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Introduction
Regularly updating a predictive model is necessary to ensure its effectiveness over 
time. Some machine learning practitioners, who believe data distributions are tempo-
rally static, may assume that maintenance of such models is not warranted [1]. How-
ever, this assumption is usually invalid. As an example, a model derived 30 years ago 
for predicting the effects of anxiety on US teenagers will certainly have to be updated 
to allow for the influence of social media. The temporal variation of data distributions 
is denoted by several terms, such as concept drift  [2–5], dataset shift  [6], and non-
stationarity  [7]. Figure 1  [8] illustrates the idea that concept drift is a divergence of 
model and data decision boundaries which leads to a loss of predictability. We note 
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that our paper only focuses on predictive model maintenance vis-à-vis the dynamic 
nature of data distributions. Using new or improved machine learning algorithms to 
facilitate this maintenance is outside the scope of this paper.

We adopt an existing model for detecting Medicare fraud as our frame of refer-
ence  [9]. This model was selected out of several possible combinations constructed 
from processed Medicare datasets (Part B, Part D, Durable Medical Equipment, 
Prosthetics, Orthotics and Supplies (DMEPOS), and Combined), and employs the 
Logistic Regression (LR) learner after applying Random Undersampling (RUS) with 
a 90:10 majority-to-minority class ratio. The Combined dataset was created from a 
join operation of the other three processed datasets. To determine whether or not a 
physician has committed fraud, we consult the List of Excluded Individu- als/Entities 
(LEIE) to obtain fraud labels which are subsequently mapped to the Medicare data-
sets. Our work investigates the effect of using training datasets of various year-group-
ings, where a grouping refers to one or more years’ worth of collected data. Training 
datasets are created from the following year-groupings: 2013, 2014, 2015, 2013–2014, 
2014–2015, and 2013–2015. The test datasets are created from 2016 data. Both train-
ing and test datasets are constructed from Part D, DMEPOS, and Combined, with the 
full datasets characterized as highly imbalanced big data.

Although there is no universally accepted definition of big data, data scientists 
often refer to the six V’s: volume, variety, velocity, variability, value, and veracity [10]. 
Volume, the best-known characteristic of big data, is associated with the amount of 
data produced by an entity. Variety encompasses the handling of structured, semi-
structured, and unstructured data. Velocity considers the speed at which data is 
manufactured, issued, and handled. Variability pertains to data fluctuations. Value is 
frequently designated as a critical attribute with respect to effective decision-making. 
Veracity involves the fidelity of data.

Fig. 1  Concept drift illustration [8]
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If a dataset has distinct majority and minority classes, e.g., normal and fraudulent 
transactions for an international bank, the data can be regarded as class-imbalanced. 
The imbalance is often associated with binary classification, a framework of only a 
majority class and a minority class, in contrast to a multi-class classification  [11] 
framework of more than two classes. With binary classification, the minority (posi-
tive) class comprises a smaller portion of the dataset and is usually the class of inter-
est in real-world problems  [12, 13]. For instance, defective hard drives advancing 
along the production line of a factory constitute the class of interest, while non-defec-
tive hard drives make up the majority (negative) class [14]. According to one school 
of thought, high or severe class imbalance can be expressed in terms of a majority-to-
minority ratio between 100:1 and 10,000:1 [15].

From a classification viewpoint, machine learning algorithms are usually more effec-
tive than traditional statistical techniques [16–18]. However, these algorithms may be 
unable to distinguish between majority and minority classes if the dataset is highly 
imbalanced. As a result, practically every instance may be labeled as the majority 
(negative) class, and performance metric values based on the misclassified instances 
could be deceivingly high. For cases where a false negative incurs a greater penalty 
than a false positive, a learner’s bias in favor of the majority class may have adverse 
consequences  [19, 20]. As an example, in a national hospital’s database of patients 
with migraine, a very small number will most likely test positive for brain cancer, i.e., 
minority class, while most are expected to test negative, i.e., majority class. In this 
situation, a false negative means that a patient with brain cancer has been misclassi-
fied as not having the disease, which is a very grave error.

