
Detecting web attacks using random
undersampling and ensemble learners
Richard Zuech*  , John Hancock and Taghi M. Khoshgoftaar 

Introduction
Cybersecurity is an important consideration for the modern Internet era, with consum-
ers spending over $600 billion on e-commerce sales during 2019 in the United States
[1]. Detecting web attacks is important as hackers frequently attack web servers for
information, money, or other interests. Security practitioners struggle with cyber risk
[2], and improved capabilities in detecting web attacks can help mitigate such risks. To
better accommodate modeling cyber risk and predicting web attacks, this study focuses
on severe levels of class imbalance. When employing security analytics [3–5], defenders
commonly confront the issue of class imbalance.

Class imbalance occurs when one class label is disproportionately represented
as compared to another class label. For example, in cybersecurity, it is not uncom-
mon for a cyberattack to be lost in a sea of normal instances similar to the proverbial

Abstract 

Class imbalance is an important consideration for cybersecurity and machine learn-
ing. We explore classification performance in detecting web attacks in the recent
CSE-CIC-IDS2018 dataset. This study considers a total of eight random undersampling
(RUS) ratios: no sampling, 999:1, 99:1, 95:5, 9:1, 3:1, 65:35, and 1:1. Additionally, seven
different classifiers are employed: Decision Tree (DT), Random Forest (RF), CatBoost
(CB), LightGBM (LGB), XGBoost (XGB), Naive Bayes (NB), and Logistic Regression (LR).
For classification performance metrics, Area Under the Receiver Operating Character-
istic Curve (AUC) and Area Under the Precision-Recall Curve (AUPRC) are both utilized
to answer the following three research questions. The first question asks: “Are various
random undersampling ratios statistically different from each other in detecting web
attacks?” The second question asks: “Are different classifiers statistically different from
each other in detecting web attacks?” And, our third question asks: “Is the interaction
between different classifiers and random undersampling ratios significant for detecting
web attacks?” Based on our experiments, the answers to all three research questions is
“Yes”. To the best of our knowledge, we are the first to apply random undersampling
techniques to web attacks from the CSE-CIC-IDS2018 dataset while exploring various
sampling ratios.

Keywords:  CSE-CIC-IDS2018, Intrusion Detection, Web Attacks, Class Imbalance,
Random Undersampling, Ensemble Learners

Open Access

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Zuech et al. J Big Data (2021) 8:75
https://doi.org/10.1186/s40537-021-00460-8

*Correspondence:
rzuech@fau.edu
Florida Atlantic University,
777 Glades Road, Boca Raton,
FL, USA

http://orcid.org/0000-0002-5526-1094
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-021-00460-8&domain=pdf

Page 2 of 20Zuech et al. J Big Data (2021) 8:75

“needle in a haystack” analogy. Amit et al. [6] at Palo Alto Networks and Shodan, state
that in cybersecurity “imbalance ratios of 1 to 10,000 are common.” We agree with
their assessment that very high imbalance ratios are common in cybersecurity, which
is a motivation for this study to explore sampling ratios in cybersecurity web attacks.

To evaluate web attacks, we utilize the CSE-CIC-IDS2018 dataset which was cre-
ated by Sharafaldin et al. [7] at the Canadian Institute for Cybersecurity. CSE-CIC-
IDS2018 is a more recent intrusion detection dataset than the popular CIC-IDS2017
dataset [8], which was also created by Sharafaldin et al. The CSE-CIC-IDS2018 data-
set includes over 16 million instances which includes normal instances, as well as the
following family of attacks: web attack, Denial of Service (DoS), Distributed Denial
of Service (DDoS), brute force, infiltration, and botnet. For additional details on the
CSE-CIC-IDS2018 dataset [9], please refer to [10].

In this study, we only focus on web attacks with normal traffic and discard the other
attack instances. Web attacks are comprised of the following labels from CSE-CIC-
IDS2018: “SQL Injection”, “Brute Force-Web”, and “Brute Force-XSS”. For illustrative
purposes, Table 1 contains the breakdown for the entire CSE-CIC-IDS2018 dataset
(although the focus of this current study is only on web attacks).

Through our data preparation process, we are able to evaluate web attacks from
CSE-CIC-IDS2018 at a class ratio of 14,429:1 (normal instances:web attack). Our
work is unique, in that existing works only evaluate class ratios as high as 2,896:1 for
web attacks and none of the existing works evaluate the effects of applying sampling
techniques. The CSE-CIC-IDS2018 dataset is comprised of ten different days of files,
and we combine all ten days of normal traffic with the web attack instances. Other
works only evaluate web attacks with one or two days of normal traffic. By combining
all ten days of normal traffic, we can obtain a higher imbalance ratio as well as have
a richer backdrop of normal data as compared to other studies. We provide further
details for this in the Related Work and Data Preparation sections.

To evaluate the effects of class imbalance, we explore eight different levels of sampling
ratios with random undersampling (RUS): no sampling, 999:1, 99:1, 95:5, 9:1, 3:1, 65:35,
and 1:1. We also compare the following seven different classifiers in our experiments
with web attacks: Decision Tree, Random Forest, CatBoost, LightGBM, XGBoost, Naive

Table 1  CSE-CIC-IDS2018 Dataset by Files (Days)

Day Normal Instances Attack Instances

02/14 Wed - Brute Force 667,626 380,949

02/15 Thurs - DoS 996,077 52,498

02/16 Fri - DoS 446,772 601,802

02/20 Tues - DDoS 7,372,557 576,191

02/21 Wed - DDoS 360,833 687,742

02/22 Thu - Web 1,048,213 362

02/23 Fri - Web 1,048,009 566

02/28 Wed - Infiltration 544,200 688,871

03/01 Thurs - Infiltration 238,037 93,063

03/02 Fri - Bot 762,384 286,191

Total Records 13,484,708 2,748,235

Page 3 of 20Zuech et al. J Big Data (2021) 8:75 	

Bayes, and Logistic Regression. To quantify classification performance, we utilize two
different metrics: Area Under the Receiver Operating Characteristic Curve (AUC) and
Area Under the Precision-Recall Curve (AUPRC).

We pose the following research questions:

1.	 Are various random undersampling ratios statistically different from each other in
detecting web attacks?

2.	 Are different classifiers statistically different from each other in detecting web
attacks?

3.	 Is the interaction between different classifiers and random undersampling ratios sig-
nificant for detecting web attacks?

The uniqueness of our contribution is that no current works explore the effects of vari-
ous sampling ratios with the CSE-CIC-IDS2018 dataset. Additionally, no works utilize
the AUPRC metric to evaluate performance with CSE-CIC-IDS2018. None of the exist-
ing works combine all the days of normal traffic from CSE-CIC-IDS2018 to analyze a
single family of attack. Our work focuses exclusively on web attacks to answer the above
research questions, while other related works we surveyed with web attacks from CSE-
CIC-IDS2018 did not focus on these important aspects as they were more generalized
studies considering all attack types (as detailed in the Related Work section below).

The remaining sections of this paper are organized as follows. The Related Work sec-
tion studies existing literature for web attacks with CSE-CIC-IDS2018 data. In the Data
Preparation section, we describe how the datasets used in our experiments were cleaned
and prepared. Then, the Methodologies section describes the classifiers, performance
metrics, and sampling techniques applied in our experiments. The Results and Discus-
sion section answers our research questions and provides statistical analysis for our
results. Finally, the Conclusion section concludes the work presented in this paper.

