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Introduction
The benefits of using ontologies have been empirically grounded in several studies, 
among the most recent being the ones by [1–3]. According to Cardoso [3], for instance, 
ontologies are mostly used to make domain assumptions explicit (70%), to enable reuse 
of domain knowledge (56%), or to share a common understanding of the structure of 
information among people or software agents (37%) [4]. In other words, ontologies 
have gained tremendous momentum due to their great potential for providing a new 
approach for managing, searching, retrieving, maintaining, sharing and viewing infor-
mation. They offer a best solution for resolving the heterogeneity problem that occurs 
between two or more information systems, by providing a generic knowledge that can 
be shared and reused by different kind of domains such as artificial intelligence, seman-
tic web services, knowledge engineering and computer science [5]. As ontologies tend to 
evolve rapidly over time and between different applications, there is an increasing need 
in recent years towards their construction approaches.
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Generally stated, building ontology is an engineering activity and there are two main 
approaches for its construction—either from scratch, or by using ontology learning 
approaches. Building ontology from scratch or manually [6–11] is a very complicated 
and expensive task that usually requires a combination of the knowledge of domain 
experts and skills of ontology engineers. This task is difficult due to the unbelievable 
rate of knowledge development in the real world, which requires the ontology engi-
neers to constantly update and revise the resulting ontologies with new concepts, 
terms and lexicons. Consequently, building ontology from scratch is non-intuitive, 
time-consuming, error-prone, and can be costly [12]. Due to these limitations, the 
term “ontology learning” has appeared, which captures an approach to discover onto-
logical knowledge automatically or semi-automatically from various resources [13]. 
Ontology learning can solve the problems of knowledge acquisition and greatly facili-
tates the building of ontologies compared with the scratching methods.

Formally, using learning approaches, ontologies can be constructed from various 
sources of information including structured sources, such as a relational database, 
semi-structured sources, such as dictionaries, or unstructured sources, such as web 
pages [14]. The majority of the studies in the literature focus on relational database as 
a source of information for several reasons. Firstly, around 70% of data on the web is 
stored in relational databases [15]. Secondly, relational databases present full concep-
tual models [16]. Thirdly, they provide a full information resource [16]. Finally, they 
offer one of the best techniques for storing and manipulating data. However, rela-
tional databases suffer from the absence of semantic meaning, which is hinders the 
ability to achieve interoperability among information systems [17].

Despite the significant progress made during the last few years and the wide num-
ber of proposed approaches [18–30], there are still many issues that have not been 
sufficiently addressed. First, all the existing works [18–30] focus only on generating 
A-Box or T-Box [31] and ignore the integration process between these two com-
ponents. Second, the majority of these studies [18–30] mainly focused on the pro-
cess of building ontologies from relational database without covering the maximum 
semantics resided in the database [32]. Furthermore, all these studies focus only on 
describing the process of generating ontology from RDB, while they did not define a 
life cycle for describing the most common scenarios that arise during the creation of 
the ontology from RDB [33]. Broadly stated, there is a difference between a lifecycle 
and process. Indeed, the need to the life cycles increases dramatically with the need 
to resolve the data integration problems and evaluation constraints [33].

Finally, the availability of ontology for different domains on the web is gradually 
increasing. Therefore, the resulting ontology from RDBs must be evaluated from dif-
ferent perspectives to determine its quality before use or reuse. All the existing works 
in this topic did not take into consideration the measurement of the quality of the 
resulting ontology [34].

In this paper, we: (1) propose a new life cycle for ontology learning from RDBs 
based on the software engineering requirements; (2) describe a new process for build-
ing ontology from Relational database based on the predefined life cycle; (3) add three 
new semantics that can be extracted from RDB; (4) we suggest an evaluation process 
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based on two categories of metrics: (i) Conceptual Ontology (T-Box) Evaluation met-
rics; (ii) Factual ontology(A-Box) evaluation metrics.

The rest of this paper is organized as follows. In “Related works” section, we present 
the related works, which describes the most popular studies about relational database 
into ontology conversion. In “Learning ontology from relational database (LOFRDB): life 
cycle” section, we introduce, the life cycle for learning ontologies from relational data-
base. In “Proposed method” section, we introduce the proposed processes for generating 
ontologies from relational database. “Results and discussion” section is devoted to pre-
sent the experimental results and discussions. Finally, we conclude the paper and sug-
gests directions for future works.

Related works
Considerable amount of studies [18–30] have been conducted on building ontologies 
from RDBs using SQL-DDL [35]. While these studies share the common objective of 
converting RDB into Ontology, they differ in the process used as well as the metadata 
extracted and the mapping rules proposed. In fact, these studies fall roughly into one of 
the two categories. Firstly, approaches based on an analysis of relational schema. Sec-
ondly, approaches based on analysis relational data.

