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Introduction
A new paradigm in the energy sector is MES, which captures the interactions among 
various energy carriers, e.g. electricity, heating, and cooling to improve the performance 
of the system [1, 2]. To design robust multi-energy systems, forecasting is of paramount 
importance; therefore, it is of significance to conduct novel and accurate forecast-
ing methods in the multi-energy systems to arrange the operation mode of integrated 
energy system efficiently and economically [3].

Load forecasting as a dominant field of study in designing the multi-energy systems 
draws a lot of interest [2–5]. Conventional load forecasting approaches mainly con-
cerned with only one type of loads, such as power loads, cooling loads, or heating loads. 
However, multi-energy load forecasting, as an ensemble forecasting approach considers 
the aggregated load, which has the intrinsic characteristics of the single load type, as well 
as the relevance among the series [4].
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Long-term load forecasting is an indispensable tool for an effective planning of power 
systems. In long-term forecasting, inaccurate forecasts result in excessive investment, 
not fully utilized generating facilities, or insufficient generation and unfulfilled demand 
[6, 7]. Nevertheless, only few researchers have ever proposed new methods for long-
term load forecasting in comparison with short-term forecasting [7].

The current load forecasting literatures have mainly focused on point forecasting, in 
which the expected value of the future load is forecasted through different techniques 
These forecasting techniques can be categorized as (1) statistical techniques, such as 
regression models, and time series models, (2) artificial intelligence techniques, such 
as neural networks and support vector machines, or (3) hybrid methods which are the 
combination of both statistical and artificial intelligence techniques. The point fore-
casting is mainly applied for very short-term and short-term forecasting, however, in 
medium-term and long-term forecasting, point forecast is not reliable since the inputs 
of forecasting models, which are mainly weather data, suffer from high uncertainty in 
long terms. Instead, probabilistic forecasting is applied for long-term forecasting where 
the possibility of having a demand is presented by a probabilistic value [7].

In spite of the importance of medium-term and long-term forecasting in operation 
and planning of power system, most of studies have focused on point forecasting in the 
short-term horizon, and few studies have been only conducted on probabilistic forecast-
ing. Nonetheless, among these few studies on probabilistic load forecasting, most of 
them have focused on short-term forecasting. In [8], a review on probabilistic load fore-
casting is presented. Table 1 provides an overview of studies carried out in the literature 
of forecasting, taking into account inherent uncertainties in different contexts.

Fuzzy intervals are defined based on the covariance of data in different operating 
points, which are characterized by linear regression models. In this context, a fuzzy 
regression method is presented in [12] to predict the aesthetic quality of a new product 
or service considering all uncertain objective drivers. In this method, a genetic program-
ming is used to develop nonlinear structures of the models while model coefficients are 
determined by optimizing the fuzzy criteria. In short-term and medium-term load fore-
casting context, a fuzzy interaction regression is applied by [13] to forecast electric load 
in the short-term horizon with the help of fuzzy intervals. Moreover, a prediction inter-
val construction model based on linear programming is presented in [14] to quantify 
the variability and uncertainty of the output of photovoltaic generating units for very 

Table 1 Taxonomy of recent studies in probabilistic forecasting

Refs. Forecasting methods Context

[9–11] Probabilistic time series Medium-term load forecasting

[12] Regression Aesthetic quality assessments

[13] Fuzzy regression Short-term load forecasting

[14, 15] Quantile regression Probabilistic forecasting of solar power generation

[16] Probabilistic SVR (Support Vector Regression) General applications

[17] Artificial intelligent methods Very short-term load forecasting

[18] Ensemble BMA package in R Weather forecasting

[19, 20] PDF estimation using machine learning tech-
niques

Wind power ramp forecasting

[21] Group method of data handling (GMDH) Day-ahead electricity peak load interval forecasting
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short-term forecasting purposes (i.e., 5-min). This model is based on extreme learning 
machine and quantile regression. Apart from the considerations concerning the meth-
ods and applications of probabilistic forecasting, provided in Table  1, a fuzzy interval 
model, which is suitable for forecasting of electric demand and the output power of 
weather-dependent renewable energy sources that have limited dispatchability, is also 
presented in [22].

