
A scalable association rule learning
heuristic for large datasets
Haosong Li and Phillip C.‑Y. Sheu*   

Keywords:  Association rule learning, Frequent itemset mining, Scalability, Graph
partitioning, Apriori algorithm, FP-Growth algorithm

Introduction
The association rule learning problem has played a significant role in data mining
for the past few decades. Association rules are widely used in many fields, including
market basket analysis [1] and bioinformatics [2]. However, the problem has an NP-
hard nature, meaning it is challenging to find the results within a reasonable period of
time.

The invention of the Apriori Algorithm [3] made this problem computationally fea-
sible for most computers on regular-sized datasets. Since then, researchers have con-
tinued to develop more scalable algorithms. Among others, FP-Growth [4] and Eclat
[5] are two algorithms developed that improve the scalability of the Apriori algorithm.

The increasing popularity of the Internet in recent decades has made big data
available to many research institutions and companies. Their sizes are so large that
traditional algorithms may not be able to handle them efficiently. We consider “big
data” to be datasets that, at least, are too large to fit into the memory and take a long
time (hours or even days) for traditional algorithms to process. The term big data is
thus relevant to the machine. A dataset considered to be big data on a PC may be a
small dataset on a powerful high-performance computer (or computer cluster). This

Abstract 

Many algorithms have proposed to solve the association rule learning problem.
However, most of these algorithms suffer from the problem of scalability either
because of tremendous time complexity or memory usage, especially when the
dataset is large and the minimum support (minsup) is set to a lower number. This
paper introduces a heuristic approach based on divide-and-conquer which may
exponentially reduce both the time complexity and memory usage to obtain
approximate results that are close to the accurate results. It is shown from com‑
parative experiments that the proposed heuristic approach can achieve significant
speedup over existing algorithms.

Open Access

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permit‑
ted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

RESEARCH

Li and Sheu ﻿J Big Data (2021) 8:86
https://doi.org/10.1186/s40537-021-00473-3

*Correspondence:
psheu@uci.edu
Department of Electrical
Engineering and Computer
Science, University
of California, Irvine, USA

http://orcid.org/0000-0003-2036-850X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-021-00473-3&domain=pdf

Page 2 of 32Li and Sheu ﻿J Big Data (2021) 8:86

imposes a challenge to the association rule learning problem as well. Most of the pre-
viously designed algorithms, including the Apriori algorithm, the FP-Growth algo-
rithm, and the Eclat algorithm, suffer from the problem of scalability for big data. Still,
these algorithms take an unacceptable amount of time to terminate (will be discussed
in "Experiments and results" section). In addition, the FP-Tree of the FP-Growth algo-
rithm, and the TID list of the Eclat algorithm may not fit in the memory.

This paper introduces an approach that makes it possible to mine association rules
and frequent itemsets for large datasets. The approach, called the Scalable Associa-
tion Rule Learning (SARL) heuristic, follows the divide-and-conquer paradigm and it
vertically divides a dataset into almost equivalent partitions using a graph representa-
tion and the k-way graph partitioning algorithm [6]. The total time complexity of the
SARL heuristic, including the overhead of partitioning a dataset, is up to 2d faster
than that of the Apriori algorithm, where d is the number of unique items in the data-
set. The memory usage is also lower than those of the current algorithms. Because of
the speedup, our heuristic may be applied to real-time data analysis that can benefit
many scientific [7] and military applications [8, 9].

The rest of the paper is organized as follows. In "Related work" section, we survey
existing association rule learning algorithms and graph partitioning algorithms. In
"Our solution" section, we present the SARL heuristic with examples, formal descrip-
tions, theorems, and proofs. The experiments and results are presented in "Experi-
ments and results" section, followed by conclusions and future work.

Contributions
The contributions of this paper include the provision of association graphs that rep-
resent an efficient estimation of potential frequent itemsets and the use of the MLkP
algorithm to divide the items into partitions while minimizing the loss of information.

The novelty of this paper lies in two parts of our solutions (discussed later). Firstly,
we propose the verticle(item-wise) partition of datasets while most divide and con-
quer algorithms focus on horizontal (transaction-wise) divide and conquer methods.
Secondly, the transformation of frequent two-itemsets into graph representation
while applying the efficient MLkP algorithm is a novel and efficient approach in solv-
ing the association rule learning problem.

Related work
Association rule learning/frequent itemset mining has been an active research
area. Among others, three approaches are considered the most popular and possi-
bly the most efficient: the Apriori algorithm, the FP-Growth algorithm, and the Eclat
algorithm.

The Apriori algorithm

The Apriori algorithm [3], introduced by Agrawal and Srikant, was the first effi-
cient association rule learning algorithm. It incorporates various techniques to
speed up the process as well as to reduce the use of memory. For example, the Lk-

1 × Lk-1 method used in the candidate generation process can reduce the number of

Page 3 of 32Li and Sheu ﻿J Big Data (2021) 8:86 	

candidates generated, and the pruning process can significantly reduce the number of
possible candidates at each level.

One of the most important mechanisms in the Apriori algorithm is the use of the
hash tree data structure. It uses this data structure in the candidate support counting
phase to reduce the time complexity from O(kmn) to O(kmT + n), where k is the aver-
age size of the candidate itemset, m represents the number of candidates, n repre-
sents the number of items in the whole dataset, and T is the number of transactions.

The major advantage of the Apriori algorithm comes from its memory usage
because only the k − 1 frequent itemsets, Lk − 1, and the candidates in level k, Ck,
need to be stored in the memory. It generates the minimum number of candidates
based on the Lk−1 × Lk−1 (described in [3]) and the pruning method, and it stores
them in the compact hash tree structure. In case the candidates fill up the memory
from the dataset and a low minsup setting, the Apriori algorithm does not generate
all the candidates to overload the memory. Instead, it generates as many candidates as
the memory can hold.

The FP‑growth algorithm

The Frequent Pattern Growth algorithm was proposed by Han et al. in 2000 [4]. It
uses a tree-like structure (called Frequent Pattern Tree) instead of the candidate
generation method used in the Apriori algorithm to find the frequent itemsets. The
candidate generation method finds the candidates of the frequent itemsets before
reducing them to the actual frequent itemsets through support counting.

The algorithm first scans a dataset and finds the frequent one itemsets. Then, a fre-
quent pattern tree is constructed by scanning the dataset again. The items are added
to the tree in the order of their support. Once the tree is completed, the tree is tra-
versed from the bottom, and a conditional FP-Tree is generated. Finally, the algorithm
generates the frequent itemsets from the conditional FP-Tree.

The FP-Growth algorithm is more scalable than the Apriori algorithm in most cases
since it makes fewer passes and does not require candidate generation. However, it
suffers from memory limitations since the FP-Tree is fairly complex and may not fit in
the memory. Traversing the complexed FP-Tree may also be time-expensive if the tree
is not compact enough.

The Eclat algorithm

Different from the Apriori algorithm and the FP-Growth algorithm that work on hori-
zontal datasets (e.g., T001: {1, 3} T002:{1, 4}), the Eclat (Equivalence Class Cluster-
ing and bottom-up Lattice Traversal) algorithm [5] uses a vertical dataset (e.g. Item1:
{T001, T002}, Item3: {T001}, Item4:{T002}). The Eclat algorithm only scans the data-
set once. It finds the frequent itemsets by taking the intersections of the transaction
sets.

The Eclat algorithm takes advantage of scanning the dataset only once. However,
when the dataset is large, and the minsup is set to a low value, the TID associated
with each itemset may become very long. In fact, the results can be larger than the
original dataset; therefore, they may not fit into the memory.

Page 4 of 32Li and Sheu ﻿J Big Data (2021) 8:86

Other association rule learning algorithms

There are three categories of association rule mining/frequent itemset mining algo-
rithms [10]: Apriori-based algorithms, tree-based algorithms, and pattern growth
algorithms. The Apriori algorithm, the Eclat algorithm, and the FP-Growth algorithm
are the most popular algorithms for the three categories, respectively.

