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Introduction
Air traffic management (ATM) refers to the required activities for the efficient and safe 
management of the national air system (NAS) in each country. Generally, ATM encom-
passes the two components of air traffic control (ATC) and air traffic follow management 
[1]. The ATC system mainly utilizes tactical decisions (e.g., real-time separation method) 
for collision detection. The NAS is divided into several sections to present ATC services 
and assist air traffic controller operators in the process of traffic control and flight sepa-
ration by ATCs. The air traffic control methods for the prevention of flight delay and 
interference is a significant issue in the operating field of ATM [1]. Additionally, fleet fuel 
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and flight delays in airports and secondary costs impose significant multiple charges to 
the airlines.

The arrival schedule of flights is considered by airlines and aviation/airport compa-
nies [2], attracting attention to the airports with better ATM performance by airlines. 
Another challenge of flight control is several airports’ coverage by a single ATM while 
each airport may have several pattern areas for its ATM [3]. Moreover, the traffic or pat-
tern areas in nearby airports may be dependent or independent, and each airport may 
have several parallel or non-parallel runways. In this regard, the traffic of parallel run-
ways may be dependent or independent, whereas crossover runways’ traffic is depend-
ent. Landing and takeoff runways might differ in every airport, or they might be jointly 
utilized [3, 4]. Furthermore, each runway may have several landing and takeoff proce-
dures, which might have dependent and independent traffic. These issues demonstrate 
the high complexity of the problem modeling. Considering the huge scale of air traffic 
data (large data amount) in the classification learning process, the complexity level is 
higher with the increased number of categories of each class. Additionally, the selection 
of the significant features by traditional data mining approaches is almost impossible.

Various measures have been taken to solve the problems of ATM and ASP [5]. Many 
studies have aimed to solve these issues using mathematical models and methods, linear 
programming, mixed planning, and statistical models. However, one of the limitations of 
these studies is not considering the actual data and operating environment. Therefore, 
the proposed solutions lack the required accuracy and efficiency in the actual environ-
ments of airport aviation operations [6–17]. Some scholars have attempted to address 
the issue of traffic control and delay only by considering climatic and environmental con-
ditions [10, 18–20]. Other studies have used the first come first serve (FCFS) technique, 
along with the queue model and other mixed methods, to solve the problem [21–25].

Another category of research and articles have applied data mining methods to inves-
tigate the influential factors in air traffic and flights [19, 26–30]. The machine learning 
algorithm is a conventional method which used to resolve the issues of air traffic, ASL, 
delay forecast, and minimization.

Machine learning is a branch of artificial intelligence or data analytics that deals with 
the development of algorithms that can be configured to learn from previous informa-
tion. Machine learning is indeed a computational method for data mining [31, 32].

Overall, this technique has shown better problem-solving efficiency compared to 
other methods [33–37]. Some studies have also supported the uncertainty and fuzzy 
states, incorporating the latter into other techniques [38–40]. Such solutions have been 
proposed for ATC problems and are based on the Internet of Things (IoT) [16, 41, 42], 
optimization methods [6, 10, 12, 43], multi-objective optimization techniques [44–46], 
and intelligent agent-based methods [47].

An optimal approach to solving the mentioned issue involves using the structure of 
artificial neural networks [25, 43, 48]. Following the evolution of neural networks, deep 
learning networks have been considered to be one of the most recent and complete 
solutions in this regard. This novel technique could solve problems with a high accu-
racy owing to its ability to accept the large data of the problem and neural network inte-
gration, as well as learning techniques and structural dynamism, in the hidden layers 
formation. Aviation and ATM issues are no exception, and most of the recent studies 
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regarding flight delay forecast and flight control traffic have benefited from this tech-
nique [1, 47, 49–51].

Multilayer neural networks or deep neural networks are included in machine learning 
subject and a set of algorithms that attempt to model high-level abstract concepts based 
on learning at various levels and layers, thereby enabling deep learning to process large 
volumes of data in complicated categories [1, 49, 50, 52–54]. In the current research, it 
was attempted to propose an accurate and proper method to solve the problem within 
the operational domain of the terminal management area (TMA) using a combination 
of a deep neural network and other methods. Furthermore, the present study is aimed 
to propose a deep learning model using a long short-term memory (LSTM)-based deep 
learning model and recurrent neural network (RNN) in order to increase the predic-
tive accuracy of short and long-term annual windows by enhancing deep learning (two-
dimensional). In the third phase, the output of the deep model was transferred to the 
extreme learning machine (ELM) and fast learning deep neural machine in order to 
calculate the estimated time of arrival (ETA) and estimated time of departure (ETD) of 
each flight based on other similar input data, including the NAS data, bureau of trans-
portation statistics (BTS) system, and automatic dependent surveillance-broadcast 
(ADS-B) system. Ultimately, an flights control was developed within the airport TMA 
range with a 15-min time window for flight arrival using evolutionary and meta-heuris-
tic algorithms by conforming the flight rules to the learning outcomes and increasing the 
accuracy.

The following sections of the article have been structured, with section two reviews 
the previous methods in the ATM field, section three describes the proposed model, and 
section four, evaluates and compares the results with other techniques; in addition, sec-
tion five has been dedicated to a conclusion.

A review of previous methods
Numerous efforts have been made to solve the ATM problem and minimize the rates of 
ETA and ETD delay in various dimensions. Most of the studies in this regard have eval-
uated inbound and outbound flights separately, attempting to propose solutions using 
methods such as data mining and mathematical techniques (Fig. 1).

