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some novel statistical techniques are proposed in this paper. The proposed techniques
are based on statistical methods considering data compactness and other properties.
The newly proposed ideas are found efficient in terms of performance, ease of imple-
mentation, and computational complexity. Furthermore, two proposed techniques
presented in this paper use transformation of data to a unidimensional distance space
to detect the outliers, so irrespective of the data’s high dimensions, the techniques
remain computationally inexpensive and feasible. Comprehensive performance
analysis of the proposed anomaly detection schemes is presented in the paper, and
the newly proposed schemes are found better than the state-of-the-art methods when
tested on several benchmark datasets.
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Introduction

An observation in a dataset is considered an outlier if it differs significantly from the
rest of the observations. The problem of finding patterns in data that deviate from the
expected behavior is called the anomaly detection or the outliers’ detection problem.
Outliers in data can occur due to the variability in measurements, experimental errors,
or noise [1], and the existence of outliers in data makes the analysis of data misleading
and degrades the performance of machine learning algorithms [2, 3].

Several techniques have been developed in the past to detect outliers in data [4-6].
The techniques for outlier detection can be broadly classified as methods based on:
(i) Clustering [7], (ii) Classification [8], (iii) Neighbor based [9], (iv) Statistical [10], (v)
Information-Theoretic [11], and (vi) Spectral methods [12]. The working of classifica-
tion-based methods mostly relies on a confidence score, which is calculated by the clas-
sifier while making a prediction for the test observation. If the score is not high enough,
the observation is not assigned any label and is considered an outlier. Some clustering-
based methods identify the outliers by not forcing every observation to belong to a
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cluster, and the observations that are not assigned to any cluster are identified as outli-
ers. The nearest neighbor techniques are mostly based on a calculation of the distance
or similarity measure between the observation and its neighboring observations. Sup-
pose the calculation is greater than a certain threshold, that means that the observation
lies far apart from the rest of the observations and is considered as an outlier. Statisti-
cal methods usually fit a statistical distribution (mostly normal distribution) to the data
and conduct a statistical inference test to see if the observation belongs to the same dis-
tribution or not. If not, the observation is marked as an outlier. Information-theoretic
techniques use different information theoretic measures for example entropy, relative
entropy, etc., to analyze the information content of the data. These techniques are based
on an assumption that the outliers or anomalies in the data induce irregularities in the
information content. Spectral methods transform the data to a new dimensional space
such that the outliers are easily identified and separated from the data in the new space.
Furthermore, some outlier detection techniques are also based on geometric methods
[13] and neural networks [14].

All the techniques mentioned above are based on some assumptions and all the tech-
niques have some pros and cons as described in Table 1. The ideas proposed in this work
are based on the novel statistical methods considering data properties like compactness.
Where, the compactness of data is estimated either by the interactions between different
kernel function tails, new and adapted kernel functions are proposed, or by the vari-
ance of independent gaussian distributions over different regions that are captured as a
new clustering idea. Moreover, contrary to the existing approaches, statistical methods
are modeled based on the transformation of data into a unidimensional distance space.
The newly proposed methods are based on boxplot adjustment, kernel based probability
density estimation and neighborhood information. The aim here is to utilize the power
of some statistical methods and to enhance the performance of the outlier detection
algorithms in an unsupervised way, while keeping their implementation easy and com-
putationally efficient. The proposed methods are evaluated using both the synthetic and
the real datasets and are found better in scenarios where the traditional approaches fail
to perform well. Especially the cases where the data is contaminated with a mixture of
different noise distributions.

The rest of the paper is organized as follows: “Background” section, “Proposed meth-
ods” section, Evaluation on synthetic datasets “Evaluation using synthetic examples” sec-
tion, Evaluation on real data “Evaluation of boxplot adjustments using a real example”
section, “Comparison with State-of-Art” section and “Conclusions” section.