Our contribution shows how changes in data distribution over time affect pre-
dictability with regard to the maintenance of machine learning models. To achieve 
this, we utilize five learners, five class ratios obtained by RUS, the Area Under the 
Receiver Operating Characteristic Curve (AUC) metric, and three Medicare datasets. 
Upon evaluation, the top models selected are as follows: Logistic Regression with the 
2015 year-grouping at a 99:1 class ratio (Part D); Random Forest with the 2014-2015 
year-grouping at a 75:25 class ratio (DMEPOS); and Logistic Regression with the full 
2015 year-grouping (Combined). Empirical results indicate that the largest training 
dataset, i.e., year-grouping 2013–2015, was not among the selected choice of models, 
thus suggesting that the 2013 data may be dated and not beneficial for Medicare fraud 
detection. Since the top choice of model is different for the Part D, DMEPOS, and 
Combined datasets, we postulate that each of the three datasets may be a unique sub-
domain under the broader domain of Medicare fraud detection. To the best of our 
knowledge, we are the first to investigate, through the use of several big datasets, the 
effect of time on predictive model maintenance.

The remainder of this paper is organized as follows: "Related work" section covers 
related literature investigating the relationship between time and predictive model 
maintenance; "Datasets" section describes the Medicare datasets, along with our data 
processing approach;  "Learners" section provides information on the learners and 
their configuration settings;  "Methodologies" section describes the different aspects 
of the methodology used to develop and implement our approach; "Results and dis-
cussion" section presents and discusses our empirical results; and  "Conclusion" 
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section concludes our paper with a summary of the research work and suggestions for 
related future work.

Related work
There are various approaches for addressing data distribution changes with time  [2]. 
However, apart from our recently published conference paper  [21], we could not find 
other research works that investigate the relationship between time and predictive 
model maintenance for big data.

In [22], Raza et al. proposed a solution that detects dataset shift with an Exponentially 
Weighted Moving Average (EWMA) control chart. The chart is an established statistical 
method for identifying minor shifts in time-series data [23], and it joins past and current 
data to enable rapid detection of these shifts. The researchers evaluated model perfor-
mance using both real-world and synthetic datasets. Through their model, Raza et  al. 
attempted to detect the shift-point in a data stream. A shift-point is a marked change in 
one or more slopes of a linear time-series model [24]. The work in [22] is limited due to 
the EWMA chart assigning a time-weighted constant to past and current observations, 
where the inclusion of an incorrect constant could lead to shift-point misidentification.

Ikonomovska et al., in [25], recognized that data streams is a promising research area, 
and they developed a regression tree algorithm for identifying variations in data distri-
butions. Starting with an empty leaf node, the algorithm sequentially reads instances 
and determines the best split for each feature. Features are then ranked, with the most 
favorable attribute split if a specific threshold is reached. Each data stream instance that 
arrives triggers a change detection check, and on detection of a change, the tree struc-
ture is updated. We note that if the tree model becomes too large, the model becomes 
complex and interpretability suffers.

With Multivariate Relevance Vector Machines [26], Torres et al. [27] examined direct 
and indirect approaches for forecasting daily evapotranspiration. The estimation of 
evaporation is important for water management and irrigation scheduling. Utilizing 
the Multilayer Perceptron (MLP)   [28] learner as a benchmark, the researchers calcu-
lated potential crop evapotranspiration and compared crop value results in their study 
location. Their results showed that it is possible to accurately forecast up to four days 
of potential crop evapotranspiration, and that the indirect approach outperformed both 
the direct approach and MLP learner. In other words, after four days the phenomenon 
of concept drift adversely affected model performance. The study is limited by the use of 
only one learner as a benchmark.

Using an Adaboost-Support Vector Machines (SVMs) ensemble, Sun et al. [29] imple-
mented time-based weighting on data batches to predict dynamic financial distress. 
This distress is associated with conditions such as bankruptcy and debt default  [30]. 
The researchers designed two different algorithms for predicting financial distress. The 
first merges the outputs of a time-based and error-based decision expert system, and 
the second applies a time-based weight updating function during iterations of Adaboost. 
As noted previously, the use of time weighting could impact the effectiveness of study 
results.

