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Introduction
Many big data systems have been developed and realised to provide end user services 
(Netflix, Facebook, Twitter, LinkedIn etc.). Also, underlying architectures and technolo-
gies of the enabling systems have been published [1–3], and RAs have been designed and 
proposed [4–6]. Edge/5G computing is an emerging technological field [7], and the first 
products are being shipped to the markets. However, the utilisation of machine learning 
(ML) as part of the edge computing infrastructure is still an area for further research 
[8]. Particularly, it should be understood, how data is collected, and how models are 
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developed, distributed, and deployed for decision making purposes in the edge comput-
ing infrastructure.

The goal of this paper is to provide a RA for facilitating the design of concrete edge 
computing architectures [9], which rely on the utilisation of ML techniques. Also, it has 
been studied how development and deployment of ML models may be related to actors 
(e.g. Data scientist, ML engineer) at the business layer. In general, the value of RAs has 
been reduction of development and maintenance costs of systems [10], facilitation of 
communication between important stakeholders [10], and reduction of risks [10]. Also, 
when a system is designed without a RA, an organisation may accumulate technical debt 
[11] and end up with a complex and non-optimal implementation architecture. The pre-
sented reference architecture (RA) has been created inductively based on 16 published 
implementation architectures developed for edge/distributed environments. The RA has 
been extended based on an earlier published RA for big data systems [4]. Particularly, 
model development and deployment has been focused on in edge computing environ-
ments. High level and deployment environment views of the RA may facilitate architec-
ture design of new edge computing systems in the future.

The paper is structured as follows: First, related work regarding RA design of big data 
systems, SW engineering challenges in utilising ML/artificial intelligence (AI) tech-
niques, and implementation architectures utilising ML in edge/distributed environments 
are reviewed. Then, research context and research method are described. Subsequently, 
RA design is presented with different architectural views. Finally, the RA is analysed 
and discussed, future work is presented, and the study is concluded. The Appendix pro-
vides detailed mapping of the implementation architectures to the RA, which illustrates 
how the RA was designed. Also, detailed views are provided regarding the association 
between the RA, and business actors focusing on development and deployment of the 
presented architectural elements.

Related work
First, the earlier approaches for RA design of big data systems are reviewed. Then, utilisa-
tion of ML/AI techniques in SW engineering is discussed. Finally, different architectural 
approaches are presented for realising ML utilisation in edge computing environments.

RAs are designed for facilitating design of concrete architectures, reducing of risks 
with proven components, and improvement of communication within an organisation 
[10]. Real drawbacks and benefits of RAs have been studied with a case study (company), 
which utilised RAs in multiple projects [10]. RA facilitated development of concrete SW 
architectures, and reduced maintenance costs. However, learning curve of RA adop-
tion was seen as a drawback by the application builders. Stakeholders (e.g. architects, 
application builders) of RAs had different concerns regarding observed benefits and 
drawbacks. Sang et al. [12] present a RA based on implementation architectures from 
Facebook, Amazon, Twitter, and Netflix. The RA has four layers (Data collection, pro-
cessing and loading, Data analysis and aggregation, Interface and visualisation, Job and 
model specification) into which processing and data stores are mapped to (e.g. LinkedIn 
[13]). SOLID [14] is an architecture for managing semantic big data in real time. It relies 
on RDF (Resource Description Framework) for storing, compressing and indexing of 
semantic data, and has a 3-tier architecture (content, merge, and service tiers). Lambda 
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architecture [15] consists of a batch layer providing pre-computed views of the master 
data set, a serving layer providing access to batch views, and a speed layer providing a 
real time view to the latest data. Bolster [16] extends Lambda-architecture with a new 
semantic-layer, which adds variety, variability and veracity dimensions of big data to 
architecture modeling. User experiences from three industrial projects indicated that 
usefulness, and functional appropriateness/correctness were the most highly regarded 
attributes of the architecture, but there was hesitation regarding semantic exploitation 
of data [6]. Utilised a decision making framework in the evaluation of several presented 
RAs. Bolster [16] achieved the highest score, whereas SOLID [14], the RA by Pääkkönen 
and Pakkala [4], Lambda, and Kappa achieved good results. Also, RAs were systemati-
cally studied based on literature, and analysed in terms of architectural requirements, 
modules, layers, and patterns [5]. Additionally, RAs for big data systems have been 
developed by including security aspects [17], targeting plant genotyping and phenotyp-
ing systems [18], and government enterprise architecture frameworks [19].

