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Introduction
Cybersecurity is an important consideration for the modern Internet era, with consum-
ers spending over $600 billion on e-commerce sales during 2019 in the United States 
[1]. Security practitioners struggle to properly defend this increasingly important cyber-
space in a constant arms race against criminals and other adversaries. When employ-
ing security analytics [2–4], one important aspect that defenders confront is the issue of 
class imbalance.

Class imbalance occurs when one class label is disproportionately represented as com-
pared to another class label. For example, in cybersecurity, it is not uncommon for a 
cyberattack to be lost in a sea of normal instances similar to the proverbial “needle in a 
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haystack” analogy. Amit et al. [5] at Palo Alto Networks and Shodan, state that in cyber-
security “imbalance ratios of 1 to 10,000 are common.” We agree with their assessment 
that very high imbalance ratios are common in cybersecurity, which is a motivation for 
this study to explore sampling ratios in cybersecurity web attacks.

Class rarity is an extreme case of class imbalance, and rarity is not uncommon in 
cybersecurity especially among more stealthy or sophisticated attacks [6]. Throughout 
this document, the term rarity will always refer to class rarity. Rarity occurs in machine 
learning when the Positive Class Count (PCC) has less than a few hundred instances [7], 
as compared to many more negative instances. For example, 10,000,000 total instances 
with an imbalance level of 1% from the positive class would yield a PCC of 100,000 
which is typically enough positive class instances for machine learning classifiers to dis-
criminate class patterns (and this example would only be highly imbalanced). On the 
other hand, 1,000 total instances with that same imbalance level of 1% would only pro-
vide a PCC of 10, and this would constitute rarity as machine learning classifiers will 
generally struggle with such few instances from the positive class [8]. For the purposes 
of our experiment, we will consider a PCC of less than 300 instances to constitute rarity.

To evaluate web attacks, we utilize the CSE-CIC-IDS2018 dataset which was created 
by Sharafaldin et al. [9] at the Canadian Institute for Cybersecurity. CSE-CIC-IDS2018 
is a more recent intrusion detection dataset than the popular CIC-IDS2017 dataset [10], 
which was also created by Sharafaldin et al. The CSE-CIC-IDS2018 dataset includes over 
16 million instances which includes normal instances, as well as the following family of 
attacks: web attack, Denial of Service (DoS), Distributed Denial of Service (DDoS), brute 
force, infiltration, and botnet. For additional details on the CSE-CIC-IDS2018 dataset 
[11], please refer to [12].

The CSE-CIC-IDS2018 dataset is big data, as it contains over 16 million instances. 
While big data has not been formally defined in terms of the number of instances, one 
study [13] considers only 100,000 instances to be big data. Other studies [14, 15] have 
considered 1,000,000 instances to be big data. Since CSE-CIC-IDS2018 is more than 
1,000,000 instances, we consider it to be big data as well.

For illustrative purposes, Table  1 contains the breakdown for the entire CSE-CIC-
IDS2018 dataset (although the entire dataset is not used in these experiments, and this 
table should only be used for reference purposes). In this study, we only focus on web 
attacks with normal traffic and discard the other attack instances (further details of cre-
ating the datasets are provided in the “Data preparation” section below).

Table  2 contains the three datasets we use for the experiments in this study, where 
each of these three datasets are comprised of web attacks from the following labels in 
CSE-CIC-IDS2018: “Brute Force-Web”, “Brute Force-XSS”, and “SQL Injection”. The 
“Imbalance Classification” column in Table 2 indicates the varying levels of class imbal-
ance and rarity we can explore within our experimental frameworks.

Authors of the CSE-CIC-IDS2018 dataset utilized the Damn Vulnerable Web 
App (DVWA) [16] and Selenium framework [17] for implementing their three web 
attacks. The “Brute Force-Web” label corresponds to brute force login attacks target-
ing web pages. Next, the “Brute Force-XSS” label refers to a cross-site scripting (XSS) 
attack [18] where attackers inject malicious client-side scripts into susceptible web 
pages targeting web users which view those pages. Finally, the “SQL Injection” label 
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represents a code injection technique [19] where attackers craft special sequences of 
characters and submit them to web page forms in an attempt to directly query the 
back-end database of that website.

Through our data preparation process, we are able to evaluate web attacks from 
CSE-CIC-IDS2018 at a class ratio for normal to attack of: 21,915:1 for Brute Force, 
58,218:1 for XSS, and 153,911:1 for SQL Injection web attacks. Our work is unique, 
in that existing works only evaluate class ratios as high as 2896:1 for web attacks and 
none of the existing works evaluate the effects of applying sampling techniques. The 
CSE-CIC-IDS2018 dataset is comprised of ten different days of files, and we combine 
all 10 days of normal traffic with the web attack instances. Other works only evalu-
ate web attacks with 1 or 2 days of normal traffic. By combining all 10 days of normal 
traffic, we can obtain a higher imbalance ratio as well as have a richer backdrop of 
normal data as compared to other studies. We provide further details for this in the 
“Related work” and “Data preparation” sections.

To evaluate the effects of class imbalance, we explore eight different levels of sam-
pling ratios with random undersampling (RUS): no sampling, 999:1, 99:1, 95:5, 9:1, 
3:1, 65:35, and 1:1. We also compare the following seven different classifiers in our 
experiments with web attacks: Decision Tree, Random Forest, CatBoost, LightGBM, 
XGBoost, Naive Bayes, and Logistic Regression. To quantify classification perfor-
mance, we utilize the Area Under the Receiver Operating Characteristic Curve (AUC) 
metric.

Table 1 Entire CSE-CIC-IDS2018 dataset by files/days (only web attacks and normal traffic are used 
in our experiments)

Day Normal instances Attack instances

02/14 Wed—Brute Force 667,626 380,949

02/15 Thurs—DoS 996,077 52,498

02/16 Fri—DoS 446,772 601,802

02/20 Tues—DDoS 7,372,557 576,191

02/21 Wed—DDoS 360,833 687,742

02/22 Thu—Web 1,048,213 362

02/23 Fri—Web 1,048,009 566

02/28 Wed—Infiltration 544,200 688,871

03/01 Thurs—Infiltration 238,037 93,063

03/02 Fri—Bot 762,384 286,191

Total Records 13,484,708 2,748,235

Table 2 Individual attacks used in this experiment from CSE-CIC-IDS2018

PCC Positive Class Count

Attack type PCC Normal instances Imbalance ratio Imbalance classification

Brute Force Web 611 13,390,234 21,915:1 Severely imbalanced

XSS Web 230 13,390,234 58,218:1 Rarity

Sql Injection Web 87 13,390,234 153,911:1 Rarity
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The uniqueness of our contribution is that no current works explore the effects of 
various sampling ratios with the CSE-CIC-IDS2018 dataset. None of the existing works 
combine all the days of normal traffic from CSE-CIC-IDS2018 to analyze individual web 
attacks, as we have uniquely done with our data preparation process to isolate these 
three individual web attacks with binary classification and imbalance ratios exceeding 
the highest 2,896:1 ratio from existing CSE-CIC-IDS2018 literature. Our work consid-
ers severe imbalance ratios as high as 153,911:1. Additionally, no works with CSE-CIC-
IDS2018 explore the effects of class rarity as we present in this study with XSS and SQL 
Injection web attacks and their low Positive Class Count (PCC) as outlined in Table 2.

Our work focuses exclusively on web attacks to consider the above research issues, 
while other related works we surveyed with web attacks from CSE-CIC-IDS2018 were 
more generalized studies considering all attack types (as detailed in the “Related work” 
section below). For the few studies that did consider individual web attacks through 
multi-class classification, they had extremely poor classification results for those web 
attacks. Thus, we were surprised when our classification performance yielded such good 
results. We statistically validated classification performance improvements resulting 
from our sampling treatments, but our extensive data preparation process might have 
also helped as some other studies had data preparation mistakes and they were generally 
not specified very well.

The remaining sections of this paper are organized as follows. The “Related work” 
section studies existing literature for web attacks with CSE-CIC-IDS2018 data. In the 
“Data preparation” section, we describe how the datasets used in our experiments were 
cleaned and prepared. Then, the “Methodologies” section describes the classifiers, per-
formance metrics, and sampling techniques applied in our experiments. The Results and 
Discussion provides our results and statistical analysis. Finally, the “Conclusion” section 
concludes the work presented in this paper.

