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Abstract 

Data-driven innovation is propelled by recent scientific advances, rapid technological 
progress, substantial reductions of manufacturing costs, and significant demands for 
effective decision support systems. This has led to efforts to collect massive amounts of 
heterogeneous and multisource data, however, not all data is of equal quality or equally 
informative. Previous methods to capture and quantify the utility of data include value of 
information (VoI), quality of information (QoI), and mutual information (MI). This manu-
script introduces a new measure to quantify whether larger volumes of increasingly 
more complex data enhance, degrade, or alter their information content and utility with 
respect to specific tasks. We present a new information-theoretic measure, called Data 
Value Metric (DVM), that quantifies the useful information content (energy) of large and 
heterogeneous datasets. The DVM formulation is based on a regularized model balanc-
ing data analytical value (utility) and model complexity. DVM can be used to determine if 
appending, expanding, or augmenting a dataset may be beneficial in specific application 
domains. Subject to the choices of data analytic, inferential, or forecasting techniques 
employed to interrogate the data, DVM quantifies the information boost, or degradation, 
associated with increasing the data size or expanding the richness of its features. DVM 
is defined as a mixture of a fidelity and a regularization terms. The fidelity captures the 
usefulness of the sample data specifically in the context of the inferential task. The regu-
larization term represents the computational complexity of the corresponding inferential 
method. Inspired by the concept of information bottleneck in deep learning, the fidelity 
term depends on the performance of the corresponding supervised or unsupervised 
model. We tested the DVM method for several alternative supervised and unsupervised 
regression, classification, clustering, and dimensionality reduction tasks. Both real and 
simulated datasets with weak and strong signal information are used in the experimen-
tal validation. Our findings suggest that DVM captures effectively the balance between 
analytical-value and algorithmic-complexity. Changes in the DVM expose the tradeoffs 
between algorithmic complexity and data analytical value in terms of the sample-size 
and the feature-richness of a dataset. DVM values may be used to determine the size and 
characteristics of the data to optimize the relative utility of various supervised or unsuper-
vised algorithms.
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Introduction
Background

Big data sets are becoming ubiquitous, emphasizing the importance of solving the 
challenge of balancing information utility, data value, resource costs, computational 
efficiency, and inferential reliability [1]. This manuscript tackles this problem by 
developing a new measure, called the Data Value Metric (DVM), that quantifies the 
energy, or information content, of large and complex datasets, which can be used as 
a yardstick to determine if appending, expanding, or otherwise augmenting the data 
size or complexity may be beneficial in specific application domains. In practice, DVM 
provides a mechanism to balance, or tradeoff, a pair of competing priorities (1) costs 
or tradeoffs associated with increasing or decreasing the size of heterogeneous data-
sets (sample size) and controlling the sampling error rate, and (2) expected gains (e.g., 
decision-making improvement) or losses (e.g., decrease of precision or variability 
increase) associated with the corresponding scientific inference. The computational 
complexity of the DVM method is directly proportional to that of calculating mutual 
information, which is linear in terms of the data size. Thus, the DVM complexity is 
determined directly by the inferential method or technique used to obtain the classi-
fication, regression, or clustering results, which may itself be non-linear. Hence, DVM 
calculations do not add significant overhead to the standard analytical protocol.

Although several performance measures exist for supervised and unsupervised inference 
tasks, it is difficult to use established methods to infer the sufficiency of the data for each 
specific inferential task. For example, one could use accuracy measures for a classification 
task. Assume that the accuracy of 70% is achieved for a non-random, non-stationary, or 
non-homogeneous dataset. Then, the question is whether we can expect an increase of 
the accuracy by adding more samples or more features, or maybe use alternative models 
to increase the value of the resulting inference. In general, such questions are difficult to 
answer solely by considering a particular measure of performance on a given dataset. Sev-
eral of the previous approaches measuring the quality of data are summarized below.

Related work

Several previous studies have proposed metrics for assessing the information gain of 
a given dataset. For example, value of information (VoI) analysis, originally proposed 
in [2] with overviews in [3–5], is a decision-theoretic statistical framework represent-
ing the expected increased inference accuracy or reduction in loss based on additional 
prospective information [6]. The basic three types of VoI methods include (1) inferen-
tial and modeling cases for linear objective functions under simplified parameter distri-
bution restrictions, which limits their broad practical applicability [3, 7]; (2) methods 
for estimating the expected value of partial perfect information (EVPPI) involving parti-
tioning of the parameter space into smaller subsets and assuming constant and optimal 
inference over the local neighborhoods, within subsets [8, 9]; and (3) Gaussian process 
regression methods approximating the expected inference [10–12]. More specifically, 
for a particular parameter φ , the EVPPI is the expected inferential gain, or reduction in 
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loss, when φ is perfectly estimated. As the perfect φ is unknown in advance, this reduc-
tion of loss expectation is taken over the entire parameter space φ ∈ �:

where d is decision, inference or action, d∗φ is the optimal inference obtained when φ 
is known, θ is the the model parameter vector, E is the expectation, and L(d, θ) is the 
likelihood function [6]. Note that VoI techniques are mainly suitable for specific types 
of problems, such as evidence synthesis in the context of decision theory. Further, their 
computational complexity tends to be high and require nested Monte Carlo procedures.

