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Introduction
The association rule learning problem has played a significant role in data mining 
for the past few decades. Association rules are widely used in many fields, including 
market basket analysis [1] and bioinformatics [2]. However, the problem has an NP-
hard nature, meaning it is challenging to find the results within a reasonable period of 
time.

The invention of the Apriori Algorithm [3] made this problem computationally fea-
sible for most computers on regular-sized datasets. Since then, researchers have con-
tinued to develop more scalable algorithms. Among others, FP-Growth [4] and Eclat 
[5] are two algorithms developed that improve the scalability of the Apriori algorithm.

The increasing popularity of the Internet in recent decades has made big data 
available to many research institutions and companies. Their sizes are so large that 
traditional algorithms may not be able to handle them efficiently. We consider “big 
data” to be datasets that, at least, are too large to fit into the memory and take a long 
time (hours or even days) for traditional algorithms to process. The term big data is 
thus relevant to the machine. A dataset considered to be big data on a PC may be a 
small dataset on a powerful high-performance computer (or computer cluster). This 
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imposes a challenge to the association rule learning problem as well. Most of the pre-
viously designed algorithms, including the Apriori algorithm, the FP-Growth algo-
rithm, and the Eclat algorithm, suffer from the problem of scalability for big data. Still, 
these algorithms take an unacceptable amount of time to terminate (will be discussed 
in "Experiments and results" section). In addition, the FP-Tree of the FP-Growth algo-
rithm, and the TID list of the Eclat algorithm may not fit in the memory.

This paper introduces an approach that makes it possible to mine association rules 
and frequent itemsets for large datasets. The approach, called the Scalable Associa-
tion Rule Learning (SARL) heuristic, follows the divide-and-conquer paradigm and it 
vertically divides a dataset into almost equivalent partitions using a graph representa-
tion and the k-way graph partitioning algorithm [6]. The total time complexity of the 
SARL heuristic, including the overhead of partitioning a dataset, is up to 2d faster 
than that of the Apriori algorithm, where d is the number of unique items in the data-
set. The memory usage is also lower than those of the current algorithms. Because of 
the speedup, our heuristic may be applied to real-time data analysis that can benefit 
many scientific [7] and military applications [8, 9].

The rest of the paper is organized as follows. In "Related work" section, we survey 
existing association rule learning algorithms and graph partitioning algorithms. In 
"Our solution" section, we present the SARL heuristic with examples, formal descrip-
tions, theorems, and proofs. The experiments and results are presented in "Experi-
ments and results" section, followed by conclusions and future work.

Contributions
The contributions of this paper include the provision of association graphs that rep-
resent an efficient estimation of potential frequent itemsets and the use of the MLkP 
algorithm to divide the items into partitions while minimizing the loss of information.

The novelty of this paper lies in two parts of our solutions (discussed later). Firstly, 
we propose the verticle(item-wise) partition of datasets while most divide and con-
quer algorithms focus on horizontal (transaction-wise) divide and conquer methods. 
Secondly, the transformation of frequent two-itemsets into graph representation 
while applying the efficient MLkP algorithm is a novel and efficient approach in solv-
ing the association rule learning problem.

Related work
Association rule learning/frequent itemset mining has been an active research 
area. Among others, three approaches are considered the most popular and possi-
bly the most efficient: the Apriori algorithm, the FP-Growth algorithm, and the Eclat 
algorithm.

The Apriori algorithm

The Apriori algorithm [3], introduced by Agrawal and Srikant, was the first effi-
cient association rule learning algorithm. It incorporates various techniques to 
speed up the process as well as to reduce the use of memory. For example, the Lk-

1 × Lk-1 method used in the candidate generation process can reduce the number of 
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candidates generated, and the pruning process can significantly reduce the number of 
possible candidates at each level.

One of the most important mechanisms in the Apriori algorithm is the use of the 
hash tree data structure. It uses this data structure in the candidate support counting 
phase to reduce the time complexity from O(kmn) to O(kmT + n), where k is the aver-
age size of the candidate itemset, m represents the number of candidates, n repre-
sents the number of items in the whole dataset, and T is the number of transactions.

The major advantage of the Apriori algorithm comes from its memory usage 
because only the k − 1 frequent itemsets, Lk − 1, and the candidates in level k, Ck, 
need to be stored in the memory. It generates the minimum number of candidates 
based on the Lk−1 × Lk−1 (described in [3]) and the pruning method, and it stores 
them in the compact hash tree structure. In case the candidates fill up the memory 
from the dataset and a low minsup setting, the Apriori algorithm does not generate 
all the candidates to overload the memory. Instead, it generates as many candidates as 
the memory can hold.

The FP‑growth algorithm

The Frequent Pattern Growth algorithm was proposed by Han et  al. in 2000 [4]. It 
uses a tree-like structure (called Frequent Pattern Tree) instead of the candidate 
generation method used in the Apriori algorithm to find the frequent itemsets. The 
candidate generation method finds the candidates of the frequent itemsets before 
reducing them to the actual frequent itemsets through support counting.

The algorithm first scans a dataset and finds the frequent one itemsets. Then, a fre-
quent pattern tree is constructed by scanning the dataset again. The items are added 
to the tree in the order of their support. Once the tree is completed, the tree is tra-
versed from the bottom, and a conditional FP-Tree is generated. Finally, the algorithm 
generates the frequent itemsets from the conditional FP-Tree.

The FP-Growth algorithm is more scalable than the Apriori algorithm in most cases 
since it makes fewer passes and does not require candidate generation. However, it 
suffers from memory limitations since the FP-Tree is fairly complex and may not fit in 
the memory. Traversing the complexed FP-Tree may also be time-expensive if the tree 
is not compact enough.

The Eclat algorithm

Different from the Apriori algorithm and the FP-Growth algorithm that work on hori-
zontal datasets (e.g., T001: {1, 3} T002:{1, 4}), the Eclat (Equivalence Class Cluster-
ing and bottom-up Lattice Traversal) algorithm [5] uses a vertical dataset (e.g. Item1: 
{T001, T002}, Item3: {T001}, Item4:{T002}). The Eclat algorithm only scans the data-
set once. It finds the frequent itemsets by taking the intersections of the transaction 
sets.

The Eclat algorithm takes advantage of scanning the dataset only once. However, 
when the dataset is large, and the minsup is set to a low value, the TID associated 
with each itemset may become very long. In fact, the results can be larger than the 
original dataset; therefore, they may not fit into the memory.
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Other association rule learning algorithms

There are three categories of association rule mining/frequent itemset mining algo-
rithms [10]: Apriori-based algorithms, tree-based algorithms, and pattern growth 
algorithms. The Apriori algorithm, the Eclat algorithm, and the FP-Growth algorithm 
are the most popular algorithms for the three categories, respectively.