Background

After the initial pivotal works for outlier detection based on the distance measure [15,
16], several new methods based on the distance measure were also proposed by differ-
ent authors in literature [17, 18]. The difference between the latterly proposed methods
and the previous studies is the use of nearest neighbors in distance calculation. Among
the variants of the actual work, either a single distance based on the k¢/ closest neighbor
is calculated [19] or the aggregate of the distance of k closets points is calculated [20].
Among other unsupervised outlier detection algorithms are the local approaches origi-
nated from the concept of Local Outlier Factor [21].
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Furthermore, boxplot outlier detection scheme is also one of the fundamental unsu-
pervised approach and the concept of univariate boxplot analysis was first proposed
by Tukey et. al. [22]. In a univariate boxplot, there are five parameters specified as:
(i) the upper extreme bound (UE), (ii) the lower extreme bound (LE), (iii) the upper
quartile Q3 (75th percentile), (iv) the lower quartile Q1 (25th percentile) and (v)
the median Q2 (50th percentile). The best way to estimate the extreme boundaries
is to estimate Probability Density Function (PDF), f(x), at first step from where the
boundaries will be defined, as follows:

UE :

[SIE]

=P(X > UE) = +fo S x)dx
UE

1)
LE :

[SIET

LE .
=P(X <LE)= [ f(x)dx

where 7 is the significance level, the region of suspected outliers is defined for T = 0.05
and the region of extremely suspected outliers is defined for t = 0.01. The Eq. (1) esti-
mates well the boundaries only if the distribution is unimodal, i.e., a distribution that has
single peak or at most one frequent value.

However, in a standard boxplot the UE and LE values are computed and well esti-
mated only under the assumption that the PDF is symmetric, as:

LE = Q1 — 1.5(IQR),
UE = Q3 + 1.5(IQR). (2)

where the term IQR is defined as the Inter Quartile Range and is given by:
IQR = Q3 - Q1. (3)

A common practice to identify the outliers in a dataset using a boxplot is to mark
the points that lie outside the extreme values, that is, the points greater than UE and
less than LE are identified as outliers. This version of outlier detection scheme works
well for the symmetric data. However, for skewed data different other schemes are
proposed in the literature. For example, different authors have used the semi-inter-
quartile range i.e. Q3 — Q2 and Q2 — Q1 to define the extreme values as:

{ LE = Q1 — c1(Q2 - Q1), (4)
UE = Q3 +c2(Q3 — Q2).

where ¢; and c; are the constants and different authors have adjusted their values dif-
ferently for example, ¢1 = ¢p = 1.5 [23] ¢; = ¢ = 3 [24] or calculation based on the
expected values of the quartiles [25] and few more adjustments to the boxplot for outli-
ers detection are also available, for example [26].

The traditional methods of boxplot for detecting the outliers sometimes fails in sit-
uations where the noise in the data is a mixture of distributions, multimodal distribu-
tion, or in the presence of small outlier clusters. In this paper, some novel statistical
schemes based on (i) the boxplot adjustments, and (ii) a new probability density esti-
mation using k-nearest neighbors’ distance vector are proposed to overcome the
problem faced by traditional methods. These proposed methods are described in
detail in the next section.
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Proposed methods

Boxplot adjustments using D-k-NN (BADKk)

Traditional boxplot identifies the outliers from unique dimensions. One useful idea other
than using all the dimensions for identifying outliers is to transform the data into a unidi-
mensional distance space and to identify the outliers in new space. This can simply be done
by measuring the distance between data points considering all the dimensions and calcu-
lating the resulting distance vector. The idea of using a single dimension distance vector is
useful not only for avoiding problem of sorting data in high dimension but also in terms of
computational cost, and can be further enhanced in terms of performance by extending it
to consider k number of neighbors in the distance calculation. This idea of boxplot adjust-
ment based on the Distance vector considering k number of Nearest Neighbors (D-k-NN)
is presented here and the resulting extreme values estimation from the modified boxplot
are found to be quite useful in identifying the right outliers. Furthermore, the proposed
scheme is useful in the cases where the distribution of the noise is not normal or is a mix-
ture of different distributions, and can identify small outlier clusters in the data.

Suppose a dataset in RV, this dataset is transformed from N dimensional space to a uni-
dimensional distance space by using a distance metric such as ‘Euclidian distance. This
is done by computing the distance of each observation in N dimensional space to its kth
closest neighbor. This transformation results in a set that contains the distance of each
observation to its kth closest neighbor, and the resulting set is represented as d; € R. This
transformation can be represented as:

di RN > R (5)
The set d is used for computing the extreme value of the boxplot as follows:

{ LE; = Qly, —c1(Q24, — Qly,), ”
UE;, = Q34, + 2(Q34, — Q24,).