Another relevant study [13] utilizes a unique decomposition of the differences (errors) 
between theoretical (population) parameters and their sample-driven estimates (statis-
tics) into three independent components. If θ and θ̂ represent a theoretical characteristic 
of interest (e.g., population mean) and its sample-based parameter estimate (e.g., sample 
arithmetic average), respectively, then, the error can be canonically decomposed as:

Suppose J is a (uniform) random subset indexing a sample from the entire (finite, N) 
population. For a sample {Xi : j ∈ In} , Rj is a random-sample indicator function (with 
values 0 or 1) capturing whether j ∈ In . Of course, 

∑N
j=1 Rj = n , X is a multidimensional 

design matrix capturing the attributes of the data (features), g : X −→ R is a linking 
map that allows us to compute on samples (e.g., polynomial functions for moment calcu-
lations or indicator functions for distribution functions), gj = g(Xj) is a mapping of the 
j-th feature, A = A(g ,R) is a measure of association between RJ and GJ , the sampling 
rate f = EJ (RJ ) =

n
N  (ratio of sample-to-population size), B =

√
1−f
f  , and C is a meas-

ure encoding the difficulty of estimating the sample-based parameters ( ̂θ).
Bayes error rate is another metric that quantifies the intrinsic classification limits. In 

classification problems, the Bayes error rate represents the minimal classification error 
achieved by any classifier [14, 15]. The Bayes error rate only depends on the distributions 
of the classes and characterizes the minimum achievable error of any classifier. Several 
previous studies proposed effective estimation methods for the Bayes error rate [14–17]. 
In particular, [18] obtains a rate-optimal non-parametric estimator of the Bayes error 
rate. The Bayes error rate may not be attainable with a practical classifier.

The proposed data value metric addresses the problem of measuring and tracking data 
information content relative to the intrinsic limits within the context of a specific ana-
lytical inferential model.

Data value metric

For a given dataset, the information-theoretic definition of DVM employs mutual infor-
mation (MI) [19, 20] to quantify the inferential gain corresponding to increasing the data 
size or the richness of its features. In general, mutual information evaluates the degree of 
relatedness between a pair of data sets. In particular, MI may be used to assess the infor-
mation gain between an initial data set and its augmented counterpart representing an 

EVPPI(φ) = Eθ (L(d
∗, θ))− Eφ(Eθ |φ(L(d

∗
φ , θ))),

θ − θ̂︸ ︷︷ ︸
error

= A︸︷︷︸
( Data
Quality)

+ B︸︷︷︸
( Data
Quantity)

+ C︸︷︷︸
( Inference
Problem Complexity)

.
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enhanced version of the former. When both random variables X and Y are either discrete 
or continuous, the mutual information can be defined by:

where p(x) and p(y) are the marginal probability distribution functions and p(x,  y) is 
the joint probability function of X and Y. The non-negative and symmetric MI measure 
expresses the intrinsic dependence in the joint distribution of X and Y, relative to the 
assumption of X and Y independence. Thus, MI captures the X and Y dependence in the 
sense that I(X;Y ) = 0 if and only if X and Y are independent random variables, and for 
dependent X and Y, I(X;Y ) > 0 . Further, the conditional mutual information is defined 
as follows:

DVM relies on a low-dimensional representation of the data and tracks the quality of the 
extracted features. Either the extracted features or the predicted values from a model 
can be used in a low-dimensional representation in the DVM formulation. For each 
dataset, the DVM quantifies the performance of a specified supervised or unsupervised 
inference method. The DVM formulation is inspired by the concept of information bot-
tleneck in deep neural networks (DNNs) [21, 22]. Information bottleneck represents the 
trade-off between two mutual information measures: I(X; T) and I(T; Y), where X and Y 
are respectively the input and output of the deep learning model and T is an intermedi-
ate feature layer.

Instead of simply computing sample-driven parameter estimates, the DVM approach 
examines the information-theoretic properties of datasets relative to their sample-sizes, 
feature-richness, and the algorithmic complexity of the corresponding scientific infer-
ence. There are both similarities and differences between DMV and other VoI metrics. 
The main difference is that for model-based inference, some VoI metrics may have 
known, exact, or asymptotic expectations based on exact, or Markov chain Monte Carlo 
(MCMC), posterior estimates [23–25]. Whereas, under model-free inference, estimating 
the DVM theoretical or ergodic properties is difficult, in general. This challenge prevents 
the derivation of an exact linear decomposition of the error between population charac-
teristics and their sample-driven counterparts.

This manuscript is organized as follows. In "Methods" section  , we define the data 
value metric (DVM) as an information-theoretic function of the (training and testing) 
data and the specific inferential technique. This section also includes the computational 
details about an effective mutual information (MI) estimator and ensemble dependency 
graph estimator (EDGE) [22] as well as the implementation details of a DVM Python 
package we built, validated, and openly shared. A feature selection application of DVM 
is also discussed in this section. The estimation of the mutual information using the 
ensemble dependency graph estimator (EDGE) is discussed in "Mutual information esti-
mation" section. "Results" section  includes experimental results illustrating the behav-
ior of the proposed DVM metric on a wide range of real and simulated data, low- and 

(1)

( discrete
distributions

)
I(X;Y ) =

∑

{y∈Y ,x∈X}

p(x, y) log

(
p(x, y)

p(x)p(y)

)

( continuous
distributions

)
I(X;Y ) =

∫

{y∈Y ,x∈X}
p(x, y) log

(
p(x, y)

p(x)p(y)

)
dxdy,

(2)I(X;Y | Z) = I(X;Y ,Z)− I(X;Z).
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high-energy signals, feature-poor and feature-rich datasets. "Conclusion and discussion" 
section summarizes the conclusions and provides a discussion about applications, pos-
sible improvements, limitations, and future work. In the Appendix, we provide DVM 
implementation details, source code references, additional results, and references to 
interactive 3D plots of DVM performance on real and simulated data.