In the Apriori-based algorithm category, proposed by Agrawal and Srikant in [3] 
the AprioriTID algorithm is similar to Apriori, except that it generates Ck-bar and 
it mines the frequent itemsets from there instead of the dataset. The Apriori Hybrid 
algorithm [3] is a combination of the Apriori algorithm and the AprioriTID algorithm. 
The DHP (direct hashing and pruning) algorithm [11] uses a hash function to dis-
tribute the itemsets into buckets. If a bucket has the support lower than the minsup, 
then the bucket is discarded. The MR-Apriori [12] and HP-Apriori [13] algorithms 
are distributed versions of the Apriori algorithm. The MR-Apriori uses the MapRe-
duce model on the Hadoop platform. They enable parallel execution of the Apriori 
algorithm.

The tree-based algorithms, represented by the Eclat algorithm, find the frequent 
itemset by constructing a lexicographic tree. The AIS algorithm [6] and the SETM 
algorithm [14] are the two earliest association rule mining algorithms in this category. 
Reference [3] shows that the Apriori algorithm beats them in running time. The Tree-
Projection algorithm [15] counts the supports of the frequent itemsets and uses the 
nodes of a lexicographic tree as the representation of these support numbers. The TM 
algorithm [16] maps the TID of each transaction to transaction intervals before per-
forming intersections between these intervals.

Lastly, the algorithms in the pattern growth category focus on frequent patterns. 
The P-Mine algorithm [17] is a parallel computing algorithm that utilizes the VLD-
BMine data structure to store the dataset and speed up the distribution of data, 
while the LP-Growth algorithm [18] makes use of an array-based linear prefix tree 
to improve the memory efficiency. The Can-Mining algorithm [19] finds the frequent 
itemsets from a canonical-order tree, which speeds up the tree traversal process when 
the number of frequent itemsets is low. Finally, the EXTRACT algorithm [20] uses the 
theory of Galois lattice to derive association rules.

The algorithms discussed above, unfortunately, have scalability problems. The 
Apriori-based algorithms, represented by the Apriori algorithm, have to go through 
the expensive candidate generation and support counting process. This causes a dis-
advantage in running time. The tree-based and the pattern-growth type algorithms 
often suffer from excessive usage of memory. For example, the FP-Growth algorithm 
could build a complex FP-Tree which does not fit into the memory.

We show the scalability problems of the Apriori algorithm and the FP-Growth algo-
rithm in the experiment part of this paper. Both of the algorithms take too long to 
finish for most of the tested datasets. The need for faster, frequent itemset mining is 
urgent due to the vastly available data today. Companies and institutions have allo-
cated many resources in data mining, and they need a time-saving, resource-saving 
solution. In addition, real-time data analysis plays an important role in government 
[21], scientific [7], and military [8, 9] applications. The experiments part of this paper 
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shows that the current algorithms represented by the Apriori algorithm and the FP-
Growth algorithm are not fast enough to complete real-time data analysis. The scal-
ability problems of most existing association rule mining algorithms have also been 
addressed in [22] that is focused on paralleled computing of association rules whereas 
this paper presents a scalable algorithm that is suitable for a single machine also.

Graph partitioning algorithms

One of the key steps in the SARL heuristic that we will introduce shortly is to parti-
tion the IAG (item association graph, "Our solution" section, part 7) into k balanced 
partitions. An efficient graph partitioning algorithm is crucial since the balanced 
graph partitioning problem is NP-complete [23]. We have implemented three algo-
rithms and compared them for the partitioning costs and running times. They are the 
recursive version of the Kernighan-Lin Algorithm [24], the Multilevel k-way Parti-
tioning Algorithm (MLkP) [25], and the recursive version of the Spectral Partitioning 
Algorithm [26]. Other graph partitioning algorithms include the Tabu search-based 
MAGP algorithm [27] and the flow-based KaFFPa algorithm [28].

The Kernighan-Lin algorithm swaps the nodes assigned to both partitions and finds 
the largest decrease in the total cut size. The Multilevel k-way Partitioning algorithm 
(MLkP) uses coarsening-partitioning-uncoarsening/refining steps to shrink a graph 
into a much smaller graph. After partitioning, the graph is rebuilt to restore the origi-
nal graph. A single global priority queue is used for all types of moves. The Spectral 
Partitioning Algorithm finds splitting of the values such that the vertices in a graph 
can be partitioned with respect to the evaluation of the Fiedler vector.

Experiments are conducted by us to compare the three algorithms. The datasets 
provided by Christopher Walshaw at the University of Greenwich [29] are used. 
The datasets are as large as possible while the partitioning algorithms can finish in a 

Table 1   Results of the experiment that compare MLkP, Kernighan-Lin, and Spectral Partitioning 
algorithms 
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reasonable time on the tested machine. We also run experiments on complete graphs 
with 30 and 300 nodes. Each dataset is tested four rounds with the number of parti-
tions (k) being 2, 4, 8, and 16.

As shown in Table  1, the running times are highlighted in the red box. We can 
tell from average running time(the last row) that the MLkP algorithm has the high-
est speed in general. It is 560 times faster than the spectral partitioning algorithm 
and even faster than the recursive Kernighan-Lin algorithm. The spectral partition-
ing algorithm has, in general, the best partition quality. It is 1.3 times better than 
MLkP and much better than the recursive Kernighan-Lin algorithm. The recursive 
Kernighan-Lin algorithm takes too long to complete all five datasets. It also shows 
serious scalability issues for complete graphs.

Considering the MLkP algorithm has the best overall performance, we choose to 
use this algorithm for graph partitioning in our algorithm.

Our solution
Definitions

Below are some definitions that we will use in our algorithm:

1.	 K-itemset: an itemset with k items
2.	 Support: the occurrence of an item in the dataset
3.	 Minsup: the minimum requirement of support. The user usually provides this. 

Itemsets with support < minsup are eliminated.
4.	 Confidence: the indication of robustness of a rule in terms of percentage.

5.	 Minconf: the minimum requirement of confidence. The user usually provides this. 
Rules with confidence < minconf are eliminated.

6.	 Item-Association Graph: a graph structure that stores the frequent associations 
between pairs of items.

7.	 Balanced K-way Graph Partitioning Problem: Divide the nodes of a graph into k 
parts such that each part has almost the same number of nodes while minimizing 
the number of edges/sum of edge weights cut off.

A scalable heuristic algorithm—SARL‑heuristic

The following is an outline of our scalable heuristic:

Step 1: Find frequent one and two itemsets using the Apriori algorithm (when 
minsup is high) or the direct generation method (when minsup is low).
Step 2: Construct the item association graph (IAG) from the result of step 1.
Step 3: Partition the IAG using the multilevel k-way partitioning algorithm 
(MLkP).
Step 4: Partition the dataset according to the result of step 3.