From the extreme values defined in (6), the outliers are identified as points those lie out-
side the boundaries of LE;, and UE,. The two constant values ¢ and c; are adjustable with
respect to the dataset under consideration and selection of smaller values for these con-
stants results in more points being marked as outliers. The suggested values of these con-
stants by different authors in the literature arec; = ¢ = 1.50rc; = ¢ = 3.

Furthermore, another useful idea to identify the outliers in a data is to adjust the UE and
LE values of a boxplot as follows:

LE = Qlg, —c1 % var(X.1x<dek),
(7a)
UE = Q?’dk + ¢y X Vﬂr(X~1XzQ2dk)~

or

LE=Qly —ca X Var(X.1X<Q1dk),

UE = Q3y4, +cp X y/var (X.IXZdik).

«
S
Z
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where var is defined as the variance and the quartiles are computed from the set d; € R.
The extreme values can also be estimated based on the calculation of the separation
threshold between centers of two variances, see Eq. (9), as:

LE =M —c; xvar(X.1x<m),
UE =M + ¢y x Var(X.leM). (®)

where M is a value that separate the one-dimension region in order to calculate the vari-
ance of two centers. Let xeR be any random variable with PDF f (x); and the values of u;

and p9 are calculated such that:

M 00
(uiu3) = arg [Mmin {f (x — p)*f (®)dx + [ (x—uz)zf(x)dxH,
() Moz [<oo M

M
Vary = [ (x — p1)*f (x)dx, ©)
Vary = | (v — o) ()da.

M

Both, Var; and Var; can be partially differentiated with respect to p; and ug respec-
tively, to find the minimum. After simplification the minimization occurs when:

_ B
{Ml = Pxo)’

(
B (10)
MH2 = P(X:)’

where X_ = X.1xprand X; = X.1x>, and the value of M is calculated as:

_ [E(X—) EX4) (1)

1
P(X_) ' P(Xy)]|2

For further details on the idea proposed in (8)—(11), the readers are referred to [27].

Detecting outliers based on Boxplot is efficient only if the data is unimodal distribu-
tion. To overcome the drawbacks of the boxplot estimation, some other statistical meth-
ods based on the probability density estimation computed from either the set dy € R or
the actual data D € RN are also proposed for outlier’s detection, which are discussed

below.

Joint probability density estimation using D-k-NN
The methods proposed in this section compute the set dj from the actual data and uti-
lize it for estimating some parameters of the joint distribution function. Three different
schemes are proposed here which are described as follows:

Scheme 1: Normal distributions are often used for representing the real value random
variables with unknown distributions [28, 29]. The joint probability density function of

independent and identically normal distribution is given as:

e o)
21

f(xl:w-;xN):
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where ¢ is the standard deviation modeled differently in (15) and (17), i is the mean of
the random variable and N is the dimension of the data. Here, some functions based on
the normal distribution to identify the outliers in a dataset are proposed. Suppose a two-
dimensional dataset D(x, y), we can define a separation threshold T’ based on the normal
distribution for detecting the outliers such that:

Z= 3 i Vi)
LS o) (13)
T = amax(Z).

where Z is joint probability distribution function after normalization, # is the total num-
ber of observations and the function f (x,y) can be defined as:

1 - ( )2+ (-2)?
e

f(x,y)z % >;i=1,2,...,;1.;1:0,1,2. (14)

2wl
The o in Eq. (14) can be computed as:
¢ =pQ3y4. (15)

where Q3 is the third quartile computed from the set dj as defined in Eq. (5) and Bis a
constant value. The points below the threshold value T defined in Eq. (13) are considered
as outliers and the points above T are considered normal inlier data points. The « used in
Eq. (13) is the significance value and it can be used to control the percentage amount of
data to be removed as outliers.

Scheme 2: To better detect the outliers, a better function f (x,y) needs to be con-
structed in order to weaken the position of the outlier in terms of support and ampli-
tude of the function. Furthermore, another scenario can be defined to detect the
outliers based on the threshold defined in (13) by using the below function:

.2 ,((x—x»%z(y—y,-)z)
fxy)="e¢ g :i=1,2,...,N. (16)
b
y
(=—t
(1 + dy)? (17)

where k defines the kth closest neighbor for the distance metric and y is a constant
whose value can be adjusted to control the smoothness of the gaussian distribu-
tion. The concept is demonstrated in Fig. 1, where (a) shows the effect of traditional
gaussian approach on compression and (b) shows the effect of proposed scheme 2 on
compression.