The authors of [23] present a practical methodology for probabilistic load forecasting 
based on a set of predictions, called sister point forecasts, generated from the same fam-
ily of models. This approach performs the quantile regression on the average of sister 
point forecasts and generates prediction intervals of future electric loads. Ref. [24] also 
presents a data-driven framework for probabilistic peak demand estimation using smart 
meter data of the consumers. This approach proposes four main steps including load 
modeling, customer grouping, maximum diversified demand estimation, and peak load 
estimation, to finally address both challenges of the unknown data of future loads and 
the influence of demand diversity among different customers. References [9, 10], among 
others, introduce a comprehensive class of time series models to precisely forecast the 
electric demand of industrial corporations. A simple procedure is also proposed to clas-
sify load profiles and present a probabilistic medium-term load forecasting tool for spe-
cial types of industrial loads.

Among recent research works, the authors of [21] have presented a day-ahead electric-
ity peak load interval forecasting that can easily convert an interval forecasting problem 
into a classification forecasting problem. The authors have applied a semi-supervised 
feature selection algorithm called group method of data handling (GMDH) to address an 
electricity load classification forecasting issue. From a computational point of view, [17] 
has proposed a hybrid method for probabilistic load forecasting, including a generalized 
learning machine to train an improved wavelet neural network, and wavelet preprocess-
ing as well as bootstrapping. This hybrid method provides a load forecasting with high 
reliability, accuracy and speed so that it would be more profitable for practical applica-
tions in the electricity market. However, as far as authors’ knowledge concerned, this 
method has not been used for long-term forecasting purposes.

In a long-term context, [7] has presented a practical methodology for density forecast 
of the long-term peak electricity demand instead of common point-forecast approaches. 
The solution proposed by this methodology can hedge the financial risk caused  by 
uncertain demand. At the  first stage, the authors have used semi-parametric additive 
models to estimate the relationships between demand and the most influential driver 
variables such as temperature, calendar effects, and some economic variables. Then, 
they have forecasted the probability distribution of annual and weekly peak electricity 
demand up to 10 years ahead by using a mixture of temperature simulation, future eco-
nomic scenarios, and residual bootstrapping. This methodology captures the complex 
nonlinear effect of temperature and also other possible drivers such as calendar effects, 
price changes, and economic growth.

Another method which is recently proposed in this area is the probabilistic wind 
power ramp forecasting, which is presented in [19]. The authors have applied an ensem-
ble machine learning technique to generate wind power scenarios and calculate the his-
torical forecasting errors. Then, they used Gaussian mixture model to fit the probability 
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distribution function (PDF) of forecasting errors. This method has not been used for 
demand forecasting purposes, although it is able to predict with a high level of accuracy.

In this paper, we develop the method proposed by [25] for long-term peak load fore-
casting considering different driver variables. In fact, we estimate the PDF of peak load 
in long-term horizons taking into account the most important drivers, like peak load 
in similar seasons in past years, peak load in the last season, population, and GDP. We 
apply a SOMN to estimate the PDF, for the reason explained in [25], which allows much 
more accurate estimates to be obtained with a rapid convergence. The results show good 
forecasting capability of the proposed methodology at predicting the forecast PDF.

The paper is organized as follows. “Proposed method” section presents the model and 
its concepts as well as the SOMN for estimating the PDF. The application and high per-
formance of the proposed approach for a real case study are demonstrated in “Results” 
section. Finally, the conclusions are drawn in “Conclusion and further research” section.

Proposed method
The Concept of the bivariate distribution

Let the random variable Y  denote the randomly selected peak load in a period of time, 
in MW. Then, suppose we are interested in determining the probability that Y  would 
be between 9000 and 10,000  MW, i.e., P(9000 < Y < 10000) . It is clear that the peak 
load increases as the population or GDP increases. So, for the purpose of calculating 
the probability that Y  is between 9000 and 10,000 MW, we will find it more informative 
to first take into account a population or GDP value, say X. That is, we may want to find 
P(9000 < Y < 10000|X = x) . To calculate such a conditional probability, we need to 
find the conditional distribution of Y  given X = x . Based on three assumptions, we can 
easily find the conditional distribution of electric peak load ( Y  ) given electricity price, 
population, GDP or other drivers ( x ). Required assumptions are stated below [26]:

• Peak load ( Y  ) follows a normal distribution (or easily transform to normal distribu-
tion [27]).

• E(Y |x) , the conditional mean of Y  given x is linear with respect to x.
• Var(Y |x) , the conditional variance of Y  given x is constant.

The first assumption is considered to facilitate using the proposed method, and is eas-
ily achievable through transforming from unknown distribution to normal distribution 
(Fig.  5). The associated expected value and conditional variance for second and third 
assumptions are as follows, respectively [26].

