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Introduction
Deep Sequencing is the process of DNA fractioning, which dramatically transformed 
the genomic research field. The advancement that this process witnessed during the 
last decade has led to the continuous generation of immense amounts of data, put-
ting the genomic field among the top big data generating fields [1]. Although the cap-
tured sequence itself does not express ready to use information, it can be transformed 
throughout a complex process that deduces the proteins drawn from the sequence. In 
order to predict the expression of this protein and whether it is cancerous or not, the 
draft genome is compared to previously known cancer genome sequences [2].

The accumulation of genomic data has raised multiple challenges to produce a logi-
cal and coherent picture of the genomic basis of Cancer. Although cancer prognosis is 
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very complicated due to the nature of the genomic datasets that contain thousands of 
features but relatively fewer samples. Early diagnosis is the key to increase the chances 
of healing, which makes the process highly crucial. Traditional machine learning tech-
niques fall short in this area since they are used to dealing with datasets that have few 
features and multiple samples [3] leading to the necessity of novel technologies, hence, 
big data analytical techniques.

Mining genomic data is a challenging process due to the fact that this type of data 
meets the criteria, problems and challenges of big data. Big data refers to information 
with massive volume and high dimensional space [4], it is usually defined through its 
four characteristics: volume (physical size of data); variety (structure and diversity of 
data types); velocity (rate at which data is being generated and at which it needs to be 
processed) and value (the usefulness of analyzing big data). To overcome these chal-
lenges, frameworks such as the Hadoop’s implementation of MapReduce [5] were 
developed, which are designed not only to address these issues but also to work with 
low commodity hardware [6]. Other prominent big data technologies such as Apache 
Spark [7] support the same applications and share the same parallelization background 
as Hadoop, while retaining the scalability and fault tolerance of MapReduce with more 
flexibility. The different new frameworks offer numerous ecosystems that allow data sci-
entists to conduct several operations among the data analysis process. One of the most 
important steps of this process, when it comes to genomic big data, is the preprocessing 
task, more precisely the feature selection step due to the complex nature of these data-
sets. Feature selection is the process of finding a new subset identifying relevant features 
in the original dataset and discarding irrelevant and redundant features in order to even-
tually build models in different analysis tasks [8]. Feature selection algorithms can be 
categorized into six groups (see Table 1): filters, wrappers, embedded, hybrid, ensemble 
and integrative, depending on the structuration nature of the selection algorithm and 
the clustering model building [9].

Successfully dealing with big and complex data preferably requires parallel process-
ing and cluster computing. Among the numerous solutions for parallel processing, 
lately, Apache Spark has proved to be more potent than other solutions when dealing 

Table 1  Groups of feature selection algorithms

Group Group description

Filters Use independent techniques to select features. The set of features is chosen by an evaluation crite-
rion, or a score to assess the degree of relevance of each characteristic [10]

Wrappers The wrappers are feature selection methods that evaluate a subset of characteristics through its 
classification performance using a learning algorithm. The evaluation is achieved using a classifier 
that estimates the relevance of a given subset of characteristics [11]

Embedded Embedded methods combine the qualities of filter and wrapper methods. As the filter methods 
have proved to be faster yet not very efficient while the wrapper methods have proved to be 
more effective but very computationally expensive especially with big datasets, a solution that 
combines the advantages of both methods was needed

Hybrid A feature selection method that applies multiple conjuncted primary feature selection approaches 
consecutively [12]

Ensemble Ensemble methods aggregate groups of gene sets of diverse base classifiers. It consists of the use of 
different feature subsets, or so-called ensemble feature selection [13]

Integrative Integrate external knowledge for gene selection [14]
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with massive data [15]. “Apache Spark is an open source tool that can complete jobs 
considerably faster than previous Big Data tools, namely Apache Hadoop, by virtue of 
its in-memory caching, and optimized query execution” [16]. Spark’s capacity to effi-
ciently and expeditiously process colossal datasets, led us to choose it as a platform 
for our approach.

The need for parallelizing the feature selection process is highly desired [17], which 
raises multiple issues due to the complexity of the dependencies between the differ-
ent features [18]. The usage of efficient feature selection algorithms that ensure high 
accuracy with time optimization is the key to a successful analysis. Therefore, in this 
study, a three layered hybrid distributed approach using Apache Spark is proposed 
and the following contributions were attained:

•	 A parallelized version of the BPSO algorithm for effective feature selection.
•	 A parallelized combination of PSO and k-means algorithm in order to present a 

relevant clustering.
•	 The approach was tested on five benchmark datasets, breast cancer tumor, Colon 

cancer, Leukemia, Lung cancer, Gene expression cancer RNA-Seq datasets to 
prove its efficiency and speed.

•	 The SDPSO approach provides an average purity and F-measure scores that are 
significantly higher than four state of the art methods, namely, k-means, Genetic 
Algorithm (GA), the Density-Based Spatial Clustering of Applications with Noise 
(DBSCAN) and the hybrid PSO-GA [19].