Related work
None of the prior four studies [11–14] for web attacks with CSE-CIC-IDS2018 provided
any results for class imbalance analysis. No sampling techniques are applied to explore
class imbalance issues for web attacks in CSE-CIC-IDS2018. None of these four stud-
ies combine the full normal traffic (all days) from CSE-CIC-IDS2018 with the individual
web attacks for analysis, and instead they only use a single day of normal traffic when
considering web attacks. By combining all the normal traffic with web attacks, we can
experiment with higher levels of class imbalance as well as big data challenges.

Three of these four studies [11–13] utilized multi-class classification for the “Web”
attacks, resulting in extremely poor classification performance for each of the three
individual web attack labels (“Brute Force-Web”, “Brute Force-XSS”, and “SQL Injec-
tion”). In many cases, not even one instance could be correctly classified for an indi-
vidual web attack. However, classification results for the aggregated web attacks in [14]
are extremely high.

With the CSE-CIC-IDS2018 dataset, Basnet et al. [11] benchmark different deep
learning frameworks: Keras-Tensorflow, Keras-Theano, and fast.ai using 10-fold cross
validation. However, full results are only produced for fast.ai which is likely due to the

Page 4 of 20Zuech et al. J Big Data (2021) 8:75

computational constraints they frequently mention (where in some cases it took weeks
to produce results). They achieve 99.9% accuracy for the aggregated web attacks with
binary classification. However, the multi-class classification for those same three indi-
vidual web attacks tell a completely different story with: 53 of 121 “Brute Force-Web”
classified correctly, 17 of 45 “Brute Force-XSS” classified correctly, and 0 of 16 “SQL
Injection” classified correctly.

Basnet et al. only provide classification results in terms of the Accuracy metric and
confusion matrices (where only accuracy is provided for the aggregated web attacks).
Their 99.9% accuracy scores for the aggregated web attacks can be deceptive when
dealing with such high levels of class imbalance, as such a high accuracy can still be
attained even with zero instances from the positive class correctly classified. When deal-
ing with high levels of class imbalance, performance metrics which are more sensitive
to class imbalance should be utilized. For web attacks, only two separate days of traf-
fic from CSE-CIC-IDS2018 are evaluated with imbalance levels of 2,880:1 (binary) and
30,665:7.32:2.32:1 (multi-class) for one day and 1,842:1 (binary) and 19,666:6.83:2.85:1
(multi-class) for the other day. Such high imbalance levels require metrics more sensi-
tive to class imbalance. Also, perhaps better classification performance might have been
achieved by properly treating the class imbalance problem.

Basnet et al. use seven of the ten days from CSE-CIC-IDS2018, and drop approxi-
mately 20,000 samples that contained “Infinity”, “NaN”, or missing values. Destina-
tion_Port and Protocol fields are treated as categorical, and the rest of the features as
numeric. They state their cleaned datasets contain 79 features, which would include 8
fields containing all zero values. Instead, they should have filtered out these fields con-
taining all zero values. Similarly, none of the other studies cited here state whether those
8 fields were filtered out or not (although it appears for most cases that of them did not
filter out these 8 fields containing all zero values were not filtered out).

Atefinia and Ahmadi [12] propose a new “modular deep neural network model” and
test it with CSE-CIC-IDS2018 data. Web attacks perform very poorly in their model
with multi-class classification results of: 56 of 122 “Brute Force-Web” classified correctly,
0 of 46 “Brute Force-XSS” classified correctly, and 0 of 18 “SQL Injection” classified cor-
rectly. For two of the three web attacks, their model does not correctly classify even one
instance of the test data. They only produce results with their one custom learner, and so
benchmarking their approach is not easy.

Experimental specifications from Atefinia and Ahmadi are not clear. They state they
use two days of web attack data from CSE-CIC-IDS2018, and “the train and test dataset
are generated using 20:80 Stratified sampling of each subset”. But even if we infer the test
dataset to be 20% of the total, we still do not know how many instances they dropped
during their preprocessing steps and for what reasons. Also, the class labels from the
confusion matrix in their Fig. 10 do not match what they state for their legend: “for Web
attacks, classes 1, 2, 3, and 4 represent Benign, Brute Force-Web, Brute Force-XSS and
SQL Injection” (where “class 4” would result in the “SQL Injection” class to have 416,980
instances while the entire CSE-CIC-IDS2018 dataset only contains 87 instances with the
“SQL Injection” label). Vague experimental specifications are a serious deficiency among
the CSE-CIC-IDS2018 literature in general, and the ability to reproduce these experi-
ments is a problem.

Page 5 of 20Zuech et al. J Big Data (2021) 8:75 	

The work of Atefinia and Ahmadi is unique compared to the other three CSE-CIC-
IDS2018 studies considering web attacks in that Atefinia and Ahmadi combine the two
web attack days together with the attack and normal traffic for only those two days,
whereas the other three studies consider each of these two days separately for the web
attack data (days: Thursday 02/22/2018 and Friday 02/23/2018). The classification results
with their new model are very poor for the web attacks, and they do not explore treating
the class imbalance problem.

Unfortunately, Atefinia and Ahmadi do not provide any preprocessing details for how
they cleaned and prepared the data other than stating they properly scaled the features
and “the rows with missing values and the columns with too much missing values are
also dropped”. This statement is very ambiguous, especially since they could have easily
listed the dropped columns, which is an important omission. And they state they remove
IP addresses, but CSE-CIC-IDS2018 does not contain IP addresses in 9 of the 10 down-
loaded .csv files. Plus, the entire CSE-CIC-IDS2018 dataset contained very few miss-
ing values (only a total of 59 rows have missing values which is mainly due to repeated
header lines). They do not state how they handle “Infinity” and ‘NaN” values.

Li et al. [13] create an unsupervised Auto-Encoder Intrusion Detection System (AE-
IDS), which is based on an anomaly detection approach utilizing 85% of the normal
instances as the training dataset with the testing dataset consisting of the remaining 15%
of the normal instances plus all the attack instances. They only analyze one day of the
available two days of “Web” attack traffic from CSE-CIC-IDS2018, and they evaluate the
three different web attacks separately (versus aggregating the “Web” category together).
The three individual web attacks perform very poorly with AE-IDS and multi-class clas-
sification results of: 147 of 362 “Brute Force-Web” classified correctly, 26 of 151 “Brute
Force-XSS” classified correctly, and 6 of 53 “SQL Injection” classified correctly. Overall,
less than half of the web attacks are classified correctly for each of the three different web
attacks.

The confusion matrices provided by Li et al. are not correct and have major errors.
When inspecting the confusion matrix from their Table 5 for “SQL Injection” (the
class with the least number of instances) for their AE-IDS, we can see 6 True Positive
instances but an incorrect number of 1,689 False Negative instances for SQL Injection.
The entire CSE-CIC-IDS2018 dataset only contains 87 instances for the SQL Injec-
tion class, which is much less than their results of 1,689 False Negative instances for
SQL Injection. Instead, it seems their “Actual” and “Predicted” axes for their confusion
matrices should be reversed which would instead yield a number of 47 False Negative
instances for that SQL Injection example. All their confusion matrices have this problem
where the “Actual” and “Predicted” axes seem incorrect, and should be the opposite ver-
sus what they reported in their results.