It should be mentioned that in machine-learning approaches (e.g., Bayesian method), 
it is common to select a prior distribution. Then, after observing data  X1,…,Xn, we can 
update our beliefs and calculate the posterior distribution f (θ|X1,…,Xn) [28].

(1)E[Y |X = x] = µY + ρσY
x − µX

σX

Var[Y |X = x] =
(

1− ρ2
)

σ 2
Y
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In the next section, the multivariate PDF and conditional density for SOMN will be 
discussed.

Multivariate PDF and conditional density

In the case of a univariate normal distribution, the probability distribution or density 
function of variable y is represented as (1):

where y is the peak load (a random variable), µ is the mean, and σ is the standard 
deviation.

In pattern estimation applications, each sample observation is assigned to a pattern 
component which has a prior probability. These situations are modeled by mixture dis-
tributions. The assumptions indicate that the conditional distribution of Y  given X = x 
is:

where ρ is the correlation coefficient of X and Y .
Based on last three stated assumptions, we found the conditional distribution of Y  

given X = x . In this vein, the fourth assumption would be added; X follows a normal 
distribution for −∞ < x < ∞.

Based on the four stated assumptions, the joint probability density function of X and Y  
is defined as (4).

This joint PDF is called the bivariate normal distribution. In fact, the bivariate distri-
bution represents the joint distribution of two random variables [29]. The two random 
variables X and Y are related to each other in the sense that they are not independent on 
each other. This dependency is reflected by the correlation ρ between the two variables 
X and Y.

Self‑organizing mixture network

According to [25], self-organizing mixture network (SOMN) is a powerful unsupervised 
learning method. This network contains two layers of nodes, including an input layer and 
an output layer. In the input layer, there is a weight vector and a position related to each 
node. The objective of SOMN is to maximize the degree of similarity of patterns within 
a cluster, as well as to minimize the similarity of patterns belonging to different clusters. 

(2)ϕ(y) = 1√
2πσ

exp

{

− 1

2σ 2
(y− µ)2

}

(3)
Y |X = x

∼ N
(

µY + ρ(σY /σX )(X − µX ), σ
2
Y

(

1− ρ2
))

(4)

ϕ(x, y) =ϕ(x)× h(y|x) = 1

2πσxσy
√

1− ρ2
×

exp

{

− 1

2(1− ρ2)

[

(x − µx)
2

σ 2
x

+ (y− µy)
2

σ 2
y

− 2ρ(x − µx)(y− µy)

σxσy

]}
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In addition, SOMN transforms high dimensional input patterns into the responses of 
two-dimensional arrays of neurons, and thus, it can facilitate the detection of the innate 
structure and the interrelationship of data [30–33].

The learning process of SOMN is summarized as follows:
Step 1. Initialize random values for the weights associated with the input pattern.
Step 2. Find the winning node as one whose weights are very similar to the input vec-

tor considering the minimum distance Euclidean criterion.
Step 3. Update the weights of the winner and its neighborhood neurons in such a way 

that by strengthening them, this area would be more likely to fire up when a similar input 
pattern is presented next time. The significance of the strengthening decreases with the 
distance from the winner.

Step 4. The process of weight updating will be performed for a specified number of 
iterations. If the map is not unfolded, the algorithm must restart the training process 
with a different set of initial weights.

SOMN Structure for PDF estimation

The SOM structure for PDF estimation problem is illustrated in Fig.  1, where {µi,Σi} 
are the mean vector and covariance matrix of the ith value of assumed normal density 
function, respectively. Also, ηc is a neighborhood of the winner whose weight must be 
updated. According to previous section, given θi = {θi1, θi2} = {µi,Σi} , the conditional 
probability density of data sample is derived by (5), where pi(y|θi) is the ith component-
conditional density and  Pi is the prior probability of the ith component.

Considering a limited number of conditions, the SOM network places M nodes in the 
input space. The parameters vector θi includes mean vectors and covariance matrices 

(5)p(y|θ) =
k

∑

i=1

pi(y|θi) .Pi

Fig. 1 The structure of SOMN [25]
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related to the assumed bivariate normal density function which are considered as learning 
weights. At each iteration, a sample point is randomly taken from input space i.e., a finite 
data set. A winner is chosen according to its output multiplied by its estimated posterior 
probability [25].

The number of nodes should be equal to or greater than the number of conditions to 
avoid the under-represented problem [25]. The Kullback–Leibler information metric (7), 
also called relative entropy [34], measures the divergence between p(x) and p̂(x) . In (7), the 
density function of the actual data and the estimated one are indicated by p(x) and p̂(x) , 
respectively.