Additionally, big data RA design has been addressed in on-going standardization 
activities. International Organization for Standardization (ISO)/International Electro-
technical Commission (IEC) JTC1/SC 42 committee is focusing on RA design [20]. Big 
Data Value Association (BDVA) has presented a reference model for big data [21]. The 
model has horizontal layers encompassing aspects of the data processing chain, and ver-
tical layers addressing cross-cutting issues (e.g. cybersecurity and trust). Also, National 
Institute of Standards and Technology (NIST) Big Data Program is developing a big 
data RA [22]. The conceptual model is comprised of five functional components: data 
producer/consumer, system orchestrator, and big data application/framework provider. 
Data flows, algorithm/tool transfer, and service usage between the components can be 
described with different types of arrows. Activities and functional component views of 
the RA can be used for describing a big data system, where roles/subroles, activities, and 
functional components within the architecture are identified. Edge computing related 
RAs have been reviewed [23], which include RA developed by H2020 FAR-Edge-project, 
Intel-SAP RA, Edge Computing RA 2.0 by The Edge Computing Consortium, and Indus-
trial Internet Consortium RA. The authors also presented a new Global Edge Computing 
Architecture, which is based on components of the reviewed RAs, and suggests encrypt-
ing all sensor-based data.

Development and deployment of ML-based models to the edge environment may cre-
ate new challenges. DevOps is a process, which integrates SW development and deliv-
ery for delivering value faster and continuously to customers [24]. DevOps has been 
applied successfully, when building SW for traditional systems. However, when SW or 
service engineers build and operate services, which are based on the utilisation of ML/
AI techniques, new challenges are met. For example, there may be a shortage of labelling 
data, quality of data (for modeling) may be low, and continuous improvement/training of 
models is needed. AIOps-term [25] has been suggested for empowering the SW/service 
engineers to address the challenges created by utilisation of ML/AI techniques. Addi-
tionally, platforms have been created for facilitating AIOps. ModelOps is a cloud-based 
framework/platform for lifecycle management of AI application artifacts [26]. Mod-
elOps is comprised of pipelines, which generate, monitor, and continuously improve AI 
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models. Pipelines are defined by users as Directed Acyclic Graphs (DAG), where nodes 
represent tasks, and edges control flows between them.

Computer vision, Natural Language Processing (NLP), network functions, Internet-of-
Things (IoT), and virtual/augmented reality applications utilising ML techniques have 
been developed for the edge computing context [8]. In order to meet computational 
challenges of the applications, collected data could be moved from end user devices back 
to the cloud for processing and ML [8]. However, latency, scalability and privacy chal-
lenges may need to be addressed for achieving satisfactory performance [8]. In the fol-
lowing, several approaches are described, in which latency of model inference has been 
optimised for the edge environment.

One alternative is to offload model computation/inference [27–29] to the edge/cloud 
or partition neural network (NN) computation [29–31] to the edge/cloud. Offloading of 
NN inference to the edge achieved best performance in the context of image recognition 
in web browsers [27]. Also, when inferring the first NN layer (of the model) at the client, 
and offloading the rest of the NN-layers to the edge server achieved best performance 
(in terms of latency) in partial inference due to the large size of the first NN layer. An 
offloading system for deep neural network (DNN) computations has been implemented 
[28], where NN models were experimented in client/edge devices, and the produced sta-
tistics were utilised for creating a partitioning plan at the client device for model deploy-
ment. The edge server incrementally received and built NN partitions, which were 
received from the client. The client performed inference of local NN layers, and received 
results of remote inference from the edge server. Results indicated significantly lower 
query latencies, when compared to local or all-at-once uploading of NN layers. 5% accu-
racy improvement in object detection from images was observed, when NN inference 
was partially performed in the cloud and end devices [30]. A convolutional neural net-
work (CNN) was partitioned and deployed for inference computation in a Kubernetes 
cluster [31]. The results indicated that parallelization of inference on multiple devices/
Kubernetes Pods reduced significantly execution time (44–48%), when compared to 
local NN execution or pipelining approaches.

