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Introduction
In the recent days, Big Data has attracted a lot of attention from academia, industry 
as well as government as it offers substantial value to them. However, at the same 
time it poses a considerable number of challenges on existing infrastructure [1]. One 
of the most challenging issue is how to process the huge amount of data for analysis, 
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since it is a time-consuming and labor-intensive task and hence, stretches existing 
infrastructure to its limits. Many studies are emerging now-a-days to explore the pos-
sibility of using cloud computing paradigm for Big Dataprocessing [2]. Those works 
are driven by a fact that the Big Data Processing requires scalable and parallel com-
puting resources rather than using on-hand database management tools or traditional 
data processing applications. The core aim of scheduling in Big Data Processing com-
pletely focuses on the plan of processing and completing diversified tasks as much 
as possible based on a restricted number of data handling and alteration achieved in 
an effective manner. In general, different methods are highly preferable for resource 
allocation since they possess specialized architectural properties. In this context, 
identifying the best scheduling method for each and every specific data processing 
is considered as the important challenge [3]. This challenge is even more complex as 
the Big Data processing is considered as the largest batch tasks that run over a High 
Performance Computing (HPC) cluster by partitioning a job into smaller tasks for the 
purpose of distributing the work to the cluster nodes. However, the Big Data process-
ing models need to be aware of the locality in which the data resides under the event 
of transferring the data to the nodes used for computation. Currently, the jobs are 
practically allocated to each computing node based on the two processes. The two 
processes are processes of investigating realistic contexts of utilizing resources and 
the static or dynamic scheduling enforced in Map Reduce clusters. Further, the job 
scheduling process can estimate the resource utilization associated with each allo-
cated jobs, which may not be achieved by investigating the completed jobs.

The area of Big Data possesses a diversified number of research challenges that 
includes data volume handling, gig data analysis, security and data privacy, data visu-
alization, storage, fault tolerance, job scheduling and energy optimization. The Big 
Data analysis is more difficult due to the heterogeneous and incomplete nature of data 
product. This challenge is also due to the availability of different structures, variations 
and formats of the collected data [4]. Furthermore, the process of dynamic scheduling 
of jobs with demands of distributed computing also necessitates resource scheduling 
across diversified geographical areas. In specific, Hadoop uses round method of sched-
uling when the number of smaller priority jobs is comparatively higher than the num-
ber of higher priority jobs. The scheduler also enforces weight and dynamically update 
rules based on the estimation of the situations. This Hadoop platform uses the afore-
mentioned approach for job tracking and task allocation in the Big Data heterogeneous 
environment. However, Hadoop scheduler suffers from performance degradation under 
heterogeneous environments for the purpose of resolving the limitations that are more 
common in job tracking and task allocation. At this juncture, LATE (Longest Approxi-
mate Time to End) is utilized in the Hadoop environment for introducing high robust-
ness under task scheduling in the heterogeneous environment [5]. It is identified that, 
the response time of the Hadoop increase with the incorporation of LATE scheduler. 
The method of delay scheduling is a method inherited in Big Data for enhancing the 
locality of data in an effective and efficient way. This delay scheduling process also con-
centrates on improving the throughput for the diversified type of tasks. It also ensures 
fairness in processing and completing tasks based on its policies and simplicity involved 
in sharing the resources in the Hadoop heterogeneous environment.
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In this context, computing services are considered to possess virtual data centers that 
are highly optimized for facilitating software, hardware and information resources for 
utilization depending on the demand requested from the users [6]. However, Hadoop 
environment handles the fluctuations in workload and enables resources for computing 
and managing huge amounts of multimedia data and multimedia development environ-
ments in most of the circumstances [7]. Moreover, the increase in the number of more 
and larger datacenters introduces new challenges at the infrastructure management and 
monitoring level [8]. At this juncture, resource scheduling is determined to be a vital 
procedure for making conclusive decisions on the distribution of resources over time 
[9]. However, these resource scheduling problemsalso pose certain challenges due to 
the dynamic characteristics of the resources and fluctuating demands of the users [10]. 
Moreover, the fitness function computed for resource scheduling concentrates on the 
perspective of the objectives associated with users and providers [11]. From, the pro-
viders’ dimension, they need to improve resource utilizations with resources available 
in the environment for focusing on the increase in profit and revenue growth [12]. On 
the other hand, users concentrate on the process of deriving maximum performance 
from their requisite services with reduced expenditure and cost [13]. In the literature, 
most of the resource scheduling algorithms were identified to consider the parameters 
of cost, load balancing, availability, throughput, reliability, makespan, energy and fault 
tolerance for confirming optimal scheduling and utilization process. In addition, most of 
the meta-heuristic resource scheduling algorithms proposed in the literature are identi-
fied to be potent in local searching or global searching process [14]. Thus, the hybridiza-
tion of a potential local searching approach with the globally capable global optimization 
schemes is essential [15]. In this proposed scheme, a Hybrid Gradient Descent Spider 
Monkey Optimization (HGDSMO) algorithm is presented by integrating the local abil-
ity of Gradient Descent (GD) and global potential of the Spider Monkey Optimization 
(SMO) algorithm for effective and efficient resource scheduling process in the heteroge-
neous Hadoop environment.

The major contributions of the proposed HGDSMO resource allocation algorithm are 
as follows:

a) Hybridization of Gradient Descent and Spider Monkey Optimization Algorithm for 
the optimal resource allocation process in heterogeneous environment.

b) Formulation of objective functions for optimal resource scheduling through math-
ematical models that derive throughput, makespan and imbalance degree.

c) Design of HGDSMO resource allocation algorithms for the purpose of addressing 
the issue and challenges inherent with the proposed scheduling models.

d) Implementation of the proposed HGDSMO resource allocation algorithm using the 
Hadoop simulation tool.

e) Performance Investigation of the baseline meta-heuristic algorithms with the pro-
posed HGDSMO algorithm by including the matrices of throughput, imbalance 
degree and makespan.
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Related work
In this section, the complete categories of Meta-heuristic resource scheduling 
approaches [8] contributed over the decades are presented in Fig.  1. This section 
also presented the comprehensive review of the state-of-art Meta-heuristic resource 
scheduling approaches proposed in the recent years with an extract of literature 
depicting the shortcomings of the literature.