The rest of this paper is organized as follows. In “Related works” section, a review 
of previous related works is presented. “Methods” section highlights the math-
ematical background, the methods and the components of the proposed approach. 
The detailed description of the proposed approach is explained in “Our proposed 
approach” section. “Results” section discusses the experimental design, evaluation 
metrics, configurations of experiments and a description of the used datasets for the 
purpose of experimentation, followed by the experimental results. The findings and 
results of the approach are discussed in “Discussion” section, followed by the limita-
tions of the study in “Limitations of the study” section. In “Conclusion, perspectives 
and future work” section, the paper is concluded with a summary of the findings and 
future work directions.

Related works
This section is divided into two main subsections, the first one deals with previously 
proposed Binary Particle Swarm Optimization (BPSO) based feature selection meth-
ods while the second sub section reviews a number of Particle Swarm Optimization 
(PSO) based approaches for clustering problems (see Tables 2 and 3).

The main idea behind feature selection is choosing subsets of features from an orig-
inal set. A subset that should necessarily and reasonably represent the original data 
along with being beneficial for analysis tasks. The feature selection task is centered on 
the search for an optimal solution in a usually large search space in order to assuage 
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the clustering task. Although immensely critical, a good feature selection algorithm is 
not sufficient, the later should be supported by an appropriate clustering algorithm. 
Several researchers have chosen the PSO algorithm for data clustering.

The solutions described above generally focus on one aspect in the analytical process, 
the proposed approach is a conglomerate one that targets big and complex data through 
the parallelization of the computation using Apache Spark, as well as combining an inte-
grative feature selection algorithm BPSO with the PSO for clustering. Along with the 
contribution in enhancing the computational time due to the parallelized implementa-
tion, the proposed approach provides the best in average, of purity and F-measure and 
the lowest entropy when tested with five complex multidimensional datasets compared 
to four state of the art algorithms.

Table 2  BPSO based feature selection methods

Authors Title Contributions

Chuang et al. [20] Improved binary PSO for feature selection 
using gene expression data

An improved BPSO (IBPSO) to implement 
feature selection for gene expression data 
along with the K-nearest neighbor (KNN) 
method serving as an evaluator of the 
IBPSO as a classifier for expression data. 
The authors affirm a 2.85% higher accuracy 
compared to the previously best results 
published

Yang et al. [21] Boolean binary particle swarm optimization 
for feature selection

A Boolean function which improves on the 
disadvantages of standard BPSO and use 
it to implement feature selection tasks for 
six microarray datasets. The experimental 
results also illustrate that the proposed 
method improves the performance 
on clustering gene expression data in 
accuracy

Behjat et al. [22] A New Binary Particle Swarm Optimization 
for Feature Subset Selection with Support 
Vector Machine

A novel feature selection method called 
the New Binary Particle Swarm Optimiza-
tion (NBPSO) to choose a set of optimal 
features. The proposed feature selection 
method was tested in classification experi-
ments using a Support-Vector Machine 
(SVM) model to classify emails according 
to the various features as input

Wei et al. [23] A BPSO-SVM algorithm based on memory 
renewal and enhanced mutation mecha-
nisms for feature selection

A mutation enhancement of the BPSO-SVM 
algorithm through adjusting the memory 
of Local and Global Optimum (LGO). The 
algorithm also aims to increase particles’ 
mutation probability for feature selec-
tion to overcome convergence prema-
ture problems and achieve high quality 
features. Experimental results carried 
out on numerous datasets indicate that 
the proposed algorithm improved the 
accuracy and decreased the number of 
feature subsets

Kumar et al. [24] An improved BPSO algorithm for feature 
selection

A hybrid feature selection approach BPSO–
SCA. The approach performs cluster analy-
sis by employing a cross breed technique 
of Binary Particle Swarm Optimization 
(BPSO) and Sine Cosine Algorithm (SCA) 
designated as Hybrid Binary Particle 
Swarm Optimization and Sine Cosine 
Algorithm (HBPSOSCA), which aims to 
increase the analysis accuracy
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Methods
Particle Swarm Optimization (PSO) has attracted significant attention as a technique 
that enhances the feature selection process due to its efficiency in solving optimization 

Table 3  PSO based clustering methods

Authors Title Contributions

Ghorpade-Aher et al. [25] Clustering Multidimensional Data with 
PSO based Algorithm

An advanced PSO algorithm entitled as 
Subtractive Clustering based Boundary 
Restricted Adaptive Particle Swarm 
Optimization (SC-BR-APSO) algorithm 
for clustering multidimensional data. 
The authors compare their algorithm 
with several algorithms using nine dif-
ferent datasets and affirm results with 
a minimum error rate and a maximum 
convergence rate

Niknam et al. [26] An efficient hybrid evolutionary optimiza-
tion algorithm based on PSO and SA for 
clustering

A hybrid evolutionary programming 
based clustering algorithm, called 
PSO-SA, combining PSO and Simu-
lated Annealing (SA), behind which 
the basic idea is to search around 
the global solution using SA and to 
increase the information exchange 
among particles using a mutation 
operator to escape local optima. The 
authors test their approach on three 
datasets, Iris, Wisconsin Breast Cancer, 
and Ripley’s Glass, and provide evi-
dence of the effectiveness of PSO-SA 
in finding optimal clusters

