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Introduction
Multilayer feedforward neural networks (FFNN) are parameterized nonlinear models 
that approximate a mathematical mapping between the input features and the output 
target variables [1]. Although FFNNs are known to possess the potential for approximat-
ing various functions [2, 3], they are often treated as black-box models because of the 
complexity involved in generating the closed-form expression of the learned function. 
Sensitivity analysis can be performed to understand the relationship and influence of 
each input on the output of a problem [4–7]. Sensitivity analysis is performed by exam-
ining the change in the target output when one of the input features is perturbed. In 
other words, performing sensitivity analysis involves the computation of partial deriva-
tives of the outputs with respect to the inputs. While a larger magnitude of partial deriv-
ative suggests a drastic change in output with a small variation in the input, a smaller 
magnitude of partial derivative suggests smaller sensitivity of the output to the input [4].
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In FFNNs the first derivative (i.e., ∂y
∂xk

 ) of the output y with respect to the kth input xk is 
evaluated employing the backpropagation algorithm, which involves the application of 
derivative chain rule [8–11]. Application of chain rule in this context is similar to the one 
employed during the training of an FFNN where ∂E

∂wij
 is evaluated for backpropagating 

the error with respect to the parametric weights wij of the network [12–15]. The goal of 
this work is to evaluate the derivatives of the FFNN outputs with respect to the inputs 
without the need for backpropagation employing numerical differentiation techniques.

Finite difference schemes are employed for evaluating numerical derivatives [16–18]. 
In finite difference schemes, the input features are perturbed one at a time (e.g. xk ) with 
a finite step size ( h) and the change in the output of a trained FFNN is obtained. Popu-
larly employed finite difference schemes include finite difference approximation (FDA) 
(see Eq.  1) and central finite difference approximation (CFDA) (see Eq.  2) methods, 
which are given as follows.

Finite difference approximation (FDA)

Central finite difference (CFDA)

where x = (x1, x2, . . . xk , . . . xq)
′ ∈ R

q×1 are the inputs, q is the number of inputs, f (.) 
is the function mapping the inputs to the output variable and, f ′(.) is the first partial 
derivative approximation of f (.) with respect to the input xk . However, finite difference 
schemes are prone to subtractive cancellation errors [19, 20]. Subtractive cancellation 
errors are caused by subtracting two close numbers whose difference could be in the 
order of the precision of the calculations. This scenario is inevitable in the case of finite 
difference schemes due to the subtractive operation as seen in the numerators of Eq. 1 
and Eq. 2 and the use of very low h values to lower the truncation errors [19]. With this, 
an additional computational step to evaluate the ideal h value to minimize the truncation 
error without increasing the subtractive cancellation error is necessary when finite dif-
ference schemes are evaluated. A novel differentiation scheme is necessary to avoid this 
additional step and to achieve analytical quality derivatives by minimizing both trunca-
tion and subtractive cancellation errors.

In this study, a novel method for determining the analytical quality first derivative of 
feedforward neural network outputs is proposed and implemented. To this end, the con-
cept of complex-step derivative approximation (CSDA) is described, and its ability to 
circumventing the subtractive cancellation errors associated with other numerical differ-
entiation techniques is illustrated in "Complex-step derivative approximation (CSDA)" 
section. Implementing CSDA in the framework of FFNN for regression and classifica-
tion tasks is demonstrated in "Implementation of CSDA in feed-forward neural net-
works" section, and future areas of improvement are mentioned in "Summary and future 
work" section.
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Complex‑step derivative approximation (CSDA)
CSDA is a numerical differentiation technique proposed by Lyness and Moler [21]. 
CSDA was successfully implemented in various fields of engineering, including aer-
ospace [22–25], computational mechanics [26–28], estimation theory (e.g., second-
order Kalman filter) [29], etc., for performing sensitivity analysis and evaluating the 
first-order derivatives. In this section, the mathematical description of CSDA to esti-
mate analytical quality first-order derivative of a single scalar variable scalar function 
is provided [30].

Let  f  be an analytic function of a complex variable z . Also, assume that  f  is real on the 
real axis. Then f  has a complex Taylor series expansion which is expressed as

where, h is the step size and i2 = −1 . By taking the imaginary component of f (x + ih) , 
dividing it by the step size and truncating the higher-order terms in the Taylor series, the 
CSDA for the first derivative can be expressed as

where Imag (*) denotes the imaginary component and O(h2) is the second-order trun-
cation error. It is interesting to note that there are no subtractive operations in Eq.  4, 
which are inevitable in the finite difference approximations (see Eq. 1 and Eq. 2). The 
absence of subtractive operations in the numerator ensures that the CSDA is not prone 
to subtractive cancellation errors. Hence, a very small value of h can be chosen in order 
to eliminate the truncation errors without the fear of subtractive cancellation errors. A 
simple example is provided next, which illustrates the accuracy of CSDA over finite dif-
ference schemes.