On one hand, all methods described in [18–30] take into account the mapping of: 
tables, columns, primary keys and foreign keys. However, the binary relationship is 
missed in [24, 25], and the ternary relationship is not manipulated in [21, 24, 25, 28, 30]. 
Only [22, 26, 29] covered the check constraint, Not Null constraint, and unique, while 
added the cardinality constraint. Moreover, Astrova [22] represents the only work that 
can handle the transitive and symmetric property, while [29] handled just the transitive 
property. In addition [29], presents the most reference work in the literature, because 
it consists of combining the existing studies and adds new rules for building ontology 
from RDB. Besides, Sequeda [29] covers all possible combinations of primary key and 
foreign keys as depicted in Table 2. Clearly, the two studies provided by Astrova [22] and 
Sequeda [29] represent the most relevant ones because they proposed many require-
ment that can act as best practices for building ontologies from RDBs. On other hand, 
building an ontology based on an analysis of relational data (Migration of the instances) 
is addressed in [21, 22, 28, 29].

However, all these studies ignore constraints that capture additional semantics in 
order to improve the quality of the resulting T-Box [31], such as owl: hasvalue con-
straint, data range restriction, and owl: all values from constraint [36]. In addition, 
all these works did not take into consideration the phase of integrating the A-Box 
with T-Box. In fact, the combination of TBox and ABox has two main benefits; (a) 
it facilitates the Semantic integration problem; (b) it allows to use a reasoning ser-
vices for checking the consistency and satisfiablility of the resulting ontology [37]. 
To the extent of our knowledge, this is the first work that integrates the A-Box with 
T-Box in addition to use the reasoning capabilities for checking the consistency and 
satisfiablility [37]. These approaches allowed a mapping of RDB models into Ontol-
ogy, they [18–30] focused only on describing the process of building the ontology, 
whilst they did not describe the life cycle. From software engineering perspective, 
the ontology development process identifies which activities are to be performed. 
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However, it does not identify the order in which the activities should be performed. 
Whereas the life cycle identifies when the activities should be carried out, it deter-
mined the global stages through which the ontology moves during its life time and 
it describes what activities are to be performed in each stage and how the stages are 
related.

Eventually, the ontology evaluation becomes extremely important for develop-
ers to determine the fundamental characteristics of ontologies in order to improve 
the quality, estimate cost and reduce future maintenance [38]. To the best of our 
knowledge, there are only a few papers [22, 29] have appeared with the concern of 
evaluating not the resulting ontology but the mapping process. Astrova [22] pro-
posed a method for measuring the quality of the mapping process RDB to Ontology 
based on retransforming the resulting ontology to a relational database and testing 
if the transformation is reversible using the lexical overlap measure. Sequeda [29] 
introduced an effective approach for validating the mapping process with regard to 
four properties. Nevertheless, those studies mainly focused only on the validation of 
the mapping process and not on the quality of the resulting ontology. In fact, learn-
ing ontologies from relational databases without considering the evaluation phase 
means that the resulting ontology does not cover the user or the domain needs [39].

Learning ontology from relational database (LOFRDB): life cycle
In this section, we present LOFRB lifecycle, which refers to the activities or phases 
that have to be performed for learning ontologies from relational databases. As 
depicted in Fig. 1, our proposed life cycle is based on four phases: Discovery, Prepa-
ration, Development, and evaluation. For most phases in the life cycle, the move-
ment can be either forward or backward. This iterative depiction is intended to more 
closely portray a real project [40], in which aspects of the project move forward and 
may return to earlier stages as new information is uncovered and ontologist learns 
more about the domain of interest [5].

Fig. 1  Life cycle of learning ontologies from relational database
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Discovery

In this stage, the ontologist must define clearly the domain and scope of the ontology 
by answering the following questions [10]:

•	 What is the domain that the ontology will cover?
•	 For what we are going to use the ontology (Application)?
•	 For what types of questions the information in the ontology should provide answers?
•	 What are the ontology intended uses and who are the end-users (Stakeholders)?
•	 What are the sources of RDBs used to build ontology?
•	 Is it necessary to interviewing the domain expert?

The answers to these questions may change during the ontology development, 
but at any given time they help to limit the scope of the model. In this stage also the 
ontologist formulates some competency questions (CQ) that the ontology should be 
able to answer and that can be tested later [41]. The aim of the CQ is to check if the 
ontology includes sufficient information to answer these questions and if the answers 
require a particular level of detail or representation of a particular area. These CQs 
are just a sketch and do not need to be exhaustive [41].

As part of the discovery phase, the ontologist needs to assess the resources available 
to support the ontology development process. In this context, resources contain tech-
nology, tools, data, and people [40]. In addition, the ontologist can remove or add the 
data sources from this phase [40].