In [1], researchers used deep learning architectures such as stacked auto encod-
ers, convolutional neural networks, and recursive neural networks as the architecture 
for forecasting daily delay status. The aim of the present study was to estimate the daily 
delay at each airport and calculate the delay for a specific flight based on the obtained 
results. In order to forecast the daily delay, we initially calculated the mean delay of 
the inbound and outbound flights and added the estimated value to a recursive neural 
network, along with the weather data as a sequence, which was added to the output 
after determining the weight and bias of the separate data. Weighting and biasing are 
repetitive procedures, and each replication stage determines the value of cost function 
using the stacked memory cell structure (LSTM) and Sigmoid and Tanh functions were 
replaced by the structure of the RNN. As a result, the information of each hidden layer 
was stored, thereby increasing the model efficiency. However, the proposed method lim-
itation was the elimination of the details from the rounds related to the management of 
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the ground delays for the flight preparation of the aircrafts. Another issue was the lack of 
a deeper LSTM structure in a time-based forecast structure, which increased accuracy.

In [26], the main objective was to minimize the estimated delay along with the 
sequence of the flights in resolving the ATM problem; a combination of clustering and 
neural network was used to solve the problem. The integrated technique had two steps of 
clustering-based forecast and multi-cell neural network (MCNN)-based forecast. In the 
first step, principal component analysis (PCA) was used to reduce the variable dimen-
sions of the path vector after the clearing, filtering, and re-analyzing of data. Afterwards, 
the paths were clustered into several patterns with a clustering algorithm. In the forecast 
phase, the MCNN model was applied to predict the four-dimensional (4D) aspect of the 
density path. In addition, there was a predictor for each path partition, which encom-
passed an NN-based learning cell. Each exclusive learning cell was trained by a set of 
related paths, and each paths set included the related prediction model. According to the 
obtained results, the proposed model in present study was stronger, more accurate, and 
more efficient for short-term predictions. However, some of its limitations were the low-
data scale and lack of highly accurate learning methods (e.g., deep machine learning). 
These challenges were eliminated by using a large data volume and the deep learning 
technique.

Researchers have used a combination of deep belief networks (DBNs) and PCA to 
evaluate the aviation safety of the country. In general, DBN is useful for safety predic-
tion since each layer acquires more complicated features from the previous layers. In 
fact, DBN predicts severe flight incident rates based on PCA results [49]. In this case, 
we assessed seven main factors for unsafe events systematically and in detail, including 
aircraft, landing and takeoff, aircraft operation, airport and aircraft, ground transporta-
tion, and weather. According to the obtained results, the predicted PCA-DBN data were 

Fig. 1  ATM problem-solving methods
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compatible with the actual data on flight incidents. In this regard, the proposed model 
was considered superior compared to the gray neural network, support vector machine, 
and DBN. In [41], the researchers proposed a deep learning-based model to predict the 
hard landings of aircrafts based on the quick access record (QAR).

In IoT environment, devices collect data, which are sent to the IoT open cloud plat-
form to be processed and analyzed. The prediction of a hard landing is a common appli-
cation of IoT in the aviation field. Initially, 15 aircraft landing sensor data were selected 
from 260 parameters based on meteorology. Afterwards, an LSTM-based deep predic-
tion model was developed to predict hard landing incidents using the selected sensor 
data. The empirical results showed high performance owing to the increased accuracy 
of the QAR data. The proposed model in this research was accurate and efficient in the 
prediction of hard landings, which guarantees the passengers safety and the decreased 
rate of flight incidents.

In [39], the main goal was to detect traffic accidents in order to increase road safety 
using the deep learning algorithm and stacked auto encoder model. In addition, the back 
propagation algorithm was used for the accurate adjustment of the parameters in the 
deep network. Ultimately, a fuzzy controller was exploited to increase the output accu-
racy of the deep network and adjust the neural network learning parameters based on 
the mean squared error (MSE). According to the findings, the fuzzy logic systems could 
be suitable for uncertain or approximate reasoning and allowed decision-making with 
the estimated values in incomplete or uncertain information.

In [28], the researchers presented various methods of data mining in the air transport 
lounge and assessed their efficacy. The proposed methods were assessed in three types of 
air transport data, and the flight recording information was provided by a flight recorder 
for the first time. The unofficial flight information recorder is known as the black box. In 
an aircraft equipped with a flight recorder, usually up to 500 variables of information are 
recorded per second for the flight duration, such as time, altitude, vertical acceleration, 
and vertex. While some of these variables are distinct, the others may be continuous. 
The artificial data were the second type of the aviation information. This information 
were focused on flight anomalies. This concept intentionally embedded in the data to 
examine the ability of the algorithm to detect the anomalies.

These anomalies which might be an unusual sequence of events or an unusual period 
between events. The second type of data is aviation crash reports, which have no strict 
rules, and the pilot needs no specific conditions as the reports include narrations. How-
ever, a method should be designed to determine the significant data due to their lack of 
unity.

As for labels and labeled data in aviation data mining, a label is a descriptive word 
allocated to data based on specific features. In the present study, labels were considered 
a factor for the formation of a flight incident.

Some of the factors cause to flight incidents included diseases, hazardous environ-
ments and autopilot. To improve the accuracy of flight characteristics, the research-
ers used the time warp edit distance (TWED) and k-means algorithms [29]. In first, 
the researchers assessed a dataset of flights with the desired time in the case of flight 
routing with the same origin and flight destination to eliminate the effect of the exit 
point. Then, the adapted k-means algorithm was proposed, in which the distance 
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between various paths was estimated by the TWED algorithm rather than the con-
ventional elastic similarity measurement in the k-means algorithm. In this research, 
one of the benefits of the proposed method was the increased accuracy of the algo-
rithm and higher efficacy of using the controlled airspace in air traffic management. 
On the other hand, one of the key limitations of the method was not considering the 
large scale of the data and use of large data, which led to the higher accuracy of the 
algorithm.