Illustrative example

Consider a smooth function f (x) provided in Eq. 5. The exact first-order derivative of 
the function computed at x = π

4  is given as 2.65580797029498.

The numerical first-order derivative of the above function is evaluated using all three 
approximation methods, namely, finite difference approximation (Eq.  1), central finite 
difference approximation (Eq.  2), and CSDA (Eq.  4). The step size h employed for the 
purpose of computation ranged from 10−1 to 10−16 . The absolute error (ε ) for each step 
size is then evaluated using Eq. 6, and the results are shown in Fig. 1.

where ̂f ′(x) is the approximate first derivative at x = π
4  for a chosen step size h and, f ′(x) 

is the exact first derivative of function f (x) at x = π
4 .

(3)f (x + ih) = f (x)+ ihf ′(x)−
h2

2!
f ′′(x)−

h3

3!
f ′′′(x)+ · · ·

(4)f ′(x) =
Imag

(
f (x + ih)

)

h
+O(h2)

(5)f (x) =
ex + x3

π + cos(πx)

(6)ε =

∣∣∣ ̂f ′(x)− f ′(x)
∣∣∣
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From Fig.  1, it can be noticed that the absolute error decreased initially for both 
FDA and CFDA with the reduction in the step size. However, for step sizes less than 
h = 10−8 for FDA and h = 10−5 for CFDA, the absolute error was found to increase. The 
increase in the absolute error after a certain step size can be attributed to the subtrac-
tive operation in the numerator of finite difference schemes. On the contrary, in the case 
of CSDA, the absolute error was not only found to decline with a reduction in step size 
but approached a double float precision (~ 10−16 ) with a further decrease in the step size 
beyond h = 10−7 . In other words, no subtractive cancellation errors were observed, and 
hence analytical quality derivatives with errors reaching the precision employed were 
obtained.

Implementation of CSDA in feed‑forward neural networks
Obtaining a closed-form expression in feedforward neural networks (FFNN) is not only 
challenging but also a tedious task. Nevertheless, CSDA can be implemented in the 
framework of the feedforward neural network (FFNN) for evaluating the variation of the 
output variable y ∈ R with respect to the change in an input xk ∈ R , where the subscript 
k represents the kth input. The extended form of CSDA (see Eq. 4) applied to a multivari-
ate function can be expressed as

where x = (x1, x2, xk , xq)
′ ∈ R

q×1 are the input features, q is the number of input fea-
tures, f (.) is the function mapping the input features to the output target variable and, 
f ′(.) is the first-order derivative approximation of f (.) with respect to the input feature 
xk.

Implementation of CSDA in FFNN involves three steps (see Fig. 2): (1) configure and 
train the FFNN for a given dataset, (2) perturb the input feature xk one at a time (see 
Eq. 7) with an imaginary step size of ih ( where h ≪ 10−8 ) and perform the feedforward 
operation on the trained FFNN and (3) obtain the output neuron’s imaginary component 
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Fig. 1  Illustration of the subtractive cancellation errors in finite difference methods and the CSDA. Both 
FDA and CFDA suffer from subtractive cancellation errors unlike CSDA. The truncation errors in CSDA can 
be minimized by choosing a very low h value. (CSDA: Complex-Step Derivative Approximation; FDA: Finite 
Difference, and CFDA: Central Finite Difference Approximation)
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with respect to the perturbed input and divide this component with the step size (h) . 
Configuring the FFNN is a trial-and-error process that involves finding the appropri-
ate number of neurons and hidden layers in a network. A network is said to be con-
figured when it is capable of learning an approximate mathematical mapping between 
the input features and the associated target variable such that it could be generalized to 
the unseen data instances. Guidelines for choosing trial configurations of FFNN can be 
found elsewhere [31]. For training the feedforward neural network, the backpropaga-
tion algorithm, in conjunction with the Levenberg–Marquardt optimization technique, 
is employed in this study [32]. Note that the code for implementing the CSDA in FFNN 
was written and executed in the MATLAB® environment.