Preparation

The second phase of the LOFRDB involves data preparation, which includes the steps 
to explore and preprocess (conditioning) data prior. The data exploration consists of 
checking if the data sources contain enough semantics for generating ontology by 
checking if the RDB contains the complete space of relations and the maximum pos-
sible combinations of the primary keys and foreign keys [29]. The second sub-phase is 
data conditioning, which refers to the process of cleaning data and normalizing data-
sets. We can consider the RDB normalization as a part of the data conditioning phase.

Development

The Development (the building of the ontology) is tackled in two phases: the pre-
development and post-development. The pre-development starts by the Data acquisi-
tion (ABox), which consists of extracting the instances from the relational database 
[42], and represent them based on the RDF triple form [43]. After the data acquisi-
tion, the schema acquisition (TBox) [22] will be started in order to generate the defi-
nition and the meaning of the extracting instances. Therefore, it is necessary to build 
a vocabulary of these terms for simplifying the development phase. The Development 
does not only include the data and schema acquisition, but provides also the phase for 
integrating these two components. The post-development encompasses several other 
tasks such as alignment, merging and integration, etc. [5].
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Evaluation

After having built ontology from RDB, metrics for evaluating the resulting ontology must 
be presented [44]. Generally, the process of evaluation can be defined as the process of 
deciding on the quality of the ontology with respect to particular metrics [44]. For this 
purpose, two orthogonal dimensions to evaluate the quality of the resulting ontology are 
defined; (i) the first dimension is T-Box evaluation; (ii) the second dimension is A-Box 
evaluation. T-Box Evaluation postulates the design of the constructed T-Box. Although 
we cannot definitely know if the T-Box design correctly models the domain knowledge, 
metrics such as the richness, and inheritance indicate the quality of the T-Box created. 
The most significant metrics in this category are described in [45].

Proposed method
From the proposed lifecycle, many processes or models can be extracted and this is 
depends on the needs of the ontologist and the objectives of the project. In this work, we 
propose a method for ontology learning from RDB based on our proposed lifecycle. In 
this method, we consider that the data is already cleaned and conditioned. In addition, 
the resulting ontology needs neither alignment nor fusion with other ontologies.

As depicted in Fig. 2, after the discovery phase, which aims to identify the domain and 
scope of the ontology as well as take a first look at the data sources, the next phase is the 
data preparation. In this phase, some semantic characteristics are extracted and we use 
a novel metric to choose the RDB the most relevant. From this last one, we generate the 
ABox and the TBox [37] and then after we integrate the two component to get the final 
ontology. The last phase of our process is the validation of the resulting ontology that 
consists of evaluating the ABox and the TBox components by using some metrics and a 
reference ontology, and finally verify if the resulting ontology can response to the Com-
petency Questions (CQ) [41]. If the validation [46] is failed, this means that the resulting 
ontology cannot be published on the web or used inside applications. In this case, it is 
necessary to return to the discovery phase.

Fig. 2  The method of building the ontology from RDB
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RDB exploration

The exploration phase consists in verifying if the input relational databases contain 
the complete space of metadata and semantic characteristics for generating ontology. 
In this context, some information can be extracted from the input RDBs like the num-
ber of: tables, columns, primary keys, foreign keys and instances. On the other hand, 
we consider the semantic characteristics summarized in Table 1 to choose the most 
relevant RDB.

In this context, we suggest the number of semantics (NS) metric that represents 
the number of semantic characteristics of each input RDB. The range of this met-
ric is from 0 to 17. Values close to 0 reflects a relational database that semantically 
poor, while large values, that are close to 17, represent a rich RDB. The NS metric is 
calculated by giving the value “1” to each characteristic existing in the RDB and “0” 
otherwise:

The RDB exploration needs also the human intervention for selecting the relevant 
relational database because the database that have high total number of semantics 
does not mean that it covers all the possible semantics [47].

NS = NTDFK + NTFK + NTMTWOFK + NTEXTWOFK +NAFKNNU

+ NAFKNNNU + NAFKNNU + NANNUNPK

+ NA+ NAN + NANFKU + NPK + NACHECK

+NADEF + NTSAMEPK + NUnaryRel + NtrRel.

Table 1  Summary of patterns to calculate NS

Patterns Acronym

Table without FKs NTDFK

Table with one FK NTFK

Table with more than 2 FKs NTMTWOFK

Tables that contain exactly 2 foreign keys with presence of independent attributes NTEXTWOFK

Attributes that are FK + NULL + Not UNIQUE NAFKNNU

Attributes that are FK + NOT NULL + NOT UNIQUE NAFKNNNU

Attributes that are FK + NOT NULL + UNIQUE NAFKNNU

Attributes that are FK + NOT NULL + UNIQUE + NOT PK (FK is not equal to the PK) NANNUNPK

Attribute (neither PK nor FK) NA

Attribute + NOT NULL NAN

Attribute NOT FK + UNIQUE NANFKU

PK NPK

Attribute with constraint with an integer greater than 0 NACHECK

CHECK constraint with enumeration

CHECK constraint

Attribute with Default Value constraint NADef

Tables with tables share the same primary key NTSAMEPK

FK is a reference to the same table NUnaryRel

FK that is a reference to the same table, but it is accompanied by a trigger ON DELETE CASCADE NTrRel
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Building the TBox (conceptual ontology)

The TBox introduces the vocabulary of an application domain. It represents the 
repository that contains the declarations of concept axioms or roles [48]. To gener-
ate the TBox from RDB, we use some transformation patterns that are defined in 
Table 2. Concisely, the main steps for generating conceptual ontology is depicted in 
Algorithm 1.