Related work
None of the prior four studies [20–23] for web attacks with CSE-CIC-IDS2018 provided 
any results for class imbalance analysis. No sampling techniques are applied to explore 
class imbalance issues for web attacks in CSE-CIC-IDS2018. None of these four stud-
ies combine the full normal traffic (all days) from CSE-CIC-IDS2018 with the individual 
web attacks for analysis, and instead they only use a single day of normal traffic when 
considering web attacks.

By combining all the normal traffic with the three individual web attacks, we can exper-
iment with big data challenges as well as more severe levels of class imbalance which has 
not previously been done. Additionally, our data preparation framework allows us to iso-
late the three individual web attacks from all other attack traffic to research class imbal-
ance with binary classification. Plus, this allows us to explore class rarity which has not 
previously been done with CSE-CIC-IDS2018.

Three of these four studies [20–22] utilized multi-class classification for the “Web” 
attacks, resulting in extremely poor classification performance for each of the three indi-
vidual web attack labels (“Brute Force-Web”, “Brute Force-XSS”, and “SQL Injection”). 
In many cases, not even one instance could be correctly classified for an individual 
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web attack. However, classification results for the aggregated web attacks in [23] are 
extremely high.

This performance discrepancy in literature between the three individual web attacks 
and those same web attacks combined (aggregated), motivated us to conduct this study. 
We were surprised to find our results to be so much better than the three other studies 
[20–22] analyzing these same three individual web attacks through multi-class classifica-
tion. Our random undersampling approach definitely helped, although some of our clas-
sifiers still fared much better even when no sampling was applied which was likely due to 
our rigorous data preparation approach.

With the CSE-CIC-IDS2018 dataset, Basnet et  al. [20] benchmark different deep 
learning frameworks: Keras-Tensorflow, Keras-Theano, and fast.ai using 10-fold cross 
validation. However, full results are only produced for fast.ai which is likely due to the 
computational constraints they frequently mention (where in some cases it took weeks 
to produce results). They achieve 99.9% accuracy for the aggregated web attacks with 
binary classification. However, the multi-class classification for those same three indi-
vidual web attacks tell a completely different story with: 53 of 121 “Brute Force-Web” 
classified correctly, 17 of 45 “Brute Force-XSS” classified correctly, and 0 of 16 “SQL 
Injection” classified correctly.

Basnet et  al. only provide classification results in terms of the Accuracy metric and 
confusion matrices (where only accuracy is provided for the aggregated web attacks). 
Their 99.9% accuracy scores for the aggregated web attacks can be deceptive when 
dealing with such high levels of class imbalance, as such a high accuracy can still be 
attained even with zero instances from the positive class correctly classified. When deal-
ing with high levels of class imbalance, performance metrics which are more sensitive 
to class imbalance should be utilized. For web attacks, only two separate days of traf-
fic from CSE-CIC-IDS2018 are evaluated with imbalance levels of 2,880:1 (binary) and 
30,665:7.32:2.32:1 (multi-class) for 1 day and 1,842:1 (binary) and 19,666:6.83:2.85:1 
(multi-class) for the other day. Such high imbalance levels require metrics more sensi-
tive to class imbalance. Also, perhaps better classification performance might have been 
achieved by properly treating the class imbalance problem.

Basnet et al. use seven of the 10 days from CSE-CIC-IDS2018, and drop approximately 
20,000 samples that contained “Infinity”, “NaN”, or missing values. Destination_Port and 
Protocol fields are treated as categorical, and the rest of the features as numeric. They 
state their cleaned datasets contain 79 features, which would include 8 fields containing 
all zero values. Instead, they should have filtered out these fields containing all zero val-
ues. Similarly, none of the other studies cited here state whether those 8 fields were fil-
tered out or not (although it appears for most cases that of them did not filter out these 8 
fields containing all zero values were not filtered out).

Atefinia and Ahmadi [21] propose a new “modular deep neural network model” and 
test it with CSE-CIC-IDS2018 data. Web attacks perform very poorly in their model 
with multi-class classification results of: 56 of 122 “Brute Force-Web” classified correctly, 
0 of 46 “Brute Force-XSS” classified correctly, and 0 of 18 “SQL Injection” classified cor-
rectly. For two of the three web attacks, their model does not correctly classify even one 
instance of the test data. They only produce results with their one custom learner, and so 
benchmarking their approach is not easy.



Page 6 of 27Zuech et al. J Big Data            (2021) 8:71 

Experimental specifications from Atefinia and Ahmadi are not clear. They state they 
use 2 days of web attack data from CSE-CIC-IDS2018, and “the train and test dataset 
are generated using 20:80 Stratified sampling of each subset”. But even if we infer the test 
dataset to be 20% of the total, we still do not know how many instances they dropped 
during their preprocessing steps and for what reasons. Also, the class labels from the 
confusion matrix in their Fig. 10 do not match what they state for their legend: “for Web 
attacks, classes 1, 2, 3, and 4 represent Benign, Brute Force-Web, Brute Force-XSS and 
SQL Injection” (where “class 4” would result in the “SQL Injection” class to have 416,980 
instances while the entire CSE-CIC-IDS2018 dataset only contains 87 instances with the 
“SQL Injection” label). Vague experimental specifications are a serious deficiency among 
the CSE-CIC-IDS2018 literature in general, and the ability to reproduce these experi-
ments is a problem.

The work of Atefinia and Ahmadi is unique compared to the other three CSE-CIC-
IDS2018 studies considering web attacks in that Atefinia and Ahmadi combine the 
two web attack days together with the attack and normal traffic for only those 2 days, 
whereas the other three studies consider each of these 2 days separately for the web 
attack data (days: Thursday 02/22/2018 and Friday 02/23/2018). The classification results 
with their new model are very poor for the web attacks, and they do not explore treating 
the class imbalance problem.

Unfortunately, Atefinia and Ahmadi do not provide any preprocessing details for how 
they cleaned and prepared the data other than stating they properly scaled the features 
and “the rows with missing values and the columns with too much missing values are 
also dropped”. This statement is very ambiguous, especially since they could have easily 
listed the dropped columns, which is an important omission. And they state they remove 
IP addresses, but CSE-CIC-IDS2018 does not contain IP addresses in 9 of the 10 down-
loaded .csv files. Plus, the entire CSE-CIC-IDS2018 dataset contained very few miss-
ing values (only a total of 59 rows have missing values which is mainly due to repeated 
header lines). They do not state how they handle “Infinity” and “NaN” values.

Li et al. [22] create an unsupervised Auto-Encoder Intrusion Detection System (AE-
IDS), which is based on an anomaly detection approach utilizing 85% of the normal 
instances as the training dataset with the testing dataset consisting of the remaining 15% 
of the normal instances plus all the attack instances. They only analyze 1 day of the avail-
able 2 days of “Web” attack traffic from CSE-CIC-IDS2018, and they evaluate the three 
different web attacks separately (versus aggregating the “Web” category together). The 
three individual web attacks perform very poorly with AE-IDS and multi-class classi-
fication results of: 147 of 362 “Brute Force-Web” classified correctly, 26 of 151 “Brute 
Force-XSS” classified correctly, and 6 of 53 “SQL Injection” classified correctly. Overall, 
less than half of the web attacks are classified correctly for each of the three different web 
attacks.

The confusion matrices provided by Li et  al. are not correct and have major errors. 
When inspecting the confusion matrix from their Table  5 for “SQL Injection” (the 
class with the least number of instances) for their AE-IDS, we can see 6 True Positive 
instances but an incorrect number of 1,689 False Negative instances for SQL Injection. 
The entire CSE-CIC-IDS2018 dataset only contains 87 instances for the SQL Injec-
tion class, which is much less than their results of 1,689 False Negative instances for 
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SQL Injection. Instead, it seems their “Actual” and “Predicted” axes for their confusion 
matrices should be reversed which would instead yield a number of 47 False Negative 
instances for that SQL Injection example. All their confusion matrices have this problem 
where the “Actual” and “Predicted” axes seem incorrect, and should be the opposite ver-
sus what they reported in their results.