In the Apriori-based algorithm category, proposed by Agrawal and Srikant in [3]
the AprioriTID algorithm is similar to Apriori, except that it generates Ck-bar and
it mines the frequent itemsets from there instead of the dataset. The Apriori Hybrid
algorithm [3] is a combination of the Apriori algorithm and the AprioriTID algorithm.
The DHP (direct hashing and pruning) algorithm [11] uses a hash function to dis-
tribute the itemsets into buckets. If a bucket has the support lower than the minsup,
then the bucket is discarded. The MR-Apriori [12] and HP-Apriori [13] algorithms
are distributed versions of the Apriori algorithm. The MR-Apriori uses the MapRe-
duce model on the Hadoop platform. They enable parallel execution of the Apriori
algorithm.

The tree-based algorithms, represented by the Eclat algorithm, find the frequent
itemset by constructing a lexicographic tree. The AIS algorithm [6] and the SETM
algorithm [14] are the two earliest association rule mining algorithms in this category.
Reference [3] shows that the Apriori algorithm beats them in running time. The Tree-
Projection algorithm [15] counts the supports of the frequent itemsets and uses the
nodes of a lexicographic tree as the representation of these support numbers. The TM
algorithm [16] maps the TID of each transaction to transaction intervals before per-
forming intersections between these intervals.

Lastly, the algorithms in the pattern growth category focus on frequent patterns.
The P-Mine algorithm [17] is a parallel computing algorithm that utilizes the VLD-
BMine data structure to store the dataset and speed up the distribution of data,
while the LP-Growth algorithm [18] makes use of an array-based linear prefix tree
to improve the memory efficiency. The Can-Mining algorithm [19] finds the frequent
itemsets from a canonical-order tree, which speeds up the tree traversal process when
the number of frequent itemsets is low. Finally, the EXTRACT algorithm [20] uses the
theory of Galois lattice to derive association rules.

The algorithms discussed above, unfortunately, have scalability problems. The
Apriori-based algorithms, represented by the Apriori algorithm, have to go through
the expensive candidate generation and support counting process. This causes a dis-
advantage in running time. The tree-based and the pattern-growth type algorithms
often suffer from excessive usage of memory. For example, the FP-Growth algorithm
could build a complex FP-Tree which does not fit into the memory.

We show the scalability problems of the Apriori algorithm and the FP-Growth algo-
rithm in the experiment part of this paper. Both of the algorithms take too long to
finish for most of the tested datasets. The need for faster, frequent itemset mining is
urgent due to the vastly available data today. Companies and institutions have allo-
cated many resources in data mining, and they need a time-saving, resource-saving
solution. In addition, real-time data analysis plays an important role in government
[21], scientific [7], and military [8, 9] applications. The experiments part of this paper

Page 5 of 32Li and Sheu ﻿J Big Data (2021) 8:86 	

shows that the current algorithms represented by the Apriori algorithm and the FP-
Growth algorithm are not fast enough to complete real-time data analysis. The scal-
ability problems of most existing association rule mining algorithms have also been
addressed in [22] that is focused on paralleled computing of association rules whereas
this paper presents a scalable algorithm that is suitable for a single machine also.

Graph partitioning algorithms

One of the key steps in the SARL heuristic that we will introduce shortly is to parti-
tion the IAG (item association graph, "Our solution" section, part 7) into k balanced
partitions. An efficient graph partitioning algorithm is crucial since the balanced
graph partitioning problem is NP-complete [23]. We have implemented three algo-
rithms and compared them for the partitioning costs and running times. They are the
recursive version of the Kernighan-Lin Algorithm [24], the Multilevel k-way Parti-
tioning Algorithm (MLkP) [25], and the recursive version of the Spectral Partitioning
Algorithm [26]. Other graph partitioning algorithms include the Tabu search-based
MAGP algorithm [27] and the flow-based KaFFPa algorithm [28].

The Kernighan-Lin algorithm swaps the nodes assigned to both partitions and finds
the largest decrease in the total cut size. The Multilevel k-way Partitioning algorithm
(MLkP) uses coarsening-partitioning-uncoarsening/refining steps to shrink a graph
into a much smaller graph. After partitioning, the graph is rebuilt to restore the origi-
nal graph. A single global priority queue is used for all types of moves. The Spectral
Partitioning Algorithm finds splitting of the values such that the vertices in a graph
can be partitioned with respect to the evaluation of the Fiedler vector.

Experiments are conducted by us to compare the three algorithms. The datasets
provided by Christopher Walshaw at the University of Greenwich [29] are used.
The datasets are as large as possible while the partitioning algorithms can finish in a

Table 1  Results of the experiment that compare MLkP, Kernighan-Lin, and Spectral Partitioning
algorithms

Page 6 of 32Li and Sheu ﻿J Big Data (2021) 8:86

reasonable time on the tested machine. We also run experiments on complete graphs
with 30 and 300 nodes. Each dataset is tested four rounds with the number of parti-
tions (k) being 2, 4, 8, and 16.

As shown in Table 1, the running times are highlighted in the red box. We can
tell from average running time(the last row) that the MLkP algorithm has the high-
est speed in general. It is 560 times faster than the spectral partitioning algorithm
and even faster than the recursive Kernighan-Lin algorithm. The spectral partition-
ing algorithm has, in general, the best partition quality. It is 1.3 times better than
MLkP and much better than the recursive Kernighan-Lin algorithm. The recursive
Kernighan-Lin algorithm takes too long to complete all five datasets. It also shows
serious scalability issues for complete graphs.

Considering the MLkP algorithm has the best overall performance, we choose to
use this algorithm for graph partitioning in our algorithm.

Our solution
Definitions

Below are some definitions that we will use in our algorithm:

1.	 K-itemset: an itemset with k items
2.	 Support: the occurrence of an item in the dataset
3.	 Minsup: the minimum requirement of support. The user usually provides this.

Itemsets with support < minsup are eliminated.
4.	 Confidence: the indication of robustness of a rule in terms of percentage.

5.	 Minconf: the minimum requirement of confidence. The user usually provides this.
Rules with confidence < minconf are eliminated.

6.	 Item-Association Graph: a graph structure that stores the frequent associations
between pairs of items.

7.	 Balanced K-way Graph Partitioning Problem: Divide the nodes of a graph into k
parts such that each part has almost the same number of nodes while minimizing
the number of edges/sum of edge weights cut off.

A scalable heuristic algorithm—SARL‑heuristic

The following is an outline of our scalable heuristic:

Step 1: Find frequent one and two itemsets using the Apriori algorithm (when
minsup is high) or the direct generation method (when minsup is low).
Step 2: Construct the item association graph (IAG) from the result of step 1.
Step 3: Partition the IAG using the multilevel k-way partitioning algorithm
(MLkP).
Step 4: Partition the dataset according to the result of step 3.

Confidence(X → Y) = support(X ∪ Y)
/

support(X)

Page 7 of 32Li and Sheu ﻿J Big Data (2021) 8:86 	

Table 2  Example dataset 1

TID Items

T000 1, 2

T001 1, 2, 3

T002 4, 5

T003 1, 4, 5

T004 2, 3

T005 1, 2, 3

T006 1, 4, 5

Table 3  Frequent one itemsets

Frequent itemsets Support

{1} 5

{2} 4

{3} 3

{4} 3

{5} 3

Table 4  Frequent two itemsets

Frequent itemsets Support

{1, 2} 3

{1, 3} 2

{1, 4} 2

{1, 5} 2

{2, 3} 3

{4, 5} 2

Fig. 1  An item association graph

Page 8 of 32Li and Sheu ﻿J Big Data (2021) 8:86

Step 5: Call the modified Apriori algorithm or the FP-Growth algorithm to mine
frequent itemsets on each transaction partition.
Step 6: Find the union of the results found from each partition.
Step 7: Generate association rules by running the Apriori-ap-genrules on the fre-
quent itemsets found from step 6.

An example

Suppose the dataset shown in Table 2 is given and minsup is set to 0.1 (or 10%, or
7 ∗ 0.1 ≈ 1 occurrence), and minconf is set to 0.7 (or 70%):

First, we use the Apriori algorithm to find the frequent two itemsets. As an inter-
mediate step, the Apriori algorithm finds the frequent one-itemset first (shown in
Table 3):

The frequent two-itemsets are found afterward (shown in Table 4):

Fig. 2  Item association graph partition 1

Fig. 3  Item association graph partition 2

Table 5  Transaction partition 1

TID Items

T001 1, 2, 3

T005 1, 2, 3

Page 9 of 32Li and Sheu ﻿J Big Data (2021) 8:86 	

Next, we transform the above frequent two-itemsets into an item association graph
(IAG), shown in Fig. 1:

To construct the graph, we first take the itemset {1, 2} with support 3. For this, we
create node 1 and node 2 corresponding to the two items in the itemset. The edge
between node 1 and node 2 has weight 3, representing the support of the itemset. The
process is repeated for every frequent two-itemset found in the previous step.