Dudeja [27] Fuzzy-based modified particle swarm 
optimization algorithm for shortest 
path problems

A method that reduces the cost and 
time consumption with the help of 
fuzzy rules. The author proposes an 
enhancement of the execution of 
Modified Particle Swarm Optimization 
(MPSO) to assess the most limited way 
calculation with fuzzy rules. This hybrid 
method entitled Fuzzy-based Modified 
Particle Swarm Optimization showed 
an improved encoding efficiency, time 
consumption and cost

Cai et al. [28] A Novel Clustering Algorithm Based on 
DPC and PSO

A clustering algorithm based on Density 
Peaks Clustering (DPC) and PSO (PDPC) 
that aims to overcome the numerous 
disadvantages of the DPC algorithm 
such as its inability to automatically 
determine the cluster centers and 
the possibility of the selected cluster 
centers to fall into a local optimum, 
which is surmounted through the use 
of the PSO algorithm best known for 
its capacity to rapidly reach the cluster 
cente

Mahesa et al. [29] Optimization of fuzzy c-means clustering 
using particle swarm optimization in 
brain tumor image segmentation

A clustering technique using the fuzzy 
c-means optimized through the use 
of the PSO algorithm labeled as (FCM-
PSO). The study aims to prove that 
this optimization shows better results 
than the non optimized version of the 
fuzzy c-means. To do so, the authors 
tested with six brain tumor images and 
demonstrate that the use of the PSO 
to enhances the clustering results
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problems [30]. In addition for it being an “anytime algorithm” that produces solutions 
for any given computational time [31], its simple yet effective principle and solid global 
search capacity, leading to finding the optimal solution in relatively few iterations [28] 
were among the main motivations behind the choice of the algorithm as the main con-
stituent of our approach. This section provides a description of the background algo-
rithms behind the approach as well as the statistical preliminaries.

Feature selection algorithm

Carefully understanding the dataset along with dimensionality reduction issues before 
any data analysis process are crucial to the success of the analysis itself [32]. Data pre-
processing involves transforming raw data into a format that is suitable for process-
ing. Real-world data is often incomplete, inconsistent, and is likely to contain noise and 
errors. Data preprocessing is an endorsed method resolving such issues [33]. Feature 
selection is a preprocessing technique that automatically selects the features which con-
tribute the most either to the clustering process or to the desired output. Having irrel-
evant features in the dataset can decrease the accuracy of clustering models and forces 
the clustering algorithm to process based on irrelevant features. Therefore, it is recom-
mended to conduct a feature selection task before training a model. The feature selec-
tion algorithm in this work is a PSO-based algorithm termed the Binary PSO algorithm. 
The algorithm was originally introduced as an optimization technique for real-number 
spaces and has since then been successfully applied in many areas: function optimiza-
tion, artificial neural network training, fuzzy system control, and other application prob-
lems [34]. Many optimization problems occur in a space featuring discrete, qualitative 
distinctions between variables and between levels of variables. Kennedy and Eberhart 
introduced BPSO [35], which can be applied to discrete binary variables.

In BPSO, a particle i is a pair (Xi,Vi) of two n-dimensional vectors Xi and Vi , where n is 
the total number of genes in a dataset. Xi is a binary vector that represents the position 
of the particle and Vi is the velocity of the particle. In the PSO algorithm, every solution 
of a given problem is considered as a particle which is able to move in a search land-
scape. In a binary space, a particle may move to near corners of a hypercube by flipping 
various numbers of bits, if a set of genes is selected, a bit takes the value 1, if not, it takes 
the value 0. An example of the process’ outcomes using an example section of the gene 
expression data is featured in Tables 4 and 5.

The movement of the particle is expressed by the two following vectors, the particle 
vector, Eq. (1), and the velocity vector, Eq. (2):

where xdi ∈ 0, 1, i = 1, 2, . . . ,m (m is the total number of particles), d = 1, 2, . . . , n (n is 
the dimension of data).

To update the position vector of a particle, the movement direction and the speed of 
that particle are defined as follows:

(1)Xi =(x1i , x
2
i , . . . , x

n
i )

(2)Vi =(v1i , v
2
i , . . . , v

n
i )
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where w is the inertial weight, vdi  is the velocity of particle i at dimension d, c1 and c2 
are acceleration constants, r1 and r2 are random values, xdi  is the position of particle i at 
dimension d, pbestdi  is the best previous position of the ith particle, gbestdi  is the global 
best position of all particles.

The next velocity is defined by three components, the current velocity vdi  , the distance 
towards the personal best (pbest) and the distance towards the global best (gbest). For 
the second and third components, the distance to the personal best and the distance to 
the global best must be defined and each component is multiplied by an acceleration 
constant c and a random value r to increase or decrease its impact.

Equation (4) is applied to update the position of each particle. The velocity in BPSO 
indicates the probability of the corresponding element in the position vector taking 
value 1. A sigmoid function s(vdi  ) is introduced to transform vdi  to the interval of (0, 1).

where r3 is a generated random value.