Confidence(X → Y) = support(X ∪ Y )
/

support(X)
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Table 2  Example dataset 1

TID Items

T000 1, 2

T001 1, 2, 3

T002 4, 5

T003 1, 4, 5

T004 2, 3

T005 1, 2, 3

T006 1, 4, 5

Table 3  Frequent one itemsets

Frequent itemsets Support

{1} 5

{2} 4

{3} 3

{4} 3

{5} 3

Table 4  Frequent two itemsets

Frequent itemsets Support

{1, 2} 3

{1, 3} 2

{1, 4} 2

{1, 5} 2

{2, 3} 3

{4, 5} 2

Fig. 1  An item association graph
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Step 5: Call the modified Apriori algorithm or the FP-Growth algorithm to mine 
frequent itemsets on each transaction partition.
Step 6: Find the union of the results found from each partition.
Step 7: Generate association rules by running the Apriori-ap-genrules on the fre-
quent itemsets found from step 6.

An example

Suppose the dataset shown in Table  2 is given and minsup is set to 0.1 (or 10%, or 
7 ∗ 0.1 ≈ 1 occurrence), and minconf is set to 0.7 (or 70%):

First, we use the Apriori algorithm to find the frequent two itemsets. As an inter-
mediate step, the Apriori algorithm finds the frequent one-itemset first (shown in 
Table 3):

The frequent two-itemsets are found afterward (shown in Table 4):

Fig. 2  Item association graph partition 1

Fig. 3  Item association graph partition 2

Table 5  Transaction partition 1

TID Items

T001 1, 2, 3

T005 1, 2, 3
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Next, we transform the above frequent two-itemsets into an item association graph 
(IAG), shown in Fig. 1:

To construct the graph, we first take the itemset {1, 2} with support 3. For this, we 
create node 1 and node 2 corresponding to the two items in the itemset. The edge 
between node 1 and node 2 has weight 3, representing the support of the itemset. The 
process is repeated for every frequent two-itemset found in the previous step.

Next, we use the multilevel k-way partitioning algorithm (MLkP) to partition the 
IAG. In this case, the number of nodes is small, so we only bisect the graph by setting 
k = 2. The result is shown in Figs. 2 and 3.

The MLkP algorithm divides the IAG into two equal or almost equal sets in linear 
time while the sum of the weights of edges that are cut off is the minimum.

Table 6  Transaction partition 2

TID Items

None None

Table 7  Frequent itemsets from transaction partition 1

Frequent itemsets Support

{1, 2, 3} 2

Table 8  Frequent itemsets from transaction partition 2

Frequent itemsets Support

None N/A

Table 9  Frequent itemset final results

Frequent itemsets Support

{1} 5

{2} 4

{3} 3

{4} 3

{5} 3

{1, 2} 3

{1, 3} 2

{1, 4} 2

{1, 5} 2

{2, 3} 3

{4, 5} 3

{1, 2, 3} 2
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Next, we partition the dataset according to the partitions of the IAG, as shown in 
Tables 5 and 6. Each transaction partition has all the items from the corresponding 
IAG partition. However, since the algorithm has already found all frequent one and 
two itemsets, a transaction is not added to a transaction partition if the transaction 
has less than three items. For example, T000: {1, 2} is not added to the transaction 
partition 1, since it only has two items. Some items in the original dataset may not 
appear in any of the transaction partitions, because the infrequent one/two-itemsets 
are dropped in the IAG. This simplifies the subsequent computations. In this exam-
ple, however, all the items are kept in the IAG because the IAG is a relatively dense 
graph. Tables 5 and 6 show the transaction partitions:

The next step is to pick the best algorithm and use it to find the frequent k-itemsets 
with k > 2. For this example, we choose the modified Apriori algorithm because it is 
faster for mining small datasets as it avoids the process of finding the one and two-
itemsets again. The results from partition 1 are shown in Table 7:

Since the modified Apriori algorithm starts with three-itemsets, there are no addi-
tional frequent itemsets in the first partition. Table 8 shows the results found in trans-
action partition 2:

The final results (shown in Table  9) of frequent itemsets are simply the union of 
Tables 3, 4, 7, and 8:

After running the Apriori-ap-genrules algorithm, the association rules can be found 
in Table 10.

All frequent itemsets generated by the SARL heuristic are sound, meaning each fre-
quent itemset generated indeed is correct, and the support number is accurate. How-
ever, it is possible that some frequent itemsets cannot be found by the SARL heuristic, 
as will be discussed shortly. In this example, the SARL heuristic loses one frequent 
itemset {1, 4, 5} and two related rules generated from {1, 4, 5}.

Formal description of the SARL heuristic

SARL(dataset, minsup, minconf, k, threshold):

Table 10  Association rules generated

Rules Confidence

{2}  {1} 0.75

{3}  {2} 1

{5}  {1} 1

{2}  {3} 0.75

{5}  {4} 1

{4}  {5} 1

{1, 3}  {2} 1
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Finding frequent 2 itemsets using the Apriori algorithm or dirct_gen algorithm

The first step of the SARL heuristic is to find the frequent 2 itemsets efficiently.
Although the Apriori algorithm has scalability issues for very large datasets, it pro-

vides a fast and convenient feature to extract intermediate results and a tolerable 
speed for the first two passes.

The Apriori algorithm finds frequent itemset Lk for each k, and each Lk is stored 
separately. We run the Apriori algorithm until it finds L2, the frequent two-itemset. 
It first tries to find the frequent one itemsets by traversing the dataset and count the 
occurrence of each unique item. If the number of occurrences of an item is less than 
the minsup provided by the user, that item is eliminated from the list of frequent one-
itemset. The frequent two itemsets are discovered based on the frequent one itemsets. 
The algorithm generates C2, the candidate sets for the frequent two itemsets, using 
Lk−1 × Lk−1:

insertintoCk

selectp.item1, p.item2, . . . , p.itemk−1, q.itemk−1

fromLk−1p, Lk−1q
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This method generates a minimum number of candidates from the frequent one 
itemsets so that we can have fewer candidates to consider in the support counting 
phase. The Apriori algorithm also predicts and eliminates some infrequent itemsets 
before support counting by implementing the Apriori principle in the pruning step. 
If an item in C2 is not in L1, which means that the item is infrequent, so all the two 
itemsets that include this item are dropped. We modify the Apriori algorithm, so it 
terminates after L2 is found.

Another method to find frequent one and two itemsets are through direct counting 
and generation. The algorithm to find frequent one itemsets is the same as the Apri-
ori algorithm. To find frequent two itemsets, we can simply find all two-item pairs in 
each transaction and count the occurrence of them. The advantage of this algorithm 
is that it does not require candidate generation from L1, and avoids much unneces-
sary membership testing during support counting. However, this method is not effi-
cient on large datasets since it does not use pruning and saves all two itemsets.