Methods
There are a wide range of artificial intelligence, machine learning, and statistical infer-
ence methods for classification, regression and clustering [1, 26–28]. The DVM metric 
is applicable to unsupervised and supervised, model-based and model-free approaches. 
We employed the following supervised classification methods to identify, predict, or 
label predefined classes, linear models [29, 30], random forest [31], adaptive [32] and 
gradient [33] boosting, and k-nearest neighbors [34]. In addition, we tested several unsu-
pervised clustering approaches for categorizing and grouping objects into subsets with-
out explicit a priori labels, K-means [35], Affinity Propagation [36], and Agglomerative 
clustering [37].

The data value metric (DVM) technique utilizes MI to quantify the energy of datasets 
relative to the corresponding inferential technique applied to interrogate the data. Our 
approach is based on transforming the triple (T, S, g), representing the training (model 
estimation) dataset, the testing (validation) dataset, and the specific inferential method, 
respectively, into random variables X = g(XT ,XS) and Y = YS whose MI captures the 
data-method information content in the triple.

Depending upon the type of the intended inference on the data, we will define the 
DVM separately for supervised modeling and for unsupervised clustering. While the two 
definitions are congruent, this dichotomy is necessary to provide explicitly construc-
tive definitions that can be used for a wide range of domain applications. Expanding the 
general regularization problem formulation, given a dataset, D, the DVM is defined as a 
mixture blending a fidelity term, F(D), and a regularization term, R(D):

The DVM fidelity term captures the usefulness of the sample data for the specified infer-
ential task (supervised or unsupervised). The second, regularization, term penalizes the 
DVM based on the computational complexity of the corresponding inferential method. 
Thus, broadly speaking, the DVM depends on the data (including both training and test-
ing sets) as well as the data-analytic technique used to obtain the desired inference.

Let’s first explain the rationale behind mixing fidelity and regularization in the DVM 
definition. Consider a case-study where a high-energy (low-noise) dataset provides suf-
ficient information to derive either good prediction accuracy, for supervised modeling, 
or obtain stable clustering results, for unsupervised inference. Expanding heterogeneous 
data by either appending the number of samples or expanding the set of features may not 
always increase the DVM and may add substantial costs associated of collecting, man-
aging, quality control, and processing the larger datasets. The penalty term in the DVM 
accounts for some of these potential detrimental effects due to inflating the data. The 
effect of the regularization term is mediated by the size of the penalty coefficient � , which 

(3)
DVM(D) = F(D)︸ ︷︷ ︸

fidelity

− �︸︷︷︸
penalty

R(D)︸ ︷︷ ︸
regularizer

.
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controls the DVM balance between quality of the inference and the algorithmic com-
plexity. There are many possible alternative forms of the regularizer term, R(D), such as 
runtime, computational complexity, or computing costs. In our experiments, we use the 
Big-O computational complexity of training the predictor to quantify the regularization 
penalty term R(D) = f (n) . Table 1 shows the computational complexities of several com-
monly used classification (C) and regression (R) classifiers. The table uses the following 
notation: n represents the size of the training sample, p is the number of features, ktrees 
is the number of trees (for tree-based classifiers), msv is the number of support vectors 
(for SVM), and oli is the number of neurons at layer i in a deep neural network classifier.  
Next, we will focus solely on the more complex DVM fidelity term, which will be defined 
separately for the two alternative approaches-supervised prediction and unsupervised 
clustering.

Representation of the fidelity term in low‑dimensions

First we will define the DVM fidelity term based on low-dimensional representations of the 
data. The motivation behind this definition of the fidelity is driven by the neural networks 
(NNs) process of optimizing an objective function and identifying feature contributions. 
Let X, T and Y respectively denote the NN input layer, an intermediate feature layer, and the 
output layer.

In [21, 22], the mutual information measures I(X; T) and I(T; Y) are used to demonstrate 
the evolution of training in deep neural networks. I(T; Y) represents how the trained feature 
layer T is informative about the label. In the training process of a deep neurals network 
(DNN), I(T; Y) keeps increasing [21, 22]. On the other hand, I(X; T) shows the complexity of 
the representation T. In DNN, I(X; T) increases in the first training phase and it decreases 
in the compression phase [21, 22]. Thus, T is a good representation of X if its information 
about Y is maximized for a constrained complexity. This is equivalent to maximizing the 
following information bottleneck (IB) loss function [38]:

where β is a Lagrange multiplier with the condition β > 0.
The DVM formulation is inspired by the NN definition of information bottleneck loss 

function in equation (5). Intuitively, a feature vector T has high quality if it is informative 

(5)IB = I(T ;Y )− βI(X;T ),

Table 1  Computational complexity of several commonly used regression and classification 
techniques

Classifier Type Training Prediction

Linear Regression R O(p2n+ p3) O(p) (4)

Decision Trees C&R O(n2p) O(p)

Random Forest C O(n2pktrees) O(pktrees)

Gradient Boosting C&R O(npktrees) O(pktrees)

SVM C&R O(n2p+ n3) O(msvp)

k-Nearest Neighbors C&R varies O(np)

Neural Networks C&R varies O(
∑

i oli oli+1
)

Naive Bayes C O(np) O(p)
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about the label and its representation complexity is small. Thus, IB might be used as a 
measure of feature quality.