The BPSO fitness function is:

where: A(Xi) ∈ [0, 1] is the leave one cross validation accuracy on the training set using 
the only genes in Xi , R(Xi) is the number of selected genes in Xi , M is the total number 

(3)vd+1
i = w × vdi + c1r1 × (pbestdi − xdi )+ c2r2 × (gbestdi − xdi )

xdi =

{

1, if r3 < s(vdi )
0, otherwise

(4)s(vdi ) =
1

1+ e−vdi

(5)fitness(Xi) = w1 × A(Xi)+ (w2(M − R(Xi))/M)

Table 4  Example of gene expression data with particle position

1 0 0 1 1
Gene 1 Gene 2 Gene 3 Gene 4 Gene n

Sample 1 0.5 0.4 0.31 0.45 0.55

Sample 2 0.4 0.69 0.2 0.2 0.3

Sample 3 0.33 0.75 0.3 0.8 0.9

Sample 4 0.1 0.68 0.4 0.88 0.5

Sample 5 0.6 0.11 0.35 0.9 0.4

Table 5  Example of selected gene subset

Gene 1 Gene 4 Gene n

Sample 1 0.5 0.45 0.55

Sample 2 0.4 0.2 0.3

Sample 3 0.33 0.8 0.9

Sample 4 0.1 0.88 0.5

Sample 5 0.6 0.9 0.4
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of genes for each sample, w1 and w2 are two priority weights corresponding to the impor-
tance of accuracy and the number of selected genes, respectively, w1 ∈ [0.1, 0.9] , 
w2 = 1− w1.

Clustering algorithm

After the preprocessing step, a final step of analysis is conducted based on the PSO algo-
rithm. PSO algorithm is a population based stochastic optimization technique developed 
by Kennedy and Eberhart [36]. As the name itself asserts, this method draws inspiration 
from natural life of swarms of birds. It uses the same principle to find the most optimal 
solution to a problem in the search space as birds do to find their most suitable place in 
a swarm [37]. PSO shares many similarities with evolutionary computation techniques 
such as Genetic Algorithms (GA) [38], but it is proved that the PSO algorithm provides 
faster convergence and finds better solutions when compared to GA. The implementa-
tion of PSO is also simple with a higher computational efficiency [39]. The many advan-
tages within this algorithm have led us to choose it for the clustering model.

The clustering task is the main goal of the study. Therefore, a combination of PSO 
algorithm along with k-means algorithm is suggested in this work. PSO is a population-
based stochastic optimization technique, it simulates the social behavior of organisms. 
This behavior can be described as an automatically and iteratively updated system. In 
PSO, each single candidate solution can be considered a particle in the search space. 
Each particle makes use of its own memory and the knowledge gained from the swarm 
as a whole to find the best solution. All of the particles have fitness values, which are 
evaluated using a fitness function in order to be optimized. During movement, each par-
ticle adjusts its position by changing its velocity according to its own experience and 
according to the experience of a neighboring particle, thus making use of the best posi-
tion encountered by itself and its neighbor. Particles move in the problem space follow-
ing a current of optimum particles. The PSO algorithm consists of three steps, which are 
repeated until a predefined stopping condition is met [40]: 

1.	 Evaluate the fitness of each particle,
2.	 Update personal and global best fitness and positions,
3.	 Update velocity and position of each particle,

Fitness evaluation is conducted through supplying the candidate solution to the objec-
tive function. Personal and global best fitness and positions are updated through com-
paring the newly evaluated fitness against the previous personal and global best fitness, 
and replacing the best fitness and positions. The velocity of each particle i in the swarm 
is updated using Eq. (6):

In Eq. (6), vdi  is the velocity of particle i at time d, and xdi  is the position of particle i at 
time d. The parameters w, c1 , and c2 (0 ≤ w ≤ 1.2, 0 ≤ c1 ≤ 2, and 0 ≤ c2 ≤ 2) are user-
specified coefficients. The values r1 and r2 (0 ≤ r1 ≤ 1 and 0 ≤ r2 ≤ 1) are random values 

(6)vd+1
i = w × vdi + c1r1 × (pbestdi − xdi )+ c2r2 × (gbestdi − xdi )
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regenerated for each velocity update. The value pbestdi  is the personal best candidate 
solution for particle i at time d, and gbestdi  is the swarm’s global best candidate solution 
at time d.

Each of the three terms of the velocity update equation have different roles in the PSO 
algorithm. The first term w × vdi  is the inertia component, responsible for keeping the 
particle moving in the same direction it was originally heading. The value of the inertial 
coefficient w is typically between 0.8 and 1.2, which can either weaken the particle’s iner-
tia or accelerate the particle in its original direction [41]. Generally, lower values of the 
inertial coefficient speed up the convergence of the swarm to optima, and higher values 
of the inertial coefficient encourage exploration of the entire search space.

The second term c1r1 × (pbestdi − xdi ) , labeled the cognitive component, acts as the 
particle’s memory, causing it to tend to return to the regions of the search space in which 
it has experienced high personal fitness. The cognitive coefficient c1 is usually close to 2, 
and affects the size of the step the particle takes toward its personal best candidate solu-
tion pbestdi  . The third term c2r2 × (gbest − xdi ) , labeled the social component, causes the 
particle to move to the best region the swarm has previously found. The social coeffi-
cient c2 is typically close to 2, and represents the size of the step the particle takes toward 
the global best candidate solution gbest the swarm has found so far.