Illustrative example

For illustrating the effectiveness of the CSDA in computing the first order derivative of 
FFNN, a single variable function (see Eq.  8) commonly employed in CSDA literature 
is chosen. A single hidden layer with 100 neurons is configured to train the FFNN and 
the first order derivative is obtained at x = π

4  for step size of h = 10−15 . Both FDA and 
CFDA are also employed on the same trained FFNN and first order derivative is obtained 
for same step size. The results along with the exact solution is provided in Table 1. From 
the Table  1 it is evident that the proposed methods result in least error (i.e., 2.9e−5) 
when compared to existing methods FDA (i.e., 0.145) and CFDA (i.e., 2.2e−3).

Furthermore the derivatives are evaluated for all the x values using CSDA, FDA 
and CFDA and is provided in Fig. 3. Comparison of exact solution and the first order 

(8)f (x) =
ex

(cosx)3 + (sinx)3

Fig. 2  Schematic of steps involved for implementing CSDA in FFNN framework

Table 1  Comparison of error between CSDA and other existing methods

@ x = pi/4 Exact CSDA FDA CFDA

Output 3.10176 3.10167 3.55271 3.10862

Error – 2.9e−5 0.1454 2.2e−3
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derivatives evaluated using CSDA, FDA and CFDA. From Fig. 3 it can inferred that the 
proposed CSDA method predicts the analytical quality derivative that coincides with the 
exact solution. However in the case of FDA and CFDA the derivatives are found to be 
inaccurate due to subtractive cancellation errors.

In what follows, the implementation of CSDA is demonstrated for regression and clas-
sification tasks using artificial datasets consisting of more than one variable.

Regression

The process of generating artificial datasets (from a known analytic function) for per-
forming regression is described in this subsection. The first-order derivative results are 
then obtained from the CSDA implemented FFNN (see Eq. 7) and are compared with 
the exact analytical derivatives of the known function.

Datasets and FFNN Configurations

Three different single scalar-valued functions are employed in this study to gener-
ate artificial datasets for the regression task (see Table 2). While the first two functions 
R1,R2 have 3 input features x1, x2 and x3 , the third function R3 is chosen to have 4 input 
features x1, x2, x3 and x4 , wherein the feature x4 represents the uniformly distributed 
random noise added to the function R2 . Since the added noise x4 has no significant con-
tribution in evaluating the output of the function R3 , the mean of the first-order deriva-
tive with respect to x4 computed using CSDA would be expected to be zero. In other 
words, the purpose of adding noise is to verify the proposed method’s ability to identify 
the least relevant feature. The input features employed in the dataset are real-valued and 
are independent of each other. In total, 2000 instances are randomly generated for each 

Fig. 3  Comparison of exact solution and the first order derivatives evaluated using CSDA, FDA and CFDA

Table 2  Functions used to generate artificial datasets for regression

Function Exact derivatives

R1 : y = x41 + 2x32 + 3
√
x3

∂y
∂x1

= 4x31 ;
∂y
∂x2

= 6x22 ;
∂y
∂x3

= 3
2
√
x3

R2 : y = sin(πx1)+ ex2 + x23:
∂y
∂x1

= πcos(πx1);
∂y
∂x2

= ex2 ;
∂y
∂x3

= 2x3

R3 : y = sin(πx1)+ ex2 + x23 + 0.00001x4
∂y
∂x4

= 1e − 5



Page 7 of 13Kiran and Naik ﻿J Big Data            (2021) 8:88 	

dataset from a uniform distribution of the feature values. The range of the values chosen 
for each input feature for all three datasets is summarized in Table 3. These randomly 
generated input features are then substituted in the respective functions R1,R2 andR3 to 
obtain the associated target variables y for each dataset.

For obtaining a suitable FFNN configuration for each dataset, numerous trial configu-
rations with varying numbers of neurons and hidden layers were examined beforehand. 
The trial configuration that resulted in a mean squared error (MSE) less than 1e−6 on 
the validation dataset is chosen as the suitable configuration for training the datasets. 
The final configuration of FFNN that was adapted to train dataset 1 is 1st hidden layer 
(HL) (8 neurons)—2nd HL (5 neurons); dataset 2 is 1st HL (10 neurons)—2nd HL (5 
neurons); and dataset 3 is 1st HL (10 neurons)—2nd HL (5 neurons). Note that a soft 
plus function (see Fig. 4a) ( ln(1+ exp(�)) , where, � is the net input function of a neu-
ron) is used as an activation function for all the neurons in the hidden layers. The MSE 
of trained FFNN associated with dataset 1, dataset 2, and dataset 3 are determined to be 
8.2e−7, 5.6e−8, and 4.3e−7, respectively.