In the SARL heuristic, we ask the user for a threshold of the dataset size. If the 
dataset is larger than the threshold, the SARL heuristic will use the modified Apriori 
algorithm. Otherwise, it will use the direct_gen algorithm to compute the frequent 
one and two itemsets.

Construction of the item association graph

The item association graph G is constructed based on the two itemsets generated by 
the Apriori algorithm. G is an undirected, weighted graph. A node Vi is created for 
each unique item i in the two itemsets T with the maximum item number being n.

The edges E in graph G are formed for each itemset in T:

The weight of each edge Eij is equal to the support of itemset {i, j} in T:

Partition the IAG using the multilevel k‑way partitioning algorithm (MLkP)

The Multilevel k-way partitioning (MLkP) algorithm [25] is an efficient graph parti-
tioning algorithm. The time complexity is O(E), where E is the number of edges in the 
graph, and the maximum load imbalance is limited to 3%.

The general idea of MLkP is to shrink (coarsen) the original graph into a smaller 
graph, then partition the smaller graph using an improved version of the KL/FM 

wherep.item1 = q.item1, . . . , p.itemk−2 = q.itemk−2, p.itemk−1 < q.itemk−1;

(1){V } =

{

n
⋃

i=0

Vi|i ∈ |T |

}

(2){E} =







n
�

i=0,j=0

Eij|{i, j} ∈ T







(3)W
(

Eij
)

= Support
({

i, j
})

|{i, j} ∈ T
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algorithm. Lastly, it restores (uncoarsen) the partitioned graph to a larger, partitioned 
graph.

METIS is a software developed by Karypis at the University of Minnesota [30]. It 
includes an implementation of the MLkP algorithm that takes a graph as the input 
and outputs groups of nodes separated after the partition.

Transaction partitioning

Based on the results of the MLkP algorithm that divide the items into groups P1, P2,…
,Pm, we can partition the transactions into the same number of groups, where each 
group Di contains only the items in partition Pi . For a transaction tobe included in Di , 
it must have all the items from partition Pi . If a transaction includes more items than 
the items from partition Pi , only the items in Pi that are included in the transaction 
are added to Di . That is, only a part of the transaction is added to Di . As a result, each 
transaction in a transaction partition must be a subset of the corresponding transac-
tion in the original dataset. If a transaction has less than three items, the transaction 
is not added. This is because we have already mined the one and two itemsets, and 
are only interested in itemsets that have 3 or more items. This optimization helps to 
reduce the size of transaction partitions.

In the above, Di is transaction partition i, Tj is the transactions to be added to parti-
tion i,  Sj is the jth transaction in the original dataset, Pi is the item partition i, and D 
is the original dataset.

Since the number of unique items in each partition is less than or equal to 
numberofnodesinIAG

k
 rather than totalnumberofuniqueitems

k
 , the size of each partition should be 

small compared to the original dataset. In rare cases, if the size of a transaction parti-
tion is greater than the memory size, the SARL heuristic can partition the IAG and 
the transactions again with k incremented by 1. This guarantees that each partition 
fits into the memory.

Selecting an algorithm on transaction partitions

One of the benefits that come with our solution is that the association rule learning 
on each transaction partition can be optimized by using an algorithm that best fits the 
partition.

During the association rule learning on the partitioned datasets, we have three can-
didates that are considered efficient: the Apriori algorithm, the FP-Growth algorithm, 
and the Eclat algorithm.

Since the modified Apriori algorithm has already computed the one itemsets and 
two itemsets during the preparation phase, the candidate generation feature of the 
Apriori algorithm is handy in this case. We modify the Apriori algorithm to skip the 
frequent one/two itemsets finding stages and start with the frequent three itemsets 

(4)Di =







n
�

j=1

Tj|(Tj → Sj ∩ Pi|Sj ∈ D)






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from the transaction partitions. This modification is particularly helpful when the 
minsup is set to a high value so that the expected number of itemsets is limited after 
the two itemsets are found.

We can estimate the expected number of itemsets from the average transaction 
length of each transaction partition. A higher average transaction length indicates a 
higher possibility of the presence of a long “tail” in the result. Results with long tails 
have itemsets with considerable maximum lengths, while results with short tails only 
contain itemsets with small maximum lengths. A dataset with an expected long tail 
means the association rule learning algorithm does not terminate soon after the two 
itemsets are found.

The average transaction length provides a fast and straightforward reference for 
selecting the best algorithm for each transaction partition. If the average transaction 
length is low, the Apriori algorithm can be the right choice, as the modified Apriori 
algorithm continues from the two itemsets that the preparation phase has already 
calculated. If the average transaction length is high, we can take advantage of the 
scalability of the FP-Growth algorithm. We omit the Eclat algorithm because the FP-
Growth and the Eclat algorithms do not have the same advantage provided by the 
modified Apriori algorithm, of which the algorithm can start with the two itemsets. 
In addition, studies [31] show that the Eclat algorithm is slightly less scalable than the 
FP-Growth algorithm.

Next, the selected algorithm is used to find the frequent local itemsets from the 
given transaction partition. After the algorithm terminates, a simple union is per-
formed on the frequent itemsets found from each partition. Finally, Apriori-ap-
genrule is used to derive the rules from the frequent itemsets. This step is relatively 
simple.

Time complexity and space complexity

The theoretical time and space complexity of the Apriori algorithm is O(2d) where d is 
the number of unique items in the dataset.

Time complexity

The theoretical time complexity of the SARL heuristic consists of the complexity of 
several parts:

2-itemsets generation Finding frequent 2-itemsets requires finding 1-itemsets first. 
This step is simply O(n) as the algorithm traverses the dataset once. Next, the can-
didate generation for 2-itemsets takes O(d2) where d is the number of unique items 
in the dataset. Finally, the support checking requires O(n+ d2T ) where T is the 
number of transactions in the dataset. Therefore, the time complexity of this step is 
O(d2T + n).

IAG construction Since each edge in the IAG is a representation of a frequent two-
itemset, and the maximum number of two-itemsets is d

2+d
2  , the maximum number 

of edges in IAG is also d
2+d
2  . Therefore, constructing the IAG takes O(d + d2+d

2 ) or 
O
(

d2
)

.
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IAG partition The time complexity of the IAG partition process is equal to the time 
complexity of the MLkP algorithm, which is O(E) or O(d2).

Transaction partition The dataset is traversed once to assign items into different 
partitions. Hence the time complexity is O(n).

Running a selected algorithm The algorithm selection requires the calculation of the 
average transaction width of each transaction partition. The time complexity of this is 
O(kn), where k is the number of partitions.