The random values r1 in the cognitive component and r2 in the social component cause 
these components to have a stochastic influence on the velocity update. This stochas-
tic influence causes each particle to move in a semi-random manner influenced in the 
directions of the personal best solution of the particle and the global best solution of the 
swarm. In order to keep the particles from moving too far beyond the search space, a 
technique called velocity clamping is used to limit the maximum velocity of each particle 
[40]. For a search space bounded by the range [−xmax, xmax] , velocity clamping limits the 
velocity to the range [−vmax, vmax] , where vmax = k × xmax.

The value k represents a user-specified velocity clamping factor, 0.1 ≤ k ≤ 1.0 . In 
many optimization tasks, such as the ones proposed in the paper, the search space is 
not centered around 0 and thus the range [−xmax, xmax] is not an adequate definition 
of the search space. In such a case where the search space is bounded by [xmin, xmax] , 
vmax = k × (xmax − xmin)/2 are defined. Once the velocity for each particle is defined, 
each particle’s position is updated by applying the new velocity to the particle’s previous 
position:

This process is repeated until a predefined stopping condition is met. Common stopping 
conditions include a predefined number of iterations of the PSO algorithm or a prede-
fined target fitness value.

Our proposed approach
Medical datasets tend to be characterized by missing values and noise, therefore, before 
engaging in the analysis step, datasets are cleaned as a first step. The list of available pre-
processing functions includes instance selection. Approaches for instance selection can 
be applied for reducing the original dataset to a roughly manageable volume, leading 

(7)xd+1
i = xdi + vd+1

i Rn,n
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to a reduction of the computational resources that are necessary for performing the 
analysis process. Algorithms of instance selection can also be applied for removing noisy 
instances, before applying learning algorithms, which is a step that can improve the 
accuracy in clustering problems [42].

Another important step within the preprocessing task is the feature selection process 
that consist mainly of three types of methods filter, wrapper and embedded methods. 
Filter methods act as preprocessors that rank the features wherein the highly ranked fea-
tures are selected and applied to a predictor. In wrapper methods, the feature selection 
criterion is the performance of a predictor, which is wrapped in a search algorithm that 
finds a subset giving the highest predictor performance. Embedded methods include 
variable selection as part of the training process. Three other feature selection methods 
inspired from the previously mentioned ones, are the hybrid, ensemble and integrative 
methods, they also have shown good performance depending on the type of the problem 
in hand.

For this work, a BPSO based wrapper approach to feature selection is proposed 
along with mutual information of each pair of features, which determines the relevance 
and redundancy of the selected feature subset. Mutual information is a nonparamet-
ric, model-free method for scoring a set of features. It can be used to spot all relevant 
features, and to identify groups of features that allow building a valid clustering [43]. 
BPSO algorithm is used in binary discrete search spaces. BPSO along with the entropy 
of each group of features, evaluate the relevance and redundancy of the selected feature 
subset [44]. The BPSO-based wrapper is followed by a hybrid PSO-k-means algorithm 
to process the previously cleaned and preprocessed data in order to achieve a desired 
performance.

Our SDPSO approach consists of three main phases, (see Fig. 1). The datasets tend to 
contain null values, extra spaces and insignificant duplications. Therefore, as a first step, 
datasets are cleaned in order for them to only contain acceptable formats. The cleaned 
data is then used as an input to construct the BPSO model that provides a preprocessed 
dataset with a convenient number of features ready for analysis. The approach can be 
summarized in the following steps:

Step 1: Keeping in mind that a particle is considered as the centroid of the cluster, 
initialize the position and the velocity of the particles.
Step 2: Evaluate the fitness for each particle based on Eq. (5).
Step 3: If the maximum number of iterations (15 for our approach) is reached go to 
step 7, if not go to step 4.
Step 4: The pbest and the gbest are saved and used to update the particles’ position 
and velocity according to Eqs. (3) and (4).
Step 6: If the gbest is stable when the maximum iterations is reached, move to step 7, 
if not move back to step 3.
Step 7: BPSO results: recommended set of features.
Step 8: Reinitialize the swarms from the solution space.
Step 9: Evaluate the fitness for each particle.
Step 10: The pbest and the gbest are saved and used to update the particles’ position 
and velocity according to Eqs. (6) and (7). If a particle shows tendency to converge 
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exceeding the boundary, each space is bounded by the range [−xmax, xmax] , velocity 
clamping limits the velocity to the range [−vmax, vmax] , where vmax = k × xmax.
Step 11: If the gbest is unvarying when the maximum iterations is reached go to Step 
12, if not go back to Step 10.
Step 12: Finish the clustering task with the k-means algorithm to find the local opti-
mum using as initial the centroids that resulted from the previous PSO steps.