Finally, in our recent conference paper  [21], we examined the effect of time on the 
maintenance of a predictive model to detect Medicare Part B billing fraud. Training 
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datasets were built from year-groupings of 2015, 2014–2015, 2013–2015, and 2012–
2015, while the test datasets were built from 2016 data. Our study incorporated five 
class ratios obtained by RUS, and five learners. Using the AUC performance metric, we 
showed that the Logistic Regression learner produces the highest overall value for the 
year-grouping of 2013–2015, with a majority-to-minority ratio of 90:10. Furthermore, 
we concluded that a sampled dataset should be selected over the full dataset and that the 
largest training dataset, i.e., 2012–2015, does not always yield the best results. The work 
in [21] is limited to the Medicare Part B dataset, and therefore, in our current paper we 
remove this limitation by performing experimentation on Part D, DMEPOS, and Com-
bined Medicare datasets.

Throughout our search for related works, we observed that existing literature on the 
dynamism of data distribution is mainly centered around data streams, i.e., real-time 
data. In our current paper, however, constructed models are based on static datasets, 
meaning that our predictive models have been trained on static data that was collected 
and processed in an offline mode. On the other hand, online processing is a requirement 
for data streams because this data arrives in real time and may overburden the computer 
system. For these online cases, predictive models are retrained with recent data batches 
or incrementally trained [2]. Although investigating the dynamic nature of data distri-
bution for static databases and data streams are both equally important, it is easier to 
observe the distribution variations with real-time data. On account of this, static data-
bases are frequently omitted from such studies.

Datasets
The Centers for Medicare and Medicaid Services (CMS) datasets used in this work (Part 
B, Part D, DMEPOS, and Combined) are discussed in this section, along with the data 
processing methodology and also, the LEIE dataset that provides the fraud labels. Our 
training and test datasets are derived from these original CMS and LEIE datasets. CMS 
records all claims information after payments are disbursed [31–33], and therefore, we 
consider the Medicare data to be cleansed and accurate. We note that National Provider 
Identifier (NPI) [34] is utilized for aggregation and identification, but not during the data 
mining stage. Furthermore, a year variable was added for each dataset.

Part B

The Part B dataset contains claims information for each procedure a physician performs 
in a specific year  [35]. Physicians are identified by their unique NPI, and procedures 
are assigned their respective  Healthcare Common Procedure Coding System (HCPCS) 
codes  [36]. The number of procedures performed, average payments and charges, and 
medical specialty (referred to as provider type) are also covered by Medicare Part B. 
CMS has aggregated Part B data by NPI, HCPCS code, and the place of service (facility 
(F) such as a hospital, or non-facility (O) such as an office). Every dataset row includes 
an NPI, provider type, one HCPCS code matched to place of service along with related 
information, and other static features such as gender. For each physician, each dataset 
row represents a unique combination of NPI, provider type, HCPCS code, and place of 
service. Note that the Part B dataset is not the focus of our paper. However, Part B is a 
component of the Combined, a dataset integral to our current work.
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Part D

The Part D dataset contains information on prescription drugs provided under the 
Medicare Part D Prescription Drug Program in a specific year  [37]. Physicians are 
identified by their unique NPI and drugs are labeled according to their brand and 
generic name. Other information contained in the dataset includes average pay-
ments and charges, variables describing the drug quantity prescribed, and medical 
specialty. CMS has aggregated Part D data by NPI and the drug name. Every dataset 
row includes an NPI, provider type, drug name along with related information, and 
other static features such as gender. For each physician, each dataset row represents 
a unique combination of NPI, provider type, and drug name. Aggregated records, 
obtained from fewer than 11 claims, are omitted from the Part D data. This is done to 
safeguard the privacy of Medicare beneficiaries.

DMEPOS

The DMEPOS dataset contains information on Medical Equipment, Prosthetics, 
Orthotics and Supplies that physicians referred their patients to either buy or rent 
from a supplier in a specific year [38]. This dataset is derived from claims that suppli-
ers have submitted to Medicare. The role of the physician in this case is to refer the 
patient to the supplier. Physicians are identified by their unique NPI [34], and prod-
ucts are assigned their HCPCS code. Other claims information includes the number 
of services/products rented or sold, average payments and charges, and medical spe-
cialty. CMS has aggregated DMEPOS data by NPI, HCPCS code, and supplier rental 
indicator obtained from DMEPOS supplier claims. Every dataset row includes an 
NPI, provider type, one HCPCS code matched to place of service along with related 
information, and other static features such as gender. For each physician, each dataset 
row represents a unique combination of NPI, provider type, HCPCS code and rental 
status.