Sometimes models need to be designed or compressed for execution on resource-con-
strained devices [8]. For example, experiments with augmented reality enabling video 
processing framework [32] indicated that Raspberry Pi couldn’t achieve a satisfying per-
formance without optimisation, as only ~ 1 frame per second (FPS) could be processed. 
Smart execution of big Yolo [33] in an edge device and tiny Yolo in a mobile device led to 
improved performance in object recognition of video streams [34].

Integration of many optimisation approaches (DNN partitioning, pre-processing, off-
loading, distributed computing) [8] achieved high accuracy object detection with 60 FPS 
in edge environment [29]. The solution was to encode only interesting parts of the video 
[Region of Interest (RoI)], utilise parallel streaming and inference pipeling to reduce off-
loading latency, send only significantly changed frames (adaptive offloading) to the edge, 
and utilise a fast object tracking method in the mobile device.

Additionally, model training in a distributed/edge environment has been studied. 
Often, training performance has been improved by optimising the frequency and size of 
training updates [8]. AdaComp [35] compressed updates to parameter servers in distrib-
uted deep learning by selecting updates to be exchanged (largest gradients are selected), 
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and by utilising staleness mitigation per exchanged parameter. Results in a test bed with 
Linux containers (LXC) indicated better accuracy and lower ingress traffic, when com-
pared to competitive solutions. 3LC [36] is a lossy compression technique for distributed 
ML, which is based on 3-value quantization of state changes (with sparsity multiplica-
tion), encoding of 3-values with lossless transformation (into bytes), and another lossless 
encoding. 3LC reduced training time 16–23× while reaching similar test accuracy. Gaia 
[37] decoupled local communication within a data center from communication between 
data centers (Wide Area Network (WAN)). Only significant changes between param-
eters servers across WANs were transferred, and exchanges were limited to WAN band-
width. Gaia reduced monetary cost of communication by 2.6–59× (when compared to 
the reference), and achieved ML speed, which was similar to LAN-environments.

Also, decentralised communication protocols have been utilised for optimising train-
ing performance [8]. For example, DLion [38] was a distributed network of workers, 
which utilised a probabilistic model for exchanging gradients between a subset of micro-
clouds (instead of all-to-all), and data size in gradient/weight exchange was reduced by 
controlling the quality of exchanged data. A lossy compression technique for floating-
point gradients was utilised in network FPGA (field-programmable gate array)-chips for 
compression [39]. The approach reduced gradient communication time (~ 70–80%), and 
speeded up training in distributed ML with little effect on accuracy. A distributed video 
surveillance system has been proposed, where vehicle classification/traffic flow predic-
tion models were trained at edge nodes in parallel [40].

DeepCham [41] provided an alternative approach based on fusing of predictions pro-
duced by a domain-specific shallow model, and a domain constrained deep model. The 
domain-specific model was created by labelling training instances (suggested by a deep 
model) interactively with local end users. Object recognition accuracy was significantly 
better in comparison to a generic deep model.

In summary, different approaches have been utilised for RA design of big data sys-
tems in the literature [10, 16] and standardisation [21, 22]. Also, new SW processes [25] 
and platforms [26] have been suggested for facilitating utilisation of ML/AI techniques 
for the SW/service developers. The utilisation of ML/AI techniques in the edge environ-
ment has been studied by focusing mostly on either model training [29, 35–39, 41] or 
inference [27, 28, 30–32, 34, 40] point of view. However, RA design of big data systems 
utilising ML techniques in the edge environment has not been addressed to the authors’ 
best knowledge, which is the contribution of this paper. Also, a system view is provided 
regarding SW engineering aspect of big data system realisation based on the proposed 
RA.

Research context and research method
Research context

Big Data systems, ML components and software (SW) systems in general are increas-
ingly designed and developed for specific application needs within rapidly evolving and 
changing technology environment. The application needs emerge from new digital prod-
ucts, solutions, systems and services, that organizations design, develop and operate for 
internal or customer use. Without paying attention into architecture design during the 
design and development process, the resulting architectures and constructs can easily be 
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under continuous change pressure, caused by changes and rapid evolution of the under-
lying implementation technologies of Big Data systems, ML frameworks and application 
SW frameworks (accumulation of technical debt [11]).