Both of the above schemes proposed in this section are based on a single gauss-
ian distribution and are expected to work well for the datasets which can be well
approximated using a single gaussian distribution. However, if a dataset can be better
approximated using multiple gaussians then a better idea is to use a model based on
the variable number of gaussians. A new and robust estimation of multiple gaussian
distribution is proposed in the next subsection.
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Fig. 1 a Effect of traditional gaussian approach on compression. b Effect of proposed scheme 2 approach on
compression in x and y axes

Inliers

oot
. *=F Inliers —>
Outliers utliers Outliers

(a) (b)

Fig. 2 An Example of Gaussian estimation and marking of critical value for outlier detection. a Points those
lie outside the red boundaries are considered outliers. b The points below the critical value are identified as
outliers

Scheme 3: The scenarios where the data is estimated using a gaussian distribution,
the outliers are identified as the points lying on the extreme tails of the gaussian dis-
tribution, as shown in Fig. 2a. However, if the better estimation of underlying data is
possible through multiple gaussians, the outliers located at the connecting points of
different gaussians might remain unidentified using a single gaussian estimation. In
order to identify the outliers existing at the connecting points of the multiple gauss-
ians, an idea based on multiple gaussian estimation is proposed, where a Rejection
Area (RA) is defined and computed as:

RA = {x:f(x) < Cv},
(M= 08)

where Cv is defined as a critical value or a threshold value below which is the rejection
area or where the outliers are identified, and  is the significance level. The concept is
shown in Fig. 2b, where as an example a single dimensional data is estimated using two
gaussians and the outliers can be identified as the points below Cv.

In order to find the optimum number of gaussians that better approximate the joint
probability distribution for a given dataset the sorted values of the vector dj can be
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Number of Gaussians

L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000

d,

Fig. 3 Plot of sorted values of the vector di

utilized. For example, in Fig. 3 the graph of sorted values of the vector dy is shown
and the best value of number of gaussians can be estimated by taking the value where
the graph takes off sharply.

Each estimated gaussian represent a region and for each gaussian inside a region the
values of mean and variance can be computed as:
_ ZieRj Xi

i ji=L1L2,...,m (19)

nj

ZieR,- (x; — Mi)Z )

Var(x) = ,j=1,2,.., m (20)

n—1
where R; represents the jth region, m is the total number of estimated gaussians and #; is
the total number of elements in the respective region. The combined multiple gaussians

model is then estimated by:

m
x~ YN (i, C) (21)
i=1
where
Card(R;)
o = Tt and Zai =1 (22)

In order to determine the regions, lets define an application S;; that sorts any given
sequence U;,i = 1,...,N such that Us,, 1) < Us,2) < --- < Us, ). For any given data
X, the sorted data can be represented as X sy (i) and suppose that H(gu(i) represents
the difference between two consecutive elements of X g, (;). Similarly, the sorted differ-
ence can be represented as B)(SAX(SU(Z'))‘ In order to define the regions, the elements are
grouped together sequentially untilAXs, ,(s;;)) < B(SAX(SU(N—WIJFD)' once this condi-
tion is not true, start grouping the remaining elements as a new region until all the ele-

ments are assigned to a region.
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Original Data Boxplot

90
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70 |-
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(b)
Fig.4 a Original data representing clusters with different shapes and a mixture of sinusoidal and gaussian
noise. b Traditional boxplot showing no outliers/anomalies

Evaluation using synthetic examples
The ability of proposed methods is demonstrated here by the use of some two-dimen-
sional synthetic datasets. The results for each of the proposed method are discussed in

the following subsections.

Evaluation of boxplot adjustments using D-k-NN (BADk)

Figure 4a shows an example of the data used for evaluating the proposed methods to
detect the outliers. From the data shown in Fig. 4a, it can be seen that the actual data is
composed of different clusters with different shapes and is contaminated by a mixture of
sinusoidal and gaussian distribution of noise. The aim here is to detect the noise as outli-
ers and different shape clusters as inliers. The traditional boxplot is used to detect the
outliers from the data and the resulting boxplot is shown in Fig. 4b. It can be seen from
the boxplot in Fig. 4b that the traditional boxplot is unable to identify any outliers in the
data.