Next, we use the multilevel k-way partitioning algorithm (MLkP) to partition the
IAG. In this case, the number of nodes is small, so we only bisect the graph by setting
k = 2. The result is shown in Figs. 2 and 3.

The MLkP algorithm divides the IAG into two equal or almost equal sets in linear
time while the sum of the weights of edges that are cut off is the minimum.

Table 6  Transaction partition 2

TID Items

None None

Table 7  Frequent itemsets from transaction partition 1

Frequent itemsets Support

{1, 2, 3} 2

Table 8  Frequent itemsets from transaction partition 2

Frequent itemsets Support

None N/A

Table 9  Frequent itemset final results

Frequent itemsets Support

{1} 5

{2} 4

{3} 3

{4} 3

{5} 3

{1, 2} 3

{1, 3} 2

{1, 4} 2

{1, 5} 2

{2, 3} 3

{4, 5} 3

{1, 2, 3} 2

Page 10 of 32Li and Sheu ﻿J Big Data (2021) 8:86

Next, we partition the dataset according to the partitions of the IAG, as shown in
Tables 5 and 6. Each transaction partition has all the items from the corresponding
IAG partition. However, since the algorithm has already found all frequent one and
two itemsets, a transaction is not added to a transaction partition if the transaction
has less than three items. For example, T000: {1, 2} is not added to the transaction
partition 1, since it only has two items. Some items in the original dataset may not
appear in any of the transaction partitions, because the infrequent one/two-itemsets
are dropped in the IAG. This simplifies the subsequent computations. In this exam-
ple, however, all the items are kept in the IAG because the IAG is a relatively dense
graph. Tables 5 and 6 show the transaction partitions:

The next step is to pick the best algorithm and use it to find the frequent k-itemsets
with k > 2. For this example, we choose the modified Apriori algorithm because it is
faster for mining small datasets as it avoids the process of finding the one and two-
itemsets again. The results from partition 1 are shown in Table 7:

Since the modified Apriori algorithm starts with three-itemsets, there are no addi-
tional frequent itemsets in the first partition. Table 8 shows the results found in trans-
action partition 2:

The final results (shown in Table 9) of frequent itemsets are simply the union of
Tables 3, 4, 7, and 8:

After running the Apriori-ap-genrules algorithm, the association rules can be found
in Table 10.

All frequent itemsets generated by the SARL heuristic are sound, meaning each fre-
quent itemset generated indeed is correct, and the support number is accurate. How-
ever, it is possible that some frequent itemsets cannot be found by the SARL heuristic,
as will be discussed shortly. In this example, the SARL heuristic loses one frequent
itemset {1, 4, 5} and two related rules generated from {1, 4, 5}.

Formal description of the SARL heuristic

SARL(dataset, minsup, minconf, k, threshold):

Table 10  Association rules generated

Rules Confidence

{2} {1} 0.75

{3} {2} 1

{5} {1} 1

{2} {3} 0.75

{5} {4} 1

{4} {5} 1

{1, 3} {2} 1

Page 11 of 32Li and Sheu ﻿J Big Data (2021) 8:86 	

Page 12 of 32Li and Sheu ﻿J Big Data (2021) 8:86

Page 13 of 32Li and Sheu ﻿J Big Data (2021) 8:86 	

Finding frequent 2 itemsets using the Apriori algorithm or dirct_gen algorithm

The first step of the SARL heuristic is to find the frequent 2 itemsets efficiently.
Although the Apriori algorithm has scalability issues for very large datasets, it pro-

vides a fast and convenient feature to extract intermediate results and a tolerable
speed for the first two passes.

The Apriori algorithm finds frequent itemset Lk for each k, and each Lk is stored
separately. We run the Apriori algorithm until it finds L2, the frequent two-itemset.
It first tries to find the frequent one itemsets by traversing the dataset and count the
occurrence of each unique item. If the number of occurrences of an item is less than
the minsup provided by the user, that item is eliminated from the list of frequent one-
itemset. The frequent two itemsets are discovered based on the frequent one itemsets.
The algorithm generates C2, the candidate sets for the frequent two itemsets, using
Lk−1 × Lk−1:

insertintoCk

selectp.item1, p.item2, . . . , p.itemk−1, q.itemk−1

fromLk−1p, Lk−1q

Page 14 of 32Li and Sheu ﻿J Big Data (2021) 8:86

This method generates a minimum number of candidates from the frequent one
itemsets so that we can have fewer candidates to consider in the support counting
phase. The Apriori algorithm also predicts and eliminates some infrequent itemsets
before support counting by implementing the Apriori principle in the pruning step.
If an item in C2 is not in L1, which means that the item is infrequent, so all the two
itemsets that include this item are dropped. We modify the Apriori algorithm, so it
terminates after L2 is found.

Another method to find frequent one and two itemsets are through direct counting
and generation. The algorithm to find frequent one itemsets is the same as the Apri-
ori algorithm. To find frequent two itemsets, we can simply find all two-item pairs in
each transaction and count the occurrence of them. The advantage of this algorithm
is that it does not require candidate generation from L1, and avoids much unneces-
sary membership testing during support counting. However, this method is not effi-
cient on large datasets since it does not use pruning and saves all two itemsets.

In the SARL heuristic, we ask the user for a threshold of the dataset size. If the
dataset is larger than the threshold, the SARL heuristic will use the modified Apriori
algorithm. Otherwise, it will use the direct_gen algorithm to compute the frequent
one and two itemsets.

Construction of the item association graph

The item association graph G is constructed based on the two itemsets generated by
the Apriori algorithm. G is an undirected, weighted graph. A node Vi is created for
each unique item i in the two itemsets T with the maximum item number being n.

The edges E in graph G are formed for each itemset in T:

The weight of each edge Eij is equal to the support of itemset {i, j} in T:

Partition the IAG using the multilevel k‑way partitioning algorithm (MLkP)

The Multilevel k-way partitioning (MLkP) algorithm [25] is an efficient graph parti-
tioning algorithm. The time complexity is O(E), where E is the number of edges in the
graph, and the maximum load imbalance is limited to 3%.

The general idea of MLkP is to shrink (coarsen) the original graph into a smaller
graph, then partition the smaller graph using an improved version of the KL/FM

wherep.item1 = q.item1, . . . , p.itemk−2 = q.itemk−2, p.itemk−1 < q.itemk−1;

(1){V } =

{

n
⋃

i=0

Vi|i ∈ |T |

}

(2){E} =







n
�

i=0,j=0

Eij|{i, j} ∈ T







(3)W
(

Eij
)

= Support
({

i, j
})

|{i, j} ∈ T

Page 15 of 32Li and Sheu ﻿J Big Data (2021) 8:86 	

algorithm. Lastly, it restores (uncoarsen) the partitioned graph to a larger, partitioned
graph.

METIS is a software developed by Karypis at the University of Minnesota [30]. It
includes an implementation of the MLkP algorithm that takes a graph as the input
and outputs groups of nodes separated after the partition.

Transaction partitioning

Based on the results of the MLkP algorithm that divide the items into groups P1, P2,…
,Pm, we can partition the transactions into the same number of groups, where each
group Di contains only the items in partition Pi . For a transaction tobe included in Di ,
it must have all the items from partition Pi . If a transaction includes more items than
the items from partition Pi , only the items in Pi that are included in the transaction
are added to Di . That is, only a part of the transaction is added to Di . As a result, each
transaction in a transaction partition must be a subset of the corresponding transac-
tion in the original dataset. If a transaction has less than three items, the transaction
is not added. This is because we have already mined the one and two itemsets, and
are only interested in itemsets that have 3 or more items. This optimization helps to
reduce the size of transaction partitions.

In the above, Di is transaction partition i, Tj is the transactions to be added to parti-
tion i, Sj is the jth transaction in the original dataset, Pi is the item partition i, and D
is the original dataset.

Since the number of unique items in each partition is less than or equal to
numberofnodesinIAG

k
 rather than totalnumberofuniqueitems

k
 , the size of each partition should be

small compared to the original dataset. In rare cases, if the size of a transaction parti-
tion is greater than the memory size, the SARL heuristic can partition the IAG and
the transactions again with k incremented by 1. This guarantees that each partition
fits into the memory.