DevOps [24] based SW engineering, and its extensions for ML engineering (e.g. Mod-
elOps [26]), target to continuous delivery of value in form of new SW intensive product 
or service features, and functionalities. If the value driven SW engineering processes are 
managed purely on feature and functional basis, without paying attention to the end-
to-end system and SW architecture, the risk to accumulate technical debt and end up 
with extremely complex, non-optimal end-to-end system implementations increases. 
Applying a RA may help to identify the basic functional elements of the overall system, 
independently of implementation technologies. This can help to manage the complexity 
and evolution of the end-to-end system considerably. A RA can help to modularize the 
system architecture into functional elements, enabling feature and functionality driven 
design, development and deployment on element-to-element basis, instead of across the 
whole system architecture. In distributed computing environments including edge com-
puting nodes, a RA may also be useful for considering the different deployment options 
for individual elements, in order to optimize the end-to-end system resources usage 
and performance of the digital product, system, solution or service under design and 
development.

Enabling consideration of different design, implementation technology and deploy-
ment options on element-to-element basis, instead of for the whole static end-to-end 
system design, is one of the main drivers for the RA design presented in this paper. 
This is especially relevant in distributed computing environments, where the comput-
ing continuum and deployment options vary from resource rich but high latency public 
clouds, to resource limited but low latency in-device computing at different user sites. 
In between there are additional domains for computing resources, such as private enter-
prise clouds/servers, in network computing nodes (e.g. Multi-access Edge Computing—
MEC) and various on-site computing devices. Figure 1 below illustrates the computing 
continuum as target for deployment of end-to-end SW system with big data and ML 
components.

It is noteworthy that a computing continuum including edge computing nodes is rela-
tional to a physical location, which is the point of use for the end-to-end SW system. 
Deploying SW elements close to point of use enables minimizing latency of correspond-
ing functionalities of the SW system. The concept of edge computing is loosely defined 
and used in the literature, and as a result refers to any computing extending the cur-
rent public cloud computing towards the point-of-use. Accordingly the different types of 
edge computing nodes present in the computing continuum can include mix of Private 
cloud (e.g. Enterprise private clouds), MEC/Edge (e.g. [42]), On-site computing (e.g. in 
premises nodes with fixed installation) and In-device computing (e.g. mobile terminals 
or computing in wearable and IoT devices).

To make optimal implementation technology selections, and to optimize end-to-end 
system for the computing continuum, is not a straightforward task. Having an imple-
mentation technology independent RA with modularization of system functionalities 
may be of great help. A RA may facilitate the design of concrete architectures [9], reduce 
development and maintenance costs of systems [10], facilitate communication between 
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important stakeholders [10], and reduce risks [10]. It may also greatly facilitate commu-
nication and shared understanding among the involved design and development pro-
cess participants with different backgrounds (Product/service/solution business owners, 
Data scientists, SW engineers and ML engineers).

Research method

The goal of this work is to create a RA for facilitating the realisation of big data systems 
utilising ML techniques in edge computing environments. The following research ques-
tions (RQ) are posed:

•	 RQ1: Which elements comprise RA of a big data system enabling development and 
deployment of ML-based models in the edge computing environment?

•	 RQ2: Where should the main architectural elements of the RA be deployed?

In this work, the earlier big data RA [4] is extended as a differentiated replication 
study [43]. Particularly, the RA is differentiated by utilising 16 published architecture 
implementations as new source material in the study. In the following, the differentiated 
research method is described in detail (similar approach as in [4]):

An empirically-grounded architecture was designed [44] based on the following steps:

Step 1:	� Defining a type for the RA: A facilitation type of RA (type 3 in [9]) was cho-
sen, which is designed by an independent organization for utilization by mul-
tiple organizations.

Step 2:	� Selection of a design strategy: A practise-driven strategy was used, because 
the RA was designed based on the realised implementations/prototypes of 
big data systems.

Step 3:	� Empirical acquisition of data: 16 published architecture implementations 
were used as source material [27–32, 34–41, 45, 46]. Only realized prototypes 
were considered in the selection process of publications.

