 2, 2005, p. 982–98. https://​doi.​org/​10.​
2514/6.​2005-​5944.

	30.	 Squire W, Trapp G. Using complex variables to estimate derivatives of real functions. SIAM Rev. 1998;40:110–2.
https://​doi.​org/​10.​1137/​S0036​14459​63124​1X.

	31.	 Hagan MT, Demuth HB, Beale MH, De Jesus O. Neural network design. 2nd ed. Oklahoma: Martin Hagan; 2014.
	32.	 Hagan MT, Menhaj MB. Training feedforward networks with the Marquardt Algorithm. IEEE Trans Neural Netw.

1994;5:989–93. https://​doi.​org/​10.​1109/​72.​329697.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s00521-003-0377-9
https://doi.org/10.1023/A:1008633613243
https://doi.org/10.1137/0704019
https://doi.org/10.1137/0704019
https://doi.org/10.1145/838250.838251
https://doi.org/10.1016/j.cam.2007.07.026
https://doi.org/10.1007/s00466-014-1094-1
https://doi.org/10.1061/(asce)st.1943-541x.0001619
https://doi.org/10.1016/j.compstruc.2014.04.009
https://doi.org/10.2514/6.2005-5944
https://doi.org/10.2514/6.2005-5944
https://doi.org/10.1137/S003614459631241X
https://doi.org/10.1109/72.329697

	Novel sensitivity method for evaluating the first derivative of the feed-forward neural network outputs
	Abstract
	Introduction
	Complex-step derivative approximation (CSDA)
	Illustrative example

	Implementation of CSDA in feed-forward neural networks
	Illustrative example
	Regression
	Datasets and FFNN Configurations
	Comparison of CSDA-FFNN output and the exact analytical derivative

	Classification
	Dataset and CSDA implementation

	Summary and future work
	Acknowledgements
	References