A major component of their experiment includes dividing the CSE-CIC-IDS2018 data-
set into different sparse and dense matrices for separate evaluation. However, this sparse 
and dense matrix experimental factor introduces serious ambiguity in the results. First, 
their different results for each of these matrix approaches might actually be a result from 
purely partitioning the dataset into different datasets based upon different values of the 
data (they partition the dataset into a “sparse matrix dataset” when the “value of totlen 
FWD PKTS and totlen BWD PKTS is very small”. Instead, a better way may have been to 
randomly partition the dataset into sparse and dense matrices so that the underlying dif-
ferent data values themselves were not responsible for the different results from the two 
different sparse and dense matrix approaches.

The AE-IDS approach of Li et al. was only compared to one other learner called “Kit-
Net” , where their AE-IDS results provided a better score for Recall. Recall is the metric 
they decided to use to compare all experiments. However, Precision should also be con-
sidered when comparing results with Recall. When dealing with such high levels of class 
imbalance such as with these web attacks, it is important to use metrics which are more 
sensitive to class imbalance.

Li et al. did provide AUC scores, but only for the more prominent portions of their 
experiments where the data was partitioned separately into sparse and dense matrices 
based upon certain field values. Unfortunately, as mentioned earlier, the different results 
for these different matrix approaches might be purely due to the fact that very different 
data values are being fed into these different matrix encoding approaches. Additionally, 
for their sparse matrix approaches, they never stated whether they were rounding down 
the “very small” values to zero which would be an additional concern to consider. They 
also assert their approach helps with class imbalance, but they do not provide any results 
or statistical validation to substantiate their brief commentary regarding class imbalance 
treatments.

Li et al. replace “Nan” and “Infinity” values with zero, but instead these imputed values 
should be very high, based upon manually inspecting the data. They mention no other 
data preparation steps other than normalizing the data, and further splitting the dataset 
into sparse matrices and dense matrices.

D’hooge et al. [23] evaluate each day of the CSE-CIC-IDS2018 dataset separately for 
binary classification with 12 different learners and stratified 5-fold cross validation. The 
F1 and AUC scores for the two different days with “Web” categories are generally very 
high, with some perfect F1 and AUC scores achieved with XGBoost. Other learners var-
ied between 0.9 and 1.0 for both F1 and AUC scores, with the first day of “Web” usu-
ally having better performance than the second day of “Web”. The three other studies we 
evaluated all used multi-class classification for these same web attacks, but they all had 
extremely poor classification performance (many times with zero attack instances classi-
fied correctly).
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D’hooge et  al. state overfitting might have been a problem for CIC-IDS2017 in this 
same study, and “further analysis is required to be more conclusive about this finding”. 
Given such extremely high classification scores, overfitting may have been a problem in 
their CSE-CIC-IDS2018 results as well (for example in their source code, we noticed the 
max_depth hyperparameter set to a value of 35 for Decision Tree and Random Forest 
learners).

In addition, their model validation approach is not clear. They state they utilize two-
thirds of each day’s data with stratified 5-fold cross validation for hyperparameter tun-
ing. And then, they utilize “single execution testing”. However, it is not clear how this 
single execution testing was performed and whether there is indeed a “gold standard” 
holdout test set.

D’hooge et al. replace “Infinity” values with “NaN” values in CSE-CIC-IDS2018, but 
“NaN” should not be used to replace other values. In the case of these “Infinity” values 
for CSE-CIC-IDS2018, imputed values should be very high, based upon manual inspec-
tion of the “Flow Bytes/s” and “Flow Packets/s” features. An even better alternative is to 
simply filter out those instances containing the “Infinity” values, as they comprise less 
than 1% of the data and very little attack instances are lost. The authors made no other 
mention for any other data preparations with CSE-CIC-IDS2018.

In summary, these enormous discrepancies in classification performance between 
aggregated web attacks and the three individual web attacks from CSE-CIC-IDS2018 
motivated us to further explore and explain these differences. Additionally, we investi-
gate severe class imbalance and rarity for the three individual web attacks in CSE-CIC-
IDS2018 which has not previously been done.

Data preparation
In this section, we describe how we prepared and cleaned the dataset files used in our 
experiments. Properly documenting these steps is important in being able to reproduce 
experiments.

We dropped the “Protocol” and “Timestamp” fields from CSE-CIC-IDS2018 during 
our preprocessing steps. The “Protocol” field is somewhat redundant as the “Dst Port” 
(Destination_Port) field mostly contains equivalent “Protocol” values for each Destina-
tion_Port value. Additionally, we dropped the “Timestamp” field as we wanted the learn-
ers not to discriminate attack predictions based on time especially with more stealthy 
attacks in mind. In other words, the learners should be able to discriminate attacks 
regardless of whether the attacks are high volume or slow and stealthy. Dropping the 
“Timestamp” field also allows us the convenience of combining or dividing the datasets 
into ways more compatible with our experimental frameworks. Additionally, a total of 
59 records were dropped from CSE-CIC-IDS2018 due to header rows being repeated in 
certain days of the datasets. These duplicates were easily found and removed by filtering 
records based on a white list of valid label values.

The fourth downloaded file named “Thuesday-20-02-2018_TrafficForML_CIC-
FlowMeter.csv” was different than the other nine files from CSE-CIC-IDS2018. 
This file contained four extra columns: “Flow ID”, “Src IP”, “Src Port”, and “Dst IP”. 
We dropped these four additional fields. Also of note is that this one particular file 
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contained nearly half of all the records for CSE-CIC-IDS2018. This fourth file con-
tained 7,948,748 records of the dataset’s total 16,232,943 records.

Certain fields contained negative values which did not make sense and so we 
dropped those instances with negative values for the “Fwd_Header_Length”, “Flow_
Duration”, and “Flow_IAT_Min” fields (with a total of 15 records dropped from CSE-
CIC-IDS2018 for these fields containing negative values). Negative values in these 
fields were causing extreme values that can skew classifiers which are sensitive to 
outliers.

Eight fields contained constant values of zero for every instance. In other words, 
these fields did not contain any value other than zero. Before running machine learn-
ing, we filtered out the following list of fields (which all had values of zero): 

1. Bwd_PSH_Flags
2. Bwd_URG_Flags
3. Fwd_Avg_Bytes_Bulk
4. Fwd_Avg_Packets_Bulk
5. Fwd_Avg_Bulk_Rate
6. Bwd_Avg_Bytes_Bulk
7. Bwd_Avg_Packets_Bulk
8. Bwd_Avg_Bulk_Rate

We also excluded the “Init_Win_bytes_forward” and “Init_Win_bytes_backward” 
fields because they contained negative values. These fields were excluded since about 
half of the total instances contained negative values for these two fields (so we would 
have removed a very large portion of the dataset by filtering all these instances out). 
Similarly, we did not use the “Flow_Duration” field as some of those values were 
unreasonably low with zero values.

The “Flow Bytes/s” and “Flow Packets/s” fields contained some “Infinity” and “NaN” 
values (with less than 0.6% of the records containing these values). We dropped these 
instances where either “Flow Bytes/s” or “Flow Packets/s” contained “Infinity” or “NaN” 
values. Upon carefully and manually inspecting the entire CSE-CIC-IDS2018 dataset for 
such values, there was too much uncertainty as to whether they were valid records or 
not. As sorted from minimum to maximum on these fields, neighboring records were 
very different where “Infinity” was found. Similar to Zhang et al. [24], we did attempt to 
impute values for these columns by taking the maximum value of the column and adding 
one. In the end, we abandoned this imputation approach and dropped 95,760 records 
from CSE-CIC-IDS2018 for records containing any “Infinity” or “NaN” values.

We also excluded the Destination_Port categorical feature which contains more 
than 64,000 distinct categorical values. Since Destination_Port has so many values, 
we determined that finding an optimal encoding technique was out of scope for this 
study. For each of the three web attacks in Table 2, we dropped all the other attack 
instances and kept all the normal instances from all 10 days in Table  1 (except for 
those instances which we removed as indicated earlier in this section). Each of the 
three final datasets for our individual web attacks ended up having roughly 13 million 
instances as specified in Table 2.
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Methodologies
Classifiers

For all experiments in this study, stratified 5-fold cross validation [25] is used. Strati-
fied [26] refers to evenly splitting each training and test fold so that each class is 
proportionately weighted across all folds equally. Splitting in a stratified manner is 
especially important when dealing with high levels of class imbalance, as random-
ness can inadvertently skew the results between folds [27]. To account for random-
ness, each stratified 5-fold cross validation was repeated 10 times. Therefore, all of 
our AUC results are the mean values from 50 measurements (5 folds x 10 repeats). All 
classifiers from this experiment are implemented with Scikit-learn [28] and respective 
Python modules.