A Cuckoo Search meta-heuristic algorithm-based resource scheduling was pro-
posed for heterogeneous environments [16]. This CS-based resource scheduling 
scheme used the factors of throughput, makespan and response time for estimating 
the performance. Then, an enhanced Multi-Objective Cuckoo Search Optimization 
(MOCSO) Scheme was proposed for handling the issues of resource scheduling in 
heterogeneous environments as portrayed in Fig.  1. The core objective of MOCSO 
scheme focuses on minimizing the cost of the user and improving the performance 
by reducing the time of makespan. The minimization of makespan in MOCSO in 
turn concentrates on enhancing the profit or the revenue for providers with maxi-
mized utilization of resources [17]. This MOCSO approach is also potent in solving 
resource scheduling issues through the formulation of multi-objectives in Big Data. It 
balances the multi-objectives through the determination of two factors that includes 
expected completion time and expected cost for computing completion matrices. 
A Global League Championship Algorithm (GLCA) was proposed for the effective 
task of resource allocation through the enforcement of scientific applications [18]. 
The simulation results of the GLCA scheme derived through Hadoop simulator con-
firmed its potential in enhancing the makespan to a maximum level of 14.44–46.41%. 
This GLCA scheme is also proved to be reducing the response time under effective 
resource scheduling processes. This GLCA scheme also confirmed a superior perfor-
mance over the compared Genetic Algorithm, Min–Min, Ant Colony and Max–Min 
optimization algorithm-based scheduling approaches.

Meta-heuristic resource scheduling 

Local Search Global Search 

Hill 
Climbing 

Min-min

Max-min

Taguchi
Gradient 
Descent

Simulated 
Annealing

Artificial Bee 
Colony algorithm

Particle 
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Fig. 1 The Existing schemes
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A resource scheduling algorithm-based on Discrete Symbiotic Organism Search 
(SSOS) was proposed to improve the task of load balancing and resource sharing in a 
heterogeneous environment [19]. The characteristic properties of SSOS such as com-
mensalism, mutualism and parasitism were contributed to achieve the objective of 
optimizing resource scheduling. This SSOS technique was identified to possess faster 
convergence rate in order to make it adaptable to large scale scheduling issues. An inte-
grated PSO and ACO-based task scheduling optimization scheme was proposed in a 
Hadoop heterogeneous environment for handling the inadequacies realized under the 
deployment of Heterogeneous environment [20]. This integrated PSO and ACO-based 
resource scheduling scheme was determined to be potent in sustaining the particles 
under the fitness level with specific concentration. This PSO-ACO scheme was capable 
in guaranteeing the population diversity to the maximum degree for achieving global 
best solution. A Genetic Algorithm-based resource allocation technique was proposed 
for reducing the completion time of the task through the enforcement of potent alloca-
tion decisions [21]. The simulation experiments conducted for this GA-based resource 
allocation technique using Hadoop tool confirmed its predominance over the simple 
and greedy resource allocation schemes in terms of throughput and makespan.

A hybrid GA and PSO-based resource allocation approach was proposed, based on the 
principle of on-demand queues [22]. This GA-PSO algorithm incorporated the process 
of analyzing the new tasks by storing them into the on-demand queue. It also computed 
the priority that played the vital role in synchronized allocation of tasks into hosts or 
VMs. A Mean Grey Wolf Optimization Algorithm (MGWO) was proposed for improv-
ing the performance by eliminating the issues that are highly related to scheduling in 
the Hadoop system [23]. The objective function of MGWO algorithm concentrated 
on reducing the energy consumptions and makespan under resource scheduling pro-
cesses. An Integrated Harmony Search and Cuckoo Search (IHS-CSO) algorithm-based 
resource scheduling was proposed to sustain balance between the exploitation rate and 
exploration related to availability of hosts or VMs [24]. This IHS-CSO scheme used 
energy consumptions, credit, penalty, memory usage and cost for devising objective 
function. It was confirmed to be superior than the standalone Gravity Search, Cuckoo 
Search (CS) and Harmony Search (HS) Schemes. In addition, a Hybrid Gradient Descent 
and Cuckoo Search Optimization (HGDCSO) algorithm was proposed for resource 
scheduling based on makespan, throughput and degree of imbalance in the heterogene-
ous environment [25]. This HGDCSO scheme was proposed for mutual integration of 
gradient descent and cuckoo search optimization algorithms which are capable in exploi-
tation and exploration respectively. The parameters of makespan, throughput and degree 
of imbalance were used by the HGDCSO scheme for the formulation of the objective 
function. The number of migrated tasks during the deployment of the HGDCSO scheme 
was identified to be comparatively better than the existing approaches independent to 
the number of tasks and VMs available in the Hadoop.

The resource management scheme for Big Data processing is proposed for distributing 
the loads in the cloud environment [26]. It used the algorithm with the aspect of load 
balancer matching that derives the input based on the demands of the Big Data under 
processing. It was proposed a management algorithm that could work well in cloud 
computing scenario independent to the number of VMs and physical host machine. 
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It was proposed to address the issue of low availability associated with computational 
significances and energy. It was also identified to enhance the response time associated 
with the Big Data processing tasks. A Localization identity and dynamic priority-based 
hybrid scheduling algorithm was proposed for concentrating on the scalability issue 
of data locality rate with reduced completion time [27]. It was compared with default 
schedulers of Hadoop such as FIFO and fair that are capable of executing concurrent 
workloads that incorporates benchmarks of Terasoft and Word count. It was determined 
to rapid on par with the fair scheduling and the FIFO methodology for ensuring maxi-
mized data locality rate by preventing the resource wastages. A Binary Particle Swarm 
Optimization (BPSO)-algorithm based resource management scheme was proposed 
for handling the demand of higher computational power as it is the major challenge to 
energy requirement in a cloud scenario [28]. It was proposed for distributing the load 
of Big Data processing among the VMs in a fair manner by optimizing QoS parameters 
that satisfy the end user goals. It inherited the merits of modified transfer function that 
facilitated balanced exploitation and exploration during the process of optimizing QoS 
parameters. However, still there exists a room for improvement.