The optimal estimate of parameters in mixture distribution could be calculated by mini-
mizing their partial differentials in respect to each model parameter by Lagrangian method 
considering the constraint 

∑k
i=1 p̂i = 1 . Also, according to [25], if the actual distribution 

function is unknown, the Robbins–Monro stochastic approximation method can be used 
instead of direct Lagrangian method. The parameters updating can be limited to a small 
neighborhood of the winning node, which has the largest posterior probability. Therefore, 
the density can be approximated by a mixture of a small number of nodes at one time:

The learning rules for updating the mean vector and covariance matrix in the SOM algo-
rithms are as follow:

A large neighborhood at the beginning of learning process means a large variance of the 
Gaussians as well as a high mobility for the neurons. This would be helpful to find the global 
optimum, or at least to result in a better local optimum, especially at the beginning of the 
learning. In contrast, small neighborhood sizes mean small variances for the Gaussians as 
well as a low mobility. As the learning progresses, the neighborhood during the process is 
shrink to provide an adjustment to the variance of the Gaussians [25].

Numerical studies and results
In this section, the proposed approach is applied on a real data in Queensland, Aus-
tralia to derive long-term probabilistic forecasting. Half-hourly demand data during 
2001 to 2016 were obtained from Australian Energy Market Operator (AEMO) [35]. 

(6)p̂(θ̂i|y) =
p̂i(y|θ̂i)× P̂i

p̂(y|θ̂ )

(7)I = −
∫

log
p̂(x)

p(x)
× p(x)dx

(8)p̂(x|θ) ≈
∑

i∈ηc
p̂i(x|θ̂i)P̂i

(9)�µ̂i = α(n)P̂(i|x)
[

x(n)− µ̂i(n)
]

(10)
�Σ̂i = α(n)P̂(i|x)×

{

[

x(n)− µ̂i(n)
][

x(n)− µ̂i(n)
]T − Σ̂i(n)

}
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The studied case is examined from two points of view including annual peak load and 
seasonal peak load. The yearly peak load data between 2001 and 2016 is illustrated in 
Fig. 2. The seasonal peak load data between 2007 and 2016 is also depicted in Fig. 3. It 
should be noted that a part of seasonal peak load data is ignored to avoid unnecessary 
historical data. The rest of seasonal data are presented in Table 2.

It is worth mentioning that the SOMN algorithm is implemented in MATLAB© 
and executed on a Windows-based PC with a Core™ i5 processor clocking at 3.2 GHz 
and 4 GB of RAM. In addition, all simulations for comparison and statistical tests are 
implemented in R-Studio© 3.4.2.

To derive long-term probabilistic forecasting, the univariate density estimation for 
two cases are studied separately for both training and learning purposes. Although 
the initial data do not show a normal distribution, they can easily transform to the 
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Fig. 2 Annual peak load for Queensland during 2001 to 2016
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Fig. 3 Quarterly peak load for Queensland during 2007 to 2016
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normal distribution. The histogram graph of the initial and normalized annual and 
seasonal peak loads along with normal density function curve is illustrated in Fig. 4.

The seasonal and annual peak loads are subjected to different social, economic, and 
calendar drivers, such as population growth, changing technology, changing the eco-
nomic condition, and so on [7].

The values of the Pearson correlation between the seasonal peak load and some influ-
ential drivers are provided in Table  3. As seen, the highest correlation is between the 
peak load and that of the similar season in the last year.

Besides, we conduct a principal components analysis (PCA) for different driver vari-
ables considering data provided in [36]. PCA aims to maximize the variance of a linear 
combination of the variables, and forms new variables which are linear composites of 
the original variables, and the new variables are uncorrelated among themselves [37, 38]. 
The results for data provided in [36] are illustrated in Figs. 5 and 6. Figure 5 illustrates 
the coefficients of each variable in principal components. In Fig. 6, the first two eigen-
values form a steep curve as a bend at the beginning and then a straight-line trend with 
shallow slope. Accordingly, we need to keep those eigen-values in the steep curve before 
the first one on the straight line, here upon, two components can be retained as follows:

Fig. 4 Initial and normalized peak load

Table 3 Correlations between seasonal peak load and influential drivers

Variables Correlation

Peak load & peak load in similar season in the last year 0.716689

Peak load & peak load in the last season 0.088361

Peak load & GDP 0.070420

Peak load & Price 0.1734

Peak load & Population 0.085395
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However, due to the lack of data for a wide array of variables in case of Australia, we 
inevitably avoided conducting PCA and only relied on available data.