The BPSO starts by the initialization of the population. First, the position and velocity 
of particles within the search space are randomly initialized. Second, the fitness values 
of particles is defined. The first fitness values and positions are the personal best values 
and the personal best positions (pbest). The global best value and the global best posi-
tion (gbest) are set to the fitness value and position of the particle with the best fitness 
value in the entire population. Third, all particles are moved to their new positions using 
Eq. (3). All fitness values are evaluated again and personal best positions are updated 
for particles that have a new fitness value (ultimately better than the old personal best 
value). The global best position is updated if there is any particle with fitness value that is 
better than the old global best value. All particles are moved to their new positions. The 
algorithm continues evaluating the fitness values and updating the personal best values, 

Fig. 1  SDPSO flowchart for feature selection and clustering
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the personal best positions, the global best value, and the global best position. It stops 
when a limit on the number of iterations is reached.

The clustering algorithm used in the SDPSO is a hybrid one. A combination of PSO 
with k-means is favored due to the fact that the convergence speed of PSO algorithm 
near the solution is relatively slow. The k-means algorithm, on the contrary, near the 
solution, converges fast to a local optimum result, but its ability to find the global 
solution is weak. Therefore, the combination of the two allows us to find the optimum 
more quickly. The hybrid algorithm starts with clustering data through PSO, which 
allows to search all space for a global solution. When the region of global optimum is 
found by the PSO, the clustering task is resumed using k-means. The hybrid algorithm 
accelerates the convergence speed as well as the accuracy. Thus, the k-means algo-
rithm finalizes the clustering task. When the value of fitness function for a number of 
successive iterations changes negligibly the clustering algorithm switches to k-means. 
All the particles are updated and a new generation of particles is generated. The new 
particles are used to search the global best position in the solution space. The novelty 
is that the k-means algorithm is used to search around the global optimum.

Results
Experimental design

In order to test the performance of the SDPSO approach and its capacity to process 
highly dimensional datasets in low computational runtime, the experimentation is 
initiated using a non-distributed architecture, followed by a distributed one using 
PySpark on Spark 2.4. The non-distributed experiments are conducted on a single 
machine with Ubuntu 16.04 using 4 GB RAM, 4 CPU, and a stable version of Python 
2.7 is used to implement the approach. The parallelized experiments are conducted 
using Apache Spark.

Our approach is implemented through the use of the many advantages presented by 
Apache Spark, namely, the parallel processing notion using Spark Resilient Distrib-
uted Datasets (RDD). In the master node, each particle is modelled through the use 
of a Python class. A swarm is then created using instances of the class and processed 
into the RDD. The updating of the particles’ position and velocity are conducted in 
the slave nodes. The updated best values are sent back to the master node to deter-
mine and update the new global best, which is again forwarded to the slave nodes for 
update. This process continues until the limited number of iterations is met.

Dataset description

Five benchmark datasets are chosen to test the performance of this approach, each 
dataset has two labels M = Malignant, B = Benign.

•	 Breast cancer tumors: A dataset with examples labeled as either malignant or 
benign with 30 features [45].

•	 Colon cancer: A colon cancer dataset which contains information on 62 samples 
for 2000 genes. The samples belong to tumor and normal colon tissues [46].
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•	 Leukemia: The total number of genes to be tested is 7129, and the number of sam-
ples to be tested is 72 [47].

•	 Lung cancer: The lung dataset contains 181 tissue samples. Each sample is 
described by 12533 genes [48].

•	 Gene expression cancer RNA-Seq dataSet: composed of 20531 features, this data-
set is used in the experiments due to its complex nature and the diversification of 
its features [49].

The datasets were selected to have various numbers of features, classes and instances 
as representative samples of the problems that the proposed approaches can address 
(see Table 6).

Evaluation metrics

As evaluation metrics to test the performance of our approach, entropy, purity and 
F-Measure are used. Entropy and purity are widely used measures to determine the 
clustering efficiency. For each cluster, entropy uses external information class labels 
to test the performance. Lower entropy means better clustering. The Entropy is mag-
nified when the members of the cluster are more diversified. So we aspire low entropy 
for every cluster in order to maintain the efficacy of the clustering task. For each clus-
ter, purity determines the largest class and it attempts to capture how well the groups 
match with the reference on average [50]. To define the entropy E, we start by defin-
ing the probability Prob that a member of a cluster j belongs to class i.

where Nij is the number of members of a class i in a cluster j and Nj is the number of 
members in a cluster j. The entropy of a cluster is defined as follows:

where k is the number of classes. The total entropy is defined as follows:

(8)Prob(i, j) =
Nij

Nj

(9)E(j) = −

k
∑

i=1

Probij log2 Probij

(10)E =

n
∑

j=1

Nj

N
Ej

Table 6  Dataset description

Datasets Features Instances

Breast cancer 32 569

Colon ccancer 2000 62

Leukemia 7129 72

Lung cancer 12,533 181

Gene expression cancer 20,531 801
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where N is the total of members and n is the number of clusters.
The purity Pu of a cluster is defined as follows:

The overall purity is defined as follows:

where N is the total of members and n is the number of clusters.
F-measure is a technique that combines the precision and the recall measurements 

from information retrieval literature [51]. The precision P and recall R of a cluster j 
(generated by the clustering algorithm) with respect to a class i (prior knowledge of 
the datasets) is defined as [52]:

where Nij is the number of examples of class i within cluster j, Nj is the number of items 
of cluster j and Ni is the number of members of class i. The corresponding value of the 
F-measure is:

With respect to class i, members of i may be organized into different clusters. That will 
generate multiple F-measure value for class i. The cluster with the highest F-measure 
score is considered as the cluster for class i. The overall F-measure for the clustering 
result of one algorithm is computed as:

where n is the number of the clusters in the dataset and |i| is the number of data objects 
in class i. The F value is limited within the interval [0, 1]. The higher, the F-measure is, 
the better the clustering result are.

