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Introduction
Artificial Intelligence (AI), also known as computational intelligence, is becoming more 
and more popular in a large number of disciplines. It helps to solve problems for which 
it is impossible or at least very hard to write a traditional algorithm. Currently, a deep 
learning approach is very famous and widely studied. Deep learning, or more broadly 
speaking, machine learning and neural network approaches, parses very large training 
data, learns from it by fixing its internal state. The bigger the volume and variety of the 
training data the neural network can better learn the environment and then give bet-
ter answers for the previously not observed data. Processing a large amount of data and 
teaching neural networks with a large number of parameters requires significant compu-
tational effort not available at laptops or workstations. Therefore, it is important to have 
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a tool, that could integrate Big Data processing with the Artificial Intelligence workloads 
on the High-Performance Computing (HPC) systems.

There is an ongoing need to adapt existing systems and design new ones that would facili-
tate the AI-based calculations. The research tries to push existing limitations in the areas 
such as the performance of heterogenous systems that employ specialised hardware for 
AI-based computation acceleration or I/O and networking performance (to enhance the 
throughput of training or inference data  [1]). Whilst the deployment of new solutions is 
concerned with the advent of new AI-based tools (with Python-based libraries like PyTorch 
or TensorFlow), their integration with existing HPC systems is not always easy. The Parallel 
Computing in Java (PCJ) library is presented herein as an HPC-based tool that can be used 
to bridge together various workloads that are currently running on the existing systems. In 
particular, we show that it can be used to distribute neural network training and is a good 
performer as far as I/O is concerned, especially in comparison with Hadoop/Spark. The 
former corroborates the idea that the library can be used in concert with existing cluster 
management tools (like Torque or SLURM) to distribute work across a cluster for neural 
network training or to deploy a production-ready model in many copies for fast inference; 
the latter proves that training data can be efficiently handled.

Recently, as part of the various exascale initiatives, there has been a strong interest in run-
ning Big Data and AI applications on HPC systems. Because of the different tools used in 
these areas as well as due to the different nature of the algorithms used, the achievement of 
good performance is difficult. Big Data and AI applications are implemented in Java, Scala, 
Python and other languages that are not widely used in HPC, which is still dominated by C 
and Fortran. Moreover, Big Data and AI frameworks rely on dedicated environments such as 
Hadoop or Spark which are difficult to integrate with the traditional HPC management sys-
tems. To solve this problem, vendors are putting a lot of effort to rewrite the most time-con-
suming parts to C/MPI, but this is a laborious and not easy task and successes are limited.

There is a lot of effort to adapt Big Data and AI software tools to HPC systems. However, 
this approach does not remove the limitations of existing software packages and libraries. Sig-
nificant effort is also put to modify existing HPC technologies to make them more flexible and 
easy to use, but success is limited. The popularity of traditional programming languages such 
as C and Fortran decreases. Message-Passing Interface (MPI), which is the basic parallelization 
library, is also criticized because of the complicated Application Programming Interface (API) 
and difficult programming. Users are looking for easy to learn, yet feasible and scalable tools 
more aligned with popular programming languages such as Java or Python. They would like to 
develop applications using workstations or laptops and then easily move them to large systems 
including peta- and exascale ones. Solutions developed by the hardware providers take a direc-
tion of unification of operating systems and compilers and bringing them to workstations. Such 
an approach is not enough and new solutions are necessary.

Our approach presented in this paper is to use a well-established programming language 
(Java) to provide users with the easy to use, flexible and scalable programming framework 
that allows for development of different types of workloads including HPC, Big Data, AI 
and others. This opens the field to easy integration of HPC with Big Data and AI appli-
cations. Moreover, due to the Java portability, user can develop solution on his laptop or 
workstation and than move, even without recompilation, to the cloud or HPC infrastruc-
ture including peta-scale systems.
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For these purposes, we have developed the PCJ library [2]. PCJ is implementing the Parti-
tioned Global Address Space (PGAS) programming paradigm [3], as languages adhering to it 
are very promising in the context of exascale. In the PGAS model, all variables are private to 
the owner thread. Nevertheless, some variables can be marked as shared. Shared variables are 
accessible to other threads of execution, which can address the remote variable and modify it 
or store locally. The PGAS model provides simple and easy to use constructs to perform basic 
operations which significantly reduces programmers’ effort preserving code performance and 
scalability. The PCJ library fully complies with Java standards, therefore, the programmer does 
not have to use additional libraries, which are not part of the standard Java distribution.