A major component of their experiment includes dividing the CSE-CIC-IDS2018
dataset into different sparse and dense matrices for separate evaluation. However,
this sparse and dense matrix experimental factor introduces serious ambiguity in the
results. First, their different results for each of these matrix approaches might actu-
ally be a result from purely partitioning the dataset into different datasets based upon
different values of the data (they partition the dataset into a “sparse matrix dataset”
when the “value of totlen FWD PKTS and totlen BWD PKTS is very small”. Instead,

Page 6 of 20Zuech et al. J Big Data (2021) 8:75

a better way may have been to randomly partition the dataset into sparse and dense
matrices so that the underlying different data values themselves were not responsible
for the different results from the two different sparse and dense matrix approaches.

The AE-IDS approach of Li et al. was only compared to one other learner called
“KitNet”, where their AE-IDS results provided a better score for Recall. Recall is the
metric they decided to use to compare all experiments. However, Precision should
also be considered when comparing results with Recall. When dealing with such high
levels of class imbalance such as with these web attacks, it is important to use metrics
which are more sensitive to class imbalance.

Li et al. did provide AUC scores, but only for the more prominent portions of their
experiments where the data was partitioned separately into sparse and dense matri-
ces based upon certain field values. Unfortunately, as mentioned earlier, the different
results for these different matrix approaches might be purely due to the fact that very
different data values are being fed into these different matrix encoding approaches.
Additionally, for their sparse matrix approaches, they never stated whether they were
rounding down the “very small” values to zero which would be an additional concern
to consider. They also assert their approach helps with class imbalance, but they do
not provide any results or statistical validation to substantiate their brief commentary
regarding class imbalance treatments.

Li et al. replace “Nan” and “Infinity” values with zero, but instead these imputed val-
ues should be very high, based upon manually inspecting the data. They mention no
other data preparation steps other than normalizing the data, and further splitting the
dataset into sparse matrices and dense matrices.

D’hooge et al. [14] evaluate each day of the CSE-CIC-IDS2018 dataset separately
for binary classification with 12 different learners and stratified 5-fold cross valida-
tion. The F1 and AUC scores for the two different days with “Web” categories are
generally very high, with some perfect F1 and AUC scores achieved with XGBoost.
Other learners varied between 0.9 and 1.0 for both F1 and AUC scores, with the first
day of “Web” usually having better performance than the second day of “Web”. The
three other studies we evaluated all used multi-class classification for these same web
attacks, but they all had extremely poor classification performance (many times with
zero attack instances classified correctly).

D’hooge et al. state overfitting might have been a problem for CIC-IDS2017 in this
same study, and “further analysis is required to be more conclusive about this finding”.
Given such extremely high classification scores, overfitting may have been a prob-
lem in their CSE-CIC-IDS2018 results as well (for example in their source code, we
noticed the max_depth hyperparameter set to a value of 35 for Decision Tree and
Random Forest learners).

In addition, their model validation approach is not clear. They state they utilize
two-thirds of each day’s data with stratified 5-fold cross validation for hyperparam-
eter tuning. And then, they utilize “single execution testing”. However, it is not clear
how this single execution testing was performed and whether there is indeed a “gold
standard” holdout test set.

D’hooge et al. replace “Infinity” values with “NaN” values in CSE-CIC-IDS2018, but
“NaN” should not be used to replace other values. In the case of these “Infinity” values

Page 7 of 20Zuech et al. J Big Data (2021) 8:75 	

for CSE-CIC-IDS2018, imputed values should be very high, based upon manual inspec-
tion of the “Flow Bytes/s” and “Flow Packets/s” features. An even better alternative is to
simply filter out those instances containing the “Infinity” values, as they comprise less
than 1% of the data and very little attack instances are lost. The authors made no other
mention for any other data preparations with CSE-CIC-IDS2018.

In summary, these enormous discrepancies in classification performance between
aggregated web attacks and the three individual web attacks from CSE-CIC-IDS2018
motivate us to further explore and explain these differences. Additionally, we investigate
class imbalance for web attacks in CSE-CIC-IDS2018 which has not previously been
done.

Data preparation
In this section, we describe how we prepared and cleaned the dataset files used in our
experiments. Properly documenting these steps is important in being able to reproduce
experiments.

We dropped the “Protocol” and “Timestamp” fields from CSE-CIC-IDS2018 during
our preprocessing steps. The “Protocol” field is somewhat redundant as the “Dst Port”
(Destination_Port) field mostly contains equivalent “Protocol” values for each Destina-
tion_Port value. Additionally, we dropped the “Timestamp” field as we wanted the learn-
ers not to discriminate attack predictions based on time especially with more stealthy
attacks in mind. In other words, the learners should be able to discriminate attacks
regardless of whether the attacks are high volume or slow and stealthy. Dropping the
“Timestamp” field also allows us the convenience of combining or dividing the datasets
into ways more compatible with our experimental frameworks. Additionally, a total of
59 records were dropped from CSE-CIC-IDS2018 due to header rows being repeated in
certain days of the datasets. These duplicates were easily found and removed by filtering
records based on a white list of valid label values.

The fourth downloaded file named “Thuesday-20-02-2018_TrafficForML_CICFlow-
Meter.csv” was different than the other nine files from CSE-CIC-IDS2018. This file con-
tained four extra columns: “Flow ID”, “Src IP”, “Src Port”, and “Dst IP”. We dropped these
four additional fields. Also of note is that this one particular file contained nearly half of
all the records for CSE-CIC-IDS2018. This fourth file contained 7,948,748 records of the
dataset’s total 16,232,943 records.

Certain fields contained negative values which did not make sense and so we dropped
those instances with negative values for the “Fwd_Header_Length”, “Flow_Duration”,
and “Flow_IAT_Min” fields (with a total of 15 records dropped from CSE-CIC-IDS2018
for these fields containing negative values). Negative values in these fields were causing
extreme values that can skew classifiers which are sensitive to outliers.

Eight fields contained constant values of zero for every instance. In other words, these
fields did not contain any value other than zero. Before running machine learning, we
filtered out the following list of fields (which all had values of zero):

1.	 Bwd_PSH_Flags
2.	 Bwd_URG_Flags
3.	 Fwd_Avg_Bytes_Bulk

Page 8 of 20Zuech et al. J Big Data (2021) 8:75

4.	 Fwd_Avg_Packets_Bulk
5.	 Fwd_Avg_Bulk_Rate
6.	 Bwd_Avg_Bytes_Bulk
7.	 Bwd_Avg_Packets_Bulk
8.	 Bwd_Avg_Bulk_Rate

We also excluded the “Init_Win_bytes_forward” and “Init_Win_bytes_backward” fields
because they contained negative values. These fields were excluded since about half
of the total instances contained negative values for these two fields (so we would have
removed a very large portion of the dataset by filtering all these instances out). Similarly,
we did not use the “Flow_Duration” field as some of those values were unreasonably low
with zero values.

The “Flow Bytes/s” and “Flow Packets/s” fields contained some “Infinity” and “NaN”
values (with less than 0.6% of the records containing these values). We dropped these
instances where either “Flow Bytes/s” or “Flow Packets/s” contained “Infinity” or “NaN”
values. Upon carefully and manually inspecting the entire CSE-CIC-IDS2018 dataset for
such values, there was too much uncertainty as to whether they were valid records or
not. As sorted from minimum to maximum on these fields, neighboring records were
very different where “Infinity” was found. We dropped these 95,760 records from CSE-
CIC-IDS2018 for records containing any “Infinity” or “NaN” values.

We also excluded the Destination_Port categorical feature which contains more than
64,000 distinct categorical values. Since Destination_Port has so many values, we deter-
mined that finding an optimal encoding technique was out of scope for this study.