If the modified Apriori algorithm is selected, the theoretical time complexity for 
each partition is O(21.03d/k) where the coefficient 1.03 comes from the 3% maximum 
imbalance of the partitions caused by the MLkP algorithm. The total running time for 
all the partitions is O

(

k ∗ 2
1.03d
k

)

→ O(2
1.03d
k ) , and the total time complexity of the 

SARL algorithm, when the modified Apriori algorithm is selected, is 
O
(

d2T + n+ d2 + d2 + n+ 2
1.03d
k

)

→ O(d2T + n+ 2
1.03d
k ) . Assume n ≫ d , and 

2
1.03d
k ≫ n , the time complexity can be simplified to O(2

1.03d
k ) . Compared with the time 

complexity of the Apriori algorithm, the SARL is O
(

2d

2
1.03d
k

)

→ O(2
k−1.03

k
d) times 

faster than the Apriori algorithm. The exponential speedup comes from the smaller 
number of unique items in each transaction partition. The algorithm that is chosen to 
mine frequent itemsets from the transaction partitions only needs to consider a por-
tion of all the items for each partition.

Space complexity

Like time complexity, the space complexity of the SARL heuristic consists of the com-
plexity of several parts:

2-itemsets generation Finding the frequent two itemsets requires finding the one 
itemsets first. This step is O(d) , where d is the number of unique items in the dataset, 
as we need to keep at most d items in the memory. Next, the candidate generation 
step for the 2-itemsets takes O(d2) space for at most d(d−1)

2  frequent 2-itemsets as can-
didates. Finally, the support checking requires another O(d2) space to store the sup-
port numbers. Hence, this step requires O(d2) space.

IAG construction Since each edge in the IAG is a representation of a frequent two-
itemset, and the maximum size of the two-itemsets is d

2+d
2  , the maximum number of 

edges in IAG is also d
2+d
2  . Therefore, storing the IAG takes O

(

d2
)

 space. This d2 space 
occupation only occurs when every unique item in the dataset is included frequent 
two-itemsets with every other unique item in the dataset. In most cases, the actual 
space required to store IAG is smaller than the memory size.

In rare cases, if the IAG cannot fit into the memory, then the Apriori algorithm and 
FP-Growth algorithm must have memory issues, too. For the Apriori algorithm, all 
frequent two-itemsets must be stored in the memory to generate the candidates in 
the next level, and the size of frequent two-itemsets is similar to the IAG. FP-Tree 
must be stored in the memory for the FP-Growth algorithm. The space complexity 
of the FP-Tree is also O

(

d2
)

 , however, all unique items need to be stored in the tree 
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while only the unique items in the frequent two-itemsets need to be stored in the 
IAG. Therefore, IAG has a lower space complexity than the FP-Tree.

IAG partition The space complexity of the IAG partition is equal to the space com-
plexity of the MLkP algorithm, which is O(E) or O(d2).

Transaction partition The dataset is traversed once to assign items into different 
partitions. We can assume each partition can fit into the memory. Therefore, the 
space complexity is O(n

k
).

Selecting and running the selected algorithm The algorithm selection requires the 
calculation of the average transaction width of each transaction partition. The space 
complexity of this is O(k) = O(1), where k is the number of partitions.

If the modified Apriori algorithm is selected, the theoretical space complexity for 
each partition is O

(

2
1.03d
k

)

, where the coefficient 1.03 comes from the default 3% max-

imum imbalance of partitions caused by the MLkP algorithm. The total space com-
plexity for all partitions is therefore O

(

k ∗ 2
1.03d
k

)

→ O(2
1.03d
k ) , and the total space 

complexity of the SARL heuristic, when the modified Apriori algorithm is selected, is 
O
(

(3− 1) ∗ d2 + n
k
+ 2

1.03d
k

)

→ O(d2 + n
k
+ 2

1.03d
k ) . Assume n

k
≫ d , and 2

1.03d
k ≫ n

k  , 

the space complexity can be simplified to O(2
1.03d
k ) . Compared with the space com-

plexity of the Apriori algorithm, SARL uses only 

O

(

2
1.03d
k

2d

)

→ O
(

2
1.03−k

k
d
)

→ o( 1

2
k−1.03

k
d
) space comparing to the Apriori algorithm. 

The exponential reduction of space usage comes from the smaller number of unique 
items in each transaction partition. If the modified Apriori is chosen to mine frequent 
itemsets from the transaction partitions, it only generates a smaller number of candi-
dates for each transaction partition, since it does not consider items in other 
partitions.

Error bound

The SARL heuristic sacrifices some precision to obtain the speed up. However, every 
frequent itemset found by the algorithm is correct, and the support associated with 
each frequent itemset is also correct. The heuristic may miss some trivial frequent 
itemsets, i.e., the itemsets with low support. During the IAG partition phase, the 
MLkP algorithm makes cuts on the IAG to minimize the sum of the weights of the 
edges that are cut off. This feature helps to prevent large weights from cut off, while 
some trivial, small-weight (support) edges may be lost.

In the most (extreme) case, when every transaction has all the items and minsup is 
set to 0, we can calculate the error bound. In this case, the IAG is a complete graph, 
and the fraction of the edges cut off by the MLkP algorithm is  n∗

(

n− n
k

)

E =
(k−1)n
k(n−1)

 . 
When n is very large, the fraction is approximatelyk−1

k  . In this case, we can set k as 
low as 2 to still maintain 50% coverage for the frequent three or more itemsets. The 
calculation of frequent one and two itemsets is always accurate because they are cal-
culated using the Apriori algorithm or the direct-generate algorithm.

The error rate should be significantly lower in more practical cases. However, it is 
difficult to estimate such an error rate considering it is affected by many factors such 
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as the closeness of groups of items (i.e., does an item appear with only a small number 
of other items?), the choice of minsup, and the max length of the frequent itemsets. 
We can make a rough estimation by introducing a parameter Pout , the ratio of the 
edges cut off in the IAG. Pout = Ecut

Etotal
 . This parameter is determined by the character-

istics of a dataset, the minsup choice, and the number of partitions we choose. Pout is 
also a rough estimation of the error rate for the frequent two or more itemsets. 
Assume the ratio of the frequent two or more itemsets found is Pm,

then the total error bound can be computed as

Initial selection of number of partitions, k

The selection of k determines the speed and accuracy of the SARL heuristic. A larger 
k usually means faster speed and lower accuracy, and vice versa. Depending on the 
size of the dataset and the application, k = 2, 3, or 4 are some balanced choices. In 
rare cases, the heuristic will increase the k value if any transaction partition cannot fit 
into the memory based on the current setting of k.