A Resource allocation framework was proposed for outsourcing the incoming Big Data 
tasks to the external clouds [29]. This architecture never used any inter-cloud agree-
ments that are formulated for the federation of the clouds. It was proposed for benefit-
ting the allocation of user tasks that marched towards the maximization of profits that 
in turn ensured a high degree of QoS. It was proposed as a reliable model of integer pro-
gramming that is capable internally for updating itself towards the requirements of Big 
Data processing. It was also identified to minimize the computation time predominantly, 
but failed to handle it in the event of a large number of requests incoming to the cloud 
environment. In addition, An autonomic resource management approach was proposed 
for ensuring intelligent QoS in the event of Big Data processing [30]. This autonomic 
resource management approach supported resources that offered self configuration of 
applications, which are self healing in properties. It was proposed to provide self pro-
tection and sudden failure with resistance against security attacks and self optimizing 
characteristics. It also confirmed better performance at execution time, contention of 
resources, SLA violation and response time.

Extract of the literature

The aforementioned review conducted over the existing works of the literature con-
firmed the following limitations as listed as follows.

 i. The majority of the existing approaches maximized data locality degree, but they 
are not able to reduce the time of job completion through the inclusion of higher 
data locality rate.

 ii. Most of the reviewed approaches proposed using PSO, GA, ACO and ABC 
revealed that they have the limitation of trapping in the local point of optimality 
during the process of scheduling.

 iii. The existing methodologies proposed with their own merits also possess some lim-
itations with respect to the aspect of balancing the tradeoff between local search 
and global search during the process of resource management and scheduling.
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Problem formulation and the mathematical model considered for resource 
scheduling in the proposed HGDSMO algorithm
Scheduling is the process of assigning the starting and completion times for the set of 
operations to be performed. Similar to other scheduling issues, resource scheduling is 
a method applied for effective distribution of potential resources that generally includes 
networks, processors, virtual machines and storages. The resource scheduling is respon-
sible for satisfying the demands of the users under the interaction with the providers. It 
is highly suitable for load balancing for the purpose of facilitating the uniform distribu-
tion of resources based on the demand of the users and to provide some priority through 
the formulated set of rules. It also needs to ensure a heterogeneous environment, which 
is significant in serving the requests of the users with some specific quality of service. 
The problem of resource scheduling is better portrayed with the aid of Eq. (1).

where, ‘ m ’ is the number of tasks such as CT(i) = (CT1,CT2 . . . . . . ,CTm) 
that are assigned to n available physical in the data centers of the Hadoop 
( AR(i) = AR1,AR2, . . .ARn ). Further, the available virtual resources in the Hadoop envi-
ronment are considered to range between  S(i) and  N(i), respectively. In addition, the fit-
ness value of each objective has the probability to be improved for the users.

The Hadoop environment is considered in the deployment of the proposed HGDSMO 
algorithm consists of different data centers. Each and every data centers in turn con-
sist of inter-correlated VMs with diversified specification. If there is a collection of task 
CT(i) = (CT1,CT2, . . . . . . ,CTm) that are generated by the users depending on their 
required demands, then the Hadoop broker takes the responsibility of assigning the user 
tasks to the necessitated VMs VM(i) = (VM1,VM2, . . . . . . ,VMm) with reduced time of 
completion. In this context, Expected Time of Completion (ETC) is defined as the time 
expected for executing a complete set of task on a definite virtual resource. This ETC 
defined for each VM is depicted in Eq. (2).

The dimension of the ETC matrix ETC(CTi,VMj) is determined by multiplying the 
number of tasks with the number of VMs available in a particular context of the Hadoop 
heterogeneous environment as presented by Eq. (3).

Thus, the core objective of the proposed HGDSMO algorithm is to integrate the 
approaches of GD into the local searching process of the optimized SMO algorithm 
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for effectively mapping the tasks on VMs with reduced Expected Time of Completion 
(ETC). Minimized ETC is essential for attaining reduced makespan, stable imbalance 
degree and enhanced throughput.This proposed HGDSMO algorithm considered the 
throughput, degree of imbalance and makespan as the objective function for enabling 
optimal process of resource scheduling in Hadoop. Hence, the fitness value of the pro-
posed HGDSMO algorithm is computed based on throughput, degree of imbalance and 
makespan as represented in Eq. (4, 5, 6), respectively.

Throughput

Degree of imbalance

Makespan

where CTTask(i) represents the time of completion associated with a specific task.
In this context, the stabilized and smooth imbalance degree with reduced makes-

pan and increased throughput depicts the vitality of the proposed HGDSMO algo-
rithm.Hence, this proposed scheme focuses on reducing the time to completion of the 
tasks on VMs for achieving reduced makespan, stable imbalance degree and enhanced 
throughput.

Methodology
In this section, the description of local and global search optimization algorithms, the 
primitive structure of Gradient Descent (GD) method, standard Spider Monkey Optimi-
zation (SMO) algorithm and the proposed HGDSMO algorithm is presented.

Comparison of local search and global search

A search method which always reaches a similar local optimal solution from the same 
point of starting is probably considered as a local search method. Likewise, the global 
search method’s performance needs to be less dependent on its initial position. The 
local search method will focus on the nearby local optima and the global search tech-
nique need to be capable of identifying local optima at any particular point in the search 

(4)f (x) =

n
∑

i−1

CTTASK (i), ∀i ∈ N , 1 ≤ i ≤ n

(5)
f (x) =

n
⋃

i=1

MaxCTTask(i) −
n
⋃

i=1

MinCTTask(i)

MeanCTi

(6)f (x) = Max

n
⋃

i=1

CTTask(i), ∀i ∈ N , 1 ≤ i ≤ n
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space. However, the local search and global search concentrate on estimating a solution 
that plays a key role in optimizing the criteria of cost. In specific, local search methods 
initiates the process of exploring the state space at any arbitrary point and iteratively 
attempts in estimating a better solution evaluated in terms of the cost function. The 
arbitrary point used by the local search methods can be chosen through the utilization 
of the huge number of techniques that highly relies on the problem domain and the local 
search strategy.