The same dataset is used to evaluate the proposed adjusted boxplot with extreme
values define in Eq. (6) and the results are shown in Fig. 5. Different values of k are
used to see how it effects the outcome in identifying the outliers. It can be observed
from the results shown in Fig. 5 that for the smaller values of k only the gaussian
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defined in Eq. (6) for different values of k. The data in red is identified as the inliers while the data in green is
identified as the outliers

noise is identified and while we keep on increasing the value of k the outliers with
sinusoidal distribution are also identified.

However, after a certain value of k the data points from the actual clusters (inliers)
are also marked as the outliers, while the outliers started to reappear as the inliers.
This shows that although the selection of value of k is flexible in this case, still an
optimum value of k has to be selected for the optimum performance based on the
data. Another example shown in Fig. 6a with a different distribution of noise is also
tested for evaluating the ability of the proposed method in (6) for outlier detection.
The results for this example are shown in Fig. 7 using three different values of k. It can
be seen from the results in Fig. 7 that the selection of value of k is very flexible and
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20

(b)

Fig. 6 a An example of dataset having different shapes of inlier clusters contaminated with noise. b
Traditional boxplot showing no outliers/ anomalies

still the proposed method performs well in terms of outlier’s detection. During all the
experiments performed, the values of constants are fixed to¢; = ¢y = 1.5.

Evaluation (joint probability density estimation) scheme 1

The density estimation refers to estimation of an unobservable Probability Density Func-
tion (PDF) associated with an observable data. The PDF gives an estimate of the density
according to which a large population in a data is distributed. In this proposed method,
the PDF is computed by placing a gaussian density function at each data point, and then
summing the density functions over the range of data, and a threshold value a defines
the margin between the inlier data and the outliers. The value of a is computed as a
percentage amount of the maximum value of the PDF. The value of ¢ in Eq. (14) is com-
puted utilizing the dj vector as defined in Eq. (15).

The results for scheme 1 when evaluated using the same example data as shown in
Fig. 4a are given in Fig. 8. The example is evaluated using only two different values of «
and a fixed value of B. The outliers are shown in green color and the inlier data is shown
in red color. Figure 8 also shows the associated 3D plots of the probability density esti-
mations computed using Eq. (14). For « =0.1 the proposed method is able to identify the
outliers having gaussian distribution only while placing a = 0.3 the proposed method has
identified both the gaussian and the sinusoidal outliers in the data. Figure 9 shows the
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o e = 0 o = e ) &0 ) 100 '
Fig. 7 Outliers detection from the data shown in Fig. 6a, using the proposed boxplot with extreme values
defined in Eq. (6) for different values of k. The data in red is identified as the inliers while the data in green is
identified as the outliers

results for the second example with a different noise distribution with fixed values of «
and B using Eq. (14).

Evaluation (joint probability density estimation) scheme 2

The results for scheme 2 proposed in Egs. (16)—(17) with different value of parameters
are shown in Fig. 10. It can be observed from the results in Fig. 10 that the small value
of y produces sharp density distribution while a larger value of y produced a smoother
distribution. For a small value of y the inlier data points are also identified as the outliers
which is not the case with a comparatively larger value of y for this particular dataset.
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Fig. 8 Outlier Detection results using scheme 1 with two different values of a=0.1 and a=0.3. Outliers are
shown in green and the inlier data in red

However, optimum values for the parameters need to be tuned to get the optimum

results using this scheme.

Evaluation (joint probability density estimation) scheme 3

The idea proposed in Eq. (18) based on the different ways of estimation of gaussians of
the distance vector dy is evaluated on three different synthetic examples having different
distribution of noise and the results are shown in Fig. 11. It can be seen from the visual
results depicted in Fig. 11 that this scheme is successful in identifying the outliers of dif-
ferent distributions and even the noisy data that lies in close proximity to the inlier data.

The value of G represents the number of gaussians estimated from the dy.