• Decision Tree (DT) is a learner which builds branches of a tree by splitting on fea-
tures based on a cost [29]. The algorithm will attempt to select the most important 
features to split branches upon, and iterate through the feature space by building 
leaf nodes as the tree is built. The cost function utilized to evaluate splits in the 
branches is called the Gini impurity [30].

• Random Forest (RF) is an ensemble of independent decision trees. Each instance 
is initially classified by every individual decision tree, and the instance is then 
finally classified by consensus among the individual trees (e.g., majority voting) 
[31]. Diversity among the individual decision trees can improve overall classifica-
tion performance, and so bagging is introduced to each of the individual decision 
trees to promote diversity. Bagging (bootstrap aggregation) [32] is a technique to 
sample the dataset with replacement to accommodate randomness for each of the 
decision trees.

• CatBoost (CB) [33] is based on gradient boosting, and is essentially another 
ensemble of tree-based learners. It utilizes an ordered boosting algorithm [34] to 
overcome prediction shifting difficulties which are common in gradient boosting. 
CatBoost has native built-in support for categorical features.

• LightGBM (LGB), or Light Gradient Boosted Machine [35], is another learner 
based on Gradient Boosted Tree (GBTs) [36]. To optimize and avoid the need to 
scan every instance of a dataset when considering split points, LightGBM imple-
ments Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling 
(EFB) algorithms [37]. LightGBM also offers native built-in support for categorical 
features.

• XGBoost (XGB) is another ensemble based on GBTs. To help determine splitting 
points, XGBoost utilizes a Weighted Quantile Sketch algorithm [38] to improve 
upon where split points should occur. Additionally, XGBoost employs a sparsity-
aware algorithm to help with sparse data to determine default tree directions for 
missing values. Categorical features are not natively supported by XGBoost, and 
must be encoded outside of the learner with a technique such as One Hot Encod-
ing (OHE) [39].

• Naive Bayes (NB) [40] is a probabilistic classifier which uses the Bayes’ theorem 
[41] to calculate the posterior probability that an instance can be classified as 
belonging to a certain class. The posterior probability is calculated by multiplying 
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the prior times the likelihood over the evidence. It uses a naive assumption that 
features are independent of each other.

• Logistic Regression (LR) [42] is similar to linear regression [43], and converts the 
output of a linear regression to a classification (categorical) value. This binary clas-
sification value is determined by applying a logarithmic function to the output value 
of the linear regression value.

Four of these learners are ensemble learners: Random Forest, CatBoost, LightGBM, and 
XGBoost. These particular learners are built upon ensembles of independent Decision 
Tree classifiers. Ensembles have been shown to perform very well versus their non-
ensemble counterparts [44], and have been popular in Kaggle competitions [45]. In this 
study, we will highlight any trends for the ensemble-based learners (as well as any for 
those which are not based on the ensembles).

The hyper-parameters used to initialize the classifiers are indicated in Tables  3, 
4, 5, and 6. The settings of these parameters were selected based on preliminary 

Table 3 XGBoost classifier hyper-parameters

Parameter / Value Comment

objective = ’binary logistic’ Specify objective 
function for 
binary classifica-
tion

n jobs = 8 Take advantage of 
parallel process-
ing functionality

n estimators = 4 Prevent overfitting

n max depth = 5 Prevent overfitting

Table 4 Random Forest classifier hyper-parameters

Parameter/value Comment

n estimators = 5 Prevent overfitting

max depth = 6 Prevent overfitting

Table 5 CatBoost classifier hyper-parameters

Parameter / Value Comment

thread count = 8 Take advantage of 
parallel processing 
functionality

iterations = 4 Prevent overfitting

max depth = 5 Prevent overfitting

Table 6 Decision Tree classifier hyper-parameters

Parameter / Value Comment

max depth = 5 Prevent overfitting
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experimentation. Only the default hyper-parameters were used for LightGBM, Naive 
Bayes, and Logistic Regression, and so tables are not provided for these three classifiers.

Performance metrics

Area Under the Receiver Operating Characteristic Curve (AUC) is a metric which meas-
ures the area under the Receiver Operator Characteristic (ROC) curve. AUC [46] meas-
ures the aggregate performance across all classification thresholds. The ROC curve [47, 
48] is a plot of the True Positive Rate (TPR) along the y-axis versus the False Positive 
Rate (FPR) along the x-axis. The area under this ROC curve corresponds to a numeric 
value ranging between 0.0 to 1.0, where an AUC value equal to 1.0 would correspond to 
a perfect classification system. An AUC value equal to 0.5 would represent a classifier 
system which performs as well as a random guess similar to flipping a coin. The AUC 
metric is used to score how effective a classification system is in terms of comparing 
TPR to FPR over the total range of learner threshold values.

Sampling techniques

Random undersampling (RUS) is a sampling technique to improve imbalance levels of 
the classes to the desired target by removing instances from the majority class(es). The 
removal of instances from the majority class is done without replacement, which means 
once an instance is removed from the majority class it is deleted and not replaced back 
into the majority class. RUS has been shown to be an effective sampling technique as 
compared to other techniques in [49]. Additional studies [50–52] have also employed 
RUS to deal with class imbalance.

Table  7 indicates the eight different sampling ratios applied in this study, where 
“None” represents no sampling applied. When no sampling is applied, the default class 
ratio between normal to web attacks is: 21,915:1 for Brute Force, 58,218:1 for XSS, and 
153,911:1 for SQL Injection web attacks. In addition to these severe class imbalances, the 
XSS and SQL Injection web attacks exhibit rarity with a low Positive Class Count (PCC) 
as indicated in Table 2. These extreme imbalance and rarity conditions provide a prob-
lem statement as to whether RUS treatments can improve classification performance. In 
addition to these severe class imbalances, the XSS and SQL Injection web attacks exhibit 
rarity [53] with a low PCC as indicated in Table 2.

Table 7 Random undersampling (RUS) sampling ratio levels applied

RUS ratio

None

999:1

99:1

95:5

9:1

3:1

65:35

1:1
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Results and discussion
This section is divided into three subsections for each of the 3 datasets we evaluated 
for our three different individual web attacks from CSE-CIC-IDS2018: Brute Force, XSS, 
and SQL Injection from Table 2. These three sections are presented by increasing lev-
els of class imbalance with Brute Force web attacks presented first being only severely 
imbalanced. Next, the XSS results are presented with more imbalance and a slight 
degree of rarity. Finally, the SQL Injection results are presented last with the most severe 
form of class rarity where the Positive Class Count (PCC) is very low along with extreme 
class imbalance.

Each of these three subsections are broken down further into three additional sub-
sections. The first subsection for each web attack are the results before any sampling is 
applied, and this section identifies the problem showing poor classification performance 
without any RUS class imbalance treatments. The next subsection for each web attack 
are the results with RUS applied. Then, each web attack is concluded with a subsection 
which includes statistical analysis.

Results for Brute Force web attacks

Results with no sampling—Brute Force web attacks

In this section, we first present results obtained without the application of sampling 
techniques to Brute Force web attacks. No feature selection was applied for any of the 
results in this entire study, as we found all 66 features performed better with web attacks 
compared to our preliminary attempts with feature selection. Table 8 shows the results 
with no sampling applied. In this table, the AUC values are the mean across 50 values 
from each 5-fold cross validation being repeated 10 times. The “SD” prefix for AUC 
refers to the standard deviation across the 50 measurements previously described.

One minor issue we encountered for Logistic Regression, was an AUC value equal to 
0.5 with a standard deviation of 0.0. Upon close inspection of the results with no RUS 
applied, LR was not able to correctly classify any of the positive instances. None of the 
other classifiers exhibited this same problem for Brute Force web attacks.