However, there are also problems with considering IB as a feature quality measure. 
First, in general, IB has no fixed range and it’s not a priori clear what values of IB repre-
sent high and low salient features. Second, the penalty term in the IB function, I(X; T), 
represents the information of the feature T about X, which captures both necessary and 
unnecessary information in order to predict Y. It may be better to only consider the 
information that is independent of Y as a penalty term. In terms of information theoretic 
measures, one could formulate this as conditional information I(X; T|Y). Note that this 
penalty term is minimized when the representation T yields the information of Y with-
out extra information about X. An example of this case is when Y is an invertible func-
tion of T.

Thus, the proposed fidelity term for the Data Value Metric (DVM) is defined in terms 
of the mutual information and conditional mutual information measures introduced in 
(1) and (2) as follows:

The following remarks include some of the properties of the proposed fidelity measure.

Remark 1.a  The following inequality holds

and the fidelity term of the DVM always has the following upper bound:

Remark 1.b  F(T ) = 1 if and only if the following equations are true:

The proof for the Remarks 1.a and 1.b is given in Appendix 1.

Remark 2  The fidelity term of the DVM can be simplified to the form of the standard 
information bottleneck [38]:

(6)F(T )︸ ︷︷ ︸
DVM Fidelity

=
I(T ;Y )− βI(X;T |Y )

I(X;Y )
.

(7)I(T ;Y )− βI(X;T |Y ) ≤ I(X;Y ),

(8)F(T ) =
I(T ;Y )− βI(X;T |Y )

I(X;Y )
≤ 1.

(9)I(X;Y | T ) = 0,

(10)I(X;T | Y ) = 0

(11)
F(T ) =

I(Y ;T )− βI(T ;X |Y )

I(X;Y )
=

I(Y ;T )− β(I(T ;X)− I(T ;Y ))

I(X;Y )

=
(1+ β)I(Y ;T )− βI(T ;X)

I(X;Y )
.
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As a simple demonstration of the behavior of DVM = F − �R , we fit a 5-layer DNN to 
predict the 10 class labels of the MNIST dataset [39], and used the DVM to track the fea-
ture quality across epochs and layers. The results of the DVM performance on the digit 
recognition is given Fig. 1. Since the network is trained as a whole with all layers, the 
regularizer term R is considered fixed for all layers. At a fixed training epoch, the DVM 
values in different network layers represent the trade-off between the information about 
the labels and the information about the input. These complementary information com-
ponents are the first and second terms in the numerator of the DVM fidelity (11). During 
the iterative network training process, the information about the labels and the fidelity 
term increase, which suggests improvement of the quality of the feature layers.

Supervised modeling

The DVM fidelity term definition, equation (6), relies on low-dimensional representa-
tions. Using the supervised-model predicted values, we can obtain low-dimensional 
representations that can be used to measure data quality in both supervised and unsu-
pervised problems. Unsupervised inference problems will be considered later.

In supervised inference, we assume that we have a set of independent and identically 
distributed (i.i.d.) samples Xi, 1 ≤ i ≤ n with a joint distribution f(x) and associated 
known labels Yi . We define encoder-decoder pair (E ,D) , where E maps the high-dimen-
sional input X into a lower dimensional representation T, and D maps the representation 
T to the predicted labels. In practice, we can think of E as a dimensionality-reduction 
method, or the intermediate representations of a deep neural network. In addition, D per-
forms the classification task based on the lower dimensional representations. Note that if 
T is simply the predicted labels, the fidelity would depend on the specific classifier. How-
ever, if T is some low-dimensional representation of the data, such as extracted features 
or any intermediate layer of a deep neural network, the fidelity would be independent 
from the classifier and would only depend on the encoder (feature extraction) method.

Fig. 1  Training a neural network of size 784− 200− 100− 60− 30− 10 on the MNIST dataset with ReLU 
activation and using the DVM to track feature quality measures for different network layers. As shown, the 
deeper layers have higher DVM values, suggesting that they represent salient features for predicting the class 
labels
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The definition of the fidelity measure is based on a cross-validation type average of the 
definition (6) using the estimated mutual information measures. Given any random vari-
ables X, Y and Z, with corresponding sets of i.i.d. samples X,Y and Z , I(X;Y) denotes 
the estimated mutual information using the sample sets X,Y.

We randomly split the feature set X into two subsets (X′, X̃) . The first subset (X′) is 
used for training, whereas the second one (X̃) is used for independent testing and vali-
dation. Also let T̃ denote the set of intermediate representation (or predicted labels), and 
Ỹ represent the true labels associated with the test dataset X̃ . Then, we can define the 
DVM fidelity term by:

Using a weight coefficient, β , this fidelity term formulation, equation (12), mixes two 
components, I(T̃i; Ỹi) and I(X̃i; T̃i|Ỹi) , via normalization by I(X;Y).

The first term, I(T̃i; Ỹi) , accounts for the fidelity of the low dimensional representation 
of the output labels, Ỹi , whereas the second (penalty) term, I(X̃i; T̃i|Ỹi) , accounts for the 
compression of the lower-dimensional representation.

The pseudo code below (Algorithm  1) outlines the computational implementation 
strategy we employ in the DVM package for evaluating the DVM. The metric captures 
the relative analytical value of the dataset relative to the computational complexity of 
the supervised prediction, classification, or regression problem. In practice, the regu-
larization term, R(g), is estimated according to the known algorithmic complexity, see 
Table 1.