In this step, we propose 3 new transformation rules which allow to transform: the 
check constraint, the default constraint, and the constraint for improving inherit-
ance relationship.

Table 2  The applied rules for generating conceptual ontology (TBox)

Patterns Kind of patterns OWL corresponding element

Table patterns Table without FK OWL: class

Table with one FK

Table with more than 2 FKs

Tables that contain exactly 2 foreign 
keys with presence of independent 
attributes

Binary Relationship table Tables that contain exactly 2 foreign 
keys without presence of independent 
attributes

We create two object properties ( 
owl:objectProperty) The latter is an 
inverse of the former

Tables with one FK Attributes that are FK + NULL + Not 
UNIQUE

Object Property + Functional Prop-
erty + Min Cardinality of the inverse 
property = 1

Attributes that are FK + NOT NULL + NOT 
UNIQUE

Object Property + Card = 1 + Min Cardi-
nality of the inverse property = 1

Attributes that are FK + NOT 
NULL + UNIQUE

Object Property + Functional Prop-
erty + Functional Property for the 
inverse Property

Attributes that are FK + NOT 
NULL + UNIQUE + NOT PK (FK is not 
equal to the PK)

Object Property + Functional Prop-
erty + Card = 1 + Functional Property 
for the inverse Property

Attributes Attribute ( neither PK nor FK) DatatypeProperty

Attribute + NOT NULL DatatypeProperty + MinCardinality = 1

Attributes NOT FK + UNIQUE DatatypeProperty + MaxCardinality = 1

Primary Key MinCardinality + MaxCardinality = 1 
(Cardinality = 1)

Check Constraint Attribute with constraint with an integer 
greater than 0

xsd:positiveInteger

CHECK with enumeration xsd:positiveInteger

CHECK constraint as Value Restriction Xsd:minInclusive, Xsd:maxInclusive, 
Xsd:minExclusive, Xsd:maxExclusive

Default constraint Attribute with Default Value Owl:hasValue

Inheritance relationship Two tables share the same primary key rdfs:subClassOf

Symmetric Relationship FK is a reference to the same table owl: SymmetricProperty

Transitive Relationship FK is a reference to the same table, but 
now it is accompanied by a trigger ON 
DELETE CASCADE

OWL:TransitiveProperty

Inheritance relationship 
improvement

The range of the foreign Key attribute Owl:AllValuesFrom



Page 9 of 22Ben Mahria et al. J Big Data            (2021) 8:25 	

Transformation of the check constraint

As mentioned in [49], Check constraints are conditions that validates the data in 
a table. In this work, we propose a rule for transforming the CHECK constraint as 
data range restriction. For resolving this problem, we used the bounds facets, which 
are: xsd:minInclusive, xsd:minExclusive, xsd:maxInclusive, and xsd:maxExclusive 
[36] (see Fig. 3).

Transformation of the default constraint.

The DEFAULT constraint in RDB [50] is used to provide a default value for a column. In 
this respect, the owl: hasValue constraint describes a class of all individuals for which the 
property concerned has at least one value semantically equal to the default value. Con-
sequently, owl: hasValue says regardless of how many values a class has for a particular 
property, at least one of them must be equal to the default value [36]. Figure 4 depicts 
the transformation of the default constraint to OWL.

Fig. 3  Check constraint for data range restriction

Fig. 4  Default Value constraint transformatio

Fig. 5  Improvement of the inheritance relationship example
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Improvement of the inheritance relationship

It is important to realize that in OWL domains and ranges should not be viewed as con-
straints to be checked [36]. They are used as ‘axioms’ in reasoning. For instance, if the 
property hasProfessor has the range set as Professor and the domain set as Student, then 
we applied the hasProfessor property to Student (instances that are members of the class 
Student), this would generally not result in an error. Knowing that Student and Profes-
sor are subclasses of Person. In this context, it would infer that Student and Professor 
Classes can have instances in common. More precisely, it can be found that “Student 
hasProfessor Student”. As a result, we will use the owl: AllValuesFrom constraint [36] for 
avoiding such problem as depicted in Fig. 5.