Methodologies
Classifiers

For all experiments in this study, stratified 5-fold cross validation [15] is used. Stratified
[16] refers to evenly splitting each training and test fold so that each class is proportion-
ately weighted across all folds equally. Splitting in a stratified manner is especially impor-
tant when dealing with high levels of class imbalance, as randomness can inadvertently
skew the results between folds [17]. To account for randomness, each stratified 5-fold
cross validation was repeated 10 times. Therefore, all of our AUC and AUPRC results are
the mean values from 50 measurements (5 folds x 10 repeats). All classifiers from this
experiment are implemented with Scikit-learn [18] and respective Python modules.

•	 Decision Tree (DT) is a learner which builds branches of a tree by splitting on fea-
tures based on a cost [19]. The algorithm will attempt to select the most important
features to split branches upon, and iterate through the feature space by building leaf
nodes as the tree is built. The cost function utilized to evaluate splits in the branches
is called the Gini impurity [20].

•	 Random Forest (RF) [21] is an ensemble of independent decision trees. Each
instance is initially classified by every individual decision tree, and the instance
is then finally classified by consensus among the individual trees (e.g., majority
voting) [22]. Diversity among the individual decision trees can improve overall
classification performance, and so bagging is introduced to each of the individ-

Page 9 of 20Zuech et al. J Big Data (2021) 8:75 	

ual decision trees to promote diversity. Bagging (bootstrap aggregation) [23] is a
technique to sample the dataset with replacement to accommodate randomness
for each of the decision trees.

•	 CatBoost (CB) [24] is based on gradient boosting, and is essentially another
ensemble of tree-based learners. It utilizes an ordered boosting algorithm [25] to
overcome prediction shifting difficulties which are common in gradient boost-
ing. CatBoost has native built-in support for categorical features.

•	 LightGBM (LGB), or Light Gradient Boosted Machine [26], is another learner
based on Gradient Boosted Trees (GBTs) [27]. To optimize and avoid the need to
scan every instance of a dataset when considering split points, LightGBM imple-
ments Gradient-based One-Side Sampling (GOSS) and Exclusive Fea- ture Bun-
dling (EFB) algorithms [28]. LightGBM also offers native built-in support for cat-
egorical features.

•	 XGBoost (XGB) is another ensemble based on GBTs. To help determine splitting
points, XGBoost utilizes a Weighted Quantile Sketch algorithm [29] to improve
upon where split points should occur. Additionally, XGBoost employs a sparsity-
aware algorithm to help with sparse data to determine default tree directions for
missing values. Categorical features are not natively supported by XGBoost, and
must be encoded outside of the learner with a technique such as One Hot Encod-
ing (OHE) [30].

•	 Naive Bayes (NB) [31] is a probabilistic classifier which uses the Bayes’ theorem
[32] to calculate the posterior probability that an instance can be classified as
belonging to a certain class. The posterior probability is calculated by multiply-
ing the prior times the likelihood over the evidence. It uses a naive assumption
that features are independent of each other.

•	 Logistic Regression (LR) [33] is similar to linear regression [34], and converts the
output of a linear regression to a classification (categorical) value. This binary
classification value is determined by applying a logarithmic function to the out-
put value of the linear regression value.

RF, CB, LGB, and XGB are ensemble classifiers, which are based on collections of
independent decision tree classifiers. In other words, ensemble classifiers are more
sophisticated in the sense that they are built upon combinations of independent
classifiers. Ensembles have been shown to perform better than their non-ensemble
counterparts in some cases [35]. And ensembles have been popular in kaggle compe-
titions [36]. To compare ensemble performance, we have also included three classi-
fiers which are not based on ensembles: DT, NB, and LR.

The hyper-parameters used to initialize the classifiers are indicated in Tables 2, 3,
4, and 5. Only the default hyper-parameters were used for LightGBM, Naive Bayes,
and Logistic Regression, and so tables are not provided for these three classifiers.

Performance metrics

Area Under the Receiver Operating Characteristic Curve (AUC) is a metric which meas-
ures the area under the Receiver Operator Characteristic (ROC) curve. AUC [37] meas-
ures the aggregate performance across all classification thresholds. The ROC curve [38,

Page 10 of 20Zuech et al. J Big Data (2021) 8:75

39] is a plot of the True Positive Rate (TPR) along the y-axis versus the False Positive
Rate (FPR) along the x-axis. The area under this ROC curve corresponds to a numeric
value ranging between 0.0 to 1.0, where an AUC value equal to 1.0 would correspond to
a perfect classification system. An AUC value equal to 0.5 would represent a classifier
system which performs as well as a random guess similar to flipping a coin. The AUC
metric is used to score how effective a classification system is in terms of comparing
TPR to FPR over the total range of learner threshold values.

Area Under the Precision-Recall Curve (AUPRC) is a metric which mainly focuses on
the performance of the positive class of interest. The precision-recall curve [40] plots
the Positive Predictive Value (PPV) along the y-axis versus the TPR along the x-axis. The
area under this precision-recall curve (AUPRC) [41] is also a value ranging between 0.0
to 1.0, but AUPRC is more sensitive to the positive class and class imbalance as com-
pared to AUC. Accordingly, it is important to consider the level of class imbalance when
interpreting an AUPRC score. Also, AUPRC does not consider true negatives as a factor
for scoring performance since it is heavily weighted towards the positive class of interest.

Table 2  XGBoost classifier hyper-parameters

Parameter / Value Comment

Objective = ’binary logistic’ Specify objective
function for
binary classifica-
tion

n jobs = 8 Take advantage of
parallel process-
ing functionality

n estimators = 4 Prevent overfitting

n max depth = 5 Prevent overfitting

Table 3  Random Forest classifier hyper-parameters

Parameter / value Comment

n estimators = 5 Prevent overfitting

Max depth = 6 Prevent overfitting

Table 4  CatBoost classifier hyper-parameters

Parameter / value Comment

Thread count = 8 Take advantage of
parallel processing
functionality

Iterations = 4 Prevent overfitting

Max depth = 5 Prevent overfitting

Table 5  Decision Tree classifier hyper-parameters

Parameter / Value Comment

Max depth = 5 Prevent overfitting

Page 11 of 20Zuech et al. J Big Data (2021) 8:75 	

Sampling techniques

Random undersampling (RUS) is a sampling technique to improve imbalance levels of
the classes to the desired target by removing instances from the majority class(es). The
removal of instances from the majority class is done without replacement, which means
once an instance is removed from the majority class it is deleted and not replaced back
into the majority class. RUS has been shown to be an effective sampling technique as
compared to other techniques in [42]. Additional studies [43–46] have also employed
RUS to deal with class imbalance. Table 6 indicates the eight different sampling ratios
applied in this study, where “None” represents no sampling applied. When no sampling
is applied, the default class ratio between normal to web attacks is 14,429:1.

To illustrate how RUS works, we provide a simple example with the 1:1 RUS ratio. Our
positive class has 928 web attack instances, and the negative class has 13,390,234 normal
instances. The goal is to reduce the ratio between these two classes to a 1:1 ratio, and so
the majority (negative) class will be undersampled to also contain only 928 instances.
This is done by randomly eliminating normal instances from the negative class until only
928 normal instances are remaining, and then the 1:1 ratio will be achieved. Applying the
1:1 RUS ratio is a massive undersampling with such severe class imbalance, as it reduces
the negative class from 13,390,234 instances to only 928 instances effectively reducing
the negative class by a factor of 14,429. Please note this example is only for a simple illus-
tration of how RUS works, and the RUS treatment is only applied to the training portion
of the dataset. RUS is not applied to the test portion of the dataset).