LEIE

A dataset of physicians who committed fraud is necessary to accurately assess fraud 
detection performance in the real world. For this reason, we utilized the LEIE  [39], 
which provides information such as reason for exclusion and date of exclusion. The 
LEIE was established by the Office of Inspector General (OIG) [40], which has a man-
date to exclude individuals and entities from federally funded healthcare programs. 
We note, however, that the LEIE dataset contains NPI values for only a fraction of 
fraudulent physicians and entities in the US. Nationally, approximately 21% of con-
victed fraudulent providers have not been suspended from medical practice, and 
about 38% of those convicted continue to practice medicine [41].

The LEIE does not provide specific information relating to drugs, equipment, or 
procedures involving fraudulent activities. There are several types of exclusions that 
are described by various rule numbers, and we selected only rules indicating fraud 
was committed, as shown in Table 1 [42].
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Data processing

When this study was conducted, Part B was available for 2012 through 2016, while 
Part D and DMEPOS were available for 2013 through 2016. We selected specific 
attributes among the three datasets in order to provide a solid foundation for our 
analyses. Also, for consistency purposes, the 2012 data of Part B was removed. For 
Part B, Part D, and DMEPOS, we selected eight, seven and nine features, respectively. 

Table 1  Selected LEIE rules

Rule number Description Exclusion period

1128(a)1 Conviction of program-related crimes 5 years

1128(a)2 Conviction due to patient abuse or neglect 5 years

1128(a)3 Felony conviction due to healthcare fraud 5 years

1128(b)4 License revocation or suspension 5 years

1128(b)7 Fraud, kickbacks and other prohibited activities 5 years

1128(c)(3)(g)(i) Conviction of two mandatory exclusion offenses 10 years

1128(c)(3)(g)(ii) Conviction of 3 mandatory exclusion offenses Indefinite

Table 2  Selected features from datasets

a Part B alone is not used to train and test models in this paper

Dataset Feature Description

Part B a npi Unique provider identification number

provider_type Medical provider’s specialty (or practice)

nppes_provider_gender Provider’s gender

line_srvc_cnt Number of procedures/services the provider performed

bene_unique_cnt Number of distinct Medicare beneficiaries receiving the service

bene_day_srvc_cnt Number of distinct Medicare beneficiaries / per day service 
performed

average_submitted_chrg_amt Average of the charges that the provider submitted for the 
service

average_medicare_payment_amt Average payment made to a provider per claim for the service 
performed

Part D npi Unique provider identification number

specialty_description Medical provider’s specialty (or practice)

bene_count Number of distinct Medicare beneficiaries receiving the drug

total_claim_count Number of drugs the provider administered

total_30_day_fill_count Number of standardized 30-day fills

total_day_supply Number of day’s supply

total_drug_cost Cost paid for all associated claims

DMEPOS referring_npi Unique provider identification number

referring_provider_type Medical provider’s specialty (or practice)

referring_provider_gender Provider’s gender

number_of_suppliers Number of suppliers used by provider

number_of_supplier_beneficiaries Number of beneficiaries associated by the supplier

number_of_supplier_claims Number of claims submitted by a supplier due to an order by a 
referring order

number_of_supplier_services Number of services/products rendered by a supplier

avg_supplier_submitted_charge Average payment submitted by a supplier

avg_supplier_medicare_pmt_amt Average payment awarded to suppliers
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Excluded features contained no information on drugs provided, claims, or referrals, 
but instead provided provider-related information, such as location and name, as well 
as redundant variables. Table 2 shows the features that we selected from each original 
dataset [9].

All three original datasets are at the procedure level, which means they were aggre-
gated by NPI and HCPCS codes. To conform to our methodology of mapping fraud 
labels with LEIE, each dataset was aggregated to the provider-level, a rearrangement 
that groups all information over each NPI (and other particular attributes)  [43]. For 
each numeric value per year, we replace the variable in each dataset with the aggregated 
mean, median, sum, standard deviation, minimum and maximum values, creating six 
new attributes for each original numeric attribute.

Combined dataset

The Combined dataset entails a join operation on NPI, provider type, and year for Part 
B, Part D, and DMEPOS, after individual processing of these datasets  [43]. As Part D 
contains no gender variable, this feature was not included [43]. Note that the combining 
of these datasets limits us to physicians who have participated in all three parts of Medi-
care. However, the Combined has more numerous and inclusive features than the other 
three Medicare datasets.