Experimental results

The experimentations are divided into two main parts. The first experiment tests the 
BPSO feature selection method against two prominent feature selection methods, 
which are implemented on the same datasets of interest. The second part of the experi-
mentation is testing the runtime as well as the accuracy of the SDPSO approach. Both 

(11)Puj = max
i

Probij

(12)Pu =

n
∑

j=1

Nj

N
Puj

(13)P(i, j) =
Nij

Ni

(14)R(i, j) =
Nij

Nj

(15)F(i) =
2PR

P + R

(16)F =

n
∑

i=1

|i| ∗ F(i)

n
∑

i

|i|
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experiments are conducted on the five benchmark datasets previously described in 
“Dataset description” section.

Feature selection results

The preprocessing step using the BPSO-based feature selection algorithm is tested 
against two prominent feature selection algorithms in order to justify our choice:

•	 CFS: Correlation-based feature selection is a filter method that ranks feature subsets 
according to an appropriate correlation measure and a heuristic search strategy [53].

•	 ReliefF: An extension of the binary-classification Relief algorithm [54] which was 
limited to binary classification problems. ReliefF [55] can deal with multiclass prob-
lems, which makes of it an improved algorithm that is more likely to handle incom-
plete and noisy data [56].

Table 7 displays the number of features selected by each of the three feature selection 
methods, CFS, ReliefF and BPSO. It is noted that the number of features selected by 
BPSO is noticeably higher than the number of features selected by CFS and reliefF 
respectively.

SDPSO results

The accuracy of the SDPSO results, after it was tested on five benchmark datasets with 
different characteristics are expressed in Table 8 and Fig. 2. Five experimental trials are 

Table 7  Number of selected features per algorithm

Datasets/feature selection Initial feature set CFS ReliefF BPSO

Breast cancer 32 3 8 17

Colon cancer 2000 19 500 1249

Leukemia 7129 36 1782 4101

Lung cancer 12,533 40 3133 6721

Gene expression cancer 20,531 97 5133 11,306

Table 8  Comparative results of  SDPSO entropy and  purity with  k-means, GA, DBSCAN 
and hybrid PSO-GA for the five datasets

Datasets Breast cancer Colon cancer Leukemia Lung cancer GE cancer

Methods Entropy Purity Entropy Purity Entropy Purity Entropy Purity Entropy Purity

k-means 0.32 0.74 0.24 0.79 0.12 0.86 0.15 0.89 0.34 0.69

GA 0.15 0.82 0.18 0.84 0.29 0.69 0.11 0.88 0.38 0.61

DBSCAN 0.09 0.92 0.16 0.79 0.12 0.88 0.21 0.77 0.35 0.71

Hybrid PSO-GA 0.10 0.89 0.21 0.88 0.16 0.86 0.10 0.92 0.34 0.71

SDPSO 0.06 0.97 0.25 0.85 0.13 0.91 0.08 0.95 0.30 0.73
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conducted with each dataset and the means of the five values was taken into considera-
tion as the final result. For Breast cancer and Lung cancer the approach achieved consid-
erably high accuracy. For the rest of the datasets, despite the lower purity and F-Measure 
scores, it is still in general relatively credited compared to results provided by the four 
state of the art methods, namely, k-means, GA, DBSCAN and hybrid PSO-GA algo-
rithms, applied on the same datasets of interest. As can be observed, the effectiveness 
of the SDPSO approach is demonstrated as it yields the lowest in average of entropy 
0.16 compared to the average entropy of 0.23, 0.22, 0.19 and 0.18 for the k-means, GA, 
DBSCAN and hybrid PSO-GA algorithms respectively. Our approach also shows a bet-
ter purity average of 0.88 and F-measure average of 0.87 compared to a purity average 
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Fig. 2  Comparative results of SDPSO F-Measure with k-means, GA, DBSCAN and hybrid PSO-GA for the five 
datasets

Table 9  SDPSO runtime for the five datasets (s)

Non-parallelized Parallelized

Breast cancer 137 18

Colon cancer 813 122

Leukemia 9841 954

Lung cancer 253,018 3128

Gene expression cancer +∞ 14,751
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of 0.79, 0.77, 0.82 and 0.85 and an F-score average of 0.82, 0.79, 0.84 and 0.85 for the 
k-means, GA, DBSCAN and hybrid PSO-GA algorithms respectively.

Another test was conducted to test computational cost as well as to emphasize on the 
importance of the parallelized approach. The parallelized interpretation of the approach 
is compared with the non-parallelized one. The average total runtime of the SDPSO 
approach is indicated in Table 9 for both the non-parallelized and the parallelized imple-
mentations. Similarly to the previous experimentation, all the experiments are run 
five times and the parallelized implementation shows faster runtime compared to the 
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Fig. 3  SDPSO non-parallelized implementation runtime for the five datasets (s)
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non-parallelized one along with a good accuracy average (see Figs. 3 and 4). Evidently, 
the number of the features influences the total runtime since it adds to the complex-
ity of the computation. For the Gene Expression Cancer, the total runtime exceeded 8 
days without showing any iteration result, which prompts us to consider it as an infinite 
runtime.