Evaluation of boxplot adjustments using a real example

The ideas proposed for boxplot adjustments in Eq. (6) and Eq. (7) are also evaluated on a
real dataset. The dataset used is a subset of the original KDD Cup 1999 dataset from the
UCI machine learning repository, the subset used is still a large data containing 95,156
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Scheme 1
1=1 a=0.3;=3:k=1;

Fig. 9 Second example of Outlier Detection results using scheme 1 with a=0.3, 3 =3 and k=1. Outliers are
shown in green and the inlier data in red

observations and three attributes. The dataset is publicly available online." The ground
truth of the dataset used is shown in Fig. 12a, where the blue data points represent the
actual inliers and the yellow points represent the actual outliers. The results for boxplot
using extreme values defined in Eq. (6) are shown in Fig. 12b and the achieved value for
Area Under Curve (AUC) evaluation parameter is 0.83 for this dataset.

The results achieved for the proposed idea in (7) are shown in Fig. 13a, b, respectively
for Eqs. 7a and 7b. The detected outliers are shown in green color and the inliers are
shown in red color. The achieved value of AUC using both Eq. 7a and 7b is 0.833.

Comparison with State-of-Art

The proposed schemes are compared with several state of the art unsupervised outlier
detection algorithms of similar kind, using a variety of benchmark datasets reported in
[30]. The details of the benchmark datasets used for comparison are given in Table 2.
The algorithms used for comparison include kNN [19], kKNN-weight (kNNW) [20, 31],
Outlier detection using Indegree Number (ODIN) [32], Local Outlier Factor (LOF) [21],

! http://odds.cs.stonybrook.edu/smtp-kddcup99-dataset/.
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a=01Ly=2k=1; a=025y=5k=1;

)

Fig. 10 Outlier detection results using scheme 2 with different values of a, y and k. Green points represent
outliers and red points represent the normal data points

Simplified LOF (SLOF) [33], Connectivity based Outlier Factor (COF) [34], Influenced
Outlierness (INFLO) [35], Local Outlier Probabilities (LoOP) [36], Local Distance-based
Outlier Factor (LDOF) [37], Local Density Factor (LDF) [38], Kernel Density Estimation
Outlier Score (KDEOS) [39], Multi-Objective Generative Adversarial Active Learning
(MO-GAAL) [40], Single-Objective Generative Adversarial Active Learning (SO-GAAL)
[40], Artificially Generating Potential Outliers (AGPO), Active-Outlier method (AO)
[41], Gaussian mixture model (GMM) [42], Parzen [43], One-Class Support Vector
Machine (OC_SVM) [44], and Fast Angle-Based Outlier Detection (FastABOD) [45].
Initially, some of the fundamental outlier detection algorithms are compared with
the proposed algorithms using the same three synthetic datasets. To test the unsu-
pervised outlier detection methods, the most popular evaluation measure proposed
in literature is based on the Receiver Operating Characteristics (ROC) and is com-
puted as the Area Under Curve (AUC) [30]. The ROC AUC is computed for these
three datasets using the proposed schemes and are compared with some of the fun-
damental state-of-art algorithms in Table 3. Hyperparameters of all the methods are
tuned and the best results are reported. It can be seen from the results in Table 3
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Fig. 11 Results achieved on three different datasets with different distribution of noise using the proposed
GMM estimation of di. The data points in red are the inliers and the green data points are identified as the
outliers

that the proposed schemes are performing better than the existing algorithms. As
these three datasets are only two dimensional the visual comparison is also possible
which is provided in Fig. 14. From the visual inspection it is clearer that the newly
proposed methods are better than the existing ones in identifying the outliers lying in
close proximity to the inliers. Although, all the proposed schemes out-performed the
existing approaches when tested on two dimensional synthetic datasets, only BADk
and scheme 3 are recommended for large scale datasets. This is because the compu-
tational complexity of scheme 1 and scheme 2 is relatively higher than the BADk and
scheme 3, as given in Table 4. Therefore, we recommend scheme 1 and scheme 2 only
for dataset with dimensions less than or equal to 3 and for small datasets. For large
scale datasets we recommend using scheme 3 and BADk. However, with a compro-

mise on the computational complexity, scheme 1 and scheme 2 have the ability to
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k=18;¢c, =c, = 150;
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Smtp (KDDCUP29) Outlers Detaction