The PCJ library won the HPC Challenge award in 2014 [4] and has been already success-
fully used for parallelization of various applications. A good example is a communication-
intensive graph search from the Graph500 test suite. The PCJ implementation scales well 
and outperforms the Hadoop implementation by a factor of 100  [5], but not all bench-
marks were well suited for Hadoop processing. Paper  [6] compares the PCJ library and 
Apache Hadoop using a conventional, widely used benchmark for measuring the perfor-
mance of Hadoop clusters, and shows that the performance of applications developed 
with the PCJ library is similar or even better than the Apache Hadoop solution. The PCJ 
library was also used to develop code for the evolutionary algorithm which has been used 
to find a minimum of a simple function as defined in the CEC’14 Benchmark Suite  [7]. 
Recent examples of PCJ usage include parallelization of the sequence alignment [8]. The 
PCJ library allowed for the easy implementation of the dynamic load balancing for multi-
ple NCBI-BLAST instances spanned over multiple nodes giving the results at least 2 times 
earlier than the implementations based on the static work distribution [9].

In previous works, we have shown that the PCJ library allows for the easy development 
of computational applications as well as Big Data and AI processing. In this paper, we 
focus on the comparison of PCJ with Java-based solutions. The performance comparison 
with the C/MPI based codes has been presented in previous papers [2, 10].

The remainder of this paper is organized as follows. After remarks on emerging 
programming languages and programming paradigms ("Prospective languages and 
programming paradigms" section), we present the basic functionality of the PCJ 
library ("Methods" section). "Results and discussion" section contains subsections 
with results and discussion of various types of applications. "HPC workloads" sec-
tion contains the performance results are presented for a different class of applica-
tions including traditional computational intensive (HPC) workloads (e.g. stencil), as 
well as communication-intensive algorithms such as Fast Fourier Transform (FFT), in 
"Data analitycs" section we present implementation details and performance results 
for Big Data type processing running on petascale size systems. The examples of large 
scale AI workloads parallelized using PCJ are presented in "Artificial Intelligence 
workloads" section. The section finishes with a description of ongoing work on the 
PCJ library. The paper concludes in "Conclusion" section.

Prospective languages and programming paradigms

A growing interest in running machine learning and Big Data workloads is associated 
with new programming languages that have not been traditionally considered for use in 
high-performance computing. This includes Python, Julia, Java, and some others.
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Python is now being viewed as acceptable for HPC applications, due to the 2016 Gor-
don Bell finalist application PyFR [11], which demonstrated that Python application per-
formance can compete head-to-head against native language applications written in C/
C++ and Fortran on the world’s largest supercomputers. However, the multiple versions 
available have limited backward compatibility which requires significant administrative 
effort to handle them. A good example of problems is a long startup time of the Python 
application reported  [12]. For the large number of nodes it can take hours. The dedi-
cated effort is required to minimize it to acceptable value (see Fig. 1).

Python remains a single-threaded environment with the global interpreter lock as the 
main bottleneck. Threads must wait for other threads to complete before starting to do 
their assigned work. In result, the production code is too slow to be useful for large sim-
ulations. There are some other implementations with better thread support, but their 
compatibility could be limited.

The hardware vendors provide a tuned version of Python to improve performance. It is 
done by using some C functions that perform (when coded optimally) at machine level 
speeds. These libraries can vectorize and parallelize the assigned workload and under-
stand the different hardware architectures.

Julia is a programming language that is still new and relatively unknown by many in the 
HPC community but it is rapidly growing in popularity. For the parallel execution, Julia 
provides Tasks and other modules that rely on the Julia runtime library. These modules 
allow to suspend and resume computations with full control of inter-task communica-
tion without having to manually interface with the operating system’s scheduler. A good 
example of the HPC application implemented in Julia is the Celeste project [13]. It was 
able to attain performance using only Julia source code and the Julia threading model. As 
a result, it was possible to fully utilize the manycore Intel Xeon Phi processors.

The parallelization tools available for Java include threads and Java Concurrency which 
have been introduced in Java SE 5 and improved in Java SE 6. There are also solutions 
based on various implementations of the MPI library  [14, 15], distributed Java Virtual 
Machine (JVM) [16] and solutions based on Remote Method Invocation (RMI) [17]. Such 

Fig. 1  PCJ startup time (from [10]) compared to the Python loading time for original and modified Python 
installation (see [12]). The execution time of the hostname command run concurrently on the nodes is 
plotted for reference
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solutions rely on the external communication libraries written in other languages which 
causes many problems in terms of usability, portability, scalability, and performance.

We should also mention solutions motivated by the partitioned global address space 
approach represented by Titanium—a scientific computing dialect of Java [18]. Titanium 
defines new language constructs and has to use a dedicated compiler which makes it dif-
ficult to follow recent changes in Java language.

Python, Julia and, to some extent, Java follow the well-known path. The parallelization 
is possible based on the independent task model with limited communication capabili-
ties. This significantly reduces classes of algorithms that can be implemented to trivially 
parallel ones. An alternative approach is based on the interfacing MPI library, thus using 
a message-passing model.