In [55], the researchers proposed a hybrid method of Bayes method and Gaussian mix-
ture model–expectation maximization algorithm (GMM)–EM algorithm to predict and 
analyze the influential factors in the delay of the flights in Brazil aviation routes. Initially, 
the degree of the impact of each factor was calculated using outdated data. Then Bayes 
rules at specific points of the flight route followed by determining whether the delays 
occurred in larger domains. The next stage involved the estimation of the probability 
of the delays using the GMM–EM and EM algorithms, which are based on similarity 
in data. According to the obtained results, the probability of the delays at high levels 
could be predicted by determining the factors at low levels. Moreover, the GMM–EM 
algorithm could find more values for the similarity function compared to the EM algo-
rithm, thereby reaching convergence sooner. Moreover, the accuracy of the model was 
observed to increase, which in turn improved the reliability of the prediction results.

In [8], the researchers focused on real-time aircraft routing and planning. In a crowded 
traffic control area (TCA), problems occur in case of traffic, which is specifically chal-
lenging for TCA operation management due to the growing demand for traffic, and the 
TCAs turn into the bottleneck of the entire ATC system. In this research, the method of 
linear programming formulations along with flight safety rules has been used to solve 
the problem, in order to minimize the maximum delay in the entire travel time due to 
the potential of aircraft congestion. Computational tests have been performed on real 
data from Rome Airport, the largest airport in Italy in terms of passenger demand.

The solution provides the optimal compromise among various objectives. In [9], the 
researchers proposed a new, efficient computational algorithm to resolve the uncer-
tainty of the air traffic follow management using a limited probability optimization 
method. They initially developed a chance-constrained model based on the previous 
integral planning optimization model of the ATFM for the limitation of the possible 
capacities of the section. Afterwards, a polynomial approximation-based approach 
was applied to manage the chance optimization problems at large scales. One of the 
benefits of the proposed method was considering the uncertainty states in ATM, 
while the main limitation of the technique was the lack of using deep learning meth-
ods for large data in order to obtain a more accurate model.

In [23], the researchers estimated the input delay time and number of the aircrafts 
entering a controller space at a single time using a queue model and regression function, 
while also considering climatic conditions. In addition, the delay was forecasted before 
reaching the destination by considering variables such as the type of the aircraft, time 
of arrival, and times of entering and exiting the control space. The overall results of the 
optimization and artificial intelligence-based operation methods demonstrated that the 
artificial intelligence methods could overlook some of the errors, which rendered them 
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extremely more accurate compared to the queue models. Meanwhile, the queue model 
and recursive neural network were observed to have higher learning levels.

In another study, a 3-D convolutional neural network (R-3D CNN) was applied to 
increase the accuracy of air traffic predictive accuracy [56]. Changes in spatial–tempo-
ral air movements could be comprehensively considered by using this algorithm. In the 
mentioned study, the traffic situation graphics (TSG) sequence was applied to extract 
the prominent features. The proposed TSG enabled the consideration of some real-time 
factors to enrich the input information. As such, the model input was determined by 
combining the traffic situations at various light levels with the areas that were speci-
fied by other real-time factors, such as important tasks and public air traffic lights. The 
length of the input sequence was set to 30, 60, and 90 min before the prediction moment 
in order to determine the effect of the temporal dependencies, so that the optimal archi-
tecture proposed could be selected. Furthermore, the evaluation of the prediction results 
along with the three statistical factors confirmed the ability of the proposed model to 
yield accurate and sustainable predictive results for the air traffic system by distribution 
at various optical levels.

In [57], the main objective was to predict flight routes using a deep neural network in 
a capacity management and air traffic operational system. A deep neural network was 
trained in the historical routes and a set of predictors, and the neural network predicted 
the most likely route through the airspace. In addition, the network was able to general-
ize the results to the flights and conditions that had not been detected before. The neu-
ral network could also prevent changes by repetitive educations on the newly recorded 
data. In the mentioned study, an integrated solution was used in the air traffic platforms 
with the capacity for 10% of the total traffic, and the results of the solution showed the 
level of the apparent progress.

The promotion of user confidence increases the domain of all traffic.
Large European airports consider strategic flight plans to reduce the air traffic capacity 

that demand imbalance. In these airports, flights are assigned an entry or departure slot 
a few months before takeoff. In this regard, the researchers in [58] evaluated such stra-
tegic plans using the predictions of the flight delays arriving, departing or canceling. The 
proposed approach was used in London Heathrow Airport during 2013–2018, and the 
resulting flight plan was assessed in terms of the predicted flight cancelation and delay 
using a machine learning approach. According to the findings, the proposed method was 
able to provide the airport coordinators of the possible delays and cancelations related to 
the strategic plans. In [59], an end-to-end deep learning-based approach was also pre-
sented to increase accuracy in the air traffic flow using the CNN and RNN algorithms, 
as well as a convolutional LSTM module, which was proposed to construct a trainable 
model to predict the air traffic flow. The experimental results of the actual data were 
indicative of the superior performance compared to the current approaches used for 
predictive accuracy and stability.

Moreover, the proposed model could predict the flow distribution at various flight lev-
els in the flights controlled space, which in turn improved the ATM level. The analysis of 
the distribution of the prediction errors on various spaces cells, flight levels, and predic-
tion of the samples indicated that the spatial and temporal transmission patterns of the 
flight flow in the ATM system could be thoroughly learned by the proposed model. On 
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the other hand, the proposed model could predict that the optimal air traffic manage-
ment measures were taken to improve performance efficacy system.

In [17], the researchers used bidirectional long short-term memory (BLSTM) for the 
performance data of air transportation management in order to identify the system. In 
the system, BLSTM was able to reconstruct the nonlinear temporal series and make 
valid predictions. According to the other findings of the mentioned study, neural net-
works in deep learning methods could manage complicated nonlinear temporal series 
and learn to reconstruct these series based on multidimensional inputs, while also stor-
ing their knowledge regarding the behavior of the observation datasets.