(a) (b)
Fig. 12 a Ground truth of the real data used to evaluate the proposed methods, blue data points are inliers
and yellow are the outliers. b Results achieved using the boxplot with extreme values proposed in Eq. 6. Red
points are inliers and green are outliers

Equation7(a) )
k=18;c, =c, =10; Equation7(b)
k=18c;=¢c,=8;

80 gy,

@ ®
Fig. 13 a Results achieved using the boxplot with extreme values proposed in Eq. 7(a). Red points are inliers

and green are outliers. b Ress achieved using the boxplot with extreme values proposed in Eqg. 7(b). Red
points are inliers and green are outliers

perform better in terms of ROC AUC on individual datasets. Although, the best run-
ning time complexity is achieved by LOF but the proposed methods are performing
much better than LOF in terms of ROC AUC values on individual datasets.

Furthermore, the proposed methods are evaluated and compared with eight existing
approaches using five real benchmark datasets and the results are reported in Table 5.
From the results in Table 5 it can be seen that the proposed schemes outperformed
the existing approaches when tested on five real benchmark datasets. As, the pro-
posed BADk and scheme 3 performed better than the proposed scheme 1 and scheme 2
when tested on synthetic datasets in terms of average ROC AUC value and computa-
tional time, therefore only these two methods are included for comparison with existing
approaches using the real datasets.

In order to perform more comprehensive comparison, ten more benchmark datasets
and twelve state-of-art methods reported in [30] are also used and are compared with
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Table 2 Details of benchmark datasets used for evaluation and comparison with State-of-art

Dataset Type Description # observations # dimensions # Outliers

T48K* Synthetic = Six multi-shape clusters with two 8000 2 764
types of noise

Complex9* Synthetic Nine multi-shape clusters with noise 10,000 2 792

Cluto* Synthetic  Eight multi-shape multi-density 8000 2 323
clusters with noise

Arrhythmia**  Real Patient records: normal vs cardiac 450 259 206
arrhythmia

Heartdisease** Real Medical data on heart problems: 270 13 120
healthy vs sick

Hepatits** Real Medical data on hepatitis: patient will 80 19 13
die (outliers), survive (inliers)

Parkinson** Real Medical data: healthy people vs 195 22 147
Parkinson’s disease

Spambase40**  Real Emails classified as spam (outliers) or 4207 57 1679
non-spam

Glass** Real A forensic dataset describing types 214 7 9
of glass

Pendigits** Real Different handwriting digits from O 9868 16 20
09

Shuttle** Real Space Shuttle Data 1013 9 13

WBC** Real Cancer types, benign or malignant 454 9 10

WPBC** Real Wisconsin Prognostic Breast Cancer 198 33 47
dataset

Pima** Real Medical data on diabetes 768 8 268

" Available at: https://github.com/deric/clustering-benchmark
™ Available at: https://www.dbs.ifi.Imu.de/research/outlier-evaluation/DAMI/

Table 3 ROC AUC comparison using three synthetic datasets

Dataset State-of -the-Art Proposed

KNN ABOD FastABOD COF LOF BADk Scheme1 Scheme2 Scheme3

T48K 06222 07692 0.7431 09081 09240 09466 0.9655 0.9524 0.9574
Complex9 05527 0.8526 0.8368 0.9047 09527 09776 0.9816 09779 0.9799
Cluto 0.7281 0.8903 0.8951 0.8839 09435 09514 0.9025 0.9030 0.9520
Average 06343 08373 08250 0.8989 0.9400 09585 0.9498 0.9444 0.9631

Bold values indicate are best-achieved

newly proposed unsupervised outlier detection methods. The results for these state-of-
art methods and the newly proposed methods for the ten benchmark datasets are given
in Table 6. It can be seen from the results in Table 6 that the newly proposed methods
are clearly outperforming the existing algorithms in most of the cases. However, for two
of the datasets (Hepatits and Parkinson) the proposed scheme 3 is performing equally
well as compared to the LDF and both these methods are performing best as compared
to the existing state-of-art approaches. For the Shuttle and the WPBC datasets the LDF
approach is outperforming all other methods. However, the difference between the per-
formance of LDF with proposed schemes on these two datasets is marginal, especially
on WPBC. Furthermore, the two newly proposed methods BADk and scheme 3 make
use of the distance vector for detection of outliers, so irrespective of the increasing
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ABOD

g7

Scheme 1 Box plot Adjustment

Scheme 2

Scheme 3

o =8 =

Fig. 14 Visual comparison for outlier detection using three synthetic datasets. Row 1-5: state-of-art methods
and Row 6-9: the newly proposed methods

dimensions of the input data the computational complexity of these proposed algo-
rithms remains low.