The generation of the TBox

The TBox introduces the terminology and the vocabulary of application domain. It rep-
resents the repository that contains the declaration of concept axioms or roles. A naïve 
approach would consider that the TBox corresponds to the schema of the Relational 
Database [31]. In this phase, we implement the rules that are identified in Table 2. Con-
cisely, the main steps for generating the TBox is depicted in Algorithm 1.

The automated process of our algorithm receives as input the SQL DLL file [51] 
that contained the definition of the RDB and generates the OWL file as output. More 
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precisely, the Algorithm 1 gets all RDB patterns depicted in Table 2 then it matches each 
RDB element with its corresponded element in OWL. It is important to mention that 
our algorithm is completely automatic. The implementation if this algorithm is uploaded 
into our GitHub repository.

The generation of the ABOX

The process of generating the A-Box is conducted using the R2RML language [52] that 
plays an important role for completing the data acquisition phase. Generally, the algo-
rithm receives a SQL file that includes statement represented by SQL DDL. We then 
use the Database Metadata Extraction Engine (DMEE) that analyzes the SQL file and 
extracts automatically the metadata from it. The extracted metadata includes tables, col-
umns, primary keys (PKs), and Foreign Keys (FKs). Thirdly, Mapping Generator Engine 
(MGE) exploits the extracted metadata and build a mapping file (R2RML file). Lastly, 
R2RML engine takes as input, the database model (Schema + Instances) and the gener-
ated mapping document that contains a set of rules representing the database schema, 
then provides an output represents the RDF dataset (triples) using r2rml-kit-master.1 
Concisely, the main steps for generating the A-Box is depicted in the following algo-
rithm.2 For convenience to the readers, the algorithms of generating the A-Box are 
deeply explained in [53] 

.

The evaluation

The last step of our process involves validation of the resulting ontology. For this pur-
pose, we propose to evaluate the ABox component and the TBox component sepa-
rately by using some metrics. In this context, we have choose, the attributer richness, 

1  https​://githu​b.com/d2rq/r2rml​-kit.
2  https​://githu​b.com/bilal​benma​.

https://github.com/d2rq/r2rml-kit
https://github.com/bilalbenma
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Inheritance Richness and Relationship Richness to evaluate the TBox component, and 
Class Richness as well as Average Population to evaluate the ABox [54].

The evaluation of TBox

Although we cannot really know whether the design of the T-Box correctly models 
the domain knowledge, metrics such as wealth, width, depth and heritage indicate the 
quality of the T-Box created. Therefore, the most important measures in this category 
are described below.

Attribute richness (AR)  AR represents the average number of attributes (slots) per 
class. Generally, we assume that more the attributes are generated from RDB more the 
knowledge conveys to the ontology [44].

Definition  The attribute richness is defined as the average number of attributes per 
class. It is calculated as the number of attributes for all classes ( ATT  ) divided by the 
number of classes (C).

Inheritance richness (IR)  This metric represents the distribution of information 
across different levels of T-BOX and serves as an indicator of how well knowledge is 
grouped into different categories and subcategories in TBox. A TBox with a low IR 
indicates that the T-Box covers a specific domain in a detailed manner, while a T-Box 
with a high IR represent a general knowledge [44].

Definition  IR is defined as the average number of subclasses per class, where H is the 
sum of the number of inheritance relationships, and C is the total number of classes.

Relationship richness (RR)  This metric reflects the diversity of the types of relations in 
the TBox such as. A TBox that contains only inheritance relationship usually conveys less 
information than a T-Box that contains a diverse set of relationships such as Transitive, 
symmetric, and reflexive relationship [45].

Definition  The RR of a T-Box is defined as the ratio of the number of non-inheritance 
relationships (P), divided by the sum of inheritance relationships (H) and non-inherit-
ance relationships (P).

AR =
|ATT |

|C|

IR =
|H |

|C|

RR =
|P|

|H | + |P|
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A‑Box validation

A-Box evaluation metrics can be used to check how the data is placed inside the 
ontology. More specifically, A-Box evaluation refers to the instances metrics. In this 
respect, we used two predefined metrics: class richness and average population.

Class richness (CR)  CR is related to how instances are distributed across classes. The 
number of classes that have instances in the KB is compared with the total number of 
classes, giving a general idea of how well the KB utilizes the knowledge modeled by the 
T-Box. A-Box with low CR indicates that the A-Box does not have data that exemplifies 
all the class knowledge exist in the T-Box. On the other hand, A-Box with high CR proves 
that the data in A-Box covers most of the knowledge [44].

Definition  CR is defined as the ratio between the total number of classes that have 
instances c′ divided by the total number of classes (C).

Average population (AP)  This measure is an indication of the number of instances com-
pared to the number of classes. It can be useful if the ontology developer is not sure if 
enough instances were extracted compared to the number of classes [44].

Definition  AP is defined as the number of instances in the A-Box (I) divided by the 
number of classes defined in the ontology schema (C).