Fraud labeling

For our processed Medicare datasets, we obtain fraud labels from the LEIE dataset [43]. 
Only physicians within the LEIE are considered fraudulent for the purpose of this study. 
This dataset is joined to the Medicare datasets by NPI, and physicians practicing within 
a year prior to their exclusion end year are labeled fraudulent. Table 3 shows the distri-
bution of fraud to non-fraud within the full datasets  [9], which are highly or severely 

Table 3  Full datasets

a Part B alone is not used to train and test models in this paper

Dataset Year Total instances Fraud instances Fraud %

Part B a 2013 915,909 403 0.044

2014 950,000 285 0.030

2015 972,222 175 0.018

2016 990,000 99 0.010

Part D 2013 673,913 465 0.069

2014 700,000 329 0.047

2015 722,580 224 0.031

2016 750,000 135 0.018

DMEPOS 2013 293,636 323 0.110

2014 283,823 193 0.068

2015 290,243 119 0.041

2016 288,461 75 0.026

Combined 2013 254,444 229 0.090

2014 252,459 154 0.061

2015 257,142 90 0.035

2016 261,904 55 0.021
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imbalanced. Note that year-groupings can correspond to single years, as in the case of 
2015, or a combination of years, as in the case of 2013-2015. Part B, which is a compo-
nent of the Combined but not the focus of this paper, is shown in the table for informa-
tional purposes only.

One‑hot encoding

One-hot encoding is used in our model construction to transform categorical features 
into numerical ones [43]. For instance, one-hot encoding of gender generates extra fea-
tures equal to the number of options (male and female). If the physician is male, the new 
male feature would be assigned a 1 and the female feature a 0, and vice-versa if the physi-
cian is female. Both male and female features could be assigned a 0 in cases where the 
original gender feature is not provided.

Learners
Our work uses five popular learners (k-NearestNeighbor (k-NN), C4.5 decision tree, 
Random Forest (RF), LR, Support Vector Machine (SVM)), all of which are available 
within Waikato Environment for Knowledge Analysis (WEKA), an open source collection 
of machine learning algorithms. These classifiers were chosen for their good coverage 
of several Machine Learning (ML) model families. Performance-wise, the five classifi-
ers are regarded favorably, and they incorporate both ensemble and non-ensemble algo-
rithms  [44, 45]. In this section, we describe each model and note configuration and 
hyperparameter changes that differ from the default settings in WEKA.

The k-NN learner [46], also called IBk (Instance Based Learner with parameter k) in 
WEKA, specifies the number of nearest neighbors to use for classification and imple-
ments distance-based comparisons among instances. The performance of KNN relies on 
the distance measure, with Euclidean distance being the typical choice. We assigned a 
value of 5 to k (5-NN), and set the ‘distanceWeighting’ parameter as ‘Weight by 1/dis-
tance’ in order to use inverse distance weighting for determining class membership [47].

C4.5 decision tree  [48] uses a divide-and-conquer approach to split the data at each 
node based on the feature with the most information. Node attributes are automatically 
chosen by maximizing information gain and minimizing entropy. Entropy is a measure 
of the uncertainty of attributes, with information gain being the means to find the most 
informative attribute. Features that are most valuable are located near the root node, 
and the leaf nodes contain the classification results. The J48 decision tree is the standard 
implementation within WEKA. We set the J48 parameters to ‘Laplace Smoothing’ and 
‘no pruning’, which can improve results for imbalanced data [47].

RF  [49] is an ensemble technique for assembling multiple, unpruned decision trees 
into a forest. Class membership is calculated by combining the results of the individual 
trees, usually by majority voting. Through sampling with replacement, RF produces ran-
dom datasets to build each decision tree. Node features are automatically chosen based 
on entropy and information gain. In addition, RF uses feature subspace selection to ran-
domly assign i features for each tree. Since RF is a random ensemble technique, data is 
not likely to be overfitted. With preliminary analysis indicating no difference between 
100 and 500 trees, our RF learners were constructed with only 100 trees [47].
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Logistic Regression  [50] utilizes a sigmoid function to produce values from [0,1], 
which translates into class probabilities. A sigmoid function is a special case of the 
logistic function. LR, unlike linear regression, predicts class membership by means 
of a separate hypothesis class. We did not change the default setting in WEKA for 
the ‘ridge’ parameter, which is the penalized maximum likelihood estimation with a 
quadratic penalty function (also called L2 regularization) [47].