Input :  Data sets X , Y , model g, parameters β , �
for a random split (X′

i, X̃i) of X do

train g based on (X′
i,Y

′
i)

T̃i ← g(X̃i)

Fi ←
I(T̃i;Ỹi)−βI(X̃i;T̃i|Ỹi)

I(X;Y)

D̂ ← 1
M

∑M
i=1 Fi − �R(g)

Output :  D̂

Algorithm 1: DVM calculation for supervised problems.

Feature selection

Since DVM can be used to measure the quality of a feature set T, it can also serve as 
a feature selection method. In this section, we demonstrate a heuristic algorithm for 
sequential feature selection based on DVM values.

For a classification problem, the feature selection is defined as follows. Based on an ini-
tial feature set, choose a smaller set of features that yields a minimum prediction error. 
Let X = {X1, ...,Xd} denote the d initial features. The objective is to select a smaller set of 
r features with maximum DVM score. One specific approach is based on a forward selec-
tion involving r iterative steps. At each step, we select a feature from the initial feature set, 

(12)F :=
1

M

M∑

i=1

I(T̃i; Ỹi)− βI(X̃i; T̃i|Ỹi)

I(X;Y)
.
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{X1, ...,Xd} , which increases DVM score the most. For a given (initial or intermediate) fea-
ture set F  , DVM{F} represents the DVM score corresponding to that specific feature set 
F  . The pseudocode implementing this strategy for DVM-based feature selection is given in 
Algorithm 2.

Unsupervised inference

We can extend the definition of DVM for supervised problems to unsupervised cluster-
ing models. In the unsupervised problems, we don’t have explicit outcomes to evaluate the 
model performance. 

Input: Input dataset, X = {X1, ...,XN }

Labels, Y = {Y1, ...,YN }

Desired number of output features, r

F := φ , R := {1, ..., r}

for each i ∈ R do

f ←j∈R−F (DVM{F} − DVM{F ∪ Xj})

Add f into F

Output: F

 Algorithm 2: DVM-based feature selection.
Intuitively, the definition of fidelity for an unsupervised clustering method reflects the 

stability of the derived clusters, regardless of the clustering labels.
Our strategy for estimating the DVM fidelity for unsupervised clustering methods is 

based on randomly splitting the dataset X into three subsets (X′,X′′, X̃).
The first two of these sets, (X′,X′′) , are used for cross-validation training, whereas the 

remaining one, X̃ , is used for independent testing and validation. By training the classifier 
on the first subset (X′) , we obtain derived computed labels. These predicted labels, Ŷ , may be 
used as baseline for computing the fidelity based on the information bottleneck in equation 
(12). Let T̃ be the representation layer (or predicted indices associated with the test dataset 
X̃ ). The DVM fidelity term for unsupervised learners may then be defined as follows:

where the index i in the above definition denote the the variables associated with the ith 
randomized splitting of X . Just as we did for the supervised problems, we can explicate 
the DVM algorithmic implementation via the pseudo code used in the DVM package.

The algorithm below (Algorithm 3) shows the DVM calculation for unsupervised clus-
tering and classification problems. Again, the regularization term is derived using the 

(13)F :=
1

M

M∑

i=1

I(T̃i; Ŷi)− βI(X̃i; T̃i|Ŷi)

I(X; Ŷ)
,
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approximate estimate of the computational complexity associated with the classifier 
(R(g)), see Table 1.

Input: Data sets X , Y , model g, parameters β and �
for a random split (X′

i,X
′′, X̃i) of X do

Apply unsupervised model g based on X̃i

Ŷi ← g(X′
i)

T̃i ← g(X′′
i )

Fi ←
I(T̃i;Ŷi)−βI(X̃i;T̃i|Ŷi)

I(X;Ŷ)

D̂ ← 1
T

∑T
i=1 Fi − �R(g)

Output: D̂

 Algorithm 3: DVM calculation for unsupervised problems.

Mutual information estimation
In many areas, including data science and machine learning, the density of the data 
is unknown. In these cases, one needs to estimate the mutual information from 
the data points. Examples of MI estimation strategies include KSG [40], KDE [41], 
Parzen window density estimation [42], and adaptive partitioning [43].

The computational complexity and convergence rate are two important perfor-
mance metrics of various MI estimators. The process of MI estimation is computa-
tionally intensive for large data sets, e.g., the computational complexity of the KDE 
method is O(n2) , while the KSG method takes O(k n log(n)) time to compute MI (k is 
a parameter of the KSG estimator). More computationally efficient estimators such 
as [44] provide improvements with estimated MI estimation time of O(n log(n)).

Thus, estimation of mutual information for large and complex data sets requires 
some approximation. For instance, we can use one of the standard estimators that 
exist for the non-parametric distributions. Non-parametric estimators are a family 
of estimators, for which we consider minimal assumptions on the density functions. 
There are several previous approaches, e.g., [45–48], that guarantee optimal conver-
gence rates. Among these estimators, the hash-based estimator proposed in [48] has 
linear computational complexity. As we deal with large and complex data sets, here 
we employ a hash-based mutual information estimator, called the ensemble depend-
ency graph estimator (EDGE) [22]. EDGE has an optimal mean square error (MSE) 
convergence rate and low computational complexity that make it suitable for our 
task of detecting the information gain associated with augmenting a data set.