Traditionally, the local search techniques are faster compared to the global search 
methods and they are potential in facilitating quite superior solutions when the step of 
initialization is adequate to the concerned problem domain. Moreover, these local and 
global search algorithms are iterative in nature and they always focus on identifying the 
superior estimated solutions possible at each current iteration. These algorithms pro-
vide us complete freedom for selecting the termination criteria. These algorithms aids 
in providing local optimal points which may incur a much higher cost compared to the 
global optimal points, which also relies on the initial solution from where the process 
of exploration is initiated. But ideally, the global search method completely focuses 
on estimating the best global solution which is attained mostly at the expense of long 
searching time. However, they are execution and termination when the criteria of ter-
mination come across in reality. Some specific instances of this global search includes 
GA, SA, PSO,ACO, ABC,etc. The local search algorithms do not completely concen-
trate on search, but it tries to transform itself from a current solution to a neighboring 
updated solution. This transformation of current solutions by the local search algorithms 
depends on the initial solution and initial search space. An instance of a local search 
method is the hill climbing algorithm, which initially starts with a random solution and 
iteratively attempts to identify the optimal solution by incrementally transforming a sin-
gle element of a solution. If the transformation of single element from a solution yields 
a better solution, then an incremental transformation of the elements in the solutions is 
facilitated for constructing newer solutions. This process of incremental transformations 
is repeated until the solution could be no more improved. Thus, there exist NP prob-
lems in which identifying one definite and one optimal solution is not feasible. From the 
viewpoint of classification, these NP problems differ from the methods that are generally 
utilized for locating a solution. At this juncture, any method that explores towards the 
vicinity of a initial starting point and has the possibility to get trapped in the local opti-
mal point is always considered as the local search method. One best example is the Gra-
dient Descent method. The global method treats the complete feature space as a single 
unit under the process of estimating the best optimal solution. A suitable example of this 
category would be the exhaustive search.

The local search method of Gradient Descent

The local search method of Gradient Descent (GD) is the iterative optimizing 
approach of principal order. GD is primarily utilized for identifying a functions’ 
local minimum, when one moves in step proportional to the negative of the func-
tion gradient at the current point of search. In contrast, if one moves in steps propor-
tional to the positive of the function gradient for attaining its local maxima then it is 
termed as Sleepest Ascent Approach. If a multi-variable function G(x) is unique and 
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differentiable in the neighboring points of r with G(r) identified to decrease rapidly 
from the point in the direction of the negative gradient of G(r) at the point (r,G(r)) , 
then it is determined as the method of Gradient Descent. It states that the next posi-
tion Ѕ to the current position r is defined by Eq. (7).

where, ∇G(r) is the steepest ascent with δ as the weight factor. In this context, the con-
dition G(r) > G(s) needs to be satisfied for ensuring the minor sufficiency level of the 
weight factor δ . In other words, δ∇G(r) is subtracted from r, since the search process 
wants to move against the gradient concentrating towards the minimum local point of 
optimality. Keeping this in mind, a sequence a0, a1, a2, . . . from a guessed arbitrary point 
ao with the local minimum of the function G is generated based on Eq. (8, 9) respectively.

Such that a0 satisfies the condition G(a2) ≥ G(a1) ≥ G(a2) . . . . . .

Thus, the sequence starting from a0 hopefully converges towards the expected 
local point of optimality. It is interesting to note that the step size SC is permitted to 
dynamically change with each and every iteration. With specific assumptions related 
to the utilized function G and step function SC the process of convergence facilitated 
by GD towards the minimum point of the locality can be guaranteed.

The Spider Monkey Optimization (SMO) algorithm

The Spider Monkey Optimization (SMO) algorithm is considered as one of the recently 
proposed nature inspired stochastic optimization method. SMO particularly is deter-
mined to be the superior in the category of swarm intelligent approaches. Spider moneys 
refer to the monkey species which pertains to the category of animals associated with 
the fission and fusion social structure. These spider monkeys always live in groups and 
portray intelligent foraging behavior during the food searching process. They facilitate 
the food searching in diversified directions by an appropriate information sharing pro-
cess with other members of the group. This SMO algorithm was proposed based on the 
inspiration derived from the intelligent food foraging strategy followed by spider mon-
keys. The search space (the complete set of data centers, hosts and virtual machines 
(VMs)) of the optimization problem (resource scheduling problem) is considered as the 
food searching area of the spider monkeys. Each solution (the subset of hosts or VMs 
that has the possibility to be allocated to the tasks) is considered as the spider monkeys’ 
position in the food searching area. The complete collection of solutions (subset of hosts 
or VMs) that has potential of facilitating resource scheduling is termed as the swarm. 
Fitness of a solution (the fitness value depicts the availability of hosts or VMs derived 
using throughput, degree of imbalance and makespan at a specific point of time depend-
ing on the number of tasks entering into the hadoop processing environment) refers to 
the degree to which the spider monkey is nearer to the food source.

(7)s = r − δ∇G(r)

(8)G(bi) = α (ai − bi)
2
+ β (bi − bi+1)

2
+ β (bi − bi−1)