In [60], a multi-step deep sequence learning model (Bi-LSTM + Seq2Seq) was pro-
posed to predict airport delay based on the spatial and temporal relations of the other 
airports within the network. In the first step, the dataset was processed for the analysis 
the correlation between the temporal delays of the airports based on the complex net-
work theory. Afterwards, the PageRank and K-means algorithms were applied to cluster 
the behavior of the networks and identify their overall status. At the next stage, the Bi-
LSTM + Seq2Seq model was proposed and trained based on the time-series data on the 
current status of the network and delay in the interactions between the airports. The 
experimental results indicated that the suggested model had higher accuracy and sus-
tainability compared to other prediction algorithms.

In [31], the main objective was proposing a deep learning-based method to evaluate 
the delays in inbound flights. Initially, the important features were extracted, followed 
by model training by artificial neural networks and DBN using random samples. In the 
mentioned study, researchers applied the momentum learning rate and resilient back 
propagation, which acted extremely quicker than back propagation, thereby increasing 
the training pace and model convergence. Notably, the DBNs were based on a Boltz-
mann machine, where each layer received communications from the previous layer, and 
a Boltzmann machine was added to the network at each stage. During the training, the 
inaccurate classification error rate decreased by the fine-tuning of the parameters and 
momentum learning rate. Since the output of each layer was divergent, the training pace 
decreased, and the gradient tended to zero.

Proposed method
The proposed model in the present study was based on the LSTM and ELM algorithms. 
Figure 2 depicts the flowchart of the proposed method. As is observed in Fig. 2, the sug-
gested method had three phases of the loading, normalization, and separation of the 
data, creating a two-dimensional LSTM back learning structure using a Bi-LSTM neural 
network, while also estimating the beta weights, training the ELM, and calculating the 
assessed criteria. The proposed steps have been further explained.

Uploading, normalization, and separation of the data

At this phase, the dataset obtained from Kaggle.com [53], which contained 100,000 
records and five features, was uploaded, and the Min–Max normalization approach, as is 
shown in Eq. 1, in order to facilitate the comparison of the results.
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Fig. 2  Flowchart of proposed method
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In the equation above, Xmin and Xmax are the minimum and maximum of the main fea-
ture, respectively, X represents the value of the main feature, and Xnorm is the normalized 
feature value.

Creating a two‑dimensional LSTM back learning structure and using a Bi‑LSTM neural 

network

At this stage, the initial net weights of the ELM neural network were created using the 
neural network structure with Bi-LSTM. GRU and LSTM have the same function, which 
is to find out whether there is a long-term dependency and to overcome the problem of 
vanishing and exploding gradient. LSTM does it through three gates, namely a forget 
gate that controls how much information needs to be removed, an input gate that con-
trols how many cell states need to be stored, and an output gate that controls how many 
cell states are sent to the next cell have to [61, 62].

The LSTM network architecture has been initially developed by Hochreiter and 
Schmidhuber [31, 60]. In this structure, the input sequence vector of x = (x1, x2,…,xn) 
was provided, where n represented the sentence’s length. The primary structure of the 
LSTM was based on the use of three control gates to control a memory cell activation 
vector. The first forget gate determined that the value of the ct-1 cell at the previous 
time was maintained until the time of the current cell status of Ct. The second input 
port determined the amount of the xt storage of the network input to the Ct of the cur-
rent state of the cell, and the third output gate determined to what extent the Ct was 
transferred to the current output value of the LSTM networks. The three gates were 
an entirely connected layer, the layer’s input was a vector, and the output was an actual 
number. In Fig. 3, the initial structure of the LSTM cell has been demonstrated, which is 
interpreted as follows:

In the equation above, σ is the sigmoid logistic function, xt shows the t-th word vector 
of the sentence, and ht is the latent state. In addition, W and b demonstrate the

weight matrices (e.g., Wxt is the weight matrix of the forget gate) and bias vectors (e.g., 
the input gate bias vector), respectively for the three input gates. In order to overcome 
the shortage of a single LSTM cell, which could only record the previous fields but does 
not use the future field, two hidden LSTM layers were combined with the same out-
put separately from different directions in the BRNN neural networks. By this structure, 
the output layers were able to apply the related information from both the previous and 
future cases.

Moreover, BiLSTM calculated the input sequence of x = (x1, x2,…xn) from the oppo-
site direction to the hidden sequence forward of ht

→ = (h→
1, h→

2,…, h→
n) and hidden 

(1)xnorm =
x − xmin

xmax − xmin

(2)

Input gates : it = σ(Wixxt +Wihht−1 + bi)

Forget gates : ft = σ(Wfxxt + Wfhht−1 + bf)

Output gates : ot = σ(Woxxt + Wohht−1 + bo)

Cell states : ct = ft ∗ ct−1 + it ∗ tanh · (Wcxxt +Wchht−1 + bc)

Cell outputs : ht = ot ∗ tanh(ct)
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sequence backward of (ht
← = (h←

1, h←
2,…, h←

n). The encoded vector of yt also encom-
passed an aggregation of the final forward and outward outputs.

In the equations above, y = (y1, y2,…,yt,…,yn) is the output sequence of the first hidden 
layer. Some of the findings in this regard have suggested that classification or regression 
performance could be further improved by accumulating multiple

BiLSTMs in neural networks [60]. In addition, theoretical evidence suggests that a 
deep hierarchical model is more efficient in delivering some functions than the shallow 
type. In the present study, an accumulated BiLSTM network was defined, where the out-
put yt from the lower layer was converted into the input of the upper layer. The accumu-
lated BiLSTM structure is shown in the following (Fig. 4):

The definition of A = (a1, a2,…, am) and Q = (q1, q2,…qm) show the sequence of the 
problem and sequence of the responses, respectively, where n and m demonstrate the 
length of the problem and responses, at and qt are the t-th words of the problem and 
responses. In this section, the stacked BiLSTM was implemented on the problem and 
Fig. 4. Structure of stacked BiLSTM networks responses, and the hidden-mode HQ and 
HA matrices were obtained.