Selecting an algorithm on transaction partitions

One of the benefits that come with our solution is that the association rule learning
on each transaction partition can be optimized by using an algorithm that best fits the
partition.

During the association rule learning on the partitioned datasets, we have three can-
didates that are considered efficient: the Apriori algorithm, the FP-Growth algorithm,
and the Eclat algorithm.

Since the modified Apriori algorithm has already computed the one itemsets and
two itemsets during the preparation phase, the candidate generation feature of the
Apriori algorithm is handy in this case. We modify the Apriori algorithm to skip the
frequent one/two itemsets finding stages and start with the frequent three itemsets

(4)Di =







n
�

j=1

Tj|(Tj → Sj ∩ Pi|Sj ∈ D)







Page 16 of 32Li and Sheu ﻿J Big Data (2021) 8:86

from the transaction partitions. This modification is particularly helpful when the
minsup is set to a high value so that the expected number of itemsets is limited after
the two itemsets are found.

We can estimate the expected number of itemsets from the average transaction
length of each transaction partition. A higher average transaction length indicates a
higher possibility of the presence of a long “tail” in the result. Results with long tails
have itemsets with considerable maximum lengths, while results with short tails only
contain itemsets with small maximum lengths. A dataset with an expected long tail
means the association rule learning algorithm does not terminate soon after the two
itemsets are found.

The average transaction length provides a fast and straightforward reference for
selecting the best algorithm for each transaction partition. If the average transaction
length is low, the Apriori algorithm can be the right choice, as the modified Apriori
algorithm continues from the two itemsets that the preparation phase has already
calculated. If the average transaction length is high, we can take advantage of the
scalability of the FP-Growth algorithm. We omit the Eclat algorithm because the FP-
Growth and the Eclat algorithms do not have the same advantage provided by the
modified Apriori algorithm, of which the algorithm can start with the two itemsets.
In addition, studies [31] show that the Eclat algorithm is slightly less scalable than the
FP-Growth algorithm.

Next, the selected algorithm is used to find the frequent local itemsets from the
given transaction partition. After the algorithm terminates, a simple union is per-
formed on the frequent itemsets found from each partition. Finally, Apriori-ap-
genrule is used to derive the rules from the frequent itemsets. This step is relatively
simple.

Time complexity and space complexity

The theoretical time and space complexity of the Apriori algorithm is O(2d) where d is
the number of unique items in the dataset.

Time complexity

The theoretical time complexity of the SARL heuristic consists of the complexity of
several parts:

2-itemsets generation Finding frequent 2-itemsets requires finding 1-itemsets first.
This step is simply O(n) as the algorithm traverses the dataset once. Next, the can-
didate generation for 2-itemsets takes O(d2) where d is the number of unique items
in the dataset. Finally, the support checking requires O(n+ d2T) where T is the
number of transactions in the dataset. Therefore, the time complexity of this step is
O(d2T + n).

IAG construction Since each edge in the IAG is a representation of a frequent two-
itemset, and the maximum number of two-itemsets is d

2+d
2  , the maximum number

of edges in IAG is also d
2+d
2  . Therefore, constructing the IAG takes O(d + d2+d

2) or
O
(

d2
)

.

Page 17 of 32Li and Sheu ﻿J Big Data (2021) 8:86 	

IAG partition The time complexity of the IAG partition process is equal to the time
complexity of the MLkP algorithm, which is O(E) or O(d2).

Transaction partition The dataset is traversed once to assign items into different
partitions. Hence the time complexity is O(n).

Running a selected algorithm The algorithm selection requires the calculation of the
average transaction width of each transaction partition. The time complexity of this is
O(kn), where k is the number of partitions.

If the modified Apriori algorithm is selected, the theoretical time complexity for
each partition is O(21.03d/k) where the coefficient 1.03 comes from the 3% maximum
imbalance of the partitions caused by the MLkP algorithm. The total running time for
all the partitions is O

(

k ∗ 2
1.03d
k

)

→ O(2
1.03d
k) , and the total time complexity of the

SARL algorithm, when the modified Apriori algorithm is selected, is
O
(

d2T + n+ d2 + d2 + n+ 2
1.03d
k

)

→ O(d2T + n+ 2
1.03d
k) . Assume n ≫ d , and

2
1.03d
k ≫ n , the time complexity can be simplified to O(2

1.03d
k) . Compared with the time

complexity of the Apriori algorithm, the SARL is O
(

2d

2
1.03d
k

)

→ O(2
k−1.03

k
d) times

faster than the Apriori algorithm. The exponential speedup comes from the smaller
number of unique items in each transaction partition. The algorithm that is chosen to
mine frequent itemsets from the transaction partitions only needs to consider a por-
tion of all the items for each partition.

Space complexity

Like time complexity, the space complexity of the SARL heuristic consists of the com-
plexity of several parts:

2-itemsets generation Finding the frequent two itemsets requires finding the one
itemsets first. This step is O(d) , where d is the number of unique items in the dataset,
as we need to keep at most d items in the memory. Next, the candidate generation
step for the 2-itemsets takes O(d2) space for at most d(d−1)

2 frequent 2-itemsets as can-
didates. Finally, the support checking requires another O(d2) space to store the sup-
port numbers. Hence, this step requires O(d2) space.

IAG construction Since each edge in the IAG is a representation of a frequent two-
itemset, and the maximum size of the two-itemsets is d

2+d
2  , the maximum number of

edges in IAG is also d
2+d
2  . Therefore, storing the IAG takes O

(

d2
)

 space. This d2 space
occupation only occurs when every unique item in the dataset is included frequent
two-itemsets with every other unique item in the dataset. In most cases, the actual
space required to store IAG is smaller than the memory size.

In rare cases, if the IAG cannot fit into the memory, then the Apriori algorithm and
FP-Growth algorithm must have memory issues, too. For the Apriori algorithm, all
frequent two-itemsets must be stored in the memory to generate the candidates in
the next level, and the size of frequent two-itemsets is similar to the IAG. FP-Tree
must be stored in the memory for the FP-Growth algorithm. The space complexity
of the FP-Tree is also O

(

d2
)

 , however, all unique items need to be stored in the tree

Page 18 of 32Li and Sheu ﻿J Big Data (2021) 8:86

while only the unique items in the frequent two-itemsets need to be stored in the
IAG. Therefore, IAG has a lower space complexity than the FP-Tree.

IAG partition The space complexity of the IAG partition is equal to the space com-
plexity of the MLkP algorithm, which is O(E) or O(d2).

Transaction partition The dataset is traversed once to assign items into different
partitions. We can assume each partition can fit into the memory. Therefore, the
space complexity is O(n

k
).

Selecting and running the selected algorithm The algorithm selection requires the
calculation of the average transaction width of each transaction partition. The space
complexity of this is O(k) = O(1), where k is the number of partitions.

If the modified Apriori algorithm is selected, the theoretical space complexity for
each partition is O

(

2
1.03d
k

)

, where the coefficient 1.03 comes from the default 3% max-

imum imbalance of partitions caused by the MLkP algorithm. The total space com-
plexity for all partitions is therefore O

(

k ∗ 2
1.03d
k

)

→ O(2
1.03d
k) , and the total space

complexity of the SARL heuristic, when the modified Apriori algorithm is selected, is
O
(

(3− 1) ∗ d2 + n
k
+ 2

1.03d
k

)

→ O(d2 + n
k
+ 2

1.03d
k) . Assume n

k
≫ d , and 2

1.03d
k ≫ n

k  ,

the space complexity can be simplified to O(2
1.03d
k) . Compared with the space com-

plexity of the Apriori algorithm, SARL uses only

O

(

2
1.03d
k

2d

)

→ O
(

2
1.03−k

k
d
)

→ o(1

2
k−1.03

k
d
) space comparing to the Apriori algorithm.

The exponential reduction of space usage comes from the smaller number of unique
items in each transaction partition. If the modified Apriori is chosen to mine frequent
itemsets from the transaction partitions, it only generates a smaller number of candi-
dates for each transaction partition, since it does not consider items in other
partitions.