Parameters of the component densities including mean vectors and variance–covari-
ance matrices, as well as prior probabilities are the learning weights. Hence, the initial 
mean vectors of a four-node Gaussian SOMN are set to small random vectors around 

(11)

PC1:0.3963789× GDP + 0.3976349× POP

+ 0.3951176× EP + 0.3898217× (GDP/POP)

+ 0.3933803 × System_Losses

+ 0.2821188× Load_Factor

+ 0× Energy_Cost

(12)

PC2: − 0.073442070× GDP − 0.008094510× POP

− 0.003872796× EP − 0.230324773× (GDP/POP)

− 0.160632877 × System_Losses

+ 0.934934040× Load_Factor

+ 0× Energy_Cost

Fig. 5 The share of initial driver variables in principal components for data provided in [36]

Fig. 6 Scree graph for eigenvalues of data provided in [36]
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the mean of standard normal distribution [0, 0]. Besides, the initial variance–covariance 
matrices are defined as matrices equal to the initial sample variance plus a random coef-
ficient (a random value between 1 and 30) of the initial sample variance, and the initial 
probabilities are equally set to 1/3.

At each iteration, one data point was randomly taken from the 120-point training set. 
The learning rates for means and for variances and mixing priors were decreasing from 
0.5 and 0.05, respectively.

Three possible scenarios for seasonal peak load forecasting in the most probable range 
of values are illustrated in Fig. 7. To analyze the fitting performance, the error metric of 
root-mean-square error (RMSE) in (13) is applied.

RMSE is more preferable in comparison with other measures like Mean Absolute Error 
(MAE) and Mean Absolute Percentage Error (MAPE). For example, MAPE is a poor-
accuracy indicator although it is a quite well-known measure among business managers. 
With reference to its mathematical formulation, MAPE divides each error individually 
by the demand, so it is clearly skewed. It means that high errors during low-demand 
periods will have a significant impact on MAPE. For this reason, optimizing MAPE will 
result in a strange forecast that will most likely some undershoots may be seen in the 
demand profile poor-accuracy indicator [39]. On the other hand, compared to MAE 
and MAPE, the indicator RMSE is more accurate and it does not treat each error as the 
same. It gives more importance (i.e., weight) on the most significant errors which means 

(13)
RMSE =

√

√

√

√

√

n
∑

t=1

(

ŷt − yt
)2

n
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Fig. 7 Three possible scenarios for seasonal peak load forecasting
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that one big error is enough to get a very bad RMSE. Thus, taking the square root of 
the average squared errors might have some interesting implications for RMSE because 
the errors are squared before they are averaged and thus, the RMSE gives a relatively 
high weight to large errors. This proves that the RMSE could be more useful when large 
errors are particularly undesirable [40].

To evaluate the average of the obtained RMSEs, the proposed algorithm is carried out 
ten times. The averages of RMSEs for these ten times considering each of driver vari-
ables as the second variable for seasonal and annual peak load are illustrated in Tables 4 
and 5, respectively. The driver variables for seasonal peak load are population, GDP, peak 
load in last season, and peak load in similar season in the last year. However, the driver 
variables for annual peak load are population, GDP. Furthermore, to evaluate the fitted 
PDFs, the RMSEs of our proposed PDF estimation method are compared with those of 
the non-central multivariate ‘t’ distribution in the “mvtnorm” package of R.

According to Table  4 for PDF estimation of the seasonal peak load, considering the 
driver variables lead to a lower RMSE. Accordingly, the lowest RMSE is obtained con-
sidering GDP as the driver variable in the case with 150 hidden neurons. However, for 
some number of the hidden neurons, other driver variables lead to a lower RMSE. For 
instance, average RMSE associated with the PDF estimation of the seasonal peak load 
for 30 and 100 hidden neurons are decreased considering the population as the driver 
variable. Table 4 for PDF estimation of the annual peak load provides similar results.