2

(9)b
′

i = bi + 2α (ai − bi)+ 2β (bi+1 − bi − 2bi)
2
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This SMO algorithm includes a set of information rules that aids in sharing informa-
tion and continuous learning (sharing information and continuously learning about the 
under-utilization and over-utilization of VMs) for potential updating of positions in 
the complete search space. This SMO algorithm updates its current position (current 
VM allocated with tasks) with a superior one (new VM to be allocated) based on the 
experience probability of VMs thresholds in processing tasks in a hadoop heterogene-
ous environment. It uses four used-defined factors such as maximum number of groups, 
perturbation rate, local leader limit and global leader limit. Similar to the other meta-
heuristic approaches, SMO is also initiated with random initial positions of the spider 
monkeys (the location of hosts or VMs) generated in a uniform manner. The positions 
of the spider monkeys keeps on updating (the allocations of tasks to the hosts or VMs is 
updated) in each and every iteration. The complete set of hosts or VMs are partitioned 
into smaller groups, when the improvement in the global leader is not identified (global 
threshold limit). The potential VMs or hosts pertaining to each of the partitioned groups 
constitute the local leader (local threshold limit). However, the number of groups is only 
one with same local and global leader (local threshold and global threshold limits are 
the same) during initialization). Moreover, six iterative steps such as local leader phase, 
global leader phase, Learning phase of local leader, Learning phase of global leader, 
deciding phase of local leader and deciding phase of global leader in addition to the ini-
tialization phase is utilized for improving the allocation of hosts or VMs to the incom-
ing tasks of the hadoop environment. Each of the aforementioned phases has their own 
objectives that concentrate on the significant execution of the complete SMO algorithm 
while focusing on the task of resource scheduling. The local and global leader phase of 
SMO is responsible for generating a new trial position of each spider monkey (position 
of hosts or VMs). If the currently generated position is superior to the existing posi-
tion, the spider monkey replaces the old position with the new position and informs all 
the members of the groups (the allocation probability of newly identified VM is better 
than the allocation probability of currently used VM). The learning phase of local leader-
ship and global leader is mainly for identifying the potential leader who can control the 
entire group as well as the divided local groups (identifying the VMs with high allocation 
probability from the complete set of VMs and determining the VMs with high alloca-
tion probability after partitioning them into subsets). In addition, the deciding phase of 
local leaders and deciding phase of global leader is included for verifying and resolving 
the issues of premature convergence and stagnation that are quite common in local and 
whole search space.

A short description about the various phases of SMO is explained as follows.

Local leader phase

The process of updating the current search space which is to be explored in subsequent 
iterations is achieved by this local leader phase. This phase constructs a new trail posi-
tion for each of the spider monkey (the position of hosts or VMs) for effective updating 
of search space. This new trail position is determined with the aid of local leader posi-
tion, current position and randomly selected entity of that group. Moreover, the possible 
dimensions of the solutions in the search space has the feasibility of being updated based 
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on the value of perturbation rate. The generation of the newly constructed trail position 
is achieved based on Eq. (10).

where, r(0, 1) is the randomly value generated for different dimensions of investigation 
in the search space with as the rate of perturbation included in the search space. In this 
context, if the fitness value of the spider monkey in the newly generated position is iden-
tified to be greater than the fitness value of the spider monkey in the currently existing 
position, then the newly generated location is utilized. Else, the current of the spider 
monkey is retained.

Global leader phase

Similar to the local leader phase, the global leader phase is also responsible for updating 
the current search space. But, the process of updating global leader phase is achieved 
in a different way. This phase concentrates purely on the updating process of search 
solution by considering anyone randomly chosen dimension. Thus, the spider monkey 
(hosts or VMs) that gets the probability of being updated by the randomly chosen single 
dimension depends on the probabilistic value derived based on Eq. (11).

At this juncture, the trial position is again generated based on Eq. (12).

Then, the fitness value of the existing hosts or VMs and the newly generated position 
of hosts or VMs are compared in order to identify the best one from the search space for 
the potential adoption process.

Learning phase of global leader

In this phase, if the position of a spider monkey (host or VM) has the superior fitness 
value compared to all other monkeys (hosts or VMs) in the population space, then that 
monkey (host or VM) will be selected as the global leader. Further, if the selected global 
leader position is not getting updated then the global limit trial is incremented by 1. This 
global limit trial is the significant factor for keeping track of the number of iterations in 
which the global leader is not updated.

Learning phase of local leader

The local leaders are selected in this phase for each and every individual group as simi-
lar to the global leader by the enforcement of greedy selection. Further, if the selected 
local leader position is not getting updated then the local limit counter is incremented 

(10)

SMPOS(New,j) =







SMPOS(i,j) + r(0, 1) ∗ (LLRPOS(i,j) − SMPOS(i,j))

+r(−1, 1) ∗ (GLRPSO(i,j) − SMPOS(i,j))
if r(0, 1) ≥ PERrate

SMPOS(i,j) if r(0, 1) < PERrate







(11)PRSelect = 0.9 ∗
Fit(i)

Max − Fit
+ 0.1

(12)
SMPOS(i,j) = SMPOS(i,j) + r(0.1) ∗ (GLRPOS(i,j) − SMPOS(i,j))

+ r(−1, 1) ∗ (SMRandom(i,j) − SMPOS(i,j))
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by1. This local limit counter is utilized for tracking the number of iterations in which the 
local leader is not updated.

Deciding phase of local leader

In this phase, the local limit counter is utilized for checking whether there is any possi-
bility of premature convergence or stagnation in the group, such that re-initialization of 
the local leader for possible updating of the search space could be initiated.

Deciding phase of global leader

This phase uses the global limit counter for checking whether there is any possibility of 
premature convergence or stagnation in the entire population, such that the partition of 
population into groups could be initiated.

Significance of SMO algorithm

This SMO algorithm essentially utilizes two searching potentialities that are the local 
limit counter and global limit counter in the local and global search process recep-
tively. The local search of SMO is applied very insensitively with approximately 1

5
th of 

the search time and the global search process for the remaining 4
5
th of the search time. 

This clearly depicts that the search is explored more effectively on the global scale to the 
maximum degree of 80% compared to the 20% of the exploitation process facilitated in 
the local scale. This SMO algorithm is determined to a significant method due to the 
potential reduction in convergence rate and the number of iterations. It eliminates the 
issue of decreased output data by increasing the number of input data and the number of 
computations by conducting local search and global search of the SMO algorithm in the 
simultaneous point of time. The aforementioned reasons form the justification behind 
the motivation for the researchers to focus in this optimization process for the objective 
of deriving optimal results.

HGDSMO algorithm

The existing meta-heuristic approaches proposed in the literature for optimizing the 
problems of resource scheduling in heterogeneous Hadoop is considered to possess 
some shortcomings that lead to reduced speed and accuracy in task processing activi-
ties. Each of the proposed meta-heuristic approaches of the literature are potent in prob-
lem optimization of resource scheduling in some scenario, but not all the time due to its 
less adaptability in handling the behavioral change introduced by the incoming amount 
of heavy task load. The unbalanced handling of emerging load entering by the existing 
meta-heuristic resource handling approaches in the Hadoop heterogeneous environ-
ment indirectly impacts the objective function and performance. A considerable num-
ber of optimization algorithms were proposed in the literature from the recent past for 
effective resource scheduling in heterogeneous Hadoop, but not even a single approach 
is convenient in resolving the complete set of issues that are more common in optimiz-
ing the factors that influence the process of resource scheduling. Hence, HGDSMO algo-
rithm is proposed for preventing the limitations that are possible during the process of 
effective and efficient resource scheduling in the heterogeneous Hadoop environment. 
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This proposed HGDSMO algorithm uses GD for achieving rapid optimization and for-
aging behavioral capabilities of the SMO algorithm for maintaining global optimum.