Results and discussion
To evaluate the efficiency and the solidity of the proposed process, we have started from 
6 relational databases of the e-commerce domain. These databases cover several meta-
data used in the process of learning ontologies from relational database, such as tables, 
columns, foreign keys (FKs) and primary keys (PKs). The detailed information of these 
databases is summarized in Table 3. As proof of concept, our experimental simulations 
were conducted on a personal computer under windows 10, with Intel core i7 2.70 GHZ 
processor and 16 GB RAM.

CR =
|c

′

|

|C|

AP =
|I |

|C|

Table 3  A list of metadata extracted from RDB

RDB Tables Columns PKs FKs Instances

North 30 150 30 25 5029

Iscommerce 5 20 5 6 200

Ecommerce 25 100 25 17 5000

EcommerceDB 3 20 4 2 1000

Sakila 16 90 18 22 47,237

Northwind 13 89 16 13 2110
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The discovery phase

In the discovery phase, we have to answer the following question: do we have enough 
information background to start building ontology? Table  1 shows the most relevant 
questions that we have covered. It may be possible to refer to an expert in the studied 
domain to resolve some problems concerning the gathered data such as the database 
conceptualization problems [47].

Unlike many traditional stage-gate processes, in which the process of building ontol-
ogy from relational databases start without checking if some specific criteria are met. 
Therefore, the proposed lifecycle is intended to accommodate more ambiguity. As 
depicted in the Table 4, it is recommended to pass certain checkpoints as a way of gaug-
ing whether we are ready to move to the next phase of the LOFRDB lifecycle. Creat-
ing the perfect plan for learning ontology from RDB requires a clear understanding of 
the domain area, the problem to be solved, and scoping of the data sources to be used. 
Answering these questions clarify the problem definition and help us to select the appro-
priate database that can be used in later phases. The Table 5 exhibits a list of compe-
tency questions (CQs) that represent informal questions that the ontology must be able 
to answer [41]. We consider these to be natural language sentences that express patterns 
for types of question people want to be able to answer with the ontology.

As we know, ontology authors are usually domain experts but not necessarily profi-
cient in ontology technologies, especially their logic underpinnings [41]. As a conse-
quence, on the one hand it is difficult for human authors to express their requirements 
for the axiomatization of an ontology and, on the other hand, it is also difficult to know 
whether the requirements are fulfilled as a result of their ontology authoring actions. 
To address this issue, we introduce the methodology of Competency Question in order 
to help the authors of the ontology to check if the resulting ontology embedded all the 

Table 4  The list of questions the ontologist must answer before start building ontology

What is the domain that the ontology will cover? E-Commerce domain

For what we are going to use the ontology (Applica-
tion)?

Describing businesses, offering, prices, features, pay-
ments options, opening hours, and so on

For what types of questions the information in the 
ontology should provide answers

Table 5 depicts some competency questions for vali-
dating the resulting ontology

What are the ontology intended uses and who are the 
end-users (Stakeholders)?

Customers, Employee, web Master, Accounting, etc

What are the characteristics of the selected RDBs Table 3 presents all the necessary metadata that we 
need to figure out the characteristics of the selected 
RDBs

Is It necessary to interview the domain expert? No

Table 5  A list of competency questions

Query 1: find movie for a given set of generic features such as name and duration, etc

Query 2: retrieve basic information about a specific movie for display purposes

Query 3: find movie having a label that contains specific words

Query 4: get information about a reviewer

Query 5: find movies having a label that contains specific words

Query6: find Text description of a given movie’s title

Query 7: find movies that are similar to a given movies
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necessary information. In fact, it is important to list these questions in the discovery 
phase in order to allow to the ontologist to take them into consideration during the pro-
cess of development.

Additionally, in the discovery phase, we can build an initial look at the list of data that 
we have chosen in order to determine whether it contains a large number of necessary 
metadata. It can be clearly seen from Table  3, that, the relational database Ecommer-
ceDB and Iscommerce did not contain sufficient semantics to start building ontology. 
For instance, EcommerceDB database contains 3 tables, 20 columns, 4 PKs, 2 FKs, and 
100 instances. Based on these measures, we can decide that the EcommerceDB database 
is semantically poor. In the same context, the Iscommerce database also provides a poor 
semantics. As a result, in the discovery phase, we can remove the EcommerceDB and 
Iscommerce databases. We eliminate these two databases based on the rule: RDB poor 
semantically implies ontology poor semantically [31].

The RDB exploration

Now, to choose the most relevant RDB among the remaining ones, we have to calculate 
the NS measure from the patterns depicted in Table 6.