The Support Vector Machine learner  [51] assumes that class instances are linearly 
separable and uses hyperplanes to separate them. The hyperplane maximizes the dis-
tance between the two classes. SVM uses regularization to prevent overfitting via the 
complexity parameter ‘c’. In WEKA, we set the complexity parameter ‘c’ to 5.0. The 
‘buildLogisticModels’ parameter, which allows probability estimates to be returned, 
was set to true [47].

Methodologies
Performance metric

Accuracy is often obtained from a simple 0.50 threshold that is incorporated into a 
formula for predicting one out of the two binary classes. For most real-world situ-
ations, however, the two classes are imbalanced, leading to a majority and minority 
class grouping. The Confusion Matrix (CM) for a binary classification problem is 
depicted in Table 4 [20], where Positive, the class of interest, is the minority class and 
Negative is the majority class.

•	 True Positive (TP) are positive instances correctly identified as positive.
•	 True Negative (TN) are negative instances correctly identified as negative.
•	 False Positive (FP), also known as Type I error, are negative instances incorrectly 

identified as positive.
•	 False Negative (FN), also known as Type II error, are positive instances incorrectly 

identified as negative.

Based on these four fundamental CM metrics, other performance metrics that con-
sider the rates between the positive and the negative class are derived as follows:

•	 True Positive Rate ( TPrate ), also known as Recall or Sensitivity, is equal to TP/(TP + 
FN).

•	 True Negative Rate ( TNrate ), also known as Specificity, is equal to TN/( TN + FP ).

Table 4  Confusion Matrix

Actual class Predicted class

Positive Negative

Positive True Positive (TP) False Negative (FN)
(Type II error)

Negative False Positive (FP)
(Type I error)

True Negative (TN)
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•	 False Positive Rate ( FPrate ), also known as false alarm rate, is equal to FP/(FP + TN), 
which usually refers to the expectancy of the false positive ratio.

•	 Positive Predictive Value (PPV), also known as Precision, is equal to TP/(TP + FP).

The AUC metric calculates the area under the Receiver Operating Characteristic (ROC) 
curve, which graphically shows TPrate versus FPrate for various classification cut-offs. 
AUC represents the behavior of a classifier across all thresholds of the ROC curve and 
is a popular metric that mitigates the negative effects of class imbalance [47]. A model 
whose predictions are 100% correct has an AUC of 1, while a model whose predictions 
are 100% incorrect has an AUC of 0.

Model evaluation

A popular evaluation method in ML is train-test, in which one dataset trains the model 
while a separate dataset tests the model, with all instances in the test dataset completely 
new [9]. The train-test method determines whether, based on past occurrences, a model 
can accurately predict new occurrences. For our study, the train-test method indicates 
whether, based on previous information (year  <  2016), physicians can be classified as 
fraudulent or non-fraudulent given new information (year = 2016).

Machine learning framework

All learners in our study were implemented within WEKA [16], an open source frame-
work of machine learning techniques issued under the GNU General Public License. 
Written in Java, this framework is used for various types of machine learning tasks, 
such as data preparation, classification, and regression. The graphical user interfaces 
of WEKA contribute to its ease of use, with the software being widely used by ML 
researchers, industrial scientists, and students.

Random Undersampling

RUS is beneficial for imbalanced big data, as removing instances decreases computa-
tional burden and build time [52, 53]. When applying RUS, the aim is to strike a balance 
between discarding the maximum number of majority instances while incurring the 
least information loss. For our research, we selected the following majority-to minority 
class ratios: 50:50, 65:35, 75:25, 90:10, and 99:1. These ratios were chosen because they 
collectively provide good distribution coverage, ranging from the balanced ratio of 50:50 
to the highly imbalanced ratio of 99:1. In addition, we included the full datasets as the 
baseline, where RUS is not applied. For the train-test method, only the training datasets 
were sampled. The test datasets were only used for model evaluation, and therefore were 
not sampled.

Addressing randomness

Since a sample of instances is often relatively small compared to its respective original 
dataset, the randomization process in RUS may result in information loss, thus impact-
ing classification performance [54]. This also means that the classification outcome could 
differ each time RUS is carried out, creating splits that may be deemed favorable, fair, or 
unlucky to the learner. Splits viewed as favorable may retain very good or clean instances 
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that improve learner performance, but could potentially overfit the model. On the other 
hand, unlucky splits may retain noisy instances that weaken classification performance.