Recently, programming models based on PGAS are gaining popularity. It is expected 
that PGAS languages will be more important at exascale because of the distinct features 
and development efforts which is lower than for other approaches. The PGAS model can 
be supported by a library such as SHMEM [19], Global Arrays [20] or Charm++  [21] 
or by a language, such as UPC [22], Fortran [23] or Chapel [24]. PGAS systems differ in 
the way the global namespace is organized. Some, such as SHMEM or Fortran, provide a 
local view of data while others provide a global view of data.

Until now, there was no successful realization of the PGAS programming model for 
Java. Developed by us, the PCJ library is the successful implementation providing good 
scalability and reasonable performance. Another prospective implementation is APGAS, 
a library offering an X10-like programming solution for Java [25].

Methods
The PCJ library

PCJ [2] is an OpenSource Java library available under the BSD license with the source code 
hosted on GitHub. PCJ does not require any language extensions or special compiler. The 
user has to download the single jar file and then he can develop and run parallel applications 
on any system with Java installed. Alternatively, build automation tool like Maven or Gra-
dle can be used, as the library is deployed into Maven Central Repository (group: pl.edu.
icm.pcj, artifact: pcj). The programmers are provided with the PCJ class with a set of 
methods to implement necessary parallel constructs. All technical details like threads admin-
istration, communication, and network programming are hidden from the programmers.

The PCJ library can be considered as a simple extension to Java to write parallel programs. It 
provides necessary tools for easy implementation of data and work partitioning best suited to 
the problem. PCJ does not provide automatic tools for the data distribution or task paralleliza-
tion but once the parallel algorithm is given it allows for its efficient implementation.

Idea

The PCJ library follows the common PGAS paradigm (see Fig. 2). The application is run 
as a collection of threads—called here PCJ threads. Each PCJ thread owns a local copy of 
variables, each copy has a different location in physical memory. This applies also to the 
threads run within the same JVM. The PCJ library provides methods to start PCJ threads 
in one JVM or in a parallel environment—using multiple JVMs. PCJ threads are created at 
the application launch and stopped during execution termination. The library provides also 
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basic methods to manage threads such as starting execution, finding the total number of 
threads and number of actual PCJ thread as well as methods to manage groups of threads.

The PCJ library provides methods to synchronize execution (PCJ.asyncBarrier()) 
and to exchange data between threads. The communication is one-sided and asynchro-
nous and is performed by calling PCJ.asyncPut(), PCJ.asyncGet() and PCJ.
asyncBroadcast() methods. The synchronous (blocking) versions of communica-
tion methods are also available. The data exchange can be done only for specially marked 
variables. Exposition of local fields for remote addressing is performed with the use of @
Storage and @RegisterStorage annotations.

PCJ provides mechanisms to control the state of data transfer, in particular, to ensure a pro-
grammer that asynchronous data transfer is finished. For example, a thread can get a shared 
variable and stores it in the PcjFuture<double[]> object. Then, the received value is cop-
ied to the local variable. The whole process can be overlapped with other operations, eg. calcu-
lations. The programmer can check the status of data transfer using PcjFuture’s methods.

The PCJ API follows successful PGAS implementations such as Co-Array Fortran or 
X10, however, the dedicated effort has been done to align it with the experience of Java 
programmers. The full API is presented in the Table 1.

With version 5.1 of the PCJ library, we provide users with the methods for collective 
operations. These methods implement the most efficient communication using a binary 
tree which scales with the number of nodes n as log2n . This reduction algorithm is faster 
than simple iteration over available threads, especially for a large number of PCJ threads 
running on a node. Collective methods collect data within a physical node before send-
ing it to other nodes which reduces the number of communication performed between 
nodes, i.e. between different JVM’s.

Implementation details

The use of Java language requires a specific implementation of basic PGAS functionality 
which is multi-threaded execution and communication between threads.

Execution

PCJ allows for different scenarios such as multiple threads in a single JVM or runs mul-
tiple JVMs on a single physical node. Starting a JVM on a remote node relies on Secure 
Shell (SSH) connection to the machine. It is necessary to set up passwordless login, e.g. 
by using authentication keys without a passphrase. As presented in Fig.  1 the startup 
time is lower than for Python. However, it grows up with the number of nodes, but it 
should be noted that PCJ startup time includes initial communication and synchroniza-
tion of threads which is not included for other presented solutions.

It is also possible to utilize the execution schema accessible on supercomputers 
or clusters (like aprun, srun, mpirun or mpiexec) that starts selected applica-
tion on all nodes allocated for the job. In this situation, instead of calling deploy(), 
the start() method should be used. However, in that situation, internet address 
instead of loopback addresses should be used for describing the nodes. The file with 
node descriptions has to be prepared by the user, e.g. by saving the output of host-
name command executed on allocated nodes.
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Communication

The architectural details of the communication between PCJ threads are presented in 
Fig. 3.

The intranode communication is implemented using the Java Concurrency mecha-
nism. Sending objects from one thread to another requires cloning object’ data. Cop-
ying just object reference could cause concurrency problems in accessing the object.