The proposed HGDSMO scheme utilizes the sensible organization of local and global 
search, and controls the searching process through the utilization of switching factor Sα . 
The local search of the proposed HGDSMO scheme is achieved with the computation 
of GD methodology based on Eq. (7, 8) or (9) for evaluating fitness value. However, the 
global search process of the proposed HGDSMO scheme is facilitated using the compu-
tation of Levy flights based on Eq. (13). The levy flights is considered a random walk in 
which the steps are formulated with respect to the step length, which are potentially dis-
tributed based on the distribution of heavy tailed probability. Moreover, the step direc-
tion of the levy flights is considered to be random and isotropic.

where, Sji and Sj+1

i  represents the newly generated solution and current solution in the 
search space with α ⊕ Levy(δ) as the probability of a transaction.

In the subsequent section, the Pseudocode of the proposed HGDSMO scheme is 
presented in Fig. 2. The flowchart of the proposed HGDSMO scheme is highlighted in 
Fig. 3.

The first step of the proposed HGDSMO scheme is the initialization phase in which 
the number of hosts or VMs are randomly initialized. Fitness quantifies the availability 
degree of the hosts or VMs for the objective of task processing. If the availability of the 
hosts or VMs changes depending on the number of tasks to be processed, then their 
availability degree is re-identified.

Further,categorize the number of hosts or VMs into groups based on their degree of 
availability that reactively changes with the rate of incoming tasks to the Hadoop hetero-
geneous environment. Re-initialize the groups based on updated fitness value until the 
maximum number of iterations is over or the termination condition is attained.

Simulation results and discussion
The simulation experiments of the proposed HGDSMO scheme are conducted using 
Hadoop simulator. The simulation parameters used under the implementation of the 
proposed HGDSMO and the benchmarked HGDCSO, IHS-CSOand MGWO schemes 
are portrayed in Table 1. The Hadoop task scheduler used for processing Big Data is 
suitable in considering the data transmission overhead that exploits the principle of 
data locality. The time of task completion is influenced by the storage device’s speed 
that are related to Hard Disk Drives (HDDs) and Solid State Drives (SDDs) in which 
the data is stored on heterogeneous clusters. The poor utilization of speed devices 
due to the ignorance of the different storage devices’ speed is also an important issue 
that needs to be addressed for classifying storage categories and scheduling strategy. 
The key idea of scheduler in a heterogeneous Hadoop environment concentrates on 
the priorities of different classes for the purpose of minimizing the time of execu-
tion. The scheduling process generally enhances the rate of locality by considerably 
reducing the processing time of tasks mapped through the reduction of network traf-
fic, since it includes minimizing tasks mapped for fetching data in a remote way. The 
process of managing clusters of Hadoop with multiple numbers of Map Reduce tasks 

(13)S
j
i = S

j+1

i + α ⊕ Levy(δ)
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to be computed over multiple nodes also needs efficacy in attaining significant utiliza-
tion and performance. This process of resource scheduling is also influenced by some 
specific issues that accounts to energy and synchronization. The Hadoop also necessi-
tates large amounts of energy in processing the data that exists within the data center 
under which energy becomes the complex issue to be resolved. In addition, the com-
plete cost of energy in the data center increases with parallel reduction in the energy 
consumption. Synchronization that achieves the process of transferring intermediate 
outputs of the mapping process to the input of Hadoop is also essential.

The performance metrics used for investigating the proposed HGDSMO scheme-
and the benchmarked HGDCSO, IHS-CSOand MGWO schemes are through-
put, degree of imbalance and makespan as defined in [25]. The performance of the 
HGDSMO scheme is evaluated in five dimensions such as, (i) mean response time 
and execution time under varying number of tasks and executable instruction length, 
(ii) the migrated task count identified with different number of VMs under a con-
stant number of tasks, (iii) the migrated task count identified with different number 
of tasks under a constant number of VMs and (iv) throughput, degree of imbalance 
and makespan under a different number of tasks.

Fig. 2 The Pseudocode of HGDSMOScheme
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In the first fold of investigation, the proposed HGDSMO scheme is evaluated using 
mean response time under varying number of tasks and executable instruction length 
handled during processing. Figure  4 depicts the mean response time of the proposed 
HGDSMO scheme estimated under a different number of tasks. The response time of 
the proposed HGDSMO scheme analyzed with executable instruction length of 2000 
confirmed an increase from 8.12 s to 28.12 s under respective increase in the number of 
tasks from 100 to 1000. Similarly, the response time of the proposed HGDSMO scheme 
with executable instruction length of 4000 demonstrated an improvement from 8.36 s 
to 34.52 s under an increasing number of tasks. Furthermore, the response time of the 

Yes

No

No

Yes

Identify Local and Global Leader

Generation of new positions to the group members 

Set local and global limit counter

Initialize n spider monkey population randomly (hosts and 
VMs are initialized) n_best as global_best.