As stated previously, the NS metric represents the number of semantic characteristics 
present in the relational database. Table 6 shows that the Sakila database covers all pos-
sible semantics that can be used to build a rich ontology from RDB. In this context, we 
compare also the total number of semantics per RDB as shown in Table 7. The first inter-
esting observation is that the database having a high total number of semantics does not 

Table 6  The set of patterns

Rules North Ecommerce Sakila Northwind

Tables Without FKs √ √ √ √

Tables With one FK √ √ √ √

Tables with more than 2 FKs √ √ √ √

Tables that contain exactly 2 FKs with presence of independent 
attribute

√ √ √ √

Many-to-many relationship: a table that contains exactly two FKs √ √ √ √

FK + NULL + Not UNIQUE √ √ √ √

FK + NOT NULL + NOT UNIQUE √ √ √ √

FK + NOT NULL + UNIQUE √ √

FK + NOT NULL + UNIQUE + NOT PK √ √

Attribute ( neither PK nor FK √ √ √ √

Attribute + NOT NULL √ √ √ √

NOT FK + UNIQUE √ √ √ √

PK √ √ √ √

Attribute with constraint with an integer greater than 0 √ √

CHECK with enumeration √ √

CHECK constraint as DataTypeRestriction √

The range of the foreign Key √ √ √ √

Default Value √ √

Two tables share the same primary key √

FK is a reference to the same table √

FK is a reference to the same table, but now it is accompanied by a 
trigger ON DELETE CASCADE

√
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mean that it covers all the possible semantics as depicted in Table 7. For instance, the 
total number of semantics for the North database is 180, but the number of semantics 
is 10 (less than 17). Consequently, if we decided to build ontology from the North and 
e-commerce databases, the resulting ontology will not address the following semantics: 
inheritance, transitive, symmetric, value restriction, data range restriction, Functional 
and inverse Functional property. This leads to predict that the resulting ontology based 
on the North and E-commerce databases will be very poor semantically.

For the Northwind and Sakila database, the NS and the total number of semantics are 
(13,102) and (17,126) is 13 and its total number of semantics is 102. We can notice that, 
the number of instance of each database are respectively 2120 and 47,237 for Northwind 
and Sakila. As a result, the most appropriate relational database for building ontology is 
Sakila, because it covers the most important semantics and the large number of instances.

The ontology building evaluation

For the ontology building evaluation, we typically compared our resulting ontology 
against a gold-standard which is suitably designed for the domain of discourse [54]. 
This may in fact be an ontology considered to be well-constructed to serve as reference. 
As we aforementioned, the domain of discourse that we treat is E-commerce [55]. The 
ontology reference that represents the E-commerce domain is GoodRelations ontology 
[56]. It is a standardized vocabulary for product, price, and company data that can be (i) 
embedded into existing and dynamic web pages and (ii) processed by other computer. 
Generally, GoodRelations is used to facilitate creation of formal descriptions of product 
offering for electronic commerce. Table 8 shows the basic metrics of the GoodRelations 
Ontology versus the resulting ontology.

Table 7  The NS and the total number of semantics for each database

North E-commerce Sakila Northwind

NTDFK 5 12 5 4

NTFK 10 6 10 3

NTMTWOFK 8 7 6 3

NTEXTWOFK 7 4 7 3

NAFKNNU 15 10 7 5

NAFKNNNU 10 7 7 4

NAFKNNU 0 0 6 0

DefVal 0 0 3 0

NANNUNPK 0 0 2 0

NA 50 23 24 42

NAN 30 25 8 15

NANFKU 15 10 10 4

NPK 30 25 18 16

NACHECK 0 0 5 0

NADef 0 0 3 3

NTSAMEPK 0 0 2 0

NUnaryRel 0 0 2 0

NTrRel 0 0 1 0

Number of semantics (NS) 10 10 17 13

Total number of semantics 180 129 126 102
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The basic metrics of ontology provide the count number of classes, objects, axioms, 
properties and instances used in the ontology. Considering the result presented in Fig. 6, 
it is clearly seen that our resulting ontology covers more basic knowledge than the refer-
ence ontology with regard to the total number of classes, the total number of datatype 
property (TDP) and object Properties (TOP), the number of logical axioms (LAC), the 
number of axioms, and the number of instances (TINDV). For instance, the TINDV are 
47,803 and 46 for the resulting ontology and reference ontology respectively. However, 
we cannot discuss the quality of the resulting ontology based on these metrics, because 
these metrics represent just the discriminative effect of the knowledge coverage [54] 
as shown in Fig. 6. In this respect, the two following subsections are well explained the 
metrics that we used to measure the quality of our ontology.