Table 1  Summary of the elementary PCJ elements

Fig. 2  Diagram of PCJ computing model (from [48]). Arrows present possible communication using 
put(...) or get(...) methods acting on shared variables
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PCJ library makes sure that the object is deeply copied by serializing the object and 
then deserializing it on the other thread. It is done partially by the sending thread 
(serializing) and partially by local workers (deserializing). This way of cloning data is 
safe, as the data is deeply copied—the other thread has its own copy of data and can 
use it independently.
Object.clone() method available in Java is not sufficient. It does not force to cre-

ate a deep copy of the object. For example, it creates only a shallow copy of arrays, there-
fore the data stored in the arrays are not copied between threads. The same stands for 
the implementation of this method in standard classes like java.util.ArrayList. 
Moreover, it requires implementation of java.lang.Cloneable interface for all 
communicable classes and overriding clone() method with a public modifier that 
also had to copy all mutable objects into clone. The serialization/deserialization mecha-
nism is more general and requires only that all used classes be serializable, thus imple-
menting the java.io.Serializable interface, and in most cases does not require 
writing serialization handling methods. Additionally, serialization, so changing objects 
into bytes stream (array), is also a requirement for sending data between nodes.

The communication between nodes uses standard network communication with 
sockets. The data is serialized by the sending thread and the transferred data is deserial-
ized by remote workers. The network communication is performed using Java New I/O 
classes (i.e. java.nio.*). The details of the algorithms used to implement PCJ com-
munication are described in [26].

Example

The example parallel application which sums up n random numbers is presented in List-
ing 1. The PcjExample class implements the StartPoint interface which provides 
methods to start the application in parallel. The PCJ.executionBuilder() is used 
to set up the execution environment: the class which is used as the main class for parallel 
application and a list of nodes provided here in the nodes.txt file.

Fig. 3  Diagram of PCJ communication model (from [6]). Arrows present local and remote communication
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The work is distributed in block manner—each PCJ thread is summing up part of the 
data. The parallelization is performed by changing the length of the main loop defined in 
line 29. The length of the loop is adjusted automatically to the number of threads used 
for execution.

The partial sums are accumulated in the variable a local to each PCJ thread. The vari-
able a can be get/put/broadcast as it is defined in lines 12–14. Line 9 ensures that this 
set of variables can be used in class PcjExample.

To ensure that all threads finished calculating partial sums the PCJ.barrier() 
method is used in line  32. Partial sums are then accumulated at PCJ thread #0 using 
PCJ.reduce() method (line 34) and printed out.
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Fail‑safe

Node or thread failure in the PCJ library uses a fail-safe mechanism. Without that 
mechanism, the whole computation could be stuck in not a recoverable state. When 
computations are executed on a cluster system, that situation could cause useless uti-
lization of Central Processing Unit (CPU)-hours without any useful action done up to 
the job time limit.

In version 5.1 of the PCJ library, there is an added fail-safe mechanism that causes 
whole computations gracefully finish when failure appears. The fail-safe mechanism is 
based on alive and abort messages—the heartbeat mechanism.

The alive message is periodically sent to a node’s neighbour nodes, i.e. parent and chil-
dren nodes, by each node, e.g. neighbours of node 1 are nodes: 0, 3 and 4 (cf. Fig. 4). If 
the node does not receive an alive message from one of its neighbour nodes within pre-
determined, configurable time, it assumes the failure of the node. Failure of the node is 
also assumed when an alive message cannot be sent to the node, or one of the node’s PCJ 
threads exits with an uncaught exception.

When the failure occurs, the node that discovers the breakdown removes failed node 
from its neighbours’ list, immediately sends abort messages to the rest of neighbours, 
and interrupts PCJ threads that are executing on the node. Each node that receives an 
abort message removes the node that sent the message from its neighbours’ list (to avoid 
sending a message back to already notified node), and sends an abort message to all 
remaining neighbours and then interrupts its own PCJ threads.

The fail-safe mechanism allows for quicker shutting down after a breakdown, so the 
cluster’s CPU-hours are not uselessly utilized. Users can disable the fail-safe mechanism 
by setting an appropriate flag of PCJ execution.

Results and discussion
The performance results have been obtained using the Cray XC40 system at ICM (Uni-
versity of Warsaw, Poland) and HLRS (University of Stuttgart, Germany). The computing 
nodes (boards) are equipped with two Intel Xeon E5-2690  v3  (ICM) or Intel Haswell 
E5-2680  (HLRS) processors, each processor contains 12 cores. In both cases, there is 
hyperthreading available (2 threads per core). Both systems have Cray Aries intercon-
nect installed. The PCJ library has been also tested on the other architectures such as 
Power 8 or Intel KNL [27]. However, we decided to present here results obtained using 
Cray XC40 systems since one of the first exascale systems will be a continuation of such 
architecture [28]. We have used Java 1.8.0_51 from Oracle for PCJ and Oracle JDK 10.0.2 
for APGAS. For the C/MPI we have used Cray MPICH implementations in version 8.3 
and 8.4 for ICM and HLRS machines respectively. We have used OpenMPI in version 
4.0.0, that gives Java bindings for the MPI, to collect data for the Java/MPI execution.