The key feature of our proposed methodology is provided a full density forecast 
for the peak demand with quantifiable probabilistic uncertainty, which captures the 

Table 4 The RMSEs of our proposed approach and those of the non-central multivariate ‘t’ 
distribution for seasonal data

Seasonal peak load RMSE

SOMN Non‑central 
multivariate
‘t’ 
distribution

Hidden neurons 30 50 100 150

Last season peak load 0.000134 0.000164 0.000116 0.000088 0.000193

Peak load in similar season 
in the last year

0.000121 0.000144 0.000106 0.000075 0.000177

Population 0.000108 0.000149 0.000081 0.000101 0.000211

GDP 0.000131 0.000094 0.000123 0.000023 0.000189

Table 5 RMSEs of  our proposed approach and  those of  the  non-central multivariate ‘t’ 
distribution for annual data

Annual peak load RMSE

SOMN Non‑central 
multivariate
‘t’ 
distribution

Hidden neurons 30 50 100 150

Electricity price 0.000116 0.000105 0.000103 0.000107 0.000213

Population 0.000108 0.000109 0.000029 0.000029 0.000173

GDP 0.000129 0.000108 0.000171 0.000019 0.000182
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complex nonlinear effect of possible drivers. The RMSE results illustrate that the pro-
posed method performs well on the historical data.

In light of the results presented in Tables 4 and 5 and the RMSE values in Fig. 8, we 
can conclude that the proposed method for PDF estimation is more effective than the 
commonly used method in “mvtnorm” package. In addition, if we consider GDP as the 
second variable (see Fig. 8 and the last row in Tables 4 and 5), the result will lead to the 
lowest RMSE.

Nevertheless, according to the overall pattern of RMSEs, there is no hard evidence to 
define a relationship between “correlation between the dependent variable and each of 
driver variables” and “RMSE”; this constitutes the ground for future research work.

Discussion
In this paper, as a preliminary study, we aimed to find an appropriate forecasting 
approach for multi-energy systems. In this research, we focused on the importance 
of our proposed method on multi-energy systems. According to [1], the aim of multi-
energy systems is considering the interaction among electricity, heat, cooling, fuels, 
transport at various levels to improve technical, economical, and environmental perfor-
mance at the operational and planning stage in comparison with classical energy systems 
whose sectors are treated separately [1].

Multi-energy systems have two aspects; first, these systems as integrated energy 
systems are known as robust systems due to their ability to stand various types of dis-
turbances by increasing the system responsibility and decreasing the system volatility 
through providing various alternatives.

On the other hand, the main issues in integrated energy systems are the uncertainty 
and scalability [41]. To practically implement multi-energy systems, their uncertainty 
parameters and their uncertainty sets should be first defined. For instance, according to 
the robust design methodology proposed by [41, 42], the noise factors beyond the con-
trol of the designer should be considered in the multi-energy system design.

Therefore, it stands to reason that considering different driver variables via a com-
prehensive forecasting method, which deals with uncertainties in multi-energy sys-
tems, is of paramount importance. However, due to the inherent randomness of the 

30 50 100 150
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8 x 10-4

Hidden Neurons

R
M

SE

Last Season Peak Load
Similar Season in Last Year Peak Load
Population
GDP

Fig. 8 A comparison between the calculated RMSEs for different numbers of hidden neurons considering 
different drivers for seasonal peak load



Page 15 of 17Kaheh and Shabanzadeh  J Big Data            (2021) 8:15  

underlying energy resource (e.g., wind speed, solar radiation) alongside economic and 
social impacts, there will be definitely a high uncertainty associated with the load fore-
casts especially over the long term.

In addition, to cope with the bottleneck of performance improvement, a practical 
methodology for density forecast of the long-term peak electricity demand instead of 
common point-forecast approaches is highly needed. Applying such approaches can 
hedge the financial risk imposed by uncertain demands. Such approaches also capture 
the complex nonlinear effect of different possible drivers. Besides, the applied method of 
PDF estimation is also necessary. For example, here, we have applied a SOMN algorithm 
to estimate the PDF, which produces accurate estimations with rapid convergence.

Conclusion and further research
In this paper, an unsupervised learning method called SOMN was proposed for estimat-
ing the bivariate density functions of the annual and seasonal peak load. The major con-
tribution of this paper is presenting a novel systematic methodology for forecasting the 
density of long-term peak electricity demand in multi-energy system. Using the measure 
RMSE, the performance of the proposed method was compared with the non-central 
multivariate ‘t’ distribution. The simulation results demonstrated that the proposed 
method outperforms the non-central multivariate ‘t’ distribution.

According to the values of RMSE, it can be inferred that a high correlation between 
two variables does not necessarily lead to a low RMSE. In other words, there is no hard 
evidence to define a relationship between these concepts.

The results show that making a relationship between the “correlation between depend-
ent variable and driver variables” and “RMSE” in bivariate probability density function 
still needs further research. Furthermore, the method proposed in this paper would be 
developed from several aspects. The most important one is the improvement of the pro-
posed algorithm through introducing ensemble method by combining several artificial 
intelligent algorithms.
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