The TBox evaluation

IR values close to zero indicate flat or horizontal ontology representing perhaps more 
general knowledge while large values represent vertical ontologies describing detailed 
knowledge of a domain. As depicted in Table 9, the IR for our ontology is 2357 while 
for GoodRelations is 0.5. This indicates that our resulting ontology describes the 

Table 8  The basic metrics of the GoodRelations versus the resulting ontology

Ontology TCC​ Axioms LAC TOP TDP TINDV

GoodRelations 38 1141 450 53 49 46

Resulting ontology 23 28,816 28,816 60 72 47,803

1141
450

38 53 49 46

28816 25190

23
60 72

47803

1

10

100

1000

10000

100000

Axioms LAC TAC TOP TDP TINDV

GoodRelations Resulting ontology

Fig. 6  Discriminative effect of the knowledge coverage

Table 9  The list of metrics for evaluating the resulting ontology

Ontology A-Box evaluation T-Box evaluation

AP CR AR IR RR

GoodRelations 1.21 0.236 1.89 0.5 0.9082

Resulting ontology 2078.39 0.7142 5.142 2.357 0.3125
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E-commerce domain better than the reference ontology. However, the relationships 
richness for the ontology reference is greater than the resulting ontology, which indicate 
that the reference ontology contains many relationships other than class-subclass rela-
tions, where our ontology is richer than a taxonomy with only class-subclass relation-
ships. On other hand, the attribute richness for our resulting ontology is significantly 
greater than the AR of the reference ontology, which indicates that our ontology defined 
more knowledge than the reference ontology.

According to the result depicted in Table 10, we presented the TBox output of each 
surveyed approach using a specific OWL elements. In addition, the last column shows 
our mapping result. It is evident from this table that our ontology is greatly contained a 
high number of semantics compared to the other approaches.

The ABox evaluation

The first group of measures that we have considered for this validation is related to the 
knowledge distribution in the ontology. As we can see in Table 7, the average popula-
tion (AP) for the resulting ontology is better than the ontology reference. Compared to 
the reference ontology, the value of the AP of our ontology, which is 2078.39, involves 
that our ontology offers a sufficient number of instances for describing the e-commerce 

Table 10  Ontological output of each mapping approach

Table 11  A list of competency questions with answers

Queries Negative (N)/
positive (P) 
answers

Query 1: find movie for a given set of generic features such as name and duration, etc P

Query 2: retrieve basic information about a specific movie for display purposes P

Query 3: retrieve basic information about a specific movie for display purposes P

Query 4: find movie having a label that contains specific words P

Query 5: find movies that are similar to a given movies P

Query 6: find the category of movies P

Query7: find Text description of a given movie’s title P
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domain. According the authors in [57], this metric is proposed to be used in conjunction 
with the class richness metric (CR). In this respect, we calculated the CR metric. The 
value of this metric confirms that our ontology’s classes are populated with a high num-
ber of instances with regard to GoodRelations ontology, and this is reflects the diversity 
of knowledge embedded in our A-Box.

The competency questions (CQs)

Now to validate the resulting ontology in its totality we have checked if it is able to 
answer the competency questions established previously. As depicted in Table 11, the 
positive Answer means that our ontology can provide the correct answer to the query, 
while Negative answer means that the ontology cannot answer the query. Therefore, our 
resulting ontology answered all the formulated queries with a positive feedback. These 
queries are formulated in SPARQL Query Language [58]. For a high-level description of 
each query, we refer the reader to our GitHub Link.3

Eventually, we can conclude that our proposed life cycle shows sufficient exactitude 
to be used for selecting an appropriate database for building ontology and it is able to 
exhibit very accurate result. Note that the life cycle phases represents formal stages-
gates; they save as criteria to help ontologist for answering a very important question: 
how to select a Relational database that provides a sharp and clear boundary between 
the relational model and ontological model. From this experiment, we can notice that, 
we start our experimental study with 6 databases, and during each phase in life cycle, 
we evaluated the outcome of this phase in order to check if we made enough progress to 
move to the next phase. As a result, instead of converting the six databases directly into 
ontology, we early removed some RDBs that are not contained the sufficient semantics 
for representing the ontological model.

Conclusion
To sum up, in this paper, we tried to gather the most important and contributing 
approaches in the subject of the mapping of the relational database to ontology. We 
attempted to provide the reader with concise overview of these approaches in terms 
of identifying the main drawbacks that the researchers in this field are faced as well as 
suggesting solutions. In addition, the biggest contributions within this paper are the fol-
lowing: (1) We propose a new life cycle for ontology learning from RDBs based on the 
software engineering requirements; (2) We describe a new method for building ontol-
ogy from Relational database based on the predefined life cycle; (3) We add three new 
semantics that can be extracted from RDB; (4) we suggest an evaluation process based 
on two categories of metrics: (i) Conceptual Ontology (T-Box) Evaluation metrics; (ii) 
Factual ontology(A-Box) evaluation metrics. In future works, we aim to focus on the 
cleaning and conditioning the data embedded in the relational database in order to 
improve the quality of the resulting ontology. Also, we plane to focus on different struc-
tured sources of information such as Excel spreadsheet, comma-separated value (CSV), 

3  https​://githu​b.com/bilal​benma​.

https://github.com/bilalbenma
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and SQL DDL files in order to integrate these diverse data Format. Finally, we plan to 
move toward the unstructured data sources for constructing ontologies.
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