Results
We conducted a number of experiments to illustrate the use of the proposed DVM 
on a wide range of real and simulated datasets. Each dataset was labeled as low, 
medium, or high energy, indicating the strength of the signal information content in 
the data. The results of different machine learning and statistical modeling methods, 
their quality, accuracy, and reproducibility heavily depend on the intrinsic signal 
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energy. We contrast the proposed DVM against classifier-accuracy and Bayes opti-
mal classifier accuracy, which is a measure of classification task difficulty. In this 
paper, we define the Bayes classifier accuracy as the additive complement of the clas-
sical Bayes error rate (risk), i.e., Bayesian Accuracy = 1- Bayesian Error.

Datasets

MNIST Handwritten Digits Data: The Modified National Institute of Standards and 
Technology (MNIST) dataset consists of a large number of fixed-size, grayscale images 
of handwritten digits. It includes a set of 60,000 training images, and a set of 10,000 
test images. Each image has a dimension 28× 28 , and each pixel intensity takes a value 
between 0 and 255. The training data are also paired with a label (0, 1, 2, ...,9) indicating 
the correct number represented in the corresponding image [39].

ALS dataset: Amyotrophic lateral sclerosis (ALS) is a complex progressive neurode-
generative disorder with an estimated prevalence of about 5 per 100,000 people in the 
United States. The disease severity is enormous with many the patients surviving only 
a few years after ALS diagnosis, and few living with ALS for decades [49]. We used the 
ProACT open-access database [50], which collects and aggregates clinical data of 16 ALS 
clinical trials and one observational study completed in the recent twenty years [51].

This dataset contains the information of 2,424 patients with 249 clinical features, 
tracked over 12 months. The ALS disease progression, which is measured by the change 
of Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS) score over time, is 
used as the target variable. ALSFSR is a real-valued number in the range [0, 5].

Simulated dataset: Synthetic data were generated using make_blobs function in scikit-
learn (https://​scikit-​learn.​org). There were five centers for the dataset. Each dataset had 
2,000 samples and 800 features. The standard deviation for strong signal data was 20, 
while it was 40 for weak signal data.

The continuous data was generated using the following formula:

where X was generated by sampling 800 random observations from a multivariate 
Gaussian distribution. The mean vector of this multivariate Gaussian distribution was 
generated from a Gaussian distribution with mean zero and variance 25. The eigenval-
ues of the diagonal variance-covariance matrix of the multivariate Gaussian distribution 
were generated from a Uniform(2; 12) distribution. The noise term follows a standard 
Gaussian distribution and its magnitude term, K, was chosen to be 10 for the strong sig-
nal or 50 for the weak signal simulated datasets.

Validation experimental design

Our experimental design included supervised and unsupervised machine learning 
methods using real and simulated datasets with different signal profiles – weak and 
strong signals. Figure  2 shows the specific supervised and unsupervised methods, 
and the type of data used in the DVM validation protocol. The labels strong and weak 
associated with different datasets qualify the relative size of the information content 
in the data, i.e., the relative signal to noise ratio. For the observed datasets, this infor-
mation content reflects the power of the covariate features to predict an outcome (for 

(14)Y = X
1
3 + K Noise,

https://scikit-learn.org
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supervised problems) or the consistency of the derived labels (for unsupervised prob-
lems). For the simulated data, the information energy is directly related to signal-to-
noise ratio ( SNR < 0.2 vs. SNR > 2.0 ). For each of the cells in the validation design, 
we computed the DVM as a parametric surface defined over the 2D grid parameter-
ized over data sample-size and number-of-features. The reported results include 2D 
plots of cross-sections of the DVM surface for a fixed sample-size or a fixed number-
of-features. We also plotted the complete 3D DVM surfaces rendered as triangulated 
2-manifolds. These interactive 3D plots are available in supplementary materials and 
are accessible on our webserver.

Strong signal datasets: Fig. 3 compares the DVM value to the classification accuracy 
and Bayes accuracy rates on the MNIST dataset using the Random Forest classifier. 
As the sample size and the number of features increase, the classification accuracy, 
Bayes accuracy, and the DVM increase. The 95% confidence interval is represented by 
the shaded area around the DVM curve.

Using the MNIST data, the results in Fig. 3a imply that both the classification accu-
racy and DVM drastically increase with increase of the sample size between 500 and 
4,500. The accuracy converges to around 0.85 when the sample size approaches 4,500. 
In the same range, the DVM also converges to around 0.8. Similar results relative to 
the increase of the number of features are show in Fig. 3b. As the number of features 
approaches 800, the accuracy converges to around 0.86 and the DVM approaches 0.8.

Using strong-signal simulated data, the results in Fig. 4a show that classification accu-
racy, Bayes accuracy, and DVM increase as the sample size grows from 200 to 2000. The 

Fig. 2  Summary of experimental design

Fig. 3  Graph panels (a, b) compare the DVM value to the classification accuracy and Bayes accuracy rates 
for using the Random Forest method on the MNIST dataset, across sample size and the number of features, 
respectively. As the sample size and the number of features increase, the classification accuracy, Bayes 
accuracy, and the DVM increase. The shaded area around the DVM curve represents the 95% confidence 
interval
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accuracy converges to around 0.95 and DVM approaches 0.92 for large sample-sizes. 
The result in Fig. 4b also shows the growth of the classification accuracy and DVM as the 
number of features increases from 100 to 800, but plateaus around 300 features.

Figure 5 displays a 3D surface plot for the classification accuracy and DVM param-
eterized by the sample size and the number of features. This graph provides more 
information compared to the cross-sectional linear plots shown in Figs. 3, 4. Interac-
tive 3D surface plots for all experiments are available online (see Appendix 1, 2).