HPC workloads

2D stencil

As an example of a 2D stencil algorithm we have used Game of Life which can be seen as 
a typical 9-point 2D stencil—the 2D Moore neighborhood. The Game of Life is a cellular 
automaton devised by John Conway [29]. In our implementation [30] the board is not 
infinite—it has its maximum width and height. Each thread owns a subboard—a part of 
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the board divided in a uniform way using block distribution. Although there are known 
fast algorithms and optimizations that can save computational time generating the next 
universe state, like Hashlife or memorization of the changed cells, we have decided to 
use a straightforward implementation with a lookup of the state for each cell. However, 
to save memory, each cell is represented as a single bit, where 0 and 1 mean that the cell 
is dead and alive respectively.

After generating the new universe state, the border cells of subboards are exchanged 
asynchronously between proper threads. The threads that have cells on the first and 
last columns and rows of the universe are not exchanging the cells state to the opposite 
threads. The state of neighbour cells that would be behind the universe edge is treated as 
dead.

We have measured the performance in the total number of cells processed in the unit 
of time ( cells/s ). For each test, we performed 11 time steps. We warmed up the Java Vir-
tual Machine to allow the JVM to use Just-in-Time (JIT) compilation to optimize the 
run instead of execution in interpreted mode. We also ensured that the Garbage Col-
lector (GC) had not much impact on the gained performance. To do so we took peak 
performance (maximum of steps performance) for the whole simulation. We have used 
48 working threads per node.

Figure  5 presents performance comparison of Game of Life applications for 
604, 800×604, 800 cells universe. The performance for both implementations (PCJ and 
Java/MPI) is very similar and results in almost ideal scalability. C/MPI version presents 
3-times higher performance and similar scalability. The performance data shows scal-
ability up to 100,000 threads (on 2048 nodes). For a larger number of threads, the paral-
lel efficiency decreases due to the small workload run on each processor compared to 
the communication time required for halo exchange. The scaling results obtained in the 
weak scaling mode (i.e. with a constant amount of work allocated to each thread despite 
the thread number) show good scalability beyond 100,000 thread limit  [10]. The ideal 
scaling dashed line for PCJ is plotted for reference. Presented results show ability of run-
ning large scale HPC applications using Java and the PCJ library.

Inset in Fig. 5 presents the performance statistics calculated based on 11 time steps of 
the Game of Life application executed on 256 nodes (12,288 threads). The ends of whisk-
ers are minimum and maximum values, a cross ( × ) represents an average value, a box 

Fig. 4  Communication tree with selected neighbours of node-#1 for fail-safe mechanism. Green arrows 
represent the node-#1 alive messages sent to its neighbour nodes. Blue arrows represent the node-#1 alive 
messages received from the neighbour nodes
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represents values between 1st and 3rd quartiles, and a band inside the box is a median 
value. In the case of C/MPI, the box and whiskers are not visible, as the execution shows 
the same performance for all of the execution steps. In the case of JVM executions (PCJ 
and Java/MPI), minimum values come from the very first steps of execution, when the 
execution was made in interpreted mode. However, the JIT compilation quickly opti-
mized the run and the vast majority of steps were run with the highest performance. It is 
clearly visible that Java applications, after JIT compilation, has very stable performance 
results as the maximum, median and 1st and 3rd quartiles data are almost indistinguish-
able in the figure.

Fast Fourier Transform

The main difficulty in efficient parallelization of FFT comes from the global character 
of the algorithm, which involves an extensive all to all communication. One of the effi-
cient distributed FFT implementations available is based on the algorithm published by 
Takahashi and Kanada  [31]. It is used as a reference MPI implementation in the HPC 
Challenge Benchmark  [32], a well-known suite of tests for assessing the HPC systems 
performance. This implementation is treated as a baseline for the tests of the PCJ version 
described herein (itself based on [33]), with the performance of all-to-all exchange being 
the key factor.

In the case of PCJ code  [34] we have chosen, as a starting point, PGAS implemen-
tation developed for Coarray Fortran 2.0  [33]. The original Fortran algorithm uses a 
radix 2 binary exchange algorithm that aims to reduce interprocess communication and 
is structured as follows: firstly, a local FFT calculation is performed based on the bit-
reversing permutation of input data; after this step all threads perform data transposi-
tion from block to cyclic layout, thus allowing for subsequent local FFT computations; 
finally, a reverse transposition restores data to is original block layout [33]. Similarly to 
Random Access implementation, inter-thread communication is therefore localized in 
the all-to-all routine that is used for a global conversion of data layout, from block to 
cyclic and vice verse. Such implementation allows one to limit the communication, yet 
makes the implementation of all-to-all exchange once again central to the overall pro-
gram’s performance.