Results and discussion
Results with no sampling

In this section, we first present results obtained without the application of sampling
techniques. No feature selection was applied for any of the results in this study, as
we found all 66 features performed better with web attacks compared to our pre-
liminary attempts with feature selection. Table 7 shows the results with no sampling
applied. In this table, the AUC and AUPRC values are the mean across 50 values
from each 5-fold cross validation being repeated 10 times. The “SD” prefix for AUC
and AUPRC refers to the standard deviation across the 50 measurements previously
described.

One minor issue we encountered for Logistic Regression, was an AUC value equal
to 0.5 with a standard deviation of 0.0. Essentially, with no RUS applied, LR was not

Table 6  RUS Sampling Ratio Levels Applied

RUS Ratio

None

999:1

99:1

95:5

9:1

3:1

65:35

1:1

Page 12 of 20Zuech et al. J Big Data (2021) 8:75

able to correctly classify any of the positive instances. None of the other classifiers
from this study exhibited this same problem.

Based on the results of Table 7 (with no sampling applied), Naive Bayes is the top-
performing classifier in terms of AUC. However, in terms of AUPRC the Decision
Tree classifier performs the best. Logistic Regression performs the worst in terms of
AUC, and LightGBM performs the worst in terms of AUPRC.

Results with sampling

The following tables in the remainder of this section provide results for each classifier
with various sampling ratios applied (and no feature selection is applied). The follow-
ing seven sampling ratios are applied to each of the classifiers with random under-
sampling: 999:1, 99:1, 95:5, 9:1, 3:1, 65:35, and 1:1. In addition, “no sampling” is also
indicated in the tables with the value “None” from the results of the previous sec-
tion. Therefore, a total of eight different sampling ratios are evaluated. These seven
classifiers are evaluated in the following tables for our various RUS ratios: RF, LR,
XGB, CB, NB, DT, and LGB. Similar to the previous section, AUC and AUPRC results
are the mean across 50 different measurements (5-fold cross validation repeated
10 times). The “SD” prefix refers to the standard deviation across these 50 different
measurements.

In general, when we visually inspect the results of the different classifiers from
Tables 8, 9, 10, 11, 12, 13, and 14, the results suggest that applying RUS does indeed
improve classification performance. Also, LightGBM seems to perform the best
among the classifiers, while Logistic Regression appears to perform the worst. Inter-
estingly, LightGBM performs the second worst among all the classifiers with no sam-
pling applied (from Table 7), but it performs the best when RUS is applied. In the next
section, we employ statistical analysis to more easily interpret our results as well as to
more definitively answer our research questions.

Statistical analysis

In this section, we evaluate the answers to our research questions through statisti-
cal analysis. We conduct two different 2-factor ANalysis Of VAriance (ANOVA) [47]
tests to determine the impact between the combination of learner and sampling ratio

Table 7  Results for classification with no sampling; classifiers: NB is Naive Bayes, RF is Random
Forest, DT is Decision Tree, XGB is XGBoost, LGB is LightGBM, CB is CatBoost, LR is Logistic Regression;
AUC stands for Area Under the Receiver Operating Characteristic Curve; SD stands for standard
deviation reported for every metric; AUPRC stands for Area under the Precision-Recall Curve

Classifier AUC​ SD AUC​ AUPRC SD AUPRC

NB 0.72496 0.009 0.10793 0.04958

RF 0.64003 0.01826 0.37562 0.05405

DT 0.64708 0.01525 0.39216 0.03371

XGB 0.62339 0.01157 0.25387 0.02347

LGB 0.50233 0.00562 0.0023 0.00522

CB 0.62759 0.0195 0.322 0.05891

LR 0.5 0.0 0.00417 0.00069

Page 13 of 20Zuech et al. J Big Data (2021) 8:75 	

on performance in terms of AUC and AUPRC. The data used for these tests is from
the previous section with the results of seven different classifiers across eight different
sampling ratios. A confidence level of 99% is used for all tests.

Table 8  Results for Random Forest

Sampling column reports negative to positive class ratio after applying random undersampling, or “None” for case when no
undersampling is applied

AUC​ stands for Area Under the Receiver Operating Characteristic Curve, SD stands for standard deviation reported for every
metric, AUPRC stands for Area under the Precision-Recall Curve

Sampling AUC​ SD AUC​ AUPRC SD AUPRC

None 0.64003 0.01826 0.37562 0.05405

999:1 0.65047 0.0163 0.35197 0.0348

99:1 0.72736 0.02866 0.32367 0.03301

95:5 0.79801 0.02154 0.26788 0.0775

9:1 0.81982 0.02427 0.26089 0.06329

3:1 0.92439 0.02171 0.25407 0.07858

65:35 0.9413 0.0065 0.2426 0.10392

1:1 0.94345 0.00653 0.1624 0.08754

Table 9  Results for Logistic Regression

Sampling column reports negative to positive class ratio after applying random undersampling, or “None” for case when no
undersampling is applied

AUC​ stands for Area Under the Receiver Operating Characteristic Curve, SD stands for standard deviation reported for every
metric, AUPRC stands for Area under the Precision-Recall Curve

Sampling AUC​ SD AUC​ AUPRC SD AUPRC

None 0.5 0.0 0.00417 0.00069

999:1 0.5 0.0 0.00499 0.00101

99:1 0.56984 0.01155 0.00482 0.0009

95:5 0.56981 0.00937 0.00402 0.00073

9:1 0.59933 0.027 0.00341 0.00075

3:1 0.68762 0.01517 0.00271 0.0007

65:35 0.81354 0.02079 0.00178 0.0008

1:1 0.81707 0.0088 0.00133 0.00081

Table 10  Results for XGBoost

Sampling column reports negative to positive class ratio after applying random undersampling, or “None” for case when no
undersampling is applied

AUC​ stands for Area Under the Receiver Operating Characteristic Curve, SD stands for standard deviation reported for every
metric, AUPRC stands for Area under the Precision-Recall Curve

Sampling AUC​ SD AUC​ AUPRC SD AUPRC

None 0.62339 0.01157 0.25387 0.02347

999:1 0.66539 0.0153 0.33395 0.02927

99:1 0.74548 0.01752 0.31875 0.04356

95:5 0.79409 0.01724 0.27527 0.04971

9:1 0.80578 0.0167 0.25587 0.05697

3:1 0.9312 0.02359 0.23303 0.06146

65:35 0.93674 0.0074 0.21731 0.04368

1:1 0.9344 0.00813 0.2398 0.06638

Page 14 of 20Zuech et al. J Big Data (2021) 8:75

Table 11  Results for CatBoost

Sampling column reports negative to positive class ratio after applying random undersampling, or “None” for case when no
undersampling is applied

AUC​ stands for Area Under the Receiver Operating Characteristic Curve, SD stands for standard deviation reported for every
metric, AUPRC stands for Area under the Precision-Recall Curve

Sampling AUC​ SD AUC​ AUPRC SD AUPRC

None 0.62759 0.0195 0.322 0.05891

999:1 0.64623 0.02485 0.34685 0.05637

99:1 0.75901 0.03296 0.37749 0.06585

95:5 0.7931 0.01928 0.30189 0.096

9:1 0.80603 0.02243 0.17467 0.08558

3:1 0.89987 0.02741 0.14613 0.10772

65:35 0.92978 0.01256 0.13726 0.09471

1:1 0.9318 0.00712 0.08926 0.08841

Table 12  Results for Naive Bayes

Sampling column reports negative to positive class ratio after applying random undersampling, or “None” for case when no
undersampling is applied