A visual comparison of proposed methods with the existing state-of-art methods
is also provided in Fig. 15. From the results in Fig. 15, it is clearer that the newly
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Table 4 Comparison based on computational time using three synthetic datasets

Computational time in seconds

Dataset  KNN ABOD FastABOD  COF LOF BADk Scheme 1 Scheme 2 Scheme 3
T48K 1.000425 ~57,600 2.122058 1620226  0.178415 1.149709 300935130 310405923  1.103109
Complex9 1475390 ~ 65000 3.040610 1910642 0.194985 1814219 495625886  496.596672  1.689002
Cluto 4135310 ~57,600 2.186437 1611008 0.163346 1.156311 314445905  315.213935  1.108947
Average 2203708 ~60,067 2449701 1.713958  0.178915 1.373413 370335640 374.072177  1.300352

Bold values indicate are best-achieved

proposed scheme 3 is outperforming rest of the methods in terms of AUC. Further-
more, the required computational cost for the proposed method is also low because
of using the dj vector for outlier detection, instead of using the entire input data
dimensions. As the proposed method is using only a single dimension distance vector
of outlier detection, this makes it independent of the dimensions of the input data in
terms of computational cost, which in turn makes it more feasible for high dimen-
sional data.

Conclusions
Outlier detection is one of the most important preprocessing steps in data analyt-
ics, and for best performance consideration, it is considered a vital step for machine
learning algorithms. Different methods are presented in this paper, keeping in view
the need for a robust and easy-to-implement outlier detection algorithm. The newly
proposed methods are based on novel statistical techniques considering data com-
pactness, which resulted in an added advantage of easy implementation, improved
accuracy, and low computational cost. Furthermore, to demonstrate the proposed
ideas’ performance, several benchmark multidimensional datasets and three complex
synthetic two-dimensional datasets containing the different shapes of clusters con-
taminated with a mixture of varying noise distributions are used. The proposed meth-
ods are found accurate and better in terms of outlier detection as compared to the
state-of-art. It is also an observation that some of the fundamental state-of-art meth-
ods cannot detect the outliers in scenarios where the outliers are a mixture of two dif-
ferent distributions. Moreover, two of the newly proposed schemes use only a single
dimension distance-vector instead of utilizing the entire data dimensions for outlier
detection. This makes the proposed methods more feasible and computationally inex-
pensive, irrespective of the input data’s large sizes and growing dimensions.
Moreover, the evaluation of proposed unsupervised outlier detection methods
on several benchmark real datasets reveal the usefulness of the proposed methods
in detection of multivariate outliers in real datasets. The work can be extending by
performing optimization on distance calculation method for the proposed scheme 3
and BADKk. This will further enhance the computational complexity of these methods.
Moreover, investigation of other distance metrics other than Euclidian can also be
studied in future, as this metric suffers a lot for high dimensions.
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Fig. 15 Comparison of the proposed schemes with the state-of-art methods using 10 benchmark datasets
for outlier detection. Y-axis represents the computed ROC AUC values
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ABOD: Angle-Based Outlier Detection; AUC: Area Under Curve; BADk: Boxplot adjustments using D-k-NN; COF: Con-
nectivity based Outlier Factor; D-k-NN: Distance vector considering k number of Nearest Neighbors; INFLO: Influenced
Outlierness; KDEOS: Kernel Density Estimation Outlier Score; LDF: Local Density Factor; LDOF: Local Distance-based
QOuitlier Factor; LE: Lower extreme bound; LOF: Local Outlier Factor; LoOP: Local Outlier Probabilities; ODIN: Outlier Detec-
tion using Indegree Number; PDF: Probability Density Function; ROC: Receiver Operating Characteristics; SLOF: Simplified
LOF; UE: Upper extreme bound.
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