Fig. 1  Deployment options for an end-to-end SWsystem in an edge computing environment
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Step 4:	� Construction of RA: The implementation architecture of each paper was 
mapped into the earlier big data RA [4]. Particularly, elements of the RA [4] 
were reused in the mapping where feasible. When mapping to the original 
elements was infeasible, new elements (functionality and data stores) were 
designed based on the architectural elements of the prototypes, and the origi-
nal RA was extended accordingly. Thus, the RA was designed inductively 
based on the implementation architectures of the realised prototypes.

The detailed mapping process has been described in Fig.  2. First, implementation 
architectures of papers focusing on machine learning inference were mapped into func-
tionalities, data flows, and data stores (similar notation used in [4]). Then, the identified 
elements were mapped into the high level architecture view of the RA [4] (see Figs. 6, 
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20 for detailed mapping figures). Sub-
sequently, the mapped implementation architectures of individual papers were merged 
into an updated RA, which included existing [4] and new elements (Fig. 22 in the Appen-
dix). A similar procedure was performed for papers focusing on model training in edge/
distributed environments (Fig. 23 in the Appendix). Then, the updated RAs were merged 
in order to create an updated overall RA, which included new elements from all the pub-
lished papers.

Additionally, the elements of the updated big data RAs (Figs. 22, 23) were mapped into 
different deployment environments (Fig. 1). Public and private cloud, edge, on-site, and 
in-device were considered as deployment environments, which were targeted for exe-
cution of the architectural elements identified in the papers. Computing devices (e.g. 
servers, PCs, and laptops) closest to the data source were considered as edge devices. 
Computing devices at least one hop closer from the primary edge device towards the 
point of use, were considered as on-site devices. Computing devices containing an appli-
cation or user interface for the end user (point of use of the SW system), were consid-
ered as in-device computing devices (e.g. wearables or mobile terminals).

Fig. 2  Construction of RA based on realised implementation architectures
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Finally, the deployment architecture views were merged for creating an overall deploy-
ment environment figure (Fig. 4) based on all the studied papers/prototypes. The deploy-
ment figure is a matrix between deployment environments, and functional areas of the 
big data RA.

Step 5:	� Enabling variability: Variability was not defined to the RA.
Step 6:	� Evaluation of the RA: Evaluation of the RA is left for future work.

RA design
Architectural views

Updated high level view of the RA has been presented in Fig. 3. The reader is referred to 
the initial version of the RA [4], where all original architectural elements are presented 
in detail. Functionality in the RA is described with rectangles, data stores are presented 
with ellipsis, and arrows indicate data flows. Similar functionality/data stores have been 
grouped into functional areas (FA). The original RA has been extended by including new 
functionality/data stores (depicted as bold in Fig. 3) in this paper. The name of the orig-
inal ‘Data analysis’-FA [4] has been modified into ‘Model development and inference’. 
Functionality and data stores of the original ‘Job and model specification’-FA [4] have 
been moved to the new FA. Also, the name of the original ‘Data loading and transforma-
tion’-FA has been modified to ‘Data transformation and serving’. Finally, a new FA called 
‘Model deployment’ has been introduced.

The new functionality and data stores have been described in Table 1, while the reader 
is referred to the original paper [4] for unchanged architectural elements.

Fig. 3  Updated high level view of the big data RA (based on [4]). Data stores are presented as an ellipsis, 
functionality as a rectangle, and data flows with arrows. New architectural elements are described in bold



Page 10 of 29Pääkkönen and Pakkala ﻿J Big Data            (2020) 7:25 

Figure 4 presents a deployment environment view to the big data RA. Elements of the 
implementation architectures (Figs. 22, 23) were identified and mapped into deployment 
environments. Most of the new architectural elements are located at the ‘Model devel-
opment and inference’ and ‘Model deployment’ FAs.