Benefits of having datasets fit into the memory

According to "Our solution" section, Part 8, the transaction partitions are guaranteed 
to be small enough to fit into the memory. Therefore, any operations performed on 
these in-memory datasets should be faster than before. For example, the Apriori algo-
rithm makes the number of passes on the dataset equal to the maximum length of 
frequent itemsets. Each of these passes requires reading the dataset from the disk. 
With our solution, the SARL heuristic makes at most two passes to the dataset. The 
first pass is to generate the frequent one and two itemsets, and in the second pass, 
the algorithm brings a fraction of the dataset into the memory. All further passes are 
made directly in the memory, resulting in speedup.

We do not analyze the communication cost between the main memory and the 
hard disk quantitatively in this paper. Due to the nature of our divide-and-conquer 
approach, we do not implement any additional swapping mechanism, so each parti-
tion is only brought into the memory once. Therefore, such cost should be no larger 
than the cost of the Apriori algorithm.

Theorems and proofs

Theorem 1  Soundness—All frequent itemsets and association rules generated by the 
SARL heuristic are correct.

Proof  Assume the SARL heuristic generates an incorrect frequent itemset. We 
can assume the correctness of the Apriori algorithm and the FP-growth algorithm. 

(5)Pm =
#frequent2+ itemsets

#totalfrequentitemsets

(6)Errortotal = Pm ∗ Pout
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Therefore, there must be an error in transaction partitioning. There could be two pos-
sible types of error in transaction partitioning:

(Possibility 1) The support of some itemsets is higher or lower than it should be.

(Possibility 2) Some transactions include additional items or lose some items.

Assume the first possibility is true. We divide the dataset vertically (item-wise) dur-
ing the transaction partitioning phase. Since every item in the original dataset D that 
belongs to Pi must be added to Di , all unique items in a transaction partition must 
appear in the same number of transactions as the original dataset. Hence, the support 
of each itemset should be the same as the original dataset. This conflicts with the first 
possibility: the support of some itemsets is higher or lower than it should be.

Assume the second possibility is true. During the transaction partitioning phase, 
each transaction in the original dataset may be assigned to a transaction partition, 
or it may be split into different disjoint parts. Therefore, each transaction in a trans-
action partition must be a subset of the corresponding transaction in the original 
dataset, and this process cannot add any new items into any transactions. If some 
items are lost during the transaction partitioning phase, the results may have incor-
rect supports. However, we know that the union of the unique items in each transac-
tion partition is equal to the unique items of the frequent two-itemsets, since the IAG 
partitioning cuts off some edges of IAG but not the nodes. According to the Apriori 
principle, a three-itemset can be frequent if and only if all its two-item subsets are 
frequent. This means that the unique items of three or more frequent itemsets must 
be a subset of the unique items of frequent two-itemsets. Hence, we have

where In is the unique items of frequent n-itemsets, Pj is the unique items of transac-
tion partition j, and m is the number of transaction partitions. Therefore, all items 
needed by the frequent three (or higher) itemsets are present in the transaction 
partitions. Hence, we find a contradiction between our algorithm and the second 
possibility.

In summary, since both possibilities are proved to be false, the SARL heuristic is 
sound.�  □

Theorem 2  Computing the frequent two itemsets is considered relatively trivial com-
pared to computing the frequent three or more itemsets.

Proof  If the computation of the frequent two itemsets takes more than half of the 
total computation time, we may say computing frequent two itemsets is not trivial.

To characterize the distribution of frequent itemsets is relatively difficult due to the 
challenges in modeling the data. We develop a mathematical model to simulate the 

(7)∀n ≥ 3, In ⊆ I2 =

m
⋃

j=1

Pj



Page 21 of 32Li and Sheu ﻿J Big Data            (2021) 8:86 	

characteristics of any dataset. The relationships of all the frequent itemsets can be 
depicted using an itemset lattice diagram shown below:

Figure  4 shows the case when every itemset has a support greater than minsup. 
However, in most cases, each layer will have some itemsets being removed due to 
either one of the two reasons: the anti-monotone property of the Apriori principle or 
the lack of support (i.e., support < minsup). To model the former, we apply the anti-
monotone property to the itemset lattice. The anti-monotone property is as follows:

where if J = 2I , I being a set of items, X is a subset of Y, then the measure f must be 
anti-monotone. Applying this property to the lattice, we can have the following expla-
nation: if an itemset is infrequent, then all of its supersets must also be infrequent.

For example, in Fig. 5, if {1, 3} is infrequent, then {1, 2, 3}, {1, 3, 4}, and {1, 2, 3, 4} are 
all infrequent. To model this property, we can imagine that each infrequent itemset in 
the same layer causes some supersets in the next layer to be infrequent. The first 
infrequent itemset results in n-k + 1 infrequent itemsets in the next layer, where n is 
the number of unique items in the dataset, and k is the current layer number or the 
number of items in each itemset of the current layer. We know that each layer has Cn

k  
itemsets if none of them is infrequent. Then the next layer will have Cn

k+1 total item-
sets. Since n-k + 1 is the number of current infrequent itemsets in the next layer,  

(8)∀X ,Y ∈ J : (X ⊂ Y ) → f (Y ) ≤ f (X)

Fig. 4  An itemset lattice
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n−k+1
Cn
k+1

 is the current fraction of frequent itemsets over all the itemsets in the next 

layer. Therefore, 1− (n−k+1)
Cn
k+1

 is the probability of having a frequent itemset in the next 

layer if we randomly choose an itemset, and the second infrequent itemset should 
cause 

(

1− (n−k+1)
Cn
k+1

)

∗ (n− k + 1) infrequent itemsets in the next layer. For the same 

reason, the third infrequent itemset in the current layer should cause.


1−
(n−k+1)+

�

1− (n−k+1)
Cn
k

�

∗(n−k+1)

Cn
k+1



 ∗ (n− k + 1) infrequent itemsets in the next 

layer. We can now estimate the number of infrequent itemsets I in the next layer using 
the number of infrequent itemsets in the current layer:

Fig. 5  An example of pruning

Table 11  Estimation of the number of itemsets

p #two itemsets #three itemsets #four itemsets 2/(3 + 4)

0.8 12,736 228,346 972,761 0.010603552

0.6 7164 41,585 714,273 0.009477971

0.4 3184 6761 30,960 0.084409215

0.2 796 589 1898 0.320064335

0.1 199 67 118 1.075675676
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The remaining frequent itemsets in layer k, considering the above estimation of the 
influence of the Apriori principle, is Cn

k − Ik−1 . Let us assume the probability p that 
an itemset to be frequent, assuming its parent is frequent. We can have the final esti-
mated number of frequent itemsets for layer k:

For n = 200, p = 0.8, 0.6, 0.4, 0.2, 0.1, we can estimate the number of two, three, and 
more itemsets as shown in Table 11:

For n = 2000, p = 0.8, 0.6, 0.4, 0.2, 0.1, we can estimate the number of two, three, 
and more itemsets as shown in Table 12:

The above model with examples shows that the number of two itemsets is, on aver-
age, less than only 10% of the number of three or more itemsets. This means that only 
less than 10% of all computation power is consumed by the two itemsets. Thus, our 
algorithm speeds up the costly part, the part that mines three or more itemsets.�  □

Theorem 3  Consider a value of minsup such that the fraction of frequent one itemset 
over the total number of unique items, d, denoted by f, is less than (1—the maximum 
imbalance rate), where the maximum imbalance rate is usually set to 3% based on the 
MLkP algorithm. If the partition by MLkP is k-way, then each partition contains less 
than d/k unique items, where d is the total unique items in the original dataset. As a 
consequence, the complexity of each partition can be reduced.