Based on the results of Table  8 (with no sampling applied), Naive Bayes is the top-
performing classifier in terms of AUC for Brute Force web attacks. Logistic Regression 
performs the worst in terms of AUC. Overall, these classification performance scores 

Table 8 Results for classification of Brute Force web attacks and no sampling applied; classifiers: RF 
is Random Forest, CB is CatBoost, NB is Naive Bayes, LR is Logistic Regression, DT is Decision Tree, XGB 
is XGBoost, LGB is LightGBM; AUC stands for Area Under the Receiver Operating Characteristic Curve; 
SD stands for standard deviation

Bold value indicates highest score

Classifier AUC SD AUC 

NB 0.71786 0.02205

RF 0.60966 0.02465

DT 0.6081 0.01541

CB 0.60474 0.0237

XGB 0.59958 0.01578

LGB 0.52347 0.04591

LR 0.5 0.0
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are not very good considering an AUC score of 0.5 is equivalent to a random guess. This 
establishes a baseline of poor classification performance with such high class imbalance 
for Brute Force web attacks, and the next section explores whether applying RUS can 
improve upon this problem.

Results with sampling—Brute Force web attacks

Table 9 in this section provides results for each classifier with various sampling ratios 
applied to Brute Force web attacks (and no feature selection is applied). The following 
seven sampling ratios are applied to each of the classifiers with random undersampling: 
999:1, 99:1, 95:5, 9:1, 3:1, 65:35, and 1:1. In addition, “no sampling” is also indicated in 
the tables with the value “None” from the results of the previous section. Therefore, a 
total of eight different sampling ratios are evaluated. These seven classifiers are evaluated 
in the following tables for our various RUS ratios: RF, LR, XGB, CB, NB, DT, and LGB. 
Similar to the previous section, AUC results are the mean across 50 different measure-
ments (5-fold cross validation repeated 10 times). The “SD” prefix refers to the standard 
deviation across these 50 different measurements.

In general, when we visually inspect the results of the different classifiers from Table 9, 
the results suggest that applying RUS does indeed improve classification performance. In 
some cases, the improvements from applying sampling are very substantial. For example, 
LightGBM improves from an AUC score of 0.52347 with no sampling applied to an AUC 
score of 0.94182 with a 1:1 RUS ratio applied. Overall, LightGBM achieves the highest 
AUC score of the seven classifiers. Although, Random Forest is a close second place with 
an AUC score of 0.9416 and 1:1 RUS ratio applied. All four of the ensemble learners 
(LGB, RF, XGB, and CB) have dramatic improvements in AUC scores as increased levels 
of RUS ratios are applied.

While Naive Bayes performs the best among all the classifiers with no sampling 
applied (from Table 8), the classification performance of Naive Bayes does not sub-
stantially improve as more RUS is applied (unlike substantial improvements seen 
from applying RUS to the other learners). Future work can explore both of these phe-
nomena with Naive Bayes. When considering high levels of sampling like the RUS 
1:1 ratio, Naive Bayes performs much worse than all the ensemble classifiers and 
Decision Tree. Overall, Logistic Regression appears to perform the worst among all 
the classifiers. Upon visual inspection of all the results from Table 9, it does appear 
that applying RUS does substantially improve upon the problem of such severe class 
imbalance. In the next section, we will apply statistical analysis to validate our visual 
interpretations of this table.

Statistical analysis—Brute Force web attacks

We conduct two two-factor ANalysis Of VAriance (ANOVA) [54] tests to test the impact 
of the combination of learner and sampling ratio on performance in terms of AUC for 
Brute Force web attacks. The results of the ANOVA tests are in Table 10. The data for 
these tests is the same data we summarize from the prior section with the results of 
seven different classifiers across eight different sampling ratios. A confidence level of 
99% is used for all tests.
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Since the p-values for the ANOVA tests are 0 in all cases, we conduct Tukey’s Hon-
estly Significant Difference (HSD) [55] tests to find the optimal values for learner and 
sampling ratio. We conduct a total of two HSD tests: one test to determine groupings of 
classifiers by performance in terms of AUC, and one test to determine groupings of sam-
pling ratios, also by performance in terms of AUC.

These ANOVA results are based on ten iterations of 5-fold cross validation for 8 sam-
pling levels of 7 different classifiers, hence a total of 10× 5× 8× 7 = 2, 800 combina-
tions to analyze.

Table 9 Results for all seven classifiers and Brute Force web attacks across eight sampling ratios; 
Sampling column reports negative to positive class ratio after applying random undersampling, or 
“None” for case when no undersampling is applied; abbreviations are the same as in Table 8

Bolded values indicate highest scores

Classifier Sampling AUC SD AUC — Classifier Sampling AUC SD AUC 

LGB None 0.52347 0.04591 — DT None 0.6081 0.01541

LGB 999:1 0.56732 0.07109 — DT 999:1 0.71138 0.02993

LGB 99:1 0.82661 0.02345 — DT 99:1 0.77387 0.0369

LGB 95:5 0.86462 0.02088 — DT 95:5 0.81454 0.01794

LGB 9:1 0.89189 0.02004 — DT 9:1 0.81491 0.02548

LGB 3:1 0.92633 0.01321 — DT 3:1 0.92268 0.02977

LGB 65:35 0.9345 0.01298 — DT 65:35 0.92906 0.01979

LGB 1:1 0.94182 0.01042 — DT 1:1 0.92573 0.0118

RF None 0.60966 0.02465 — NB None 0.71786 0.02205

RF 999:1 0.7004 0.04502 — NB 999:1 0.71812 0.021

RF 99:1 0.79814 0.03736 — NB 99:1 0.72041 0.02533

RF 95:5 0.81556 0.01969 — NB 95:5 0.71591 0.01397

RF 9:1 0.82477 0.02217 — NB 9:1 0.71825 0.01794

RF 3:1 0.91671 0.02861 — NB 3:1 0.72329 0.02742

RF 65:35 0.94079 0.00935 — NB 65:35 0.72421 0.02528

RF 1:1 0.9416 0.00757 — NB 1:1 0.72745 0.02637

XGB None 0.59958 0.01578 — LR None 0.5 0.0

XGB 999:1 0.66607 0.02099 — LR 999:1 0.5 0.0

XGB 99:1 0.81074 0.02 — LR 99:1 0.60291 0.01992

XGB 95:5 0.81301 0.02315 — LR 95:5 0.60286 0.01719

XGB 9:1 0.81341 0.01607 — LR 9:1 0.60202 0.01278

XGB 3:1 0.91119 0.03282 — LR 3:1 0.69736 0.02262

XGB 65:35 0.93861 0.0095 — LR 65:35 0.71535 0.04137

XGB 1:1 0.93797 0.00782 — LR 1:1 0.81256 0.01301

CB None 0.60474 0.0237 —

CB 999:1 0.61818 0.02931 —

CB 99:1 0.80572 0.02413 —

CB 95:5 0.81255 0.0217 —

CB 9:1 0.81618 0.02156 —

CB 3:1 0.8831 0.03923 —

CB 65:35 0.92989 0.01351 —

CB 1:1 0.9311 0.00945 —
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For the choice of classifier, the p-value is equal to zero from Table 10 and this indicates 
the choice of classifier is statistically significant for classification performance of detect-
ing Brute Force web attacks in this experiment. Table 11 provides Tukey’s HSD group-
ings of the seven different classifiers as ranked by AUC. However, we must emphasize 
caution about interpreting these rankings of the classifiers as they are ranked across all 
of the various sampling ratio levels in general. For example, Random Forest ranks best 
across all sampling ratio levels for Brute Force web attacks according to the HSD rank-
ings. But, LightGBM actually achieved the top score at the specific RUS ratio of 1:1. Still, 
these rankings can be useful in order to gain a general sense of their robustness across a 
various spectrum of sampling ratios (especially when the top ranked classifier also hap-
pens to achieve the highest AUC score too).

The sampling ratio factor is also statistically significant based upon the p-value being 
equal to zero from Table  10 for Brute Force web attacks and AUC. Table  12 provides 
Tukey’s HSD rankings for RUS ratios across all seven of the classifiers for Brute Force 
web attacks and AUC, and indicates a clear trend that classification performance 
improves as more random undersampling (RUS) is applied. This is very important to our 
problem statement that statistically shows that applying sampling improves AUC scores 
in detecting Brute Force web attacks across seven different learners in this experiment.