Development and deployment view of the RA

For describing development and deployment of models within a big data system, a sys-
tem view has been created with ArchiMate [47] (Fig. 5). First, the association of the ele-
ments in the big data RA to model development and deployment process was identified 
(Fig. 24). Then, the identified elements of the RA were added to ArchiMate’s technology 

Table 1  Descriptions of new architectural elements of the RA

Architectural element Description

Processing Processing applied to in situ data

Inference Making predictions by applying the trained model [53]

Model compression Compression applied in model training [53] (e.g. compression of gradients 
[8] in neural network [53] training)

Modeling buffer Short-term storage of modeling data

Model synchronization Synchronization between modeling processes for updating of model’s 
parameters [53]. For example, a parameter server [53] may be used for 
synchronization in a distributed network

Serving Serving functionality for interfacing and visualisation (e.g. a server or a proxy)

Model experimentation Execution of experiments with a model [53]

Model packaging Packaging model(s) into executable/loadable file(s)

Model loading Loading a model into memory for inference

Model distribution Transfer and deployment of model(s) into node(s)

Model distribution scheduling Scheduling of model distribution

Fig. 4  Deployment environment view of the big data RA. Edge deployment environments are presented on 
the horizontal axis, and FAs of the high level view of the big data RA are provided on the vertical axis



Page 11 of 29Pääkkönen and Pakkala ﻿J Big Data            (2020) 7:25 	

layer [47], and their relationships were modelled. Subsequently, actors and business pro-
cesses related to the development and deployment of models were identified, and added 
to ArchiMate’s business layer [47]. In the following, a possible workflow for development 
and deployment of models is described.

Usually a data scientist (as part of AIOps [25]) has the required competence for devel-
opment of models. The models to be developed may be specified in the UI [4]. The data 
scientist may also specify batch processing jobs to be executed for development of the 
models. The jobs are typically scheduled to a computing cluster by triggering Deep ana-
lytics or other ML tasks. When DNN models are developed, ML between the nodes of a 
distributed system is often synchronized, and communication is compressed. When the 
model(s) have been developed, a ML engineer may need to experiment with the model(s) 
in the target device environment. The results of the experiments may be utilised, when 
scheduling distribution of the model(s). Particularly, it should be decided how to deploy 
the developed model(s) on the target infrastructure (edge, in-device, on-site). The devel-
oped model(s) may be packaged into executable/loadable file(s) for deployment. Finally, 
the model(s) are distributed and deployed on the target devices. Also, the model(s) are 
loaded into memory for providing inference to end user applications. When deploying 
model(s) for providing inference services to an end user application, a SW engineer may 
need to be involved in the deployment process with the ML engineer.

The Appendix provides an additional figure (Fig.  25), which illustrates how model 
development and deployment activities could be reflected in the deployment view of the 
big data RA.

Analysis
The original RA of big data systems [4] was modified for inclusion of new functional-
ity and data stores (Table 1). Most of the new architectural elements were added to the 
‘Model development and inference’-FA. The purpose of the FA is to comprise all func-
tionality, which is needed for development of ML models and inference. The purpose 

Fig. 5  Model development and deployment view to the big data RA
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of the ‘Model deployment’-FA is to comprise functionality needed for distributing and 
deploying developed model(s) to the target infrastructure. Also, new functionality 
was added to other FAs. Inference was included to the ‘Interfacing and visualization’-
FA based on a prototype, where a pre-trained model was used for inference in a web 
browser [27]. Model packaging comprises adding of model(s) into executable or loadable 
file(s) (e.g. adding models into Docker images [45]). Serving was added to ‘Data transfor-
mation and serving’-FA based on an another prototype, where a web proxy served end 
users with augmented streaming video [32]. Processing was added to comprise any gen-
eral processing (e.g. image resizing in [30]), which is applied to in situ data.

When the deployment view of the RA (Fig. 4) is analysed, it can be seen that archi-
tectural elements may be placed on almost all deployment environments (depending 
on the use case). A few reviewed prototypes included sensor-based devices, which were 
located between the primary edge-device, and the final point of use. In those cases [45, 
46], architectural elements were identified in on-site computing devices.