(3)

yt =
[

h→t , h←t
]

h→t = σ
(

Wh→xxt +Wh→h→h→t−1 + bh→
)

,

h←t = σ
(

Wh←xxt +Wh←h←h←t−1 + bh←
)

,

yt = Wyh→h→t +Wyh←h←t + by,

(4)L = HT
AHQ ∈ Rm∗n

(5)ht = Whhh
→
t +Whhh

←
t + bh,

Fig. 3  LSTM cell structure
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The calculations are as follows:

where d represents the dimensions of the hidden mode (Fig. 5).

Coherence mechanism for problem presentation

In this section, a coherence mechanism was implemented to encode the problem in 
accordance with the response sequence (Fig. 6). We attempted to interact more closely 
with the functions and summaries in the coherence mechanism by designing the matri-
ces’ multiplication to address more questions. Initially, the matrix multiplication was 
carried out to estimate the L matrix, which included the propensity scores related to all 
pairs of the problem and response.

The Soft max function was used to standardize the vector elements and was likely to 
be effective against multiple classifications and distribution problems. Therefore, col-
umn-row-based Soft max functions were used to generate accuracy weights for the hid-
den modes of the problem and response separately by the following equation:

(6)
h
q
t = sBiLSTM

(

h
q
t−1, h

q
t+1, qt

)

, h
q
0 = 0,

hat = sBiLSTM
(

hat−1, h
a
t+1, at

)

, ha0 = hqn,

(7)
HQ =

[

h
q
1, h

q
2, . . . , h

q
n

]

∈ Rd∗n,

Ha =
[

ha1, h
a
2, . . . , h

a
m

]

∈ Rd∗m,

Fig. 4  Structure of stacked BiLSTM
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Fig. 5  Pseudocode of proposed blstm
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In order to obtain the accuracy vector of the question with respect to each word of the 
response, we combined the explanatory weights and approximation matrix to calculate 
the new CQ and CA field vectors. In this section, CQ and CA were the results of the inter-
action between the problem and vector response, as follows:

Attention mechanism (accuracy) to display the problem

A soft accuracy layer could be used for the integration of information from the words 
of the problem and response in order to reduce the information loss of the stacked 
BiLSTM [60, 63]. In the proposed model, the attention mechanism was applied for 
the cohesion output. In the current research, CQ t was assumed to show the t-th 
attention field vector of this problem, and the maximum aggregation occurred to con-
vert the input into a vector with Oq fixed length. In addition, the software weight of 
all the text vectors (CA, CA2,…,Cam) could be learned independently based on Oq 
through the attention mechanism, and the Oa weight field vector used the response as 
the final representation.

(8)
AQ = softmax(L) ∈ Rm∗n,

AT = softmax
(

LT
)

∈ Rm∗n,

(9)
CQ = HAA

Q ∈ Rd∗n

CA = HQA
A ∈ Rd∗m

Fig. 6  Schematic of coherence mechanism
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In the equations above, Wam and Wqm show the attention matrices of CA
t and Oq, 

respectively, and Wms is the attention weight vector. The official presentation of the 
Qa response was determined based on the attention (accuracy) weight of Saq(t) for 
the t-th word response text vector. In addition, normalization occurred by the per-
formance of the Soft max function, which was proportional to CA

t. The higher values 
of Saq(t) demonstrated a more significant correlation between CA

t and the problem, 
while the problem vector drew more attention (Fig. 7).

Calculation of beta weights and ELM training

Compared to the BP networks, the ELM network lacks the output layer bias. While 
the input weight and bias of the hidden layer of the ELM network are generated ran-
domly, the weights obtained from the neural network encompassing BiLSTM was 
applied at this stage of the present study, and only the output weight had to be deter-
mined, which could limit the manual adjustment of the parameters of each layer in 
the BP neural network and improve the predictive accuracy. Figure  8 depicts the 
structure of the ELM.

As can be seen, x1, x2,…,xn were the input of the educational data, and wij and βjk 
were the input weight in the neural network and indicative of the output weight vec-
tor between the hidden layer and output node, respectively. As a result, the output 
of the hidden layer corresponded to the x input. In this regard, OL was the node of 
the hidden layer, and bj was the neuron threshold in the hidden layer. In addition, 

(10)

Oq = max0<t<nC
Q
t ,

Maq(t) = tanh
(

WamC
A
t +WqmOq

)

,

Saq(t) ∝ exp
(

wT
msMaq(t)

)

,

Oa =

m
∑

t=1

CAt Saq(t)

Fig. 7  Structure of proposed BiLSTM
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the education sample set was {(xi,yi)|xi2Rn,yi2Rm,i = 1,2,...,N}, and the L hidden layer 
was the number of the neural cells. The excitation function was shown by g(x) in the 
ELM. In the current research, sigmoid was selected as the g(x) function, and the ELM 
model could be defined, as follows:

The matrix was equal to:

In the equation above

Equation 14 was equivalent to minimizing squares, as follows:

(11)
Ñ
∑

i=1

βigi
(

xj
)

=

Ñ
∑

i=1

βigi(wixj+ bi) = oj, j ∈ [1, N]

(12)Hβ = Y

(13)

β = [β1,β2, . . . ,βL]
T
l×mY = [y1, y2, . . . , yL]

T
N×M =







g(w1x1 + b1) · · · g(w1x1 + bL)
...

. . .
...

g(w1xN + b1) · · · g(wLxN + bL)







N×L

Fig. 8  Structure of ELM model
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Equation 15 was solved as:

The inverse H+ was generalized from the hidden output layer matrix. In the final 
step, we examined the assessable criteria.

Analysis and evaluation
At this stage of the research, we are analyzed and evaluated the applied data and 
assessed the results and criteria.

Dataset

The dataset obtained from [1, 54] included 1,00,000 records and 15 features according 
to Table 1.