Comparison of CSDA‑FFNN output and the exact analytical derivative

CSDA is implemented on the trained FFNNs to evaluate the change in the predicted 
output variable ŷ with respect to the input feature xj where j = 1, 2, and 3 for dataset 
1 and dataset 2; and j = 1, 2, 3, and4 for dataset 3. Note that in CSDA implemented 
FFNN, the predicted output ( ̂y ) is a complex variable. According to Eq. 7, only the imag-
inary component of ŷ is required for obtaining the first-order derivative. More precisely, 
if g1, g2 and g3 indicates the approximate function (mapping x to ŷ ) learned by FFNN for 
dataset 1, 2 and 3 , respectively, then the first-order derivative of g1, g2 and g3 with respect 
to the feature xj are computed as

Table 3  Range of input features for generating regression dataset

Function Range of input features

R1 x1 ∼ U(0, 1); x2 ∼ U(1, 2); x3 ∼ U(0.5, 5)

R2 x1 ∼ U(−1, 1); x2 ∼ U(0, 5); x3 ∼ U(0, 3)

R3 x1 ∼ U(−1, 1); x2 ∼ U(0, 5); x3 ∼ U(0, 3); x4 ∼ U(0, 2)

(a) (b)

Fig. 4  Activation function ( z ) employed for training FFNNs a Softplus (for regression) and b ReLU (for 
classification)
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where, q = 3 for dataset 1 and dataset 2, and q = 4 for dataset 3. Since there are 2000 
instances in each dataset, the number of first-order derivatives evaluated with respect to 
each feature xj is also 2000. The comparison between the first-order derivative evaluated 
(for all 2000 instances) using CSDA implemented FFNN, and the exact analytical deriva-
tives are provided in Figs. 5 and 6. From Fig. 5, it is evident that the derivatives of the 
approximation function g1 (for dataset 1) evaluated with respect to features x1, x2 and x3 
using CSDA are in good agreement with the exact analytical derivatives ∂R1

∂x1
, ∂R1
∂x2

 and 
∂R1
∂x3

 , respectively. Among all the data points for features x1, x2 and x3 , the maximum 
absolute error ( ε ) (see Eq. 6) was found to occur at x1 = 1, x2 = 0.006074 and x3 = −1 . 
Similarly, from Fig.  6 (a)-(c), it is evident that the derivatives of the approximation 
function g2 evaluated with respect to x1, x2, and x3 using CSDA are also in good agree-
ment with the exact analytical derivatives ∂R2

∂x1
, ∂R2
∂x2

 and ∂R2
∂x3

 . Among all the data points 
for features x1, x2 and x3 , the maximum absolute error ( ε ) was found to occur at 
x1 = 0.9855, x2 = 1 and x3 = 0.0005 As mentioned earlier, in the case of function R3 (see 
Fig. 6d) where the input feature x4 is least relevant, the first derivative with respect to 
all values of x4 are found to be scattered above and below the exact analytical derivative 
which is zero.

g ′1 =
Imag

(
g1
(
x1, .., xj + ih, ..xq

))

h
; g ′2 =

Imag
(
g2
(
x1, .., xj + ih, ..xq

))

h
;

g ′3 =
Imag

(
g3
(
x1, .., xj + ih, ..xq

))

h
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implemented FFNN for Dataset 1
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Classification

Unlike the regression task, evaluating the derivatives in the case of the classifica-
tion task may not be feasible since the output of the FFNN is discrete (e.g., SoftMax 
activation function outputs). However, considering the fact that the inputs fed to the 
SoftMax activation neurons in the output layer are not discrete, the first-order deriva-
tives of such inputs could still be evaluated. These first-order derivatives will aid in 
providing information about the importance of the input features. In this subsection, 
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Fig. 6  Comparison of the exact analytical solution and the first derivative evaluated using CSDA 
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Decision 
Boundary

Fig. 7  Decision boundary learned by FFNN to classify the binary class artificial dataset
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the process of generating an artificial dataset for demonstrating the implementation 
of CSDA for classification tasks is described, and its significance in determining the 
top features is illustrated.