Error bound

The SARL heuristic sacrifices some precision to obtain the speed up. However, every
frequent itemset found by the algorithm is correct, and the support associated with
each frequent itemset is also correct. The heuristic may miss some trivial frequent
itemsets, i.e., the itemsets with low support. During the IAG partition phase, the
MLkP algorithm makes cuts on the IAG to minimize the sum of the weights of the
edges that are cut off. This feature helps to prevent large weights from cut off, while
some trivial, small-weight (support) edges may be lost.

In the most (extreme) case, when every transaction has all the items and minsup is
set to 0, we can calculate the error bound. In this case, the IAG is a complete graph,
and the fraction of the edges cut off by the MLkP algorithm is n∗

(

n− n
k

)

E =
(k−1)n
k(n−1)

 .
When n is very large, the fraction is approximatelyk−1

k  . In this case, we can set k as
low as 2 to still maintain 50% coverage for the frequent three or more itemsets. The
calculation of frequent one and two itemsets is always accurate because they are cal-
culated using the Apriori algorithm or the direct-generate algorithm.

The error rate should be significantly lower in more practical cases. However, it is
difficult to estimate such an error rate considering it is affected by many factors such

Page 19 of 32Li and Sheu ﻿J Big Data (2021) 8:86 	

as the closeness of groups of items (i.e., does an item appear with only a small number
of other items?), the choice of minsup, and the max length of the frequent itemsets.
We can make a rough estimation by introducing a parameter Pout , the ratio of the
edges cut off in the IAG. Pout = Ecut

Etotal
 . This parameter is determined by the character-

istics of a dataset, the minsup choice, and the number of partitions we choose. Pout is
also a rough estimation of the error rate for the frequent two or more itemsets.
Assume the ratio of the frequent two or more itemsets found is Pm,

then the total error bound can be computed as

Initial selection of number of partitions, k

The selection of k determines the speed and accuracy of the SARL heuristic. A larger
k usually means faster speed and lower accuracy, and vice versa. Depending on the
size of the dataset and the application, k = 2, 3, or 4 are some balanced choices. In
rare cases, the heuristic will increase the k value if any transaction partition cannot fit
into the memory based on the current setting of k.

Benefits of having datasets fit into the memory

According to "Our solution" section, Part 8, the transaction partitions are guaranteed
to be small enough to fit into the memory. Therefore, any operations performed on
these in-memory datasets should be faster than before. For example, the Apriori algo-
rithm makes the number of passes on the dataset equal to the maximum length of
frequent itemsets. Each of these passes requires reading the dataset from the disk.
With our solution, the SARL heuristic makes at most two passes to the dataset. The
first pass is to generate the frequent one and two itemsets, and in the second pass,
the algorithm brings a fraction of the dataset into the memory. All further passes are
made directly in the memory, resulting in speedup.

We do not analyze the communication cost between the main memory and the
hard disk quantitatively in this paper. Due to the nature of our divide-and-conquer
approach, we do not implement any additional swapping mechanism, so each parti-
tion is only brought into the memory once. Therefore, such cost should be no larger
than the cost of the Apriori algorithm.

Theorems and proofs

Theorem 1  Soundness—All frequent itemsets and association rules generated by the
SARL heuristic are correct.

Proof  Assume the SARL heuristic generates an incorrect frequent itemset. We
can assume the correctness of the Apriori algorithm and the FP-growth algorithm.

(5)Pm =
#frequent2+ itemsets

#totalfrequentitemsets

(6)Errortotal = Pm ∗ Pout

Page 20 of 32Li and Sheu ﻿J Big Data (2021) 8:86

Therefore, there must be an error in transaction partitioning. There could be two pos-
sible types of error in transaction partitioning:

(Possibility 1) The support of some itemsets is higher or lower than it should be.

(Possibility 2) Some transactions include additional items or lose some items.

Assume the first possibility is true. We divide the dataset vertically (item-wise) dur-
ing the transaction partitioning phase. Since every item in the original dataset D that
belongs to Pi must be added to Di , all unique items in a transaction partition must
appear in the same number of transactions as the original dataset. Hence, the support
of each itemset should be the same as the original dataset. This conflicts with the first
possibility: the support of some itemsets is higher or lower than it should be.

Assume the second possibility is true. During the transaction partitioning phase,
each transaction in the original dataset may be assigned to a transaction partition,
or it may be split into different disjoint parts. Therefore, each transaction in a trans-
action partition must be a subset of the corresponding transaction in the original
dataset, and this process cannot add any new items into any transactions. If some
items are lost during the transaction partitioning phase, the results may have incor-
rect supports. However, we know that the union of the unique items in each transac-
tion partition is equal to the unique items of the frequent two-itemsets, since the IAG
partitioning cuts off some edges of IAG but not the nodes. According to the Apriori
principle, a three-itemset can be frequent if and only if all its two-item subsets are
frequent. This means that the unique items of three or more frequent itemsets must
be a subset of the unique items of frequent two-itemsets. Hence, we have

where In is the unique items of frequent n-itemsets, Pj is the unique items of transac-
tion partition j, and m is the number of transaction partitions. Therefore, all items
needed by the frequent three (or higher) itemsets are present in the transaction
partitions. Hence, we find a contradiction between our algorithm and the second
possibility.

In summary, since both possibilities are proved to be false, the SARL heuristic is
sound.� □

Theorem 2  Computing the frequent two itemsets is considered relatively trivial com-
pared to computing the frequent three or more itemsets.

Proof  If the computation of the frequent two itemsets takes more than half of the
total computation time, we may say computing frequent two itemsets is not trivial.

To characterize the distribution of frequent itemsets is relatively difficult due to the
challenges in modeling the data. We develop a mathematical model to simulate the

(7)∀n ≥ 3, In ⊆ I2 =

m
⋃

j=1

Pj

Page 21 of 32Li and Sheu ﻿J Big Data (2021) 8:86 	

characteristics of any dataset. The relationships of all the frequent itemsets can be
depicted using an itemset lattice diagram shown below:

Figure 4 shows the case when every itemset has a support greater than minsup.
However, in most cases, each layer will have some itemsets being removed due to
either one of the two reasons: the anti-monotone property of the Apriori principle or
the lack of support (i.e., support < minsup). To model the former, we apply the anti-
monotone property to the itemset lattice. The anti-monotone property is as follows:

where if J = 2I , I being a set of items, X is a subset of Y, then the measure f must be
anti-monotone. Applying this property to the lattice, we can have the following expla-
nation: if an itemset is infrequent, then all of its supersets must also be infrequent.

For example, in Fig. 5, if {1, 3} is infrequent, then {1, 2, 3}, {1, 3, 4}, and {1, 2, 3, 4} are
all infrequent. To model this property, we can imagine that each infrequent itemset in
the same layer causes some supersets in the next layer to be infrequent. The first
infrequent itemset results in n-k + 1 infrequent itemsets in the next layer, where n is
the number of unique items in the dataset, and k is the current layer number or the
number of items in each itemset of the current layer. We know that each layer has Cn

k
itemsets if none of them is infrequent. Then the next layer will have Cn

k+1 total item-
sets. Since n-k + 1 is the number of current infrequent itemsets in the next layer,

(8)∀X ,Y ∈ J : (X ⊂ Y) → f (Y) ≤ f (X)

Fig. 4  An itemset lattice

Page 22 of 32Li and Sheu ﻿J Big Data (2021) 8:86

n−k+1
Cn
k+1

 is the current fraction of frequent itemsets over all the itemsets in the next

layer. Therefore, 1− (n−k+1)
Cn
k+1

 is the probability of having a frequent itemset in the next

layer if we randomly choose an itemset, and the second infrequent itemset should
cause

(

1− (n−k+1)
Cn
k+1

)

∗ (n− k + 1) infrequent itemsets in the next layer. For the same

reason, the third infrequent itemset in the current layer should cause.