AUC​ stands for Area Under the Receiver Operating Characteristic Curve, SD stands for standard deviation reported for every
metric, AUPRC stands for Area under the Precision-Recall Curve

Sampling AUC​ SD AUC​ AUPRC SD AUPRC

None 0.72496 0.009 0.10793 0.04958

999:1 0.72766 0.01801 0.23072 0.05382

99:1 0.72833 0.01782 0.22961 0.05635

95:5 0.72637 0.01106 0.2347 0.06242

9:1 0.72879 0.01711 0.22848 0.05356

3:1 0.73024 0.0109 0.21532 0.03268

65:35 0.72914 0.01221 0.24194 0.06997

1:1 0.73299 0.01246 0.21781 0.03926

Table 13  Results for decision tree

Sampling column reports negative to positive class ratio after applying random undersampling, or “None” for case when no
undersampling is applied

AUC​ stands for Area Under the Receiver Operating Characteristic Curve, SD stands for standard deviation reported for every
metric, AUPRC stands for Area under the Precision-Recall Curve

Sampling AUC​ SD AUC​ AUPRC SD AUPRC

None 0.64708 0.01525 0.39216 0.03371

999:1 0.66721 0.02272 0.34765 0.03572

99:1 0.74832 0.0205 0.26034 0.03611

95:5 0.76497 0.02007 0.19095 0.09203

9:1 0.79877 0.01877 0.2394 0.06643

3:1 0.93562 0.00458 0.28988 0.03425

65:35 0.92418 0.01147 0.2019 0.08249

1:1 0.9235 0.01043 0.11302 0.12839

Page 15 of 20Zuech et al. J Big Data (2021) 8:75 	

The results of the ANOVA tests are shown in Table 15 for AUC results and in
Table 18 for AUPRC results. Since the p-values for the ANOVA tests are 0 in all cases,
we conduct Tukey’s Honestly Significant Difference (HSD) [48] tests to find the opti-
mal values for learner and sampling ratio. We conduct a total of four HSD tests: two
tests to determine groupings of sampling ratios by performance in terms of AUC and
AUPRC, and two tests to determine groupings of classifiers, also by performance in
terms of AUC and AUPRC.

These ANOVA results are based on ten iterations of 5-fold cross validation for 8
sampling levels of 7 different classifiers, hence a total of 10× 5× 8× 7 = 2, 800 com-
binations to analyze.

Tukey’s HSD groupings enable us to more easily interpret the results from Tables 8,
9, 10, 11, 12, 13, and 14 regarding the performance impact from various classifiers
and sampling ratios. From the HSD groupings in Table 16, sampling ratios from RUS
are ranked by AUC and we can easily ascertain that the RUS 1:1 and RUS 65:35 sam-
pling ratios perform the best for detecting web attacks. As ranked by AUC, “None”
(no sampling) performs the worse. There is a general trend across the various sam-
pling levels to perform better as increased levels (more undersampling) is applied.

Similarly in Table 17, classifiers are ranked by AUC performance according to Tuk-
ey’s HSD groupings for detecting web attacks, and LightGBM performs the best in
terms of AUC. Logistic Regression performs the worst in terms of AUC, followed by

Table 14  Results for LightGBM

Sampling column reports negative to positive class ratio after applying random undersampling, or “None” for case when no
undersampling is applied

AUC​ stands for Area Under the Receiver Operating Characteristic Curve, SD stands for standard deviation reported for every
metric, AUPRC stands for Area under the Precision-Recall Curve

Sampling AUC​ SD AUC​ AUPRC SD AUPRC

None 0.50233 0.00562 0.0023 0.00522

999:1 0.59007 0.06865 0.08966 0.07125

99:1 0.83497 0.01653 0.52058 0.03466

95:5 0.87266 0.01644 0.41269 0.09535

9:1 0.8944 0.01642 0.40133 0.08941

3:1 0.92909 0.01137 0.34962 0.09301

65:35 0.9398 0.01012 0.32749 0.08289

1:1 0.94641 0.00758 0.23169 0.09381

Table 15  ANOVA results for 2-factor test of classifier and sampling ratio, including their interaction;
in terms of AUC​

Factor Df Sum Sq Mean Sq F value Pr(>F)

Sampling ratio 7 28.58 4.08 10639.26 0.0000

Classifier 6 10.85 1.81 4713.38 0.0000

Interaction 42 7.19 0.17 446.08 0.0000

Residuals 2744 1.05 0.00

Page 16 of 20Zuech et al. J Big Data (2021) 8:75

Naive Bayes as the second worst. Interestingly, the five tree-based learners all per-
form better than the two non tree-based learners: LR and NB. Also interesting is the
observation that the simplistic Decision Tree performs marginally better than Cat-
Boost, which is a more sophisticated classifier with an ensemble of trees.

Next, we continue our analysis by comparing performance in terms of AUPRC.
Table 18 provides ANOVA results in terms of AUPRC between a 2-factor test of classi-
fier and sampling ratio.

Table 16  HSD groupings of sampling ratios after 2-factor ANOVA where classifier and sampling
ratio are factors; groups are by performance in terms of AUC​

Group a consists of: RUS 1:1, RUS 65:35

Group b consists of: RUS 3:1

Group c consists of: RUS 9:1

Group d consists of: RUS 95:5

Group e consists of: RUS 99:1

Group f consists of: RUS 999:1

Group g consists of: None

Table 17  HSD groupings of classifiers after 2-factor ANOVA where classifier and sampling ratio are
factors; groups are by performance in terms of AUC​

Group a consists of: LightGBM

Group b consists of: Random Forest, XGBoost

Group bc consists of: Decision Tree

Group c consists of: CatBoost

Group d consists of: Naive Bayes

Group e consists of: Logistic Regression

Table 18  ANOVA results for 2-factor test of classifier and sampling ratio, including their interaction;
in terms of AUPRC

Factor Df Sum Sq Mean Sq F value Pr(>F)

Sampling ratio 7 4.03 0.58 138.67 0.0000

Classifier 6 23.87 3.98 958.07 0.0000

Interaction 42 16.01 0.38 91.80 0.0000

Residuals 2744 11.40 0.00

Table 19  HSD groupings of sampling ratios after 2-factor ANOVA where classifier and sampling
ratio are factors; groups are by performance in terms of AUPRC

Group a consists of: RUS 99:1

Group b consists of: RUS 999:1, RUS 95:5

Group c consists of: RUS 9:1, RUS 3:1

Group cd consists of: None

Group d consists of: RUS 65:35

Group e consists of: RUS 1:1

Page 17 of 20Zuech et al. J Big Data (2021) 8:75 	

From Table 19, the HSD groupings for sampling ratios are ranked in terms of AUPRC
for web attacks. The sampling ratio of RUS 99:1 performs the best with RUS 1:1 per-
forming the worst. The rankings for sampling ratios in terms of AUPRC do not indicate
a clear trend, and are different than the HSD groupings of sampling ratio as ranked by
AUC from Table 16. As future work, we plan to further explore these ranking differences
of sampling ratios between AUPRC and AUC by evaluating different performance met-
rics as was done by Calvert et al. [49].

In Table 20, the classifiers are ranked in terms of AUPRC for the web attacks in this
experiment. LightGBM performs the best and Logistic Regression performs the worst.
The classifier rankings between AUPRC (Table 20) and AUC (Table 17) are mainly in
agreement with only minor differences. Overall, the tree-based classifiers perform bet-
ter than NB and LR, which are not based on trees. Also, the ensemble-based classifi-
ers (LGB, RF, XGB, CB) generally perform better than the DT, NB, and LR classifiers,
which are not based on ensembles. Although, the simple Decision Tree did perform sig-
nificantly better than the ensemble-based CatBoost. Future work with web attacks from
other datasets can further evaluate whether this trend of better performance with tree-
based and ensemble classifiers generally perform better.