The results for complex one-dimensional FFT of 230 elements (Fig. 6) show how the 
three alternative PCJ all-to-all implementations compare in terms of scalability. Blocking 
and non-blocking ones iterate through all other threads to read data from their shared 
memory areas (PcjFutures are used in a non-blocking version). Hypercube-based 
communication utilizes a series of pairwise exchanges to avoid network congestion. 
While nonblocking communication achieved the best peak performance, the hypercube-
based solution exploited the available computational resources to the greatest extent, 
reaching peak performance for 4096 threads when compared to 1024 threads in the case 
of nonblocking communication. Java/MPI code uses the same algorithm as PCJ for cal-
culation and all-to-all exchange. It is implemented using the native MPI primitive. The 
scalability of the PCJ implementation follows the results of reference C/MPI code as well 
as those of Java/MPI. Total execution time for Java is larger when compared to all-native 
implementation irrespective of the underlying communication library. Presented results 
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confirm, that performance and scalability of PCJ and Java/MPI implementations are 
similar. The PCJ library is easier to use, less error prone and does not require libraries 
external to Java such as MPI. Therefore it is good alternative to MPI. Java implementa-
tions are slower than HPCC which is implemented using C. This comes from that differ-
ent ways of storing and accessing data.

Data analitycs

WordCount

WordCount is traditionally used for demonstrative purposes to showcase the basics of 
the map-reduce programming paradigm. It works by reading an input file on a line-
by-line basis and counting individual word occurrences (map phase). The reduction 
is performed by summing the partial results calculated by worker threads. Full source 
code of the application is available at GitHub  [35]. Herein the comparison between 
PCJ’s and APGAS’s performance is presented with the C++/MPI version shown as 
a baseline. APGASstat is the basic implementation, APGASdyn is a version enhanced 
with dynamic load-balancing capabilities. The APGAS library, as well as its imple-
mentation of WordCount code, are based on the prior work  [25]. APGAS code was 
run using SLURM in Multiple Programs, Multiple Data (MPMD) mode, with com-
mands used to start computations and remote APGAS places differing. A range of 
the number of nodes used to run a given number of threads was tested and the best-
achieved results are presented. Due to APGAS’s requirements, Oracle JDK 10.0.2 was 
used in all cases. The tests use 3.3 MB UTF-8 encoded text of English translation of 
Tolstoy’s War and Peace as a textual corpus for word counting code. They were per-
formed in a strong scalability regime, with the input file being read 4096 times and 
all threads reading the same file. The file content is not preloaded into the application 
memory before the benchmark.

Fig. 5  Performance results of Game of Life implemented with PCJ, C/MPI and Java/MPI for 604, 800×604, 800 
cells universe. The strong scaling results were obtained on Cray XC40 at ICM (PCJ, C/MPI and Java/MPI) and 
Cray XC40 at HLRS (PCJ). Ideal scaling for PCJ is drawn (dashed line). Inset plot presents the performance 
statistics calculated based on 11 time steps on 256 nodes (12,288 threads). In the inset plot, ends of whiskers 
are minimum and maximum values, a cross ( × ) represents an average value, a box represents values between 
1st and 3rd quartiles, and a band inside the box is a median value
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The performance of the reduction phase is key for the overall performance [10] and 
the best results in case of PCJ are obtained using binary tree communication. APGAS 
solution uses the reduction as implemented in  [25] (this work reports the worse 
performance of PCJ, due to the use of simpler and therefore less efficient reduction 
scheme).

The results presented in Fig.  7 show good scalability of the PCJ implementation. 
PCJ’s performance was better when compared to APGAS, which can be tracked to the 
PCJ’s reduction implementation. Regarding native code, C++ was chosen as a better-
suited language for this task than C, because of its built-in map primitives and higher 
level string manipulation routines. While C++ code scales ideally, its poor perfor-
mance when measured in absolute time can be traced back to the implementation of 
line-tokenizing. All the codes (PCJ, APGAS, C++), in line with our earlier works [5], 
consistently use regular expressions for this task.

One should note, that different set of results obtained on the Hadoop cluster shows 
that PCJ implementation is at least 3  times faster than Hadoop one  [5] and Spark 
one [25].

Artificial Intelligence workloads

AI is currently a vibrant area of research, gaining a lot from advances in the process-
ing capabilities of modern hardware. The PCJ library was tested in the area of artificial 
intelligence to ensure that it provides AI workloads with sufficient processing potential, 
able to exploit the future exascale systems. In this respect, two types of workloads were 
considered. Firstly, stemming from the traditional mode of AI research aimed at discov-
ering the inner working of real physiological systems, the library was used to aid the 
researchers in the task of modeling the C. Elegans neuronal circuity. Secondly, it was 
used to power the training of the modern artificial neural network, distributing the gra-
dient descent calculations.