Discussion
Nowadays, it is pivotal in many fields to develop scalable approaches that can effi-
ciently optimize processes and solve scalability issues. In the medical field, due to the 
critical nature of the data, it is crucial to obtain satisfying efficiency with lower time 
response. The use of horizontal scaling through Apache Spark combined with con-
glomerate and encompassing computational techniques allow organizations to access 
strong computational strength in approachable prices compared to the vertical scal-
ing which demands high commodity hardware. The aim of this work is to provide 
an encompassing fast and accurate approach that can be afforded by medical organi-
zation through the implementation of a PSO-based approach in Apache Spark that 
is famously known for its capacity to optimize the computation cost in comparison 
with the vertically scalable solution that require the purchase of high commodity 
hardware.

Performance and accuracy

In the previous section, the experimental results demonstrate that SDPSO provides 
promising results both in terms of runtime and accuracy. High accuracy is pivotal, 
especially with medical data where very little room of error is allowed. SDPSO perfor-
mance was assessed using five genomic datasets, the breast cancer, the colon cancer, 
the leukemia, the lung cancer and the genetic expression cancer datasets; it notice-
ably outperforms four state of the art algorithms, namely, k-means, GA, DBSCAN 
and hybrid PSO-GA yielding a purity that varies from 0.78 to 0.97, an F-measure that 
varies from 0.75 to 0.96 and an entropy that varies from 0.06 to 0.30 depending on 
the complexity of the dataset; taking into consideration that the higher the purity and 
F-measures are and the lower the entropy is, the higher the performance of the clus-
tering task is.

Parallelization, cost and runtime

Moreover, the Apache Spark implementation of the SDPSO approach shows to be much 
faster than a single node non-parallelized implementation of the same approach. The 
BPSO selects more features compared to other feature selection methods, which allows 
it to be designated as a more inclusive method, eventually allowing the accuracy of 
the approach as a whole to increase. Owing to Apache Spark’s efficient data process-
ing, the SDPSO approach gains computational power. SDPSO manages to provide a 
satisfying accuracy in a fairly lower computational time compared to non-parallelized 
approaches. The use of Apache Spark is remarkably cost friendly, it allows the analysis to 
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run smoothly even with low commodity hardware, which is highly required in the medi-
cal field in order to satisfy the needs of the unfortunate medical organizations.

Limitations of the study
Our approach is mainly based on PSO due to the adaptability of the algorithm 
towards different problems simply by modifying or adding fitness functions. This flex-
ibility, along with its efficiency, allow it to be used to operate a wide range of clus-
tering processes. As highlighted through the article, PSO merits to be widely used 
due to its capability to adapt to large amounts of data, using fitness functions distinc-
tively meeting the needs of the study in hand, and the fact that it preforms an effective 
global search of the solution space. Despite its numerous advantages, the PSO-based 
approaches fall short in many aspects. Due to its nature, PSO algorithm relies on a 
number of hyper parameters that are user-supplied and critical to determine in prac-
tice. Methods to test the cohesion and separation measures of the combination of 
k-means with PSO are important and ought to be addressed in future works, however, 
they are beyond the scope of this paper as we rely on the results of the entropy, the 
purity and the F-measure to validate our approach as a whole.

Conclusion, perspectives and future work
In this work a large scale study of the PSO algorithm is presented both as a feature 
selection and as a clustering method applied to cancer datasets. The performance of 
the SDPSO approach is systematically evaluated using five datasets, in order to ana-
lyze the influence of the multidimensional datasets on the outcomes of the analysis 
process. The proposed approach yields the best in average of purity ranging from 0.78 
to 0.97 and in average of F-measure ranging from 0.75 to 0.96 compared to four state 
of the art methods, namely, k-means, GA, DBSCAN and hybrid PSO-GA. Although 
the results vary within the datasets, the general picture provided here helps empha-
size on the importance of the combination of the PSO-based computational tech-
niques with the parallelization’s touch that is added through Apache Spark usage for 
the prognosis tasks on cancer datasets.

Despite the multiple benefits of parallelism, it can be risky if not used properly. Over-
parallelism can be malicious to the accuracy of the results; these issues grow in scale, when 
large and complex datasets are used, the distribution can result in disregarding certain 
meaningful relationships between features. In the light of the above, the proposed approach 
successfully contributes to the reduction of runtime while maintaining reasonable accuracy. 
In a near future, the hope is to contribute in making the literature on large scale data analy-
sis be as mature as the one small scale data. Our main objective is to help ensure acces-
sibility to strong computational creativity, with the minimum of expenses. Given the large 
dimensionality of the used datasets, further investigation is required regarding clustering in 
these spaces, which will be the leading perspective of our future work. The efforts towards 
elucidating this question will most probably involve the use and evaluation of even more 
elaborated feature selection and clustering algorithms.
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