Proof  Assume that given f < 100%—3% or f < 97%, and a transaction partition has 
di ≥ d/k unique items. According to our algorithm, since di ≥ d/k , a partition in the 
IAG must have more than or equal to d/k nodes. As we assumed earlier, the maxi-
mum imbalance rate for the MLkP algorithm is set to 3%, then the number of nodes 
n in the IAG can be calculated as dk ∗ 0.97 ∗ k ≤ n ≤ d

k
∗ 1.03 ∗ kor0.97d ≤ n ≤ 1.03d . 

Since n cannot be more than the total number of unique items, 0.97d ≤ n ≤ d . How-
ever, we know f < 97% or f *d < 0.97d, and n ≤ f ∗ d since some frequent one itemsets 

(9)

Ik =(n− k + 1)+

�

1−
(n− k + 1)

Cn
k+1

�

∗ (n− k + 1)

+



1−
(n− k + 1)+

�

1− (n−k+1)
Cn
k

�

∗ (n− k + 1)

Cn
k+1



 ∗ (n− k + 1)+

(10)fk =
(

Cn
k − Ik−1

)

∗ pk

Table 12  Estimation of the number of itemsets for larger datasets

p #two itemsets #three itemsets 2/3

0.8 1,279,360 231,482,728 0.005527

0.6 719,640 42,159,431 0.017069

0.4 319,840 6,855,578 0.046654

0.2 79,960 597,871 0.133741

0.1 19,990 68,301 0.292675
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may not appear in any frequent two itemsets, so n ≤ f ∗ d < 0.97d and n < 0.97d . 
This contradicts 0.97d ≤ n ≤ d . Therefore, the assumption di ≥ d/k is false, and the 
reverse, di < d

k  , must be true.�  □

Experiments and results
We design and conduct experiments on both small and large datasets to demonstrate 
the scalability of our algorithm. The experiments are performed on a computer with 
the following settings:

1.	 OS: Ubuntu 64-bit running on a virtual machine
2.	 CPU: Intel Core i7-4720HQ
3.	 Memory: 8192 MB allocated to the virtual machine
4.	 Disk: 5400RPM, 64 MB Cache, 6.0 Gb/s, SSHD, 8 GB flash memory
5.	 Programming Language: Python 3.7

The datasets [32] we use include Bible [33], T10I4D100K [32], and T40I10D100K 
[32]. The details of each dataset will be discussed later.

Table 13  Running times of different algorithms on the Bible dataset

fp sarl 2apF sarl 2fpF sarl 4apF sarl 4fpF ap

50 Timeout 8.69149 9.099829 8.689143 13.36314 17.57703

40 Timeout 8.169094 8.981468 9.30843 14.59894 17.60924

30 Timeout 9.39442 10.64038 11.12533 17.64162 21.45831

20 Timeout 10.68418 13.63021 10.22187 10.61251 27.32679

10 Timeout 20.87115 30.99064 27.77191 30.65479 51.8529
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Fig. 6  Running times of different algorithms on the Bible dataset
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For each of these datasets, we test the SARL heuristic with various settings for the 
FP-Growth and the Apriori algorithms on different values of minsup. The various set-
tings of the SARL heuristic are as follows:

2ap: k = 2, Apriori-based.
2fp: k = 2, FP-Growth-based.
4ap: k = 4, Apriori-based.
4fp: k = 4, FP-Growth-based.

The bible dataset

The Bible dataset has the following metrics:

1.	 Number of unique items: 13,905
2.	 Number of transactions: 36,396
3.	 Average transaction width: 21.6
4.	 File size: 5.4 MB

This is a small to medium-sized dataset. The experiments are done repeatedly for 
minsup of 50%, 40%, 30%, 20%, and 10%. The time limit for each experiment is set to 
800 s for each of the experiments. The results are shown in Table 13:

Table 14  Accuracy of the SARL algorithm on the Bible dataset

sarl 2apF & sarl 2fpF (%) sarl 4apF & 
sarl 4fpF (%)

50 73.91 100.00

40 60.00 100.00

30 51.72 100.00

20 44.17 40.83

10 39.80 31.37
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Fig. 7  Accuracy of different configurations of SARL heuristic on the Bible dataset
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According to Fig.  6, the two-partition, Apriori-based SARL heuristic scales the 
best for this dataset regardless of the minsup value. It is 2 to 2.5 times faster than the 
Apriori algorithm. The FP-Growth algorithm reaches the 800-s time limit for all test 
cases. It is possible that the number of unique items in this dataset is large; therefore 
the FP-tree cannot fit into the memory. As a result, the FP-growth algorithm does 
not perform well here. All other three settings of the SARL heuristic outperform the 
Apriori algorithm. Comparing to the FP-growth algorithm and the Apriori algorithm, 
the SARL heuristic is more scalable with all values set for minsup.

As we proved earlier, all the frequent itemsets found by the SARL heuristic are 
accurate, with the correct support. This is important because we need the accurate 
support to calculate the confidence of the rules. The SARL heuristic may miss some 
frequent itemsets with a lower support. Here, we calculate the accu-
racy = numberoffrequentitemsetsfoundbySARL

numberoffrequentitemsetsfoundbyApriori . The accuracy of the SARL heuristic drops on 
the Bible dataset when the value of minsup is low. From Table 14 and Fig. 7, both set-
tings of the four-partition SARL heuristic achieve 100% accuracy from the minsup 
range of 50% to 30%. This is because the MLkP algorithm is able to find a perfect or 
almost perfect cut on the IAG so that there are no inter-partition frequent itemsets 
for this range. When 100% accuracy is achieved, the SARL heuristic discovers not just 
the one and two frequent itemsets, but also the three or higher frequent itemsets. As 

Table 15  T10I4D100K running times

fp sarl 2apF sarl 2fpF sarl 4apF sarl 4fpF ap

10 2.835414 19.57188 19.11257 18.71221 19.44224 5.622139

4 4.288454 18.61193 18.25904 18.43984 18.39262 18.49691

1 277.5966 32.34425 21.23481 21.47209 20.94079 Timeout

0.7 288.9096 24.09774 23.6652 22.95777 23.90843 Timeout

0.4 Timeout 58.42791 199.8875 56.80203 207.7374 Timeout
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Fig. 8  Running times of different algorithms on the T10I4D100K dataset
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for the two-partition SARL heuristic settings, the accuracy starts at 73.91% at 50% 
minsup and drops to 39.8% at 10% minsup.