Fig. 6  Performance of the 1D FFT implemented using different algorithms. The data for the HPCC 
implementation using C/MPI as well as Java/MPI is presented for reference. The array of 230 elements was 
used. Ideal scaling for PCJ is drawn (dashed line). Inset presents communication time as a percentage of total 
execution time. The benchmarks were run on Cray XC40 at ICM
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Neural networks—modeling the connectome of C. Elegans

Nematode C. Elegans is a model organism whose neuronal development has been stud-
ied extensively and remains the only organism with a fully known connectome. There 
are currently some experiments that aim to link its structure and actual worm’s behav-
ior. In one of those experiments, worm’s motoric neurons were ablated using a laser, 
affecting the changes of its movement patterns  [36]. The results of those experiments 
allowed to create a mathematical model of the relevant connectome fragment by a bio-
physics expert. The model was defined by a set of ordinary differential equations, with 8 
parameters.

The value of those parameters was key to the model’s accuracy, yet they were impos-
sible to calculate using the traditional numerical or analytical methods. Therefore a dif-
ferential evolution algorithm was used to explore the solution space and fit the model’s 
parameters so that its predictions are in line with the empirical data. The mathematical 
model has been implemented in Java and parallelized with the use of the PCJ library [36, 
37]. It should be noted that the library allowed to rapidly (ca. 2 months) prototype the 
connectome model and align it according to the shifting requirements of the biophysics 
expert.

In regards to the implementation’s performance, Fig. 8 can be consulted, where it is 
expressed as a number of tested configurations per second. The experimental dataset 
amounted to a population of 5 candidate vectors affiliated with each thread that was 
evaluated through 5 iterations in a weak scaling regime. A scaling close to the ideal was 
achieved both irrespective of the hyperthreading status, as its overhead in this scenario 
is minimal. The outlier visible in the case of 192 threads is most probably due to the 
stochastic nature of the differential evolution algorithm and disparities regarding model 
evaluation time for concrete sets of parameters.

Fig. 7  Strong scalability of WordCount application implemented in PCJ and APGAS. APGASstat and APGASdyn 
denote original fork-join algorithm and algorithm using lifeline-based global load balancing. C++/MPI 
results are plotted for reference. Ideal scaling for PCJ and C++/MPI are drawn with the dashed lines. The 
results are presented for 3.3 MB file and were obtained using Cray XC40 at ICM. The APGAS results were not 
calculated for a number of nodes greater than 1024 due to long startup time exceeding one hour (which can 
be attributed to the library’s bootstrapper which—at the time of running the experiments—was not generic 
enough to offer a fast startup on a range of systems)
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Distributed neural network training

The PCJ library was also tested in workloads specific to modern machine learning appli-
cations. It was successfully integrated with TensorFlow for the distribution of gradient 
descent operation for effective training of neural networks  [38], performing very well 
against the Python/C/MPI-based state-of-the-art solution, Horovod [39].

For presentation purposes, a simple network consisting of three fully connected lay-
ers (sized 300, 100 and 10 neurons respectively [40]) was trained for handwritten digits 
recognition for 20 epochs (i.e. for a fixed number of iterations) on MNIST dataset [41] 
(composed of 60,000 training images of which 5000 were set aside for validation pur-
poses in this test), with mini-batch consisting of 50 images. PCJ tests two algorithms. 
The first one uses the same general idea for gradient descent calculations as Horovod 
(i.e. data-parallel calculations are performed process-wise, and the gradients are subse-
quently averaged after each mini-batch). The second one implements asynchronous par-
allel gradient descent as described in [42].

Implementation-wise, Horovod works by supplying the user with simple to use Python 
package with wrappers and hooks that allow enhancing existing code with distributed 
capabilities and MPI is used for interprocess communication. In the case of PCJ, a spe-
cial runner was coded in Java with the use of TensorFlow’s Java API for the distribution 
and instrumentation of training calculations. Relevant changes had to be implemented 
in Python code as well. Our code implements the reduction operation based on the 
hypercube allreduce algorithm [43].

The calculations were performed using the Cray XC40 system at ICM with Python 
3.6.1 installed alongside TensorFlow v. 1.130-rc1. Horovod was installed with the use of 
Python’s pip tool version 0.16.0. SLURM was used to start distributed calculations, with 
one TensorFlow process per node. We have used 48 working threads per node.

Results in strong scalability regime presented in Fig. 9 show that the PCJ implementa-
tion that facilitates asynchronicity is on a par with MPI-based Horovod. In the case of 
smaller training data sizes when a larger number of nodes is used, our implementation 
is at a disadvantage in terms of accuracy. This is because the overall calculation time 
is small and communication routines are not able to finish in time before thread fin-
ish local training. The datapoint for 3072 threads (64 nodes) was thus omitted for asyn-
chronous case in Fig. 9. Achieving full performance of Horovod on our cluster was only 
possible after using non-standard configuration for available TensorFlow installation. 
This in turn allowed to fully exploit inter-node parallelism with the use of Math Kernel 
Library (MKL). TensorFlow for Java available as a Maven package did not exhibit the 
need for this fine-tuning, as it does not use MKL for computation.