Results for XSS web attacks

Results with no sampling—XSS web attacks

In this section, we first present results obtained without the application of sampling 
techniques to XSS web attacks. No feature selection was applied for any of the results 
in this study, as we found all 66 features performed better with web attacks compared 
to our preliminary attempts with feature selection. Table 13 shows the results with no 

Table 10 ANOVA results for 2-factor test of classifier and sampling ratio with Brute Force web 
attacks, including their interaction; in terms of AUC 

Factor Df Sum Sq Mean Sq F value Pr(>F)

Sampling ratio 7 27.85 3.98 6231.33 0.0000

Classifier 6 12.24 2.04 3194.76 0.0000

Interaction 42 6.61 0.16 246.61 0.0000

Residuals 2744 1.75 0.00

Table 11 HSD groupings of classifiers after 2-factor ANOVA where classifier and sampling ratio are 
factors with Brute Force web attacks; groups are by performance in terms of AUC 

Group a consists of: Random Forest

Group ab consists of: Decision Tree

Group b consists of: XGBoost, LightGBM

Group c consists of: CatBoost

Group d consists of: Naive Bayes

Group e consists of: Logistic Regression
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sampling applied. In this table, the AUC values are the mean across 50 values from each 
5-fold cross validation being repeated 10 times. The “SD” prefix for AUC refers to the 
standard deviation across the 50 measurements previously described.

With no undersampling applied, Logistic Regression classification resulted with an 
AUC value equal to 0.5 with a standard deviation of 0.0. Essentially, with no RUS applied, 
LR was not able to correctly classify any of the positive instances. None of the other clas-
sifiers exhibited this same problem for XSS web attacks (and the Brute Force web attacks 
had this very same issue with LR and no sampling applied).

Based on the results of Table 13 (with no sampling applied), Naive Bayes is the top-
performing classifier in terms of AUC for XSS web attacks. Logistic Regression performs 
the worst in terms of AUC. These AUC scores are not very good with such severe class 
imbalance and a small degree of rarity. This establishes our problem statement as to 
whether applying sampling can improve upon the poor classification performance. In 
the next section, we present results of eight different RUS ratios to see whether applying 
sampling can improve in detecting XSS web attacks with AUC.

Results with sampling—XSS web attacks

Table 14 in this section provides results for each classifier with various sampling ratios 
applied to XSS web attacks (and no feature selection is applied). The following seven 
sampling ratios are applied to each of the classifiers with random undersampling: 999:1, 
99:1, 95:5, 9:1, 3:1, 65:35, and 1:1. In addition, “no sampling” is also indicated in the 
tables with the value “None” from the results of the previous section. Therefore, a total 

Table 12 HSD groupings of sampling ratios after 2-factor ANOVA where classifier and sampling 
ratio are factors with Brute Force web attacks; groups are by performance in terms of AUC 

Group a consists of: RUS 1:1

Group b consists of: RUS 65:35

Group c consists of: RUS 3:1

Group d consists of: RUS 9:1, RUS 95:5

Group e consists of: RUS 99:1

Group f consists of: RUS 999:1

Group g consists of: None

Table 13 Results for classification of XSS web attacks and no sampling applied; abbreviations are 
the same as in Table 8

Bolded values indicate highest scores

Classifier AUC SD AUC 

NB 0.74257 0.04591

DT 0.73696 0.03051

RF 0.73478 0.03907

CB 0.73087 0.02937

XGB 0.71674 0.03711

LGB 0.51823 0.03288

LR 0.5 0.0
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of eight different sampling ratios are evaluated. These seven classifiers are evaluated in 
the following tables for our various RUS ratios: RF, LR, XGB, CB, NB, DT, and LGB. 
Similar to the previous section, AUC results are the mean across 50 different measure-
ments (5-fold cross validation repeated 10 times). The “SD” prefix refers to the standard 
deviation across these 50 different measurements.

In general, when we visually inspect the results of the different classifiers from 
Table 14, the results suggest that applying RUS does indeed improve classification per-
formance. Random Forest achieves the top AUC score of 0.9524 at a RUS ratio of 65:35. 
All three of the other ensemble classifiers (LGB, XGB, and CB) and Decision Tree com-
pete closely with the top score, and they all achieve their best AUC scores at a RUS ratio 
of 65:35 as well.

Logistic Regression appears to perform the worst overall across all the sampling 
ratios for detecting XSS web attacks. Again, Naive Bayes performs the best among all 
the classifiers with no sampling applied (from Table 13), but the classification perfor-
mance of Naive Bayes does not improve as more RUS is applied (unlike improvements 
seen from applying RUS to the other learners). All the classifiers besides Native Bayes 
have a substantial improvement in AUC scores as more sampling is applied (based 
upon visual inspection of the table).

Overall, applying more RUS does substantially improve classification performance 
until the 65:35 RUS ratio is reached at which point the 1:1 RUS ratio seems to perform 
similar or a little worse than the 65:35 ratio. This is important as applying RUS does 
improve AUC scores for XSS web attacks with such severe class imbalance. In the next 
section, we employ statistical analysis to validate the visual interpretation of our results.

Statistical analysis—XSS web attacks

We conduct two two-factor ANOVA tests to test the impact of the combination of 
learner and sampling ratio on performance in terms of AUC for XSS web attacks. The 
results of the ANOVA tests are in Table 15. The data for these tests is the same data 
we summarize from the prior section with the results of seven different classifiers 
across eight different sampling ratios. A confidence level of 99% is used for all tests.

Since the p-values for the ANOVA tests are 0 in all cases, we conduct Tukey’s HSD 
tests to find the optimal values for learner and sampling ratio. We conduct a total of 
two HSD tests: one test to determine groupings of classifiers by performance in terms 
of AUC, and one test to determine groupings of sampling ratios, also by performance 
in terms of AUC.

These ANOVA results are based on ten iterations of 5-fold cross validation for 8 
sampling levels of 7 different classifiers, hence a total of 10× 5× 8× 7 = 2, 800 com-
binations to analyze.

For the choice of classifier, the p-value is equal to zero from Table 15 and this indi-
cates the choice of classifier is statistically significant for classification performance of 
detecting XSS web attacks in this experiment. Table 16 provides Tukey’s HSD group-
ings of the seven different classifiers as ranked by AUC. Again, we must emphasize 
caution about interpreting these rankings of the classifiers as they are ranked across 
all of the various sampling ratio levels in general. Both Random Forest and Decision 
Tree rank the best across all sampling ratio levels for XSS web attacks according to 
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the HSD rankings. But, LGB and XGB actually have top scores a little higher than 
Decision Tree for the 65:35 RUS ratio. Nonetheless, these HSD rankings can still be 
useful when carefully employed. For example, one could select RF for detecting XSS 
web attacks as it had the top score across all sampling ratios and learners and was also 
in the top performing HSD group of classifiers across all sampling ratios (meaning 
its AUC performance could generalize relatively well across different RUS sampling 
ratios).

The sampling ratio factor is also statistically significant based upon the p-value being 
equal to zero from Table 15 for XSS web attacks and AUC. Table 17 provides Tukey’s 
HSD rankings for RUS ratios across all seven of the classifiers for XSS web attacks and 
AUC, and indicates a clear trend that classification performance improves as more RUS 

Table 14 Results for all seven classifiers and XSS web attacks across eight sampling ratios; Sampling 
column reports negative to positive class ratio after applying random undersampling, or “None” for 
case when no undersampling is applied; abbreviations are the same as in Table 8