Dataset and CSDA implementation

A binary class artificial dataset with input features x1, x2 and x3 is generated such that all 
the instances belonging to class label 1 are enclosed within a cylinder of unit radius, and 
the rest of the instances belonging to class label 2 are outside the cylinder (see Fig. 7). In 
total, 1000 instances are generated for each class label. Note that the feature x3 is ran-
domly chosen from a uniformly distributed noise with a zero mean, which has the least 
relevance in determining the class label. The purpose of including feature x3 is to dem-
onstrate that the proposed approach has the ability to identify the least significant fea-
tures. The parametric equations used to generate the datasets are.

where r1 ∼ U(0, 1) and θ1 ∼ U(0, 2π)

where r2 ∼ U(1, 2) and θ2 ∼ U(0, 2π)

It is important to note that all three input features are independent of one another. 
Similar to the regression task, numerous trail configurations with a varying number of 
neurons and hidden layers were examined beforehand to obtain a suitable FFNN con-
figuration, i.e., a configuration that has prediction accuracy > 98%. The configuration of 
FFNN that was chosen to train the dataset is 1st HL (8 neurons)—2nd HL (5 neurons). 
Note that Rectified Linear Unit (ReLU) (see Fig.  4(b)) ( max(0,�) , where � is the net 
input function for a neuron) is used as an activation for all the neurons in the hidden lay-
ers and SoftMax function is used as an activation function for the neurons in the output 
layer.

The first derivative of the two net input functions in the output layer (i.e. �o1 and 
�o2 ) in FFNN with respect to input features x1, x2 and x3 are obtained for all the data 
points using CSDA, and the sum of their absolute values (i.e., the sum of all 2000 data 
points) are provided in Table 4. Considering that the first derivative (i.e. ∂�om

∂xj
 ) with 

respect to each input feature xj represents the proxy measure of its significance, the 
least relevant feature can be determined. In other words, the input feature that results 
in the lowest magnitude of the first derivative will be considered as the least relevant 
feature. From Table  4, it can be observed that the input feature x3 has the lowest 

Class Label 1 : x1 = r1cos(θ1); x2 = r1sin(θ1); x3 ∼ U(0, 0.0001)

Class Label 2 : x1 = r2cos(θ2); x2 = r2sin(θ2); x3 ∼ 0.0001 ∗ U(0, 1)

Table 4  CSDA of net function in output neuron as a feature score

Input feature, j = 1 2 3

∂�o1
∂xj

0.5009 0.4935 0.0056

∂�o2
∂xj

− 0.5009 − 0.4935 − 0.0056
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magnitude when compared to features x1 and x2 . Therefore feature x3 can be said to 
be the least relevant feature. In order to verify if the feature x3 is irrelevant, the FFNN 
is trained again with the exclusion of feature x3 and the confusion matrix is shown in 
Table 5. From the confusion matrix, it is evident that the exclusion of feature x3 does 
not influence the accuracy of classification. Furthermore the precision and recall were 
also determined i.e., 0.99 and 0.98 respectively, and were noticed to be uninfluenced 
by the exclusion of feature x3.

Summary and future work
In this study, a novel method is proposed to compute the analytical quality first deriva-
tive of the FFNN output with respect to the input features. The major drawback of pop-
ularly used finite difference approximation schemes is highlighted, and the concept of 
CSDA is introduced in the context of neural network differentiation. The significance of 
CSDA in circumventing subtractive cancellation errors is then illustrated using a simple 
example wherein analytical quality first derivative was obtained along with a normalized 
relative error approaching the double float precision. A step-by-step procedure involved 
in extending CSDA to FFNN is provided, and its implementation in regression and clas-
sification tasks is demonstrated by employing artificial datasets generated from known 
functions. FFNN’s are configured and trained using the trial-and-error process for all the 
artificial datasets. The first derivative results that are obtained from the CSDA imple-
mented FFNN output for the regression task was found to be in good comparison with 
the exact analytical derivatives of the known function. Owing to the discrete output in 
the classification task, the CSDA was used only to obtain the derivatives of net input 
function in the output neurons, and the least relevant features are identified. Note that 
the advantage of the proposed method is that it evaluates the derivative only in one feed-
forward operation and does not require the evaluation of derivatives used in the back-
propagation. Hence, the derivatives can be obtained even after the neural networks are 
deployed for specific applications.

It is important to note that feed-forward neural network was trained with the artifi-
cially generated data to learn these analytical functions so that the first-order deriva-
tives could be verified. Standard regression/classification datasets were not included 
in this study since the closed form expression of the function that maps the input 
variables to the target output is unknown in feed-forward neural networks which 
may make it difficult to verify the analytical quality derivative. However, the authors 
are currently working on implementing the proposed method on standard datasets. 
Furthermore, in the future work, the authors intend to extend the proposed method 

Table 5  Confusion matrix excluding feature x3

Predicted

Class label 1 Class label 2

Actual

 Class label 1 0.99 0.01

 Class label 2 0.02 0.98
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to the multiple output regression problems and investigate the influence of differ-
ent activation functions. In addition, the derivatives evaluated using the proposed 
method will be employed to perform feature selection on real datasets and validate 
using the currently available methods.
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