The U.S. Department of Transportation’s (DOT) Bureau of Transportation Statis-
tics tracks the on-time performance of domestic flights operated by large air carri-
ers. Summary information on the number of on-time, delayed, canceled, and diverted 
flights is published in DOT’s monthly Air Travel Consumer Report and in these data-
sets of (2015 or 2005 till 2015 or 2010 till 2015 or 2005 till 2008) flight delays and can-
cellations. The flight delay and cancellation data was collected and published by the 
DOT’s Bureau of Transportation Statistics.

Each entry of the flights.csv file corresponds to a flight and we see multi version of 
this dataset in variable of times e.g. the dataset that recorded in 2015 have more than 
5,800,000 flights. These flights are described according to 31 variables. A description 
of these variables as follow:

(14)β̂ = argminβ ||Hβ − |Y | |F

(15)β = H+T

Table 1  Applied dataset

ROW Feature Description

1 ORIGIN_AIRPORT The airport from which the flight takes off

2 DESTINATION_AIRPORT The airport where the flight lands

3 AIRLINE Flight Operations Airlines

4 MONTH Moon Flight date

5 DAY flight date

6 DAY_OF_WEEK Flight day (number per week)

7 FLIGHT_NUMBER Flight number registered in the flight plan

8 DEPARTURE_TIME Time of departure of the aircraft from the runway

9 SCHEDULED_TIME Scheduled time for flight departure in flight schedule

10 ELAPSED_TIME Predict the time for the plane to leak or take off

11 AIR_TIME Flight time in the flight cruise section

12 DISTANCE Flight distance between the airport of origin and the 
airport of destination

13 ARRIVAL_TIME Flight landing time at the destination airport

14 ARRIVAL_DELAY Flight delay rate in flight landing

15 DEPARTURE_DELAY Flight delay in departure
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YEAR, MONTH, DAY, DAY_OF_WEEK: dates of the flight.
AIRLINE: An identification number assigned by US DOT to identify a unique 

airline.
ORIGIN_AIRPORT and DESTINATION_AIRPORT: code attributed by IATA to 

identify the airports.
SCHEDULED_DEPARTURE and SCHEDULED_ARRIVAL: scheduled times of 

take-off and landing.
DEPARTURE_TIME and ARRIVAL_TIME: real times at which take-off and landing 

took place.
DEPARTURE_DELAY and ARRIVAL_DELAY: difference (in minutes) between 

planned and real times.
DISTANCE: distance (in miles) An additional file of this dataset, the airports.csv 

file, gives a more exhaustive description of the airports.

Table 2  Confusion matrix

Real values Predicted values

With delay Without delay

With delay TP (true positive) FN (false negative)

Without delay FP (false positive) TN (true negative)

Table 3  Confusion matrix description

TP The number of the behaviors that represented the existence of a delay and were correctly predicted by the 
model

FP The number of the behaviors that represented the presence of a delay, and the model incorrectly predicted 
the absence of delay

FN The number of the behaviors that indicated the absence of delay, and the model incorrectly predicted the 
existence of delay

TN The number of the behaviors that showed the lack of delay, and the model correctly predicted them

Table 4  Formulations description

Accuracy = TP+TN
TP+TN+FP+FN

This was the most important criterion for determining the performance of a clas-
sification algorithm, which showed the percentage of the proper classification 
of the total set of the experimental record

Rcall = TP
TP+FN

It showed the ability of the algorithm to accurately detect delay

Specificity = TN
FP+TN

It demonstrated the efficiency of the classifier in the accurate prediction of the 
lack of delay

Precision = TP
TP+FP

It demonstrated the ability of the algorithm to detect the positive categories (i.e., 
delay)

F - measure = 2∗Recall∗Precision
Precision+Recall

It showed the harmonic mean between accuracy and recall

RMSE

√

n
∑

t=1

(y− y)2/n
Measuring the accuracy of the predicted rates compared to the correct rates

MSE =
n
∑

t=1

(y− y)2/n
It was a statistical tool to determine the predictive accuracy in modeling

Balanced_Acc_Test If the distribution of two datasets in a dataset was not the same, this criterion was 
used to calculate the accuracy of the introduced method
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Assessable criteria

It was crucial to test and evaluate the results by a set of criteria to assess the performance 
of the proposed method. In general, the confusion matrix was used to evaluate the posi-
tion and efficiency of the disease classification and diagnosis systems. The analysis of the 
confusion matrix in the classification and detection of flight delays led to the four modes 
of true positive, true negative, false positive, and false negative. Table 2 shows the posi-
tion of the parameters in the confusion matrix.

The elements of the matrix were equal to:
In addition, the following criteria were used to evaluate the performance of the pro-

posed method (Tables 3, 4). 

Results and discussion

Flight delays and the problem of predicting the amount of delay were divided into sev-
eral factors, conditions, and data. According to a reliable study in this regard, flight delay 
predictions could be classified as:

1.	 Delays due to flight planning and scheduling;
2.	 Delays due to flight operation conditions at the airport;
3.	 Delays due to weather conditions;
4.	 Delays due to the terms and conditions of airline aviation operations and air traffic 

control;
5.	 Delays due to temporary conditions, such as the flight season or day;
6.	 Delays due to the flight conditions of the national flight network;
7.	 Delays due to the flight atmosphere

Since the type of delay in the present study included the numbers one (delays due to 
flight planning and scheduling), two (delays due to flight operation conditions at the 
airport), and six (delays due to the flight conditions of the national flight network), the 
amount of delay time slot was considered to be less than 15 min and 15–30 min based 
on the mentioned findings. A squawk radar is considered for the flight when the aircraft 
announces its readiness to fly based on the flight time specified in the flight schedule, 
and the flight will continue with the same squawk and flight sequence if it continues for 
15 min. Otherwise, the squawk is canceled, and the flight must request a flight squawk 
from the country’s air control center, which will change the flight schedule. On the other 
hand, if there is a delay of more than 15 min and less than 30 min, the flight can carry on 
with the same schedule and a new squawk. In case of a delay of more than 30 min, the 

Table 5  MSE and RMSE criteria

Criterion/airport ALT ORD DFW DEN JFK SFO CLT LAS PHX

MSE (Delay 15) 1.68 1.78 1.62 1.52 1.63 9.73 3.04 5.21 2.68

MES (Delay 30) 0.8 1.38 1.4 0.97 1.32 6.55 4.98 4.25 3.4

RMSE (Delay 15) 1.84 1.33 1.28 1.23 1.27 3.11 1.74 2.28 1.63

RMES (Delay 30) 1.82 1.17 1.18 0.98 1.14 2.56 2.23 2.062 1.17
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flight needs to send a flight delay message to the national air traffic network or set and 
send a new flight schedule.