Research questions

In this section, we provide answers to our research questions. We use the ANOVA tables
from the previous statistical analysis section to provide these answers.

Research Question 1: “Are various random undersampling ratios statistically different
from each other in detecting web attacks?”

Yes, the RUS ratios are statistically different from each other for detecting web attacks
in terms of both AUC and AUPRC. From Tables 15 and 18 the p-values for sampling
ratio are both equal to zero at a confidence level of 99%, and the Tukey HSD rankings
from Tables 16 and 19 indicate statistical differences between the RUS ratios in detecting
web attacks.

Research Question 2: “Are different classifiers statistically different from each other
in detecting web attacks?”

Yes, the classifiers are statistically different from each other for detecting web attacks
for both AUC and AUPRC. Table 15 for AUC and Table 18 for AUPRC both have p-val-
ues equal to zero at a 99% confidence level, and the Tukey HSD ranking from Tables 17
and 20 indicate statistical differences between the classifiers in detecting web attacks.

Table 20  HSD groupings of classifiers after 2-factor ANOVA where classifier and sampling ratio are
factors; groups are by performance in terms of AUPRC

Group a consists of: LightGBM

Group ab consists of: Random Forest

Group bc consists of: XGBoost

Group c consists of: Decision Tree

Group d consists of: CatBoost

Group e consists of: Naive Bayes

Group f consists of: Logistic Regression

Page 18 of 20Zuech et al. J Big Data (2021) 8:75

Research Question 3: “Is the interaction between different classifiers and random
undersampling ratios significant for detecting web attacks?”

Yes, the interaction between different classifiers and random undersampling ratios is a
significant factor for detecting web attacks. The p-values for interaction are equal to zero
for both AUC in Table 15 and also for AUPRC in Table 18. This interaction factor indi-
cates combining classifier and sampling ratio factors also has a statistically significant
impact.

Conclusion
In this experiment, we model severe class imbalance as found in the real world for web
attacks with the CSE-CIC-IDS2018 dataset and our unique data preparation framework.
A severe class imbalance ratio of 14,429:1 was obtained by combining all ten days of
normal traffic from CSE-CIC-IDS2018 with only the web attack labels for binary classifi-
cation. Before applying any random undersampling, the classifiers from our experiment
struggled with poor classification performance which showcases a problem statement
for the class imbalance problem with web attacks. Classification performance gener-
ally improved as more random undersampling was applied to treat this class imbalance
problem.

Based on the results and statistical analysis from Tables 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, and 20, we can conclude that the answers to all three of our research questions
are yes. The random undersampling ratios are significantly different from each other for
both AUC and AUPRC metrics in detecting web attacks in the CSE-CIC-IDS2018 data-
set. Future work can explore using different performance metrics to gain further insight
into sampling ratio performance from the different AUC and AUPRC metrics.

The classifiers are also statistically different from each other in detecting web attacks
in terms of both AUC and AUPRC with the CSE-CIC-IDS2018 dataset. LightGBM per-
formed the best among the learners, while Logistic Regression performed the worst.
Our four ensemble classifiers generally performed better than their three non-ensem-
ble counterparts, but only after random undersampling was applied. Before RUS was
applied, all of our classifiers broke down with poor classification performance. The inter-
action between classifier and sampling ratio was also statistically significant.

Future work with the CSE-CIC-IDS2018 dataset can investigate other families of
attacks, individual web attack labels (as compared to the combined web attack labels
used in this study), and the effects of rarity [50]. Other datasets could also be included
for future work, as well as additional performance metrics, classifiers, and sampling
techniques.

Abbreviations
AE-IDS: Auto-Encoder Intrusion Detection System; ANOVA: ANalysis Of VAriance; AUC​: Area Under the Receiver Operating
Characteristic Curve; AUPRC: Area Under the Precision-Recall Curve; CB: CatBoost; DDoS: Distributed Denial of Service;
DoS: Denial of Service; DT: Decision Tree; EFB: Exclusive Feature Bundling; FPR: False Positive Rate; GBT: Gradient Boosted
Tree; GOSS: Gradient-based One-Side Sampling; HSD: Honestly Significant Difference; LGB: LightGBM; LR: Logistic Regres-
sion; NB: Naive Bayes; OHE: One Hot Encoding; PPV: Positive Predictive Value; RF: Random Forest; ROC: Receiver Operator
Characteristic; RUS: random undersampling; TPR: True Positive Rate; XGB: XGBoost.

Page 19 of 20Zuech et al. J Big Data (2021) 8:75 	

Acknowledgements
We would like to thank the reviewers in the Data Mining and Machine Learning Laboratory at Florida Atlantic University.
Additionally, we acknowledge partial support by the National Science Foundation (NSF) (CNS-1427536). Opinions, find-
ings, conclusions, or recommendations in this paper are the authors’ and do not reflect the views of the NSF.

Authors’ contributions
RZ prepared the manuscript and the primary literary review for this work. JH performed the statistical analyses. All
authors provided feedback to TMK and helped shape the research. TMK introduced this topic to RZ, and helped to com-
plete and finalize this work. All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Declarations

 Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 28 January 2021 Accepted: 3 May 2021

References
	1.	 Young J. US Ecommerce Sales Grow 14.9% in 2019. Accessed: 2020-11-28. https://​www.​digit​alcom​merce​360.​com/​

artic​le/​us-​ecomm​erce-​sales/
	2.	 Radanliev P, De Roure D, Walton R, Van Kleek M, Montalvo RM, Santos O, Burnap P, Anthi E, et al. Artificial intelligence

and machine learning in dynamic cyber risk analytics at the edge. SN Applied Sciences. 2020;2(11):1–8.
	3.	 Leevy JL, Hancock J, Zuech R, Khoshgoftaar TM. Detecting cybersecurity attacks across different network features

and learners. Journal of Big Data. 2021;8(1):1–29.
	4.	 Wald R, Villanustre F, Khoshgoftaar TM, Zuech R, Robinson J, Muharemagic E. Using feature selection and classifica-

tion to build effective and efficient firewalls. In: Proceedings of the 2014 IEEE 15th International Conference on
Information Reuse and Integration (IEEE IRI 2014), 2014;pp. 850–854 . IEEE

	5.	 Najafabadi MM, Khoshgoftaar TM, Seliya N. Evaluating feature selection methods for network intrusion detection
with kyoto data. International Journal of Reliability, Quality and Safety Engineering. 2016;23(01):1650001.

	6.	 Amit I, Matherly J, Hewlett W, Xu Z., Meshi Y, Weinberger Y. Machine learning in cyber-security-problems, challenges
and data sets. arXiv preprint arXiv:​1812.​07858 2018.

	7.	 Sharafaldin I, Lashkari AH, Ghorbani AA. Toward generating a new intrusion detection dataset and intrusion traffic
characterization. In: ICISSP, 2018;pp. 108–116.