Presented results clearly show that PCJ can be efficiently used for parallelization of 
AI workloads. Moreover, use of Java language allows for easy integration with existing 
applications and frameworks. In this case PCJ allowed for easier deployment of most 
efficient configuration of TensorFlow on HPC cluster.

Future work

From the very beginning, the PCJ library has been using sockets for transferring the data 
between nodes. This design was straightforward, however, it precludes the full utilization 
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of the novel communication hardware such as Cray Aries or InfiniBand interconnects. 
There is ongoing work to use novel technologies in PCJ. This is especially important for 
network-intensive applications. However, we are looking for Java interfaces that can sim-
plify integration. DiSNI  [44] or jVerbs  [45] seems to be a good choice, however, both 
are based on the specific implementation of communication and their usage by the PCJ 
library is not easy. There are also attempts to speed up data access in Java using Remote 
Direct Memory Access (RDMA) technology [46, 47]. We are investigating how to use it 
in the PCJ library.

Another reason for low communication performance is the problem of data copying 
during the send and receive process. This cannot be avoided due to the Java design: tech-
nologies based on the zero-copy and direct access to the memory do not work in this 
case. This is an important issue not only for the PCJ library but for Java in general.

As one of the main principles of the PCJ library is not to depend on adding any addi-
tional library, PCJ uses a standard Java object serialization mechanism to make a com-
plete copy of an object. There are undergoing works that would allow using external 
serialization or cloning libraries, like Kryo, that could speed up making a copy of data.

The current development of the PCJ library is focused on the code execution on the 
multiple, multicore processors. Whilst Cray XC40 is representative for most of the cur-
rent TOP500 systems, of which only 20% are equipped with Graphics Processing Units 
(GPUs), the peta- and exascale systems are heterogeneous, and in addition to the CPU’s 
nodes contains accelerators such as GPUs, Field-Programmable Gate Arrays (FPGAs), 
and others. The PCJ library supports accelerators through JNI mechanisms. In particular 
one can use JCuda to run Compute Unified Device Architecture (CUDA) kernels on the 
accelerators. This mechanism has been checked experimentally, the performance results 
are in preparation. Similarly, nothing precludes the already existing PCJ-TensorFlow 
code from using TensorFlow’s GPU exploitation capabilities.

Fig. 8  Performance of the evolution algorithm to search parameters of neural network simulating 
connectome of C. Elegans. The performance data for execution with and without hyperthreading is 
presented. The benchmarks were run on Cray XC40 at HLRS. Ideal scaling is drawn with the dashed line
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Conclusion
Near perspective of exascale systems and a growing number of petascale computers 
makes strong interest in new, more productive programming tools and paradigms capa-
ble of developing codes for large systems. At the same time, we observe a change in the 
type of workloads run on supercomputers. There is a strong interest in running Big Data 
processing or Artificial Intelligence applications. Unfortunately, the majority of the new 
workloads are not well suited for large computers. They are implemented in languages 
like Java or Scala which, up to now, were out of interest of the HPC community.

In this paper, we performed a brief review of the programming languages and pro-
gramming paradigms getting attention in the context of HPC, Big Data and AI process-
ing. We focused on Java as the most widely used programming language and presented 
its feasibility to implement AI and Big Data applications for large scale computers.

As presented in the paper, the PCJ library allows for easy development of highly scal-
able parallel applications. Moreover, PCJ puts great promise to be successful for the 
parallelization of HPC workloads as well as AI, and Big Data applications. Example 
applications and their scalability and performance have been reported in this paper.

Results presented here, and in previous publications, clearly show the feasibility of 
Java language to implement parallel applications with a large number of threads. The 
PGAS programming model allows for easy implementation of various parallel schemas, 
including traditional HPC as well as Big Data and AI, ready to run on peta- and exascale 
systems.

The proposed solution will open up new possibilities of applications. Java as the most 
popular programming language is widely used in business applications. The PCJ library 
allows, with little effort, to extend the application to include computer simulations, data 
analysis and artificial intelligence. The PCJ library allows to easily develop applications 
and run them on a variety of resources from personal workstation computers to cloud 
resources. The key element is the ease of extending existing applications and the inte-
gration of various types of processing while maintaining the advantages offered by Java. 

Fig. 9  Comparison of the distributed training time taken by Horovod and PCJ as measured on Cray XC40 at 
ICM. Accuracy of ≈ 96% was achieved
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This solution is very important for existing applications and allows for easy and quick 
adaptation to the growing demand.
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