Calculate MSE and RMSE

MSE is a statistical tool applied to determine predictive accuracy of a model. Table  5 
shows the root-mean-square error (RMSE) of the desired airports. The parameter is 
mostly used to estimate the difference between the predicted values by a model and the 
observed values [1, 53]. The accuracy of the proposed model would be higher when the 
MSE per each specific mother was lower than the other model. The criteria considered 
in the proposed method for two delays of 15 and 30 min and 10 airports are presented in 
Table 5.

In other words, the higher predictive accuracy of a model leads to the lower MSE. The 
RMSE criteria in 30-min delays of LORD, PHX, and JFK airports had a lower percentage 
compared to the other airports, which was mainly due to the need for fewer traffic data 
compared to other airports, especially at the PHX Airport. In the case of the PHX Air-
port, the amount of air traffic data did not exceed the threshold value, while the traffic 
data for the other airports exceeded the threshold value [54].

Accuracy

The main purpose of this study is to increase accuracy. To better evaluate the proposed 
method, different situations have been considered based on these three scenarios:

•	 First scenario: 80% of data for learning and the remaining 20% for testing
•	 Second scenario: 60% of data for learning and the remaining 40% for testing
•	 Third scenario: 70% of data for learning and the remaining 30% for testing

Also by viewing all first scenarios you can say that the Third scenario had a higher 
accuracy (Table 6).

According to the findings, the LSTM-ELM hybrid method could detect the delay with 
the accuracy of 96.27. Accuracy varied at different time intervals of 15 and 30 min at var-
ious airports. According to the obtained results, the accuracy of the 30-min delays was 
higher at the ATL Airport. Nevertheless, the accuracy was acceptable in the other air-
ports as well. The other criteria for delay in the other airports are compared in Table 7.

The first evaluated criterion was accuracy. As is observed, a 30-min delay had 
a higher accuracy percentage, a reason for which is that the delay has been obtained 

Table 6  Accuracy criteria for 15- and 30-min delays

Scenario Delay/airport ATL LAX ORD DFW DEN JFK SFO CLT LAS PHX Average

Scenario 1
80%-train
20%-test

Delay 15 98.46 88.34 88.34 98.22 98.64 98.48 90.27 96.96 94.24 97.32 94.92

Delay 30 99.2 92.41 98.62 98.6 98.03 98.68 93.45 93.45 95.75 96.6 96.27

Scenario 2
60%-train
40%-test

Delay 15 49.99 49.98 98.48 98.36 97.83 97.28 97.28 93.51 49.92 86 79.07

Delay 30 49.99 61.97 98.42 98.81 49.98 50 93.49 50 79.71 5.96 72.84

Scenario 3
70%-train
30%-test

Delay 15 98.71 50.34 98.28 98.64 49.99 98.31 92.22 94.99 92.74 0.8 85.42

Delay 30 98.52 90.95 49.99 98.9 98.29 99.37 75.89 95.64 95.87 96.6 90
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and calculated due to flight operations in the TMA control space in estimating 30-min 
delays, which adds to the previous delays and could no longer be estimated.

Moreover, in delays of 30 min and more, the recorded information is more accurate 
since the order of flight arrival and departure numbers changes according to the order 
intended for the flight with the airport control mechanism and it is necessary to send a 
flight delay message or a flight plan update.

The second criteria evaluated in Table 7 was recall, which had a better percentage of 
15-min delays at the LAX Airport. Some of the advantages of the data of these two air-
ports included less noise and proximity to each other. This airport has the largest num-
ber of flights compared to the nearby airports, as well as a higher operating volume than 
other airports. The amount of system recall in the obtained estimate leads to the detec-
tion and reduction of human errors, operating systems, aviation accidents, and opera-
tional and airport costs. In addition, the three criteria of accuracy balance, MCC, and 
F-measure had better performance in 30-min delays. The use of the BiLSTM algorithm 
and improvement of the ELM parameter had a properly generalized 30-min delay. In 
addition, the improvement of the ELM in the training and testing phase will increase 
accuracy and precision compared to other airports. Therefore, it could be concluded 