Start

Choose a monkey (i) randomly based on Equation (7), 
(8) or (9) for evaluating fitness value

Consider as the solution j

Update local and global leader

Construct new groups based on Equation 
(7), (8) or (9) for evaluating fitness value

Maintain the best group of monkeys 
(groups of hosts or VMs with best fitness 

value)

Rank the solution and identify the best monkey in the 
optimal group (best hosts or VM for llocation)

Stop

Set local and global limit counter

YesFiti Fitj>

i IterMac<

Fig. 3 Flowchart of HGDSMO
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proposed HGDSMO scheme analyzed with executable instruction length of 7000 also 
confirmed a significant increase from 9.15  s to 48.94  s with an increase in the num-
ber tasks. In addition, the response time of proposed HGDSMO scheme with execut-
able instruction length of 10,000 also confirmed a mean response time increasing from 
10.26 s to 79.12 s under an increasing number of tasks. This vital improvement in mean 
response time facilitated by the proposed HGDSMO scheme is mainly due to the appro-
priate estimation of under and over utilization factor used for allocating the VMs dur-
ing the process of resource scheduling. Figure 5 portrays the mean response time of the 
proposed HGDSMO scheme estimated under a different executable instruction ranging 

Table 1 Simulation parameters considered in implementing the HGDSMO Scheme

Type Parameter Value

Tasks Number of tasks 100–1000

Length of the task 90,000

Size of the file 600

Users Number of users 100

Number of brokers 5

Data center Number of data centers 2

VM Policy type Time-shared

Number of VMs 10

RAM 512 MB

Size 10,000

Operating system Linux

VMM Xen

Number of CPUs 1 on each VM

Bandwidth 10,000

MIPS 1000

Hosts Storage 10,00,000

RAM 2048 MB

Bandwidth 10,000
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from 2000 to 20000 bytes.The response time of the proposed HGDSMO scheme ana-
lyzed with a number of tasks as 300 confirmed an increase from 10.16 to 34.68 s under 
respective increase in the executable instruction length. Similarly, the response time of 
the proposed HGDSMO scheme analyzed with a number of tasks as 500 confirmed an 
increase from 12.36 to 48.94  s under respective increase in the executable instruction 
length. The response time of the proposed HGDSMO scheme analyzed with a number 
of tasks as 700 confirmed an increase from 14.35 to 65.84 s under respective increase in 
the executable instruction length. In addition, response time of the proposed HGDSMO 
scheme analyzed with a number of tasks as 1000 confirmed an increase from 16.84 to 
98.78  s under respective increase in the executable instruction length. This realizable 
enhancement in the mean response time facilitated by the proposed HGDSMO scheme 
is mainly due to the maximum global capability introduced by the SMO optimiza-
tion algorithm for deciding about the allocation of tasks on VMs during the process of 
resource scheduling.

Figure 6 illustrates the execution time of the proposed HGDSMO scheme estimated 
under a different number of tasks. The execution time of the proposed HGDSMO 
scheme analyzed with executable instruction length of 2000 confirmed an improve-
ment from 5.16 to 21.65 s under respective increase in the number of tasks from 100 
to 1000. Similarly, the execution time of the proposed HGDSMO scheme with execut-
able instruction length of 4000 confirmed an enhancement from 6.18 to 36.87 s under 
an increasing number of tasks. Furthermore, the execution time of the proposed 
HGDSMO scheme analyzed with executable instruction length of 7000 also con-
firmed a significant increase from 8.14 to 52.32 s with an increase in the number of 
tasks. In addition, the execution time of proposed HGDSMO scheme with executable 
instruction length of 10,000 also confirmed a increase from 18.26 to 89.74 s under an 
increasing number of tasks. This realizable improvement in execution time enabled 
by the proposed HGDSMO scheme is mainly due to the utilization of integrated GD 
and SMO that sustains thebalance between intensification and extensification process 
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during resource scheduling process. Figure 7 highlights the execution time of the pro-
posed HGDSMO scheme estimated under a different executable instruction ranging 
from 2000 to 20000 bytes. The execution time of the proposed HGDSMO scheme 
analyzed with a number of tasks as 300 confirmed an increase from 6.78 to 26.45  s 
under respective increase in the executable instruction length. Similarly, the execu-
tion time of the proposed HGDSMO scheme analyzed with a number of tasks as 500 
confirmed an increase from 7.84 to 42.38 s under respective increase in the execut-
able instruction length. The execution time of the proposed HGDSMO scheme ana-
lyzed with a number of tasks as 700 confirmed an increase from 9.12 to 56.34 s under 
respective increase in the executable instruction length. In addition, execution time 
of the proposed HGDSMO scheme analyzed with a number of tasks as 1000 con-
firmed an increase from 19.21 to 78.94 s under respective increase in the executable 
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instruction length. This improvement in the execution time enabled by the proposed 
HGDSMO scheme is mainly due to the switching factor and levy flights that alter-
nates between local and global optimization process introduced by the SMO optimi-
zation algorithm in resource scheduling.

In the second dimension of investigation, the proposed HGDSMO schemeand the 
benchmarked HGDCSO, IHS-CSO and MGWO schemes are evaluated based on 
migrated task count identified with different number of VMs under a constant num-
ber of tasks. Figure 8 and 9 demonstrates the significance of the proposed HGDSMO 
scheme evaluated using a number of migrated tasks visualized under a different num-
ber of VMs with tasks count assigned to 500 and 1000, respectively. The number of 
migrated tasks after the implementation of the proposed HGDSMO scheme was 
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identified to be predominantly reduced due to the utilization of the local and global 
searching process inherent with GD and SMO approaches. It also aids in marching 
towards significant allocation of tasks on the VMs independent to the tasks entering 
into the Hadoop. The number of migrated tasks after the implementation of the pro-
posed HGDSMO scheme evaluated with different number of VMs and tasks assigned 
to 500, exhibits a phenomenal reduction of 6.52%, 7.18% and 8.65%, compared to the 
baseline HGDCSO, IHS-CSO and MGWO schemes. The number of migrated tasks 
after the implementation of the proposed HGDSMO scheme evaluated with different 
number of VMs and tasks assigned to 1000, also demonstrates a considerable reduc-
tion of 6.12%, 7.03% and 8.21%, compared to the baseline HGDCSO, IHS-CSO and 
MGWO schemes.