These results illustrate that for some strong signals, there may be little gain of 
increasing the sample-size or the number of features.

Weak-signal datasets: Fig.  6 shows the results of the accuracy and DVM for the 
real (ALS) weak-signal dataset. As expected, the DVM pattern is less stable, but still 

Fig. 4  The plots on panels (a, b) respectively compare the DVM value to the classification accuracy and 
Bayes accuracy rates using the Random Forest method on the strong-signal simulated dataset, across sample 
size and the number of features. As the sample size and the number of features increase, the classification 
accuracy, Bayes accuracy, and the DVM increase. The shaded area around the DVM curve represents the 95% 
confidence interval

Fig. 5  This 3D graph compares the DVM value to the classification accuracy and Bayes accuracy rates for 
using the K-Nearest Neighbor classifier on the MNIST dataset, in terms of both the number of samples and 
the number of features
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suggests that adding additional cases or enhancing the features of the data adds little 
value to improve the unsupervised clustering of the data (K-means clustering).

Figure  7 depicts the DVM trends using the weak simulated data. Again, the overall 
low DVM values suggest that increasing the size of augmenting the complexity of weak-
signal data may not significantly improve the subsequent unsupervised clustering.

Interactive 2D and 3D DVM surface plots illustrating the results of each experiment are 
available online at https://​socr.​umich.​edu/​docs/​uploa​ds/​2020/​DVM/. These graphs show 
the behavior of the DVM spanning the domain of possible number of cases and number of 
features for the real and simulated datasets.

In the appendix, we show examples of cases (pairs of datasets and classifiers) where the DVM 
may actually decrease with an increase of the number of samples or the number of features.

Feature selection

We demonstrate the feature selection algorithm introduced in algorithm 2 on a simulated 
dataset. The simulated dataset consists of 1000 samples randomly drawn from a 4-cluster 
2D-Gaussian distribution. The clusters are on a square with edge size 1, where the label for 
each sample determines the distribution cluster. The dimension of the samples is 20 and 
the problem is to select up to 15 features. Figure 8 represents the steps of the feature selec-
tion algorithm. At each step, the best of all features is selected using DVM and added to the 
chosen-features set. Note that due to the dimensionality and runtime complexity terms in 
the DVM definition, we do not expect a monotonic graph, however, the local maximums 
suggest an appropriate stopping criterion for the feature selection process. Figure 8 shows 
the performance of the DVM-based feature selection yielding a 6-element feature set, 
{F18, F4, F13, F9, F5, F12} , corresponding to a high DVM value, DVM = 0.84.

Fig. 6  The DVM value in terms of (a) sample size (b) the number of features, for using the K-Means method 
on the ALS dataset. The shaded area around the DVM curve represents the 95% confidence interval

Fig. 7  The DVM value in terms of (a) sample size (b) the number of features, for using the K-Means method 
on the simulated dataset. The shaded area around the DVM curve represents the 95% confidence interval. 
The intervals may be too tight and not visible in some plots

https://socr.umich.edu/docs/uploads/2020/DVM/
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Conclusion and discussion
This manuscript presents the mathematical formulation, algorithmic implementa-
tion, and computational validation of a data value metric (DVM) for quantifying the 
analytical-value and information-content (energy) of a dataset. DVM depends on the 
intended data processing, modeling, forecasting or classification strategies used to 
interrogate the data. The significance of the work is the introduction of a new meas-
ure of intrinsic data value, the DVM, that complements other traditional measures of 
analytic performance, e.g., accuracy, sensitivity, log-odds ratio, Bayesian risk, positive 
predictive power, and area under the receiver operating characteristic curve. Through 
the experiments presented herein, authors discovered that the DVM captures the 
important trends of traditional measures applied to different types of datasets. The 
DVM tuning parameter (alpha) provides flexibility for balancing between algorithmic 
performance and computational complexity, which facilitates a data-specific quanti-
zation of the relative information content in a dataset.

As the DVM is applicable for a wide range of datasets and a broad gamut of super-
vised and unsupervised analytical methods, it can be used as a single unified measure 
to guide the process of data augmentation, data reduction, and feature selection. It 
would be interesting to compare the DVM-driven feature selection to other variable 
selection methods [1], e.g., filtering methods such as information gain and Markov 
blanket filtering, wrapper techniques such as recursive feature elimination and simu-
lated annealing, and embedded strategies such as random forests and weighted-SVM.

The DVM evaluates the analytical value of a dataset relative to a predefined analytical 
technique for the data interrogation. The two primary benefits of using an information-
theoretic measure, such as the regularized DVM, as a data-utility metric include (1) the 
estimate of the DVM is easy to compute for each triple of a dataset, analytical strategy, 
and performance measures, and (2) the DVM magnitude (high or low value) serves as a 
proxy translating specific data-mining challenges and observable data into a continuous 
pseudo-distance metric of information-content relative to computational-complexity.

The normalization of the DVM fidelity term ensures that the information-value of 
the data is standardized in a uniform range, [0,1]. Relative to an a priori analytical strat-
egy, extreme fidelity values close to 0 or 1 correspond respectively to low-quality and 
high-information-content datasets. The real data and simulation-based results show 

Fig. 8  DVM-based feature selection on a simulated dataset. At each step, the best feature that increases 
the DVM is selected and added to the chosen-features set. Note that due to the dimensionality and runtime 
complexity terms in the DVM definition, the feature by DVM value graph is not expected to be monotonic. 
However, the local maxima suggest appropriate stopping criteria for the feature selection algorithm
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that there is a connection between error rate and the DVM values. However, theoretical 
bounds on the discrepancy between the prediction error rate and the information-based 
DVM are not yet understood. Future studies are needed to explore this theoretical rela-
tion for various types of analytical methods and data characteristics.