It is worth noting that some ML algorithms, such as RF, have an inherent randomness 
within their implementation. Furthermore, the random shuffling of instances performed 
before the start of each training process may cause other algorithms, such as LR, to pro-
duce different results if the order of instances is altered.

The use of repetitive methods is a proven technique for reducing the potential nega-
tive effects of randomness [55]. To address randomness during our sampling and model 
building stages, we performed ten repetitions per built model and selected the average of 
each set of repetitions.

Experiment design

This subsection highlights the main points of "Methodologies" section. To mitigate the 
adverse effect of high class imbalance in the full training datasets, RUS was applied. 
Using RUS, we obtained the following class ratios: 50:50, 65:35, 75:25, 90:10, and 99:1. 
The AUC learner was selected to evaluate classifier performance as it helps correct the 
distortion of results due to class imbalance [47]. Within the WEKA framework, model 
prediction was evaluated against the 2016 test set. The evaluation process was repeated 
ten times per training dataset, with average results reported.

Results and discussion
Table  5 shows the mean AUC values for the five learners for Part D, DMEPOS, and 
Combined datasets, with values ranked in descending order for each dataset. Individual 
rows in each table are distinguished by their specific combination of sampled class ratio 
and year-grouping. The term “None_Full”  indicates that the full dataset, with no sam-
pling, was used as training data.

For Part D, the highest value (0.8167) corresponds to LR with the 2015 year-group-
ing at a 99:1 class ratio. The lowest value (0.7567) is associated with C4.5 decision 

Table 5  AUC summary

Dataset Distribution ratio Training set Test set AUC​

Part D LR_RUS_99:1 2015 2016 0.8167

SVM_RUS_65:35 2013-2015 2016 0.7936

RF100_RUS_75:25 2013-2015 2016 0.7834

5NN_RUS_65:35 2014-2015 2016 0.7570

C4.5_RUS_99:1 2014-2015 2016 0.7567

DMEPOS RF100_RUS_75:25 2014-2015 2016 0.7872

C4.5_None_Full 2014-2015 2016 0.7845

LR_None_Full 2014-2015 2016 0.7834

SVM_RUS_50:50 2014-2015 2016 0.7773

5NN_RUS_65:35 2015 2016 0.7721

Combined LR_None_Full 2015 2016 0.8738

SVM_RUS_75:25 2013-2015 2016 0.8691

RF100_RUS_90:10 2013-2015 2016 0.8680

5NN_RUS_75:25 2015 2016 0.8199

C4.5_RUS_65:35 2014-2015 2016 0.7650
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tree for the 2014–2015 year-grouping at a 99:1 class ratio. With regard to DMEPOS, 
the highest value (0.7872) equates to RF with the 2014–2015 year-grouping at a 75:25 
class ratio. The lowest value (0.7721) comes from (5-NN) with the 2015 year-grouping 
at a 65:35 class ratio. Finally, for Combined, the highest value (0.8738) was obtained 
from LR with the full 2015 year-grouping. The lowest value (0.7650) is associated with 
C4.5 decision tree for the 2014–2015 year-grouping at a 65:35 class ratio. As can be 
observed in Table  5, DMEPOS has the smallest spread of mean AUC values, while 
Combined has the largest.

Based on the discussion in the previous paragraph, the top choices are as follows: 
LR with the 2015 year-grouping at a 99:1 class ratio (Part D); RF with the 2014–2015 
year-grouping at a 75:25 class ratio (DMEPOS); LR with the full 2015 year-group-
ing (Combined). In order to confirm these combinations as our top choices, further 
insight is needed on the performance of LR and RF. Therefore, Figs. 2 through 7 have 
been included.

Box plots are shown in Figs. 2, 3, and 4, which represent LR for Part D, RF for DME-
POS, and LR for Combined, respectively. A box plot depicts the median (50th percen-
tile) as a thick line, two hinges (25th and 75th percentiles), two whiskers, and outlying 
points. With regard to Figure 2, at the 99:1 ratio, the 2015 box does not overlap with 
other year-groupings for LR. This indicates that the difference between year-grouping 
2015 and the other year-groupings is significant. An analysis of Fig. 3 indicates that 
at the 75:25 ratio, the 2014–2015 box does not overlap with other year-groupings for 
RF, which translates into a significant difference between year-grouping 2014–2015 
and the rest of the year-groupings. In Fig. 4, it is obvious there is no overlap with the 
short, vertical line representing 2015 and the lines for the other year-groupings, indi-
cating that the difference between year-grouping 2015 and the other year-groupings 
is significant.