In the third dimension of investigation, the proposed HGDSMO schemeand the 
benchmarked HGDCSO, IHS-CSO and MGWO schemes are evaluated based on 
migrated tasks’ count identified with different number of tasks under a constant 
number of VMs. Figures 10, 11 depict the predominance of the proposed HGDSMO 
scheme evaluated using a number of migrated tasks under different number of tasks 
with number of VMs assigned to 5 and 10, respectively. The number of migrated tasks 
with the proposed HGDSMO scheme is confirmed to be potentially minimized due 
to levy flights included in the global searching capability of SMO, since the objective 
functions are locally and globally exploited and explored independent to the number 
of tasks to be allocated to a specific number of VMs. The number of migrated tasks 
determined through the proposed HGDSMO scheme evaluated with different num-
ber of tasks and VMs assigned to 5, portrays a phenomenal reduction of 5.76%, 6.94% 
and 7.62%, compared to the baseline HGDCSO, IHS-CSO and MGWO schemes. The 
number of migrated tasks of the proposed HGDSMO scheme evaluated with differ-
ent number of tasks and VMs assigned to 10, portrays a phenomenal reduction of 
5.68%, 7.16% and 8.92%, compared to the baseline HGDCSO, IHS-CSO and MGWO 
schemes.

0

1

2

3

4

5

6

7

8

9

10

100 200 300 400 500 600 700 800 900 1000

N
U

M
BE

R 
O

F 
M

IG
RA

TE
D 

TA
SK

S 

INCREASING NUMBER OF TASKS  

HGDCSO MGWO IHS-CSO PROPOSED HGDSMO

Fig. 10 HGDSMO Scheme-Number of Migrated Tasks with increasing Tasks (VMs = 5)



Page 22 of 25Seethalakshmi et al. J Big Data            (2020) 7:49 

0

2

4

6

8

10

12

100 200 300 400 500 600 700 800 900 1000

N
U

M
BE

R 
O

F 
M

IG
RA

TE
D 

TA
SK

S 

INCREASING NUMBER OF TASKS  

HGDCSO MGWO IHS-CSO PROPOSED HGDSMO

Fig. 11 HGDSMO Scheme-Number of Migrated Tasks with increasing Tasks (VMs = 10)

Table 2 The Makespan of the proposed HGDSMO Scheme with different Tasks

Number of tasks Proposed HGDSMO HGDCSO IHS-CSO MGWO

100 612.78 637.58 678.21 689.84

200 657.56 686.68 695.87 703.42

300 725.13 786.14 804.68 826.85

400 765.12 786.94 821.46 845.68

500 812.12 824.68 846.84 867.32

600 896.28 905.68 934.94 945.64

700 1032.24 1068.92 1089.12 1123.44

800 1456.78 1568.56 1678.42 1289.42

900 1678.18 1719.32 1724.62 1768.94

1000 1858.14 1952.14 1968.94 1979.42

Table 3 The degree of imbalance of the proposed HGDSMO Scheme with different Tasks

Number of tasks Proposed HGDSMO HGDCSO IHS-CSO MGWO

100 0.1374 0.1676 0.1872 0.1978

200 0.1367 0.1656 0.1845 0.1972

300 0.1345 0.1624 0.1832 0.1967

400 0.1329 0.1612 0.1824 0.1954

500 0.1307 0.1604 0.1812 0.1943

600 0.1278 0.1589 0.1802 0.1934

700 0.1267 0.1576 0.1789 0.1924

800 0.1256 0.1562 0.1778 0.1912

900 0.1204 0.1554 0.1765 0.1906

1000 0.1175 0.1532 0.1713 0.1902
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In addition, Tables 2, 3, 4 demonstrates the makespan, imbalance degree and through-
put of the proposed HGDSMO scheme evaluated using under a different number of 
tasks in the Hadoop heterogeneous senvironment. The results clearly proposed that the 
makespan of the HGDSMO resource allocation algorithm is estimated to be excellent by 
4.82%, 5.78% and 6.94%, remarkable to the compared HGDCSO, IHS-CSO and MGWO 
schemes. Further, the degree of imbalance of the HGDSMO resource allocation algo-
rithm is estimated to be excellent by 4.98%, 5.89% and 7.14%, remarkable to the com-
pared HGDCSO, IHS-CSO and MGWO schemes. In addition, the throughput of the 
HGDSMO resource allocation algorithm is also proved to be remarkable by 5.16%, 6.84% 
and 7.78%, remarkable to the compared HGDCSO, IHS-CSO and MGWO schemes.

Conclusions
The proposed HGDSMO resource allocation algorithm was contributed as a reliable 
attempt for achieving the objective of resource allocation with reduced energy con-
sumptions and execution time in the hadoop heterogeneous environment. This pro-
posed HGDSMO resource allocation algorithm used makespan, imbalance degree and 
throughput for the objective function that quantifies the availability of the hosts or VMs 
to the tasks in the hadoop heterogeneous environment. It is capable in facilitating a 
suitable balance between the process of exploitation and exploration through the uti-
lization of GD and SMO with levy flights to ensure switching and enforce maximum 
global optimization between the process. The simulation results and statistical investi-
gation confirmed that the proposed HGDSMO algorithm is excellent than the baseline 
meta-heuristic optimal resource scheduling techniques proposed for the Hadoop het-
erogeneous environment. The number of migrated tasks of the proposed HGDSMO 
algorithm is identified to be superior by 5.32%, 6.78% and 7.98%, excellent to the bench-
marked HGDCSO, HCHS and MGWO algorithms with different number of tasks under 
a constant number of initialized VMs. The number of migrated tasks of the proposed 
HGDSMO algorithm is identified to be superior by 4.87%, 5.98% and 6.74%, excellent 
to the benchmarked HGDCSO, HCHS and MGWO algorithms with different number 
of VMs under a constant number of initialized tasks. It is also planned to formulate a 
Hybrid Gradient Descent Emperor Penguin Optimization algorithm for investigating 

Table 4 The Throughput of the proposed HGDSMO Scheme with different Tasks

Number of tasks Proposed HGDSMO HGDCSO IHS-CSO MGWO

100 2945.24 2892.24 2784.56 2656.22

200 2956.35 2893.67 2786.56 2658.92

300 2963.12 2894.78 2788.64 2712.35

400 2974.86 2898.45 2789.64 2716.89

500 2798.62 2912.68 2812.35 2718.24

600 2832.56 2926.84 2843.58 2719.48

700 2868.42 2956.84 2849.58 2846.42

800 2879.12 2976.52 2856.82 2858.96

900 2983.42 2988.14 2878.42 2869.42

1000 3078.42 2998.85 2889.54 2876.82
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and comparing the process of the proposed HGDSMO under resource scheduling of 
hosts or VMs to task processing in Hadoop.
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