Bolded values indicate highest scores

Classifier Sampling AUC SD AUC — Classifier Sampling AUC SD AUC 

LGB None 0.51823 0.03288 — DT None 0.73696 0.03051

LGB 999:1 0.67307 0.11519 — DT 999:1 0.81954 0.0312

LGB 99:1 0.87713 0.02719 — DT 99:1 0.82293 0.03471

LGB 95:5 0.90041 0.02433 — DT 95:5 0.85849 0.04602

LGB 9:1 0.92192 0.02306 — DT 9:1 0.90477 0.04835

LGB 3:1 0.94149 0.01856 — DT 3:1 0.93976 0.03266

LGB 65:35 0.9473 0.01831 — DT 65:35 0.94484 0.0168

LGB 1:1 0.94449 0.01905 — DT 1:1 0.93476 0.01734

RF None 0.73478 0.03907 — NB None 0.74257 0.04591

RF 999:1 0.74152 0.03453 — NB 999:1 0.74326 0.04973

RF 99:1 0.82985 0.0411 — NB 99:1 0.74306 0.04848

RF 95:5 0.88201 0.0343 — NB 95:5 0.74327 0.04545

RF 9:1 0.91671 0.02994 — NB 9:1 0.74286 0.04941

RF 3:1 0.94445 0.02233 — NB 3:1 0.74451 0.04826

RF 65:35 0.9524 0.01519 — NB 65:35 0.74629 0.0448

RF 1:1 0.94678 0.01268 — NB 1:1 0.75074 0.04973

XGB None 0.71674 0.03711 — LR None 0.5 0.0

XGB 999:1 0.73696 0.03592 — LR 999:1 0.5 0.0

XGB 99:1 0.82035 0.02958 — LR 99:1 0.5 0.0

XGB 95:5 0.86605 0.03605 — LR 95:5 0.49865 0.00056

XGB 9:1 0.90751 0.03115 — LR 9:1 0.62693 0.09265

XGB 3:1 0.94018 0.02408 — LR 3:1 0.73673 0.06536

XGB 65:35 0.94541 0.01506 — LR 65:35 0.90051 0.01441

XGB 1:1 0.93096 0.02018 — LR 1:1 0.87242 0.02487

CB None 0.73087 0.02937 —

CB 999:1 0.73739 0.03659 —

CB 99:1 0.75932 0.05014 —

CB 95:5 0.84788 0.04208 —

CB 9:1 0.88504 0.03583 —

CB 3:1 0.9375 0.02523 —

CB 65:35 0.94357 0.02074 —

CB 1:1 0.93429 0.0142 —
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is applied until the 65:35 RUS ratio. Both the 65:35 and 1:1 RUS ratios are the top per-
forming sampling ratios, and are not statistically different from each other in terms of 
AUC performance across all seven classifiers. These HSD rankings indicate statistically 
that applying sampling does improve AUC scores for detecting XSS web attacks across 
seven different learners in this experiment.

Results for SQL injection web attacks

Results with no sampling—SQL injection web attacks

In this section, we first present results obtained without the application of sampling 
techniques to SQL Injection web attacks. No feature selection was applied for any of 
the results in this study, as we found all 66 features performed better with web attacks 
compared to our preliminary attempts with feature selection. Table  18 shows the 
results with no sampling applied. In this table, the AUC values are the mean across 
50 values from each 5-fold cross validation being repeated 10 times. The “SD” pre-
fix for AUC refers to the standard deviation across the 50 measurements previously 
described.

With no undersampling applied, three different classifiers have AUC scores less than 
or equal to 0.5 showing their difficulty in dealing with class rarity. LightGBM, XGBoost, 
and Logistic Regression all performed roughly as well as randomly guessing (as an AUC 
score of 0.5 is comparable to random guesses). With the more pronounced class rarity 
with SQL Injection attacks, some of these learners highlight their difficulties in dealing 
with class rarity and start to break down under a PCC of only 85 instances.

Based on the results of Table 18 (with no sampling applied), by far Naive Bayes is the 
top-performing classifier with an AUC score of 0.889 for SQL Injection web attacks. 
Interestingly, all of the ensemble learners perform very poorly with no sampling applied 
in detecting SQL Injection web attacks. Random Forest achieves the highest score for 

Table 15 ANOVA results for 2-factor test of classifier and sampling ratio with XSS web attacks, 
including their interaction; in terms of AUC 

Factor Df Sum Sq Mean Sq F value Pr(>F)

Sampling ratio 7 20.30 2.90 1944.81 0.0000

Classifier 6 17.68 2.95 1976.14 0.0000

Interaction 42 9.68 0.23 154.49 0.0000

Residuals 2744 4.09 0.00

Table 16 HSD groupings of classifiers after 2-factor ANOVA where classifier and sampling ratio are 
factors with XSS web attacks; groups are by performance in terms of AUC 

Group a consists of: Decision Tree, Random Forest

Group b consists of: XGBoost

Group c consists of: CatBoost, LightGBM

Group d consists of: Naive Bayes

Group e consists of: Logistic Regression
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all of the ensembles with a paltry AUC score of 0.65645 (which is outperformed by the 
simplistic Decision Tree).

Results with sampling—SQL injection web attacks

Table  19 in section provides results for each classifier with various sampling ratios 
applied to SQL Injection web attacks (and no feature selection is applied). The following 
seven sampling ratios are applied to each of the classifiers with random undersampling: 
999:1, 99:1, 95:5, 9:1, 3:1, 65:35, and 1:1. In addition, “no sampling” is also indicated in 
the tables with the value “None” from the results of the previous section. Therefore, a 
total of eight different sampling ratios are evaluated. These seven classifiers are evaluated 
in the following tables for our various RUS ratios: RF, LR, XGB, CB, NB, DT, and LGB. 
Similar to the previous section, AUC results are the mean across 50 different measure-
ments (5-fold cross validation repeated 10 times). The “SD” prefix refers to the standard 
deviation across these 50 different measurements.

In general, when we visually inspect the results of the different classifiers from 
Table 19, the results suggest that applying RUS does indeed improve classification per-
formance. LightGBM achieves the top AUC score of 0.946 at the RUS ratio of 65:35. All 
three of the other ensemble classifiers (LGB, XGB, and CB) and Decision Tree perform 
a little less than the LGB top score, and 65:35 is the RUS ratio for which they all achieve 
their best AUC scores as well.

Logistic Regression appears to perform the worst among all the classifiers for detect-
ing SQL Injection web attacks. Again, Naive Bayes performs the best among all the clas-
sifiers with no sampling applied (from Table 18), but its classification performance still 
does not improve very much as more RUS is applied (unlike improvements seen from 
applying RUS to the other learners). Overall, all the classifiers except Naive Bayes have 
dramatic improvements in classification performance as more RUS is applied (up until 
the 3:1 RUS ratio). Based upon visual inspection of our results, it is clear that apply-
ing sampling does substantially improve performance for such extreme class imbal-
ance and rarity. In the next section, we employ statistical analysis to further validate our 
observations.

Table 17 HSD groupings of sampling ratios after 2-factor ANOVA where classifier and sampling 
ratio are factors with XSS web attacks; groups are by performance in terms of AUC 

Group a consists of: RUS 65:35, RUS 1:1

Group b consists of: RUS 3:1

Group c consists of: RUS 9:1

Group d consists of: RUS 95:5

Group e consists of: RUS 99:1

Group f consists of: RUS 999:1

Group g consists of: None



Page 22 of 27Zuech et al. J Big Data            (2021) 8:71 

Statistical analysis—SQL injection web attacks

We conduct two two-factor ANOVA tests to test the impact of the combination of 
learner and sampling ratio on performance in terms of AUC for SQL Injection web 
attacks. The results of the ANOVA tests are in Table 20. The data for these tests is the 
same data we summarize from the prior section with the results of seven different classi-
fiers across eight different sampling ratios. A confidence level of 99% is used for all tests.

Since the p-values for the ANOVA tests are 0 in all cases, we conduct Tukey’s HSD 
tests to find the optimal values for learner and sampling ratio. We conduct a total of 
two HSD tests: one test to determine groupings of classifiers by performance in terms 
of AUC, and one test to determine groupings of sampling ratios, also by performance in 
terms of AUC.

These ANOVA results are based on ten iterations of 5-fold cross validation for 8 sam-
pling levels of 7 different classifiers, hence a total of 10× 5× 8× 7 = 2, 800 combina-
tions to analyze.

For the choice of classifier, the p-value is equal to zero from Table 20 and this indi-
cates the choice of classifier is statistically significant for classification performance of 
detecting SQL Injection web attacks in this experiment. Table 21 provides Tukey’s HSD 
groupings of the seven different classifiers as ranked by AUC. Again, we must emphasize 
caution about interpreting these rankings of the classifiers as they are ranked across all 
of the various sampling ratio levels in general. Naive Bayes ranks the best across all sam-
pling ratio levels for SQL Injection web attacks according to the HSD rankings. All of the 
classifiers except LR actually have higher scores than NB at the 65:35 or 1:1 RUS ratios. 
However, Naive Bayes is still surprisingly competitive against all the classifiers even at 
the highest 65:35 and 1:1 RUS ratios. For example, at the 1:1 RUS ratio, NB’s AUC score 
of 0.90454 performs better than XGB’s score of 0.899 (even though XGB performs bet-
ter than NB at the 65:35 RUS ratio). LightGBM achieves the top AUC score of 0.946 at a 
RUS ratio of 65:35.