Fig. 2  Logistic Regression box plots (Part D)
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This section is a report on our research methodologies, including reasons for choosing 
them. We discuss the performance metric, model evaluation, machine learning frame-
work, Random Undersampling, addressing randomness, and experiment design.

Figures 5, 6, and 7 show Tukey’s Honestly Significant Difference (HSD) plots repre-
senting LR for Part D, RF for DMEPOS, and LR for Combined, respectively. Each ver-
tical bar represents the AUC score of a group (year-grouping or distribution ratio) for 

Fig. 3  Random Forest box plots (DMEPOS)

Fig. 4  Logistic Regression box plots (combined)
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a specific learner. A Tukey’s HSD [56] test determines the group factors that are sig-
nificant. For our experiments, we use a 5% significance level. Letter groups assigned 
by the test denote similarity or significant differences in results within each group or 
factor, with an ‘a’ representing the top group.

Fig. 5  Logistic Regression HSD plots (Part D)

Fig. 6  Random Forest HSD plots (DMEPOS)
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In Fig. 5, the plots reveal that year-groupings 2013–2015, 2014–2015, and 2015, and 
the full datasets along with class ratios 90:10 and 99:1 have a group ‘a’ ranking for LR. 
With respect to Fig.  6, the plots show that year-grouping 2014–2015 and class ratios 
65:35, 75:25, and 90:10 have a group ‘a’ ranking for RF. Lastly, for Fig. 7, the plots indicate 
that year-grouping 2013-2015 and the full datasets along with the 99:1 class ratio have a 
group ‘a’ ranking for LR.

Therefore, we conclude from Figs. 2 through 7 that our top choices should be selected: 
LR with the 2015 year-grouping at a 99:1 class ratio (Part D); RF with the 2014-2015 
year-grouping at a 75:25 class ratio (DMEPOS); and LR with the full 2015 year-grouping 
(Combined). It is important to note that the largest training dataset (2013–2015) did not 
feature among our top choices. We attribute this outcome to the likelihood that the 2013 
data is outdated. In addition, it is obvious that the top choice of model for Part D, DME-
POS, and Combined is not the same. Although Part D and Combined share the same LR 
learner and 2015 year-grouping for their top choice, experimental results show that RUS 
is needed to produce the best results for the former, while the full dataset yields the best 
results for the latter. This disparity in top choice hints that for fraud detection purposes, 
Part D, DMEPOS, and Combined datasets are sub-domains within the main domain of 
Medicare fraud detection. Each sub-domain would have a distinct data distribution, and 
thus require a model and RUS distribution that are also unique.

Conclusion
The regular updating of machine learning models is necessary because their origi-
nal data distributions tend to change over time. These temporal changes are often 
detrimental to predictive effectiveness. In this paper, we analyze the impact of incor-
porating training data from several year-groupings on an existing predictive model 

Fig. 7  Logistic Regression HSD plots (combined)
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that detects fraud in Medicare datasets. Our training datasets are constructed from 
year-groupings of 2013, 2014, 2015, 2013–2014, 2014–2015, and 2013–2015, while 
our test datasets were built from 2016 data. We use five class ratios obtained by Ran-
dom Undersampling, five popular learners, and the Area Under the Receiver Operating 
Characteristic Curve performance metric.

Based on our results, we determined that the following models should be used in 
order to yield the top results: Part D-LR with the 2015 year-grouping at a 99:1 class 
ratio; DMEPOS-RF with the 2014-2015 year-grouping at a 75:25 class ratio; and Com-
bined - LR with the full 2015 year-grouping. The reader should appreciate the fact that 
the largest year-grouping of training data (2013–2015) did not produce the highest 
AUC values, which signals that the 2013 data may be outdated. In addition, we note 
that because the top choice for predictive model is different for Part D, DMEPOS, and 
Combined, this suggests that these three datasets, for the purposes of Medicare fraud 
detection, may be sub-domains.

Future work will examine the effect of using learners, class ratios and performance 
metrics that are different from those utilized in this study, and also investigate the 
impact of sourcing big data from different application domains.
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