1−
(n−k+1)+

�

1− (n−k+1)
Cn
k

�

∗(n−k+1)

Cn
k+1



 ∗ (n− k + 1) infrequent itemsets in the next

layer. We can now estimate the number of infrequent itemsets I in the next layer using
the number of infrequent itemsets in the current layer:

Fig. 5  An example of pruning

Table 11  Estimation of the number of itemsets

p #two itemsets #three itemsets #four itemsets 2/(3 + 4)

0.8 12,736 228,346 972,761 0.010603552

0.6 7164 41,585 714,273 0.009477971

0.4 3184 6761 30,960 0.084409215

0.2 796 589 1898 0.320064335

0.1 199 67 118 1.075675676

Page 23 of 32Li and Sheu ﻿J Big Data (2021) 8:86 	

The remaining frequent itemsets in layer k, considering the above estimation of the
influence of the Apriori principle, is Cn

k − Ik−1 . Let us assume the probability p that
an itemset to be frequent, assuming its parent is frequent. We can have the final esti-
mated number of frequent itemsets for layer k:

For n = 200, p = 0.8, 0.6, 0.4, 0.2, 0.1, we can estimate the number of two, three, and
more itemsets as shown in Table 11:

For n = 2000, p = 0.8, 0.6, 0.4, 0.2, 0.1, we can estimate the number of two, three,
and more itemsets as shown in Table 12:

The above model with examples shows that the number of two itemsets is, on aver-
age, less than only 10% of the number of three or more itemsets. This means that only
less than 10% of all computation power is consumed by the two itemsets. Thus, our
algorithm speeds up the costly part, the part that mines three or more itemsets.� □

Theorem 3  Consider a value of minsup such that the fraction of frequent one itemset
over the total number of unique items, d, denoted by f, is less than (1—the maximum
imbalance rate), where the maximum imbalance rate is usually set to 3% based on the
MLkP algorithm. If the partition by MLkP is k-way, then each partition contains less
than d/k unique items, where d is the total unique items in the original dataset. As a
consequence, the complexity of each partition can be reduced.

Proof  Assume that given f < 100%—3% or f < 97%, and a transaction partition has
di ≥ d/k unique items. According to our algorithm, since di ≥ d/k , a partition in the
IAG must have more than or equal to d/k nodes. As we assumed earlier, the maxi-
mum imbalance rate for the MLkP algorithm is set to 3%, then the number of nodes
n in the IAG can be calculated as dk ∗ 0.97 ∗ k ≤ n ≤ d

k
∗ 1.03 ∗ kor0.97d ≤ n ≤ 1.03d .

Since n cannot be more than the total number of unique items, 0.97d ≤ n ≤ d . How-
ever, we know f < 97% or f *d < 0.97d, and n ≤ f ∗ d since some frequent one itemsets

(9)

Ik =(n− k + 1)+

�

1−
(n− k + 1)

Cn
k+1

�

∗ (n− k + 1)

+



1−
(n− k + 1)+

�

1− (n−k+1)
Cn
k

�

∗ (n− k + 1)

Cn
k+1



 ∗ (n− k + 1)+

(10)fk =
(

Cn
k − Ik−1

)

∗ pk

Table 12  Estimation of the number of itemsets for larger datasets

p #two itemsets #three itemsets 2/3

0.8 1,279,360 231,482,728 0.005527

0.6 719,640 42,159,431 0.017069

0.4 319,840 6,855,578 0.046654

0.2 79,960 597,871 0.133741

0.1 19,990 68,301 0.292675

Page 24 of 32Li and Sheu ﻿J Big Data (2021) 8:86

may not appear in any frequent two itemsets, so n ≤ f ∗ d < 0.97d and n < 0.97d .
This contradicts 0.97d ≤ n ≤ d . Therefore, the assumption di ≥ d/k is false, and the
reverse, di < d

k  , must be true.� □

Experiments and results
We design and conduct experiments on both small and large datasets to demonstrate
the scalability of our algorithm. The experiments are performed on a computer with
the following settings:

1.	 OS: Ubuntu 64-bit running on a virtual machine
2.	 CPU: Intel Core i7-4720HQ
3.	 Memory: 8192 MB allocated to the virtual machine
4.	 Disk: 5400RPM, 64 MB Cache, 6.0 Gb/s, SSHD, 8 GB flash memory
5.	 Programming Language: Python 3.7

The datasets [32] we use include Bible [33], T10I4D100K [32], and T40I10D100K
[32]. The details of each dataset will be discussed later.

Table 13  Running times of different algorithms on the Bible dataset

fp sarl 2apF sarl 2fpF sarl 4apF sarl 4fpF ap

50 Timeout 8.69149 9.099829 8.689143 13.36314 17.57703

40 Timeout 8.169094 8.981468 9.30843 14.59894 17.60924

30 Timeout 9.39442 10.64038 11.12533 17.64162 21.45831

20 Timeout 10.68418 13.63021 10.22187 10.61251 27.32679

10 Timeout 20.87115 30.99064 27.77191 30.65479 51.8529

0

10

20

30

40

50

60

50 40 30 20 10

ru
nn

in
g

�m
e(

se
co

nd
s)

minsup(%)

BIBLE Dataset

fp sarl 2apF sarl 2fpF sarl 4apF sarl 4fpF ap

Fig. 6  Running times of different algorithms on the Bible dataset

Page 25 of 32Li and Sheu ﻿J Big Data (2021) 8:86 	

For each of these datasets, we test the SARL heuristic with various settings for the
FP-Growth and the Apriori algorithms on different values of minsup. The various set-
tings of the SARL heuristic are as follows:

2ap: k = 2, Apriori-based.
2fp: k = 2, FP-Growth-based.
4ap: k = 4, Apriori-based.
4fp: k = 4, FP-Growth-based.

The bible dataset

The Bible dataset has the following metrics:

1.	 Number of unique items: 13,905
2.	 Number of transactions: 36,396
3.	 Average transaction width: 21.6
4.	 File size: 5.4 MB

This is a small to medium-sized dataset. The experiments are done repeatedly for
minsup of 50%, 40%, 30%, 20%, and 10%. The time limit for each experiment is set to
800 s for each of the experiments. The results are shown in Table 13:

Table 14  Accuracy of the SARL algorithm on the Bible dataset

sarl 2apF & sarl 2fpF (%) sarl 4apF &
sarl 4fpF (%)

50 73.91 100.00

40 60.00 100.00

30 51.72 100.00

20 44.17 40.83

10 39.80 31.37

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

50 40 30 20 10

minsup(%)

Accuracy

sarl 2apF & sarl 2fpF sarl 4apF & sarl 4fpF

Fig. 7  Accuracy of different configurations of SARL heuristic on the Bible dataset

Page 26 of 32Li and Sheu ﻿J Big Data (2021) 8:86

According to Fig. 6, the two-partition, Apriori-based SARL heuristic scales the
best for this dataset regardless of the minsup value. It is 2 to 2.5 times faster than the
Apriori algorithm. The FP-Growth algorithm reaches the 800-s time limit for all test
cases. It is possible that the number of unique items in this dataset is large; therefore
the FP-tree cannot fit into the memory. As a result, the FP-growth algorithm does
not perform well here. All other three settings of the SARL heuristic outperform the
Apriori algorithm. Comparing to the FP-growth algorithm and the Apriori algorithm,
the SARL heuristic is more scalable with all values set for minsup.

As we proved earlier, all the frequent itemsets found by the SARL heuristic are
accurate, with the correct support. This is important because we need the accurate
support to calculate the confidence of the rules. The SARL heuristic may miss some
frequent itemsets with a lower support. Here, we calculate the accu-
racy = numberoffrequentitemsetsfoundbySARL

numberoffrequentitemsetsfoundbyApriori . The accuracy of the SARL heuristic drops on
the Bible dataset when the value of minsup is low. From Table 14 and Fig. 7, both set-
tings of the four-partition SARL heuristic achieve 100% accuracy from the minsup
range of 50% to 30%. This is because the MLkP algorithm is able to find a perfect or
almost perfect cut on the IAG so that there are no inter-partition frequent itemsets
for this range. When 100% accuracy is achieved, the SARL heuristic discovers not just
the one and two frequent itemsets, but also the three or higher frequent itemsets. As

Table 15  T10I4D100K running times

fp sarl 2apF sarl 2fpF sarl 4apF sarl 4fpF ap

10 2.835414 19.57188 19.11257 18.71221 19.44224 5.622139

4 4.288454 18.61193 18.25904 18.43984 18.39262 18.49691

1 277.5966 32.34425 21.23481 21.47209 20.94079 Timeout

0.7 288.9096 24.09774 23.6652 22.95777 23.90843 Timeout

0.4 Timeout 58.42791 199.8875 56.80203 207.7374 Timeout

0

50

100

150

200

250

300

350

10 4 1 0.7 0.4

Ti
m

e(
se

co
nd

)

minsup(%)

T10I4D100K

fp sarl 2apF sarl 2fpF sarl 4apF sarl 4fpF ap

Fig. 8  Running times of different algorithms on the T10I4D100K dataset

Page 27 of 32Li and Sheu ﻿J Big Data (2021) 8:86 	

for the two-partition SARL heuristic settings, the accuracy starts at 73.91% at 50%
minsup and drops to 39.8% at 10% minsup.