The sampling ratio factor is also statistically significant based upon the p-value being 
equal to zero from Table 20 for SQL Injection web attacks and AUC. Table 22 provides 
Tukey’s HSD rankings for RUS ratios across all seven of the classifiers for SQL Injec-
tion web attacks and AUC, and indicates a clear trend that classification performance 
improves as more RUS is applied until the 3:1 RUS ratio. The 1:1 RUS ratio is the top 
performing sampling ratio, followed by the 65:35 and then 3:1 RUS ratios in terms of 

Table 18 Results for classification of SQL Injection web attacks and no sampling applied; 
abbreviations are the same as in Table 8

Bolded values indicate highest scores

Classifier AUC SD AUC 

NB 0.889 0.00622

DT 0.67703 0.04423

RF 0.65634 0.04689

CB 0.5651 0.04702

LR 0.5 0.0

XGB 0.5 0.0

LGB 0.49986 0.00049
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AUC performance across all seven classifiers. These HSD rankings indicate statisti-
cally that applying sampling does improve AUC scores for detecting SQL Injection web 
attacks across seven different learners in this experiment.

Conclusion
Applying random undersampling improves classification performance for detecting 
web attacks in big data from the CSE-CIC-IDS2018 dataset. Based on statistical anal-
ysis, the RUS ratio is a significant factor for the AUC metric in detecting all three 
individual web attacks in the CSE-CIC-IDS2018 dataset for: Brute Force, XSS, and 

Table 19 Results for all seven classifiers and SQL Injection web attacks across eight sampling ratios; 
Sampling column reports negative to positive class ratio after applying random undersampling, or 
“None” for case when no undersampling is applied; abbreviations are the same as in Table 8

Bolded values indicate highest scores

Classifier Sampling AUC SD AUC — Classifier Sampling AUC SD AUC 

LGB None 0.49986 0.00049 — DT None 0.67703 0.04423

LGB 999:1 0.56805 0.08605 — DT 999:1 0.69047 0.04916

LGB 99:1 0.83408 0.05856 — DT 99:1 0.79755 0.07772

LGB 95:5 0.87746 0.05233 — DT 95:5 0.82941 0.06519

LGB 9:1 0.9024 0.0411 — DT 9:1 0.84456 0.08486

LGB 3:1 0.9333 0.0379 — DT 3:1 0.90096 0.05703

LGB 65:35 0.946 0.02762 — DT 65:35 0.92392 0.03285

LGB 1:1 0.94017 0.02363 — DT 1:1 0.91443 0.03074

RF None 0.65634 0.04689 — NB None 0.889 0.00622

RF 999:1 0.70019 0.05357 — NB 999:1 0.89069 0.00288

RF 99:1 0.75521 0.06054 — NB 99:1 0.89114 0.00325

RF 95:5 0.80161 0.06555 — NB 95:5 0.89224 0.00329

RF 9:1 0.86003 0.05757 — NB 9:1 0.89475 0.0043

RF 3:1 0.93073 0.03798 — NB 3:1 0.89921 0.00573

RF 65:35 0.93146 0.03533 — NB 65:35 0.90168 0.00404

RF 1:1 0.92295 0.02953 — NB 1:1 0.90454 0.00526

XGB None 0.5 0.0 — LR None 0.5 0.0

XGB 999:1 0.68787 0.0593 — LR 999:1 0.5 0.0

XGB 99:1 0.6929 0.04802 — LR 99:1 0.5 0.0

XGB 95:5 0.80654 0.05411 — LR 95:5 0.5 0.0

XGB 9:1 0.85162 0.07574 — LR 9:1 0.5 0.0

XGB 3:1 0.92985 0.02822 — LR 3:1 0.71601 0.06113

XGB 65:35 0.92172 0.04479 — LR 65:35 0.73246 0.05251

XGB 1:1 0.899 0.0279 — LR 1:1 0.81729 0.02758

CB None 0.5651 0.04702 —

CB 999:1 0.68882 0.0493 —

CB 99:1 0.69655 0.05597 —

CB 95:5 0.72241 0.05719 —

CB 9:1 0.7693 0.05974 —

CB 3:1 0.89057 0.0555 —

CB 65:35 0.92163 0.03531 —

CB 1:1 0.90485 0.03245 —
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SQL Injection web attacks. Either the 1:1, 65:35, or 3:1 RUS ratios achieved the top 
AUC scores for the seven different classifiers and three different web attacks.

Classification performance problems with such severe class imbalance and rarity for 
these three web attacks were all significantly improved with the application of RUS. In 
general, classification performance was mostly very poor for all three web attacks until 
massive levels of undersampling were applied. Classification performance improvements 
from applying sampling were easily observable and statistically validated across all seven 
classifiers and eight levels of RUS ratios. When a RUS ratio of 1:1 is applied to an imbal-
ance ratio of 153,911:1 like we had for SQL Injection web attacks in our experiment, 
training machine learning models will be much more computationally efficient with 
such massive amounts of undersampling and can be helpful with big data challenges.

The choice of classifier is also a significant factor in detecting the three web attacks 
in terms of AUC with the CSE-CIC-IDS2018 dataset. All four of the ensemble learn-
ers (Random Forest, LightGBM, XGBoost, and CatBoost) performed well at the high-
est RUS ratios for all three web attacks, but these ensemble learners broke down with 
very poor performance when challenged by the class rarity of the SQL Injection web 

Table 20 ANOVA results for 2-factor test of classifier and sampling ratio with SQL Injection web 
attacks, including their interaction; in terms of AUC 

Factor Df Sum Sq Mean Sq F value Pr(>F)

Sampling ratio 7 28.16 4.02 1997.34 0.0000

Classifier 6 20.64 3.44 1708.01 0.0000

Interaction 42 9.99 0.24 118.14 0.0000

Residuals 2744 5.53 0.00

Table 21 HSD groupings of classifiers after 2-factor ANOVA where classifier and sampling ratio are 
factors with SQL Injection web attacks; groups are by performance in terms of AUC 

Group a consists of: Naive Bayes

Group b consists of: Decision Tree, Random Forest, LightGBM

Group c consists of: XGBoost

Group d consists of: CatBoost

Group e consists of: Logistic Regression

Table 22 HSD groupings of sampling ratios after 2-factor ANOVA where classifier and sampling 
ratio are factors with SQL Injection web attacks; groups are by performance in terms of AUC 

Group a consists of: RUS 1:1

Group ab consists of: RUS 65:35

Group b consists of: RUS 3:1

Group c consists of: RUS 9:1

Group d consists of: RUS 95:5

Group e consists of: RUS 99:1

Group f consists of: RUS 999:1

Group g consists of: None
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attacks (and ensembles generally did not perform well across all three web attacks 
without the help RUS). The ensemble learners obtained the top AUC score in detect-
ing each of the three web attacks: LGB (0.94182) for Brute Force, RF (0.9524) for XSS, 
and LGB (0.946) for SQL Injection web attacks.

The simplistic Decision Tree classifier was very competitive with the ensemble 
learners in most cases, and beat the ensemble learners when no sampling was applied 
(except for one case with Brute Force web attacks where RF did slightly better when 
no sampling was applied). Logistic Regression did not perform well overall. Our 
unique data preparation framework was rigorous as compared to other CSE-CIC-
IDS2018 related works and was likely helpful towards classification performance, as 
well as providing a harsh experimental test-bed for severe class imbalance and rarity 
(to model cybersecurity conditions confronted in the real world).

Future work can explore Naive Bayes and its noteworthy classification performance 
when no sampling is applied under conditions of severe class imbalance and rarity (as 
well as its insensitivity to improvements when applying RUS). Other datasets could 
also be included for future work, as well as additional performance metrics, families of 
attacks, classifiers, sampling techniques, and rarity levels [56].
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