Table 7  Comparison of evaluated criteria for 15- and a 30-min delays

ROW AirPort Delay Recall Specify F_Mesure Balanced_Acc MCC

1 ATL Delay 15 99.12 98.81 98.47 98.46 96.94

Delay 30 99.7 98.69 99.2 99.2 98.4

2 LAX Delay 15 99.78 77.89 89.44 88.34 78.4

Delay 30 96.46 98.22 92.9 85.48 99.35

3 ORD Delay 15 98.89 97.56 98.24 98.22 96.46

Delay 30 99.35 97.88 98.63 98.62 97.24

4 DFW Delay 15 98.84 98.44 98.64 98.64 97.28

Delay 30 98.76 98.44 98.6 98.6 97.2

5 DEN Delay 15 98.95 98.01 98.49 98.48 96.96

Delay 30 99.36 98.71 99.04 99.03 98.07

6 JFK Delay 15 99.28 97.55 98.43 98.42 96.85

Delay 30 99.5 97.87 98.69 98.68 97.38

7 SFO Delay 15 99.52 81.03 91.1 90.27 81.96

Delay 30 99.6 87.3 93.83 93.45 7.56

8 CLT Delay 15 99.18 94.73 97.02 96.96 94

Delay 30 99.6 90.4 95.24 95.02 90.43

9 LAS Delay 15 99.16 89.32 94.51 94.24 88.92

Delay 30 99.52 91.98 95.9 95.75 91.76

10 PHX Delay 15 99.36 95.28 97.37 97.32 94.72

Delay 30 99.44 93.76 94.1 96.6 93.35

Table 8  Comparison of evaluated criteria

Delay/airport ATL LAX ORD DFW DEN JFK SFO CLT LAS PHX

Accuracy [1] 93.45 85.19 90.49 89.65 87.52 85.64 88.83 93.25 85.76 9.88

Accuracy [54] 90.95 86.96 85.61 89.31 89.62 86.51 87.52 91.08 91.81 71.34

Accuracy proposed 98.46 88.34 98.22 98.48 98.48 98.42 90.27 96.96 94.24 97.32
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that the effect of the delay was properly modeled using the proposed method. In general, 
the improved ELM algorithm is faster, more accurate, and more generalizable in classifi-
cation compared to other algorithms.

According to Table  7, the cause of 40% of the delays has been recorded in the air-
ports, the most important of which was air time, followed by delayed arrival. Each of 
the delay factors alone could record several arrival delays at the subsequent airports, 
except for the arrival delay factor. Therefore, a significant part of the delay factors was 
related to delayed arrivals, which will be resolved when airlines have the required time 
for retrieving and returning to the flight schedule. At present, the cause of delays of less 
than 15 min and departure delays is not recorded at most airports. However, the record-
ing information for the delays between 15 and 30 min is more thorough, which leads to 
higher accuracy and precision (Table 8).

Comparison of the proposed method with conducted research

Improving the accuracy and precision of the ATM is a basic method in ATM research. 
Several ATM approaches have been provided on an ATC level. The accuracy of the pro-
posed approach to traffic was low and did not respond to heavy traffic.

In the present study, an LST-ELM hybrid model was applied to improve the accuracy 
of the proposed method. The comparison of the proposed approach for the 30-min delay 
and [1] and [54] studies is shown in Table 8.

According to the obtained results, the proposed method had a more appropriate per-
formance improvement as opposed to the comparable references due to the reconstruc-
tion of nonlinear time series and valid predictions. The obtained results also indicated 
that the proposed method could manage a complex nonlinear time series. Therefore, 
the use of the BiLSTM algorithm requires fewer hidden layers due to its greater learn-
ing capability and improving of the ELM network, which could enhance accuracy in an 
air traffic delay. Unlike other algorithms (e.g., BP), using the ELM algorithm needs no 
hidden layers, and its parameters are selected randomly. The goal of this algorithm is 
achieving the lowest training error and the smallest output soft weight. Furthermore, 
the improvement of this algorithm leads to the avoidance of the local minimum, and 
BiLSTM could be used to solve the long-term dependency problem. Together, these two 
algorithms improve accuracy more effectively compared to other methods.

Conclusion
The improved accuracy in ATM management problems is proposed in this paper. ATM 
includes all the necessary activates for the safe and useful management of the National 
Aviation System which is one the most challenging problems in our country’s airports 
right now. In this paper, the dual-sided LSTM algorithm is used to improve the 15 and 
30-min delays’ accuracy. Also, this algorithm is used to improve the ELM algorithm’s 
parameters. The data set used in this paper is taken from Kaggle and is a simulation used 
by MATLAB. The results show a higher accuracy improve the rate in comparison to 
other paper and also show that the RMSE parameter in 30-min delays has a lower per-
centage in ORD, PHX, and JFK airports in comparison to the other airports.
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In further studies, to increase the ATM accuracy, other LSTM models like Casc-LSTM 
and Ens2-LSTM can be used alongside the ELM algorithm. One-way and two-way Lstm 
council can also be used along with other algorithms.

Appendix
Automatic dependent surveillance-broadcast (ADS-B): is a surveillance technology in 
which an aircraft determines its position via satellite navigation and periodically broad-
casts it, enabling it to be tracked.

Air traffic management (ATM): is an aviation term encompassing all systems that 
assist aircraft to depart from an aerodrome, transit airspace, and land at a destination 
aerodrome, including Air Traffic Services (ATS), Airspace Management (ASM), and Air 
Traffic Flow and Capacity Management (ATFCM).

Air Traffic Service (ATS): is a service which regulates and assists aircraft in real-time 
to ensure their safe operations. In particular, ATS is to:

•	 prevent collisions between aircraft; provide advice of the safe and efficient conduct of 
flights;

•	 conduct and maintain an orderly flow of air traffic;
•	 notify concerned organizations of and assist in search and rescue operations.

Bidirectional LSTMs: are an extension of traditional LSTMs that can improve model 
performance on sequence classification problems. In problems where all time steps of the 
input sequence are available, bidirectional LSTMs train two instead of one LSTMs on the 
input sequence.

Elapsed flying time: Actual time an airplane spends in the air, as opposed to time spent 
taxiing to and from the gate and during stopovers.

Extreme learning machines (ELM): are feed-forward neural networks for classification, 
regression, clustering, sparse approximation, compression and feature learning with a sin-
gle layer or multiple layers of hidden nodes, where the parameters of hidden nodes (not just 
the weights connecting inputs to hidden nodes) need not be tuned.

Long short-term memory (LSTM): is an artificial recurrent neural network (RNN) archi-
tecture used in the field of deep learning. Unlike standard feed-forward neural networks, 
LSTM has feedback connections.

Terminal control area (TCA or TMA): A terminal control area (TMA, or TCA in the U.S. 
and Canada), also known as a terminal manoeuvring area (TMA) in Europe, is an aviation 
term to describe a designated area of controlled airspace surrounding a major airport where 
there is a high volume of traffic.
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