The T10I4D100K dataset

The second dataset we have tested is T10I4D100K. It has the following statistics:

1.	 Number of unique items: 870
2.	 Average size of transactions: 10
3.	 Number of transactions: 100,000
4.	 File size: 4 MB

The algorithms are tested on T10I4D100K for minsup of 10%, 4%, 1%, 0.7%, and
0.4%. This dataset has a medium size (for this environment), so the time limit is set to
300 s for each of the experiments.

Table 15 and Fig. 8 shows the results for T10I4D100K:
From Fig. 8, the Apriori algorithm has an average performance for the initial min-

sup of 10% and 4%. However, it quickly reaches the maximum running time after that

Table 16  Accuracy of SARL heuristic on T10I4D100K

sarl 2apF (%) sarl 2fpF (%) sarl 4apF (%) sarl 4fpF (%)

10 100 100 100 100

4 100 100 100 100

1 100 100 100 100

0.7 100 100 100 100

0.4 100 100 100 100

0%
20%
40%
60%
80%

100%

10 4 1 0.7 0.4

Accuracy

sarl 2apF sarl 2fpF sarl 4apF sarl 4fpF

Fig. 9  Accuracy of SARL heuristic on T10I4D100K

Table 17  Running times of different algorithms on the T40I10D100K dataset

fp sarl 2apF sarl 2fpF sarl 4apF sarl 4fpF ap

20 8.736294 229.0365 235.9384 232.3693 231.474 23.49573

10 Timeout 228.2672 226.8315 239.0484 233.1036 158.8888

7 Timeout 236.5143 233.9087 235.3071 238.6583 Timeout

4 Timeout 241.4238 252.5584 242.9868 241.8205 Timeout

Page 28 of 32Li and Sheu ﻿J Big Data (2021) 8:86

and unable to finish the task in time for all subsequent settings of minsup. The FP-
Growth algorithm has a better performance. It is the fastest for a higher value of min-
sup of 10% and 4%, but it jumps to almost 300 s for 1% and 0.7%, before timeout at
0.4%. All settings of the SARL heuristic outperform the Apriori and the FP-Growth
algorithm for middle and low settings of minsup. It is 8.6 to 13.8 times faster than the
FP-Growth algorithm on minsup = 1% and 0.7%. The SARL heuristic is slightly slower
at a high minsup of 10%, and they are tied with the Apriori but slightly slower than
FP-Growth at a minsup of 4%.

0

50

100

150

200

250

300

20 10 7 4

TI
m

e(
se

co
nd

)

minsup(%)

T40I10D100K

fp sarl 2apF sarl 2fpF sarl 4apF sarl 4fpF ap

Fig. 10  Running times of different algorithms on the T40I10D100K dataset

Table 18  Accuracy of SARL heuristic on T40I10D100K dataset

sarl 2apF (%) sarl 2fpF (%) sarl 4apF (%) sarl 4fpF (%)

20 100 100 100 100

10 100 100 100 100

0%

20%

40%

60%

80%

100%

sarl 2apF sarl 2fpF sarl 4apF sarl 4fpF

Accuracy

20 10

Fig. 11  Accuracy of SARL heuristic on T40I10D100K dataset

Page 29 of 32Li and Sheu ﻿J Big Data (2021) 8:86 	

The accuracy of the SARL heuristic is high on the T10I4D100K dataset. As shown
in Table 16 and Fig. 9, all four settings of the SARL heuristic achieve 100% accuracy
for the values of minsup from 10% to 0.4%. This is because, for a high minsup, the
number of frequent three or more itemsets for this dataset is small comparing to fre-
quent two itemsets, and the mining of the one and two frequent itemsets is accurate.
For low minsup values, the MLkP algorithm successfully finds a perfect or almost per-
fect cut on the IAG, so the results are accurate.

The T40I10D100K dataset

The dataset T40I10D100K has the following statistics:

1.	 Number of unique items: 942
2.	 Average size of transactions: 40
3.	 Average size of the maximal potentially large itemsets:10
4.	 Number of transactions:100,000
5.	 File size: about 15 MB

This relatively large-size dataset was tested on minsup values of 20%, 10%, 7%, and
4%. The maximum running time was set to 300 s each for the experiments.

Table 17 shows the results of the experiments:
The results of the experiments (shown in Table 17 and Fig. 10) show an obvious

distinction between the scalability of different algorithms. All settings of the SARL
heuristic demonstrate high scalability. Almost all settings of the SARL heuristic have
stable running time throughout the entire range of minsup. Surprisingly, the Apriori
algorithm performs better than the FP-Growth algorithm with a minsup between 20
and 7%. However, it is still unable to terminate within the time limit for minsup = 4%.
Lastly, the FP-Growth algorithm does not scale very well on this dataset. It fails to
terminate within the given time for both 7% and 4% of minsup.

The accuracy of the SARL heuristic on the T40I10D100K dataset is the same
as the T10I4D100K dataset. Table 18 and Fig. 11 show that the SARL heuristic has
100% accuracy based on similar reasons as we explained above in the analysis of the
T10I4D100K experiment results.

Conclusions and future work
In this paper, we have proposed a scalable, highly parallelizable association rule
mining heuristic (the SARL heuristic). The contributions include the use of the
divide-and-conquer method to speed up complex computations, the use of an item
association graph that provides an efficient estimation of potential frequent itemsets,
and the use of the MLkP algorithm to divide the items into partitions while mini-
mizing the loss of information. We have shown the scalability of the SARL heuris-
tic through a series of experiments. The results indicate that the SARL heuristic has
better scalability, with high accuracy, than both the Apriori and the FP-Growth algo-
rithms in most cases.

As discussed, the proposed heuristic is limited by the space requirement that the
memory should be large enough to accommodate the IAG (proportional to d2 where

Page 30 of 32Li and Sheu ﻿J Big Data (2021) 8:86

d is the number of unique items in the transactions) which we think may be a reason-
able assumption in practice.

In the future, we plan to extend our work with the following tasks:

•	 Develop a parallel version of the SARL heuristic and its implementation. The
transaction partitions can be considered as independent datasets, and we can eas-
ily run the modified Apriori algorithm or FP-Growth algorithm on each of the
transaction partition in parallel and then merge the results (frequent three or
higher itemsets) together along with the frequent one and two itemsets to obtain
the total frequent itemsets. Each parallel processor does not need to communicate
with others during the computation since all the information needed is already
included in the local dataset. This would result in maximum utilization of each
processor.

•	 Study how different characteristics of the datasets influence the performance of
the SARL heuristic. Although we know that the SARL heuristic has excellent per-
formance for most datasets, the exact speed and accuracy of the SARL heuristic
are still unpredictable. We think by applying some statistical measurements on the
dataset, it is possible to estimate the accuracy and speed of the SARL heuristic
roughly. This will help the user to determine if using the SARL heuristic is benefi-
cial enough compared to other accurate algorithms.

Abbreviations
K-itemset: An itemset with k items; Minsup: The minimum requirement of support. The user usually provides this.
Itemsets with support < minsup are eliminated.; Minconf: The minimum requirement of confidence. The user usually
provides this. Rules with confidence < minconf are eliminated.; IAG: Item-association graph; MLkP: Multilevel k-way
partitioning algorithm; SARL: Scalable association rule learning.

Acknowledgements
Not applicable

Authors’ contributions
Both HL and PS are major contributors to writing the manuscript. HL and PS have made substantial contributions to
the conception and design of work. HL has created the software used in this paper. Both HL and PS have approved
the submitted version and have agreed on both to be personally accountable for the author’s own contributions
and to ensure that questions related to the accuracy or integrity of any part of the work, even ones in which the
author was not personally involved, are appropriately investigated, resolved, and the resolution documented in the
literature. Both authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
The datasets analyzed during the current study are available in the SPMF Open-Source Data Mining Library
repository[http://​www.​phili​ppe-​fourn​ier-​viger.​com/​spmf/​index.​php?​link=​datas​ets.​php], The Graph Partitioning
Archive[https://​chris​walsh​aw.​co.​uk/​parti​tion/.], and Frequent Itemset Mining Dataset Repository[http://​fimi.​uantw​
erpen.​be/​data/].