The T10I4D100K dataset

The second dataset we have tested is T10I4D100K. It has the following statistics:

1.	 Number of unique items: 870
2.	 Average size of transactions: 10
3.	 Number of transactions: 100,000
4.	 File size: 4 MB

The algorithms are tested on T10I4D100K for minsup of 10%, 4%, 1%, 0.7%, and 
0.4%. This dataset has a medium size (for this environment), so the time limit is set to 
300 s for each of the experiments.

Table 15 and Fig. 8 shows the results for T10I4D100K:
From Fig. 8, the Apriori algorithm has an average performance for the initial min-

sup of 10% and 4%. However, it quickly reaches the maximum running time after that 

Table 16  Accuracy of SARL heuristic on T10I4D100K

sarl 2apF (%) sarl 2fpF (%) sarl 4apF (%) sarl 4fpF (%)

10 100 100 100 100

4 100 100 100 100

1 100 100 100 100

0.7 100 100 100 100

0.4 100 100 100 100
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Fig. 9  Accuracy of SARL heuristic on T10I4D100K

Table 17  Running times of different algorithms on the T40I10D100K dataset

fp sarl 2apF sarl 2fpF sarl 4apF sarl 4fpF ap

20 8.736294 229.0365 235.9384 232.3693 231.474 23.49573

10 Timeout 228.2672 226.8315 239.0484 233.1036 158.8888

7 Timeout 236.5143 233.9087 235.3071 238.6583 Timeout

4 Timeout 241.4238 252.5584 242.9868 241.8205 Timeout
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and unable to finish the task in time for all subsequent settings of minsup. The FP-
Growth algorithm has a better performance. It is the fastest for a higher value of min-
sup of 10% and 4%, but it jumps to almost 300 s for 1% and 0.7%, before timeout at 
0.4%. All settings of the SARL heuristic outperform the Apriori and the FP-Growth 
algorithm for middle and low settings of minsup. It is 8.6 to 13.8 times faster than the 
FP-Growth algorithm on minsup = 1% and 0.7%. The SARL heuristic is slightly slower 
at a high minsup of 10%, and they are tied with the Apriori but slightly slower than 
FP-Growth at a minsup of 4%.
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Fig. 10  Running times of different algorithms on the T40I10D100K dataset

Table 18  Accuracy of SARL heuristic on T40I10D100K dataset

sarl 2apF (%) sarl 2fpF (%) sarl 4apF (%) sarl 4fpF (%)

20 100 100 100 100

10 100 100 100 100
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Fig. 11  Accuracy of SARL heuristic on T40I10D100K dataset
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The accuracy of the SARL heuristic is high on the T10I4D100K dataset. As shown 
in Table 16 and Fig. 9, all four settings of the SARL heuristic achieve 100% accuracy 
for the values of minsup from 10% to 0.4%. This is because, for a high minsup, the 
number of frequent three or more itemsets for this dataset is small comparing to fre-
quent two itemsets, and the mining of the one and two frequent itemsets is accurate. 
For low minsup values, the MLkP algorithm successfully finds a perfect or almost per-
fect cut on the IAG, so the results are accurate.

The T40I10D100K dataset

The dataset T40I10D100K has the following statistics:

1.	 Number of unique items: 942
2.	 Average size of transactions: 40
3.	 Average size of the maximal potentially large itemsets:10
4.	 Number of transactions:100,000
5.	 File size: about 15 MB

This relatively large-size dataset was tested on minsup values of 20%, 10%, 7%, and 
4%. The maximum running time was set to 300 s each for the experiments.

Table 17 shows the results of the experiments:
The results of the experiments (shown in Table  17 and Fig.  10) show an obvious 

distinction between the scalability of different algorithms. All settings of the SARL 
heuristic demonstrate high scalability. Almost all settings of the SARL heuristic have 
stable running time throughout the entire range of minsup. Surprisingly, the Apriori 
algorithm performs better than the FP-Growth algorithm with a minsup between 20 
and 7%. However, it is still unable to terminate within the time limit for minsup = 4%. 
Lastly, the FP-Growth algorithm does not scale very well on this dataset. It fails to 
terminate within the given time for both 7% and 4% of minsup.

The accuracy of the SARL heuristic on the T40I10D100K dataset is the same 
as the T10I4D100K dataset. Table  18 and Fig.  11 show that the SARL heuristic has 
100% accuracy based on similar reasons as we explained above in the analysis of the 
T10I4D100K experiment results.

Conclusions and future work
In this paper, we have proposed a scalable, highly parallelizable association rule 
mining heuristic (the SARL heuristic). The contributions include the use of the 
divide-and-conquer method to speed up complex computations, the use of an item 
association graph that provides an efficient estimation of potential frequent itemsets, 
and the use of the MLkP algorithm to divide the items into partitions while mini-
mizing the loss of information. We have shown the scalability of the SARL heuris-
tic through a series of experiments. The results indicate that the SARL heuristic has 
better scalability, with high accuracy, than both the Apriori and the FP-Growth algo-
rithms in most cases.

As discussed, the proposed heuristic is limited by the space requirement that the 
memory should be large enough to accommodate the IAG (proportional to d2 where 
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d is the number of unique items in the transactions) which we think may be a reason-
able assumption in practice.

In the future, we plan to extend our work with the following tasks:

•	 Develop a parallel version of the SARL heuristic and its implementation. The 
transaction partitions can be considered as independent datasets, and we can eas-
ily run the modified Apriori algorithm or FP-Growth algorithm on each of the 
transaction partition in parallel and then merge the results (frequent three or 
higher itemsets) together along with the frequent one and two itemsets to obtain 
the total frequent itemsets. Each parallel processor does not need to communicate 
with others during the computation since all the information needed is already 
included in the local dataset. This would result in maximum utilization of each 
processor.

•	 Study how different characteristics of the datasets influence the performance of 
the SARL heuristic. Although we know that the SARL heuristic has excellent per-
formance for most datasets, the exact speed and accuracy of the SARL heuristic 
are still unpredictable. We think by applying some statistical measurements on the 
dataset, it is possible to estimate the accuracy and speed of the SARL heuristic 
roughly. This will help the user to determine if using the SARL heuristic is benefi-
cial enough compared to other accurate algorithms.
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