As firm supporters of open-science, we have shared all code, data, and results on the 
DVM GitHub page (https://​github.​com/​SOCR/​DVM/) and the SOCR DVM documen-
tation site (https://​socr.​umich.​edu/​docs/​uploa​ds/​2020/​DVM/).

Appendix 1

Proof of Remark 1
First note that the following equation holds [22]:

Using the chain rule for the mutual information we have

On the other hand we also have the following equation:

From (16) and (18) we obtain the following inequality:

and the equality holds if and only if I(X;Y |T ) = 0 . Therefore, F(1) = 1 if and only if 
the second term in (6) is equal to zero and we have I(X;Y |T ) = 0 . An example of a case 
with conditions in (9) is when Y is an invertible function of T. �

Appendix 2
Implementation

Below, we briefly describe the DVM Python package organization and invocation. We 
have implemented a DVM python package for our data value metric framework and 
made it available on GitHub (https://​github.​com/​SOCR/​DVM).

The DVM package can be used on any dataset and any user-defined supervised or 
supervised tasks in order to evaluate the quality of the data. The package consists of 
three main python files, DVM.py, methods.py, and DVM_plot.py. Please note that DVM.
py uses the mutual information estimator file, EDGE.py, as its dependency.

DVM.py gets the input datasets X and in the case of a supervised task, a set of corre-
sponding labels denoted by Y. Further, the user needs to specify the input parameters, β , 
problem_type and method. β is the coefficient of the regularizer term of DVM. problem_
type specifies whether the task is supervised or unsupervised, and method is the learning 

(15)I(T ;Y |X) = 0.

(16)I(T ,X;Y ) = I(X;Y )+ I(T ;Y |X) = I(X;Y ).

(17)I(T ,X;Y ) = I(T ;Y )+ I(X;Y |T ).

(18)I(T ,X;Y ) = I(X;Y ) = I(T ;Y )+ I(X;Y |T ) ≥ I(T ;Y ),

https://github.com/SOCR/DVM/
https://socr.umich.edu/docs/uploads/2020/DVM/
https://github.com/SOCR/DVM
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method that is used by user. For a given method, we can also input the corresponding 
required arguments. For example, if we are using KNN_classifier from methods.py as our 
method, it requires the parameters n_neighbors (number of neighbors) and weights (type 
of weights) as input:

There are two DVM output values: DVM_value and confidence_band. DVM_value 
gives the average value computed according to the DVM formula in equation (6) and 
confidence_band gives the 95% confidence limits of the DVM values computed by differ-
ent subsets in equation (13).

The methods.py file consists of various supervised and supervised methods. Each 
supervised method takes the following arguments: X_train, Y_train, X_test, **kwargs. 
X_train, Y_train, X_test respectively are the train data set and labels, and the test data set 
for which we would like to predict labels. **kwargs specifies all of the arguments that the 
given method requires. An example of the format is as follows:

The output of the method is a numpy array of predicted labels. Note that in addition 
to the methods listed in methods.py file, any other user defined method that satisfies the 
above format can be used for DVM.

The DVM_plot.py gets the input datasets X, and in the case of a supervised task, a set 
of corresponding labels denoted by Y. Further the user need to specify the input param-
eters continuous, β , problem_type, method, plot_type. Continuous indicates whether the 
response variable is continuous variable or discrete variable. plot_type specifies the plots 
that the user wants to generate, where plot_type = ’3D’ generates 3D plots of DVM, plot_
type = ’3D’ generates 2D plots, and plot_type = ’Both’ generates both 2D and 3D plots.β , 
problem_type, method have the same meaning as in the DVM.py. For a given method, we 
can also input the corresponding required arguments like DVM.py. The same example as 
DVM.py is used here to illustrate the syntax:

In addition to the 2D and 3D DVM plots, DVM_plot also outputs a dictionary contain-
ing Accuracy, MI(mutual information), Complexity, DVM,Sample Number (a sequence of 
different number of samples) and Feature Number (a sequence of different of features.)

As calculating the DVM measure actually involves another parameter ( � ) that rep-
resents the weight-averaging of the DVM fidelity and regularization terms, the actual 
DVM manifold is intrinsically a surface embedded in 4D. We have designed a kime-
surface visualization that allows us to explore the properties of the DVM manifold by 
including a � slider that reduces the DVM into an animated 3D space.

Supplementary experiments

The appendix below includes four additional tables of results that illustrate some of the 
DVM performance in different situations. Readers are encouraged to view the corre-
sponding DVM interactive 2D plots and 3D surface graphs on the web-site,

https://​socr.​umich.​edu/​docs/​uploa​ds/​2020/​DVM/. See Tables 2, 3, 4, 5
 

DVMvalue = DVM(X, Y, problem_type = ‘supervised′,

method = KNN_classifier, n_neighbors = 10, weights = ‘uniforms′)

Y_predict = KNN_classifier(X_train, Y_train, X_test, ∗ ∗ kwargs)

https://socr.umich.edu/docs/uploads/2020/DVM/


Page 19 of 23Noshad et al. J Big Data            (2021) 8:82 	

Table 2  Test results by the signal profile (Supervised - Strong)
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Table 3  Test results by the signal profile (Supervised - weak)
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