	8.	 CICIDS2017 Dataset. Accessed: 2020-08-28. https://​www.​unb.​ca/​cic/​datas​ets/​ids-​2017.​html
	9.	 CSE-CIC-IDS2018 Dataset. Accessed: 2020-08-28. https://​www.​unb.​ca/​cic/​datas​ets/​ids-​2018.​html
	10.	 Leevy JL, Khoshgoftaar TM. A survey and analysis of intrusion detection models based on cse-cic-ids2018 big data. J

Big Data. 2020;7(1):1–19.
	11.	 Basnet RB, Shash R, Johnson C, Walgren L, Doleck T. Towards detecting and classifying network intrusion traffic using

deep learning frameworks. J Internet Serv Inf Secur. 2019;9(4):1–17.
	12.	 Atefinia R, Ahmadi M. Network intrusion detection using multi-architectural modular deep neural network. J Super-

comput 2020;1–23.
	13.	 Li X, Chen W, Zhang Q, Wu L. Building auto-encoder intrusion detection system based on random forest feature

selection. Comput Secur. 2020;95:101851.
	14.	 D’hooge L, Wauters T, Volckaert B, De Turck F. Inter-dataset generalization strength of supervised machine learning

methods for intrusion detection. J Inf Secur Appl. 2020;54:102564.
	15.	 Arlot S, Celisse A, et al. A survey of cross-validation procedures for model selection. Stat Surv. 2010;4:40–79.
	16.	 Forman G, Scholz M. Apples-to-apples in cross-validation studies: pitfalls in classifier performance measurement.

Acm Sigkdd Explor Newslett. 2010;12(1):49–57.
	17.	 Kohavi R et al. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Ijcai. Mon-

treal, Canada; 1995. vol. 14, p. 1137–1145
	18.	 Scikit-learn website. https://​scikit-​learn.​org/​stable/. Accessed 30 Jan 2021.
	19.	 Myles AJ, Feudale RN, Liu Y, Woody NA, Brown SD. An introduction to decision tree modeling. J Chemom J Chemom

Soc. 2004;18(6):275–85.
	20.	 Raileanu LE, Stoffel K. Theoretical comparison between the gini index and information gain criteria. Ann Math Artif

Intell. 2004;41(1):77–93.

https://www.digitalcommerce360.com/article/us-ecommerce-sales/
https://www.digitalcommerce360.com/article/us-ecommerce-sales/
http://arxiv.org/abs/1812.07858
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2018.html
https://scikit-learn.org/stable/

Page 20 of 20Zuech et al. J Big Data (2021) 8:75

	21.	 Khoshgoftaar TM, Golawala M, Van Hulse J. An empirical study of learning from imbalanced data using random
forest. In: 19th IEEE international conference on tools with artificial intelligence (ICTAI 2007). IEEE; 2007. vol. 2, p.
310–317

	22.	 Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
	23.	 Breiman L. Bagging predictors. Mach Learn. 1996;24(2):123–40.
	24.	 Hancock JT, Khoshgoftaar TM. Catboost for big data: an interdisciplinary review. J Big Data. 2020;7(1):1–45.
	25.	 Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A. Catboost: unbiased boosting with categorical features.

In: Advances in neural information processing systems, 2018. pp. 6638–6648.
	26.	 LightGBM GitHub website. https://​github.​com/​micro​soft/​Light​GBM. Accessed 28 Aug 2020.
	27.	 Natekin A, Knoll A. Gradient boosting machines, a tutorial. Front Neurorobot. 2013;7:21.
	28.	 Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y. Lightgbm: A highly efficient gradient boosting decision

tree. In: Advances in neural information processing systems, 2017. pp. 3146–3154.
	29.	 Chen T, Guestrin C. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd international

conference on knowledge discovery and data mining, 2016. pp. 785–794.
	30.	 Guo C, Berkhahn F. Entity embeddings of categorical variables. arXiv preprint arXiv:​1604.​06737 2016.
	31.	 Naive Bayes scikit-learn documentation. https://​scikit-​learn.​org/​stable/​modul​es/​naive_​bayes.​html. Accessed 28 Aug

2020.
	32.	 Hartigan JA. Bayes theory. Berlin/Heidelberg: Springer; 2012.
	33.	 sklearn.linear_model.LogisticRegression scikit-learn documentation. https://​scikit-​learn.​org/​stable/​modul​es/​gener​

ated/​sklea​rn.​linear_​model.​Logis​ticRe​gress​ion.​html. Accessed 28 Aug 2020
	34.	 Montgomery DC, Peck EA, Vining GG. Introduction to linear regression analysis, vol. 821. Hoboken, NJ: Wiley; 2012.
	35.	 Lahmiri S, Bekiros S, Giakoumelou A, Bezzina F. Performance assessment of ensemble learning systems in financial

data classification. Intell Syst Account Financ Manag. 2020;27(1):3–9.
	36.	 Kaggle competitions website. https://​www.​kaggle.​com/​compe​titio​ns. Accessed 30 Jan 2021.
	37.	 Bradley AP. The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recog-

nit. 1997;30(7):1145–59.
	38.	 Bewick V, Cheek L, Ball J. Statistics review 13: receiver operating characteristic curves. Crit Care. 2004;8(6):1–5.
	39.	 Cook NR. Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation.

2007;115(7):928–35.
	40.	 Davis J, Goadrich M. The relationship between precision-recall and roc curves. In: Proceedings of the 23rd interna-

tional conference on machine learning; 2006. pp. 233–240.
	41.	 Boyd K, Eng KH, Page CD. Area under the precision-recall curve: point estimates and confidence intervals. In: Joint

European conference on machine learning and knowledge discovery in databases. Springer; 2013. p. 451–466
	42.	 Hasanin T, Khoshgoftaar TM, Leevy JL, Bauder RA. Severely imbalanced big data challenges: investigating data

sampling approaches. J Big Data. 2019;6(1):107.
	43.	 Van Hulse J, Khoshgoftaar TM, Napolitano A. Experimental perspectives on learning from imbalanced data. In:

Proceedings of the 24th international conference on machine learning; 2007. pp. 935–942.
	44.	 Bauder RA, Khoshgoftaar TM. The effects of varying class distribution on learner behavior for medicare fraud detec-

tion with imbalanced big data. Health Inf Sci Syst. 2018;6(1):9.
	45.	 Calvert CL, Khoshgoftaar TM. Impact of class distribution on the detection of slow http dos attacks using big data. J

Big Data. 2019;6(1):67.
	46.	 Hasanin T, Khoshgoftaar TM, Bauder RA. Impact of data sampling with severely imbalanced big data. Reuse Intell

Syst 2020;1.
	47.	 Tabachnick BG, Fidell LS. Experimental designs using ANOVA. Belmont, CA: Thomson/Brooks/Cole; 2007.
	48.	 Tukey JW. Comparing individual means in the analysis of variance. Biometrics. 1949;99–114.
	49.	 Calvert CL, Khoshgoftaar TM. Threshold based optimization of performance metrics with severely imbalanced big

security data. In: 2019 IEEE 31st international conference on tools with artificial intelligence (ICTAI). IEEE; 2019. p.
1328–1334

	50.	 Hasanin T, Khoshgoftaar TM, Leevy JL, Bauder RA. Investigating class rarity in big data. J Big Data. 2020;7(1):1–17.

https://github.com/microsoft/LightGBM
http://arxiv.org/abs/1604.06737
https://scikit-learn.org/stable/modules/naive_bayes.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://www.kaggle.com/competitions

	Detecting web attacks using random undersampling and ensemble learners
	Abstract
	Introduction
	Related work
	Data preparation
	Methodologies
	Classifiers
	Performance metrics
	Sampling techniques

	Results and discussion
	Results with no sampling
	Results with sampling
	Statistical analysis
	Research questions

	Conclusion
	Acknowledgements
	References