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
https://chriswalshaw.co.uk/partition/
http://fimi.uantwerpen.be/data/
http://fimi.uantwerpen.be/data/

Page 31 of 32Li and Sheu ﻿J Big Data (2021) 8:86 	

Received: 27 February 2021 Accepted: 22 May 2021

References
	1.	 Kaur M, Kang S. Market basket analysis: identify the changing trends of market data using association rule min‑

ing. Procedia computer science. 2016;85:78–85.
	2.	 Naulaerts S, Meysman P, Bittremieux W, Vu TN, Vanden Berghe W, Goethals B, Laukens K. A primer to frequent

itemset mining for bioinformatics. Brief Bioinform. 2015;16(2):216–31.
	3.	 Agrawal R, Srikant R. Fast algorithms for mining association rules. In: Proceedings of 20th international confer‑

ence very large data bases, vol. 1215, VLDB. 1994, pp. 487–99.
	4.	 Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation. ACM SIGMOD Rec. 2000;29(2):1–12.
	5.	 Zaki MJ. Scalable algorithms for association mining. IEEE Trans Knowl Data Eng. 2000;12(3):372–90.
	6.	 Agrawal R, Imieliński T, Swami A. Mining association rules between sets of items in large databases. In: Proceed‑

ings of the 1993 ACM SIGMOD international conference on Management of data. 1993, pp. 207–16.
	7.	 Stone A, Shiffman S, Atienza A, Nebeling L. The science of real-time data capture: self-reports in health research.

Oxford University Press; 2007.
	8.	 Dubois E, Blättler C, Camachon C, Hurter C. Eye movements data processing for ab initio military pilot training.

In: International conference on intelligent decision technologies. Springer, Cham, 2017. pp. 125–35.
	9.	 Shiau Y, Liang S. Real-time network virtual military simulation system. In: 2007 11th international conference

information visualization (IV ’07), Zurich. 2007, pp. 807–12. doi: https://​doi.​org/​10.​1109/​IV.​2007.​93.
	10.	 Chee CH, Jaafar J, Aziz IA, Hasan MH, Yeoh W. Algorithms for frequent itemset mining: a literature review. Artif

Intell Rev. 2019;52(4):2603–21.
	11.	 Park JS, Chen MS, Yu PS. An effective hash-based algorithm for mining association rules. ACM SIGMOD Rec.

1995;24(2):175–86.
	12.	 Lin X. Mr-apriori: Association rules algorithm based on mapreduce. In: 2014 IEEE 5th international conference on

software engineering and service science. IEEE. 2014, pp. 141–144.
	13.	 Nadimi-Shahraki MH, Mansouri M. Hp-Apriori: Horizontal parallel-apriori algorithm for frequent itemset mining

from big data. In: 2017 IEEE 2nd international conference on big data analysis (ICBDA). IEEE. 2017, pp. 286–290.
	14.	 Houtsma M, Swami A. Set-oriented mining for association rules. IBM Almaden research center. research report

RJ 9567, San Jose. 1993.
	15.	 Agarwal RC, Aggarwal CC, Prasad VVV. A tree projection algorithm for generation of frequent item sets. J Parallel

Distrib Comput. 2001;61(3):350–71.
	16.	 Song M, Rajasekaran S. A transaction mapping algorithm for frequent itemsets mining. IEEE Trans Knowl Data

Eng. 2006;18(4):472–81.
	17.	 Baralis E, Cerquitelli T, Chiusano S. Grand A. P-Mine: Parallel itemset mining on large datasets. In: 2013 IEEE 29th

international conference on data engineering workshops (ICDEW). IEEE. 2013, pp. 266–271.
	18.	 Pyun G, Yun U, Ryu KH. Efficient frequent pattern mining based on linear prefix tree. Knowl-Based Syst.

2014;55:125–39.
	19.	 Hoseini MS, Shahraki MN, Neysiani BS. A new algorithm for mining frequent patterns in can tree. In: 2015 2nd

international conference on knowledge-based engineering and innovation (KBEI). IEEE. 2015, pp. 843–846.
	20.	 Feddaoui I, Felhi F, Akaichi J. EXTRACT: New extraction algorithm of association rules from frequent itemsets. In:

2016 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM). IEEE.
2016, pp. 752–6.

	21.	 Croushore D. Frontiers of real-time data analysis. J Econ Liter. 2011;49(1):72–100.
	22.	 Yang XY, Liu Z, Fu Y. MapReduce as a programming model for association rules algorithm on Hadoop. In: The

3rd international conference on information sciences and interaction sciences, Chengdu. 2010, pp. 99–102. Doi:
https://​doi.​org/​10.​1109/​ICICIS.​2010.​55347​18.

	23.	 Buluç A, Meyerhenke H, Safro I, Sanders P, Schulz C. Recent advances in graph partitioning. In: Algorithm engi‑
neering. Springer, Cham. 2016, pp. 117–58.

	24.	 Kernighan BW, Lin S. An efficient heuristic procedure for partitioning graphs. Bell Syst Tech J.
1970;49(2):291–307.

	25.	 Karypis G, Kumar V. Multilevelk-way partitioning scheme for irregular graphs. J Parallel Distrib Comput.
1998;48(1):96–129.

	26.	 McSherry F. Spectral partitioning of random graphs. In: Proceedings 42nd IEEE symposium on foundations of
computer science. IEEE. 2001, pp. 529–537.

	27.	 Galinier P, Boujbel Z, Fernandes MC. An efficient memetic algorithm for the graph partitioning problem. Ann
Oper Res. 2011;191(1):1–22.

	28.	 Sanders P, Schulz C. Engineering multilevel graph partitioning algorithms. In: European symposium on algo‑
rithms. Springer, Berlin, Heidelberg. 2011, pp. 469–480.

	29.	 Walshal C. The graph partitioning archive. 2020. https://​chris​walsh​aw.​co.​uk/​parti​tion/.
	30.	 Karypis G, Kumar V. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Com‑

put. 1998;20(1):359–92.
	31.	 Heaton J. Comparing dataset characteristics that favor the Apriori, Eclat or FP-Growth frequent itemset mining

algorithms. SoutheastCon 2016, Norfolk, VA. 2016, pp. 1–7, doi: https://​doi.​org/​10.​1109/​SECON.​2016.​75066​59.
	32.	 Goethals B. Frequent itemset mining dataset repository. 2020. http://​fimi.​uantw​erpen.​be/​data/
	33.	 Fournier-Viger P, Lin CW, Gomariz A, Gueniche T, Soltani A, Deng Z, Lam HT. The SPMF open-source data min‑

ing library version 2. In: Proceedings 19th European conference on principles of data mining and knowledge
discovery (PKDD 2016) Part III, Springer LNCS 9853. 2016, pp. 36–40.

https://doi.org/10.1109/IV.2007.93
https://doi.org/10.1109/ICICIS.2010.5534718
https://chriswalshaw.co.uk/partition/
https://doi.org/10.1109/SECON.2016.7506659
http://fimi.uantwerpen.be/data/

Page 32 of 32Li and Sheu ﻿J Big Data (2021) 8:86

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	A scalable association rule learning heuristic for large datasets
	Abstract
	Introduction
	Contributions
	Related work
	The Apriori algorithm
	The FP-growth algorithm
	The Eclat algorithm
	Other association rule learning algorithms
	Graph partitioning algorithms

	Our solution
	Definitions
	A scalable heuristic algorithm—SARL-heuristic
	An example
	Formal description of the SARL heuristic
	Finding frequent 2 itemsets using the Apriori algorithm or dirct_gen algorithm
	Construction of the item association graph
	Partition the IAG using the multilevel k-way partitioning algorithm (MLkP)
	Transaction partitioning
	Selecting an algorithm on transaction partitions
	Time complexity and space complexity
	Time complexity
	Space complexity

	Error bound
	Initial selection of number of partitions, k
	Benefits of having datasets fit into the memory
	Theorems and proofs

	Experiments and results
	The bible dataset
	The T10I4D100K dataset
	The T40I10D100K dataset

	Conclusions and future work
	Acknowledgements
	References