When the location of architectural elements is analysed in detail, it can be seen that 
Data transformation and Serving functionality was executed in the edge server (trans-
formation and serving of end users with augmented video streaming content [32]). Mod-
els were trained mainly in private/public clouds [36, 37, 39] or in edge devices [35, 46] 
while the results were inferred from models in all environments [27, 28, 30, 31, 45]. Also, 
resource demanding Deep analytics and Machine learning, and Job scheduling tasks 
were executed mostly in private/public clouds, and/or edge environments. Similarly, the 
associated DNN synchronization and packaging tasks (Model synchronization, Model 
compression, Modeling buffer, Model packaging) were executed in the same environ-
ment, where the DNN training (Deep analytics) was executed. An exception was clus-
tering a subset of images on client devices (machine learning in-device) [41]. Streaming 
data was analysed and inferred in edge [29, 32, 34] and in-device [29, 34] environments. 
Models were experimented in in-device environments [28].

Data processing functionality was executed either in end user devices [29, 30], in edge 
servers [40, 41], or in the public cloud [45, 46]. Data loading and pre-processing was per-
formed in end user devices [29, 34] or in on-site devices [45]. Data was extracted either 
from end-user devices [29], or from the edge environment [30, 40]. Deployment of mod-
els required functionality in different environments. Distribution of models was sched-
uled within the private cloud [31] or end user device [28]. Subsequently, models were 
distributed either from edge [27], from private cloud [31], or from end user devices [28]. 
Finally, models were loaded to memory in mobile devices [27] or in edge servers [28, 32].

Figure  5 provides a vision how development and deployment of models may affect 
AIOps [25] and application SW development processes at the business layer. Also, it 
provides a more detailed description regarding relationships of the architectural ele-
ments, which were presented in the earlier architectural views (Figs. 3, 4). Also, Figs. 24 
and 25 illustrate model development and deployment related elements in the RA views.

In the following, the developed RA is compared to related work. First, this paper 
extended the earlier RA [4] based on published implementation architectures of 16 pro-
totypes, which were developed for edge/distributed computing environments. The ear-
lier RA [4] was designed based on 7 realised implementation architectures of big data 
systems (e.g. Facebook, LinkedIn, Twitter etc.). The high level view was extended with 
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new architectural elements (Fig. 3). Also, a new architectural view was created (Fig. 4), 
which focused on deployment of the architectural elements to different edge-related 
environments. Finally, a vision was provided regarding the role of the actors at the busi-
ness layer i.e. development and deployment of ML-based model(s) and applications 
(Fig. 5). Thus, this paper provides a significant extension to the earlier RA [4].

The RA presented in this paper can be compared to other published RAs, which have 
been developed for big data systems. The main difference to the earlier RA by Sang [12, 
13] is fewer amount of processing layers considered (in [12]), and a bit more fine-grained 
notation utilised for describing architectural elements (in [12]). Sang included ‘Job and 
Model specification’ related elements to the RA on a high level quite similarly as we did 
[4]. Lambda architecture [15] focuses on separation of data handling with batch and 
speed layers, and serving of batch views in the serving layer. Thus, Lambda architecture 
provides a much more simplified approach to architecture design. Lambda’s batch layer 
could be considered as a pipelined chain of processing in our RA (Extraction → Trans-
fer/Load → Data processing → Deep analytics/Machine learning). Similarly, Lambda’s 
speed layer could be considered as a similar processing chain in our RA (Stream extrac-
tion → Stream processing → Stream analysis). Our data ‘Loading and transformation’-
FA may correspond to Lambda’s serving layer. SOLID [14] differentiates by focusing on 
semantic big data, and it is based on the Lambda architecture [15]. SOLID’s online layer 
could be considered as extraction of streaming data into a big data system, while merge 
layer could correspond to processing of data, which is stored into an Enterprise/Raw 
data store (data layer in SOLID) (Fig. 3). SOLID’s service tier could serve a similar role 
as ‘Loading and transformation’-FA in our RA (Fig. 3). Bolster [16] extended Lambda-
architecture with a semantic layer/repository, which may be depicted with an Enterprise 
store in our RA. It can be concluded that none of the published RAs [12–16] include 
detailed aspects of model development and deployment especially in the edge comput-
ing context. Also, we considered deployment environment view of the architecture, and 
a vision regarding the role of the actors at the business layer.

Regarding the standardisation work of RAs for big data systems, NIST [22] seems to 
have the most evolved architecture (ISO/IEC [20] is not open to the public for free). The 
processing phases of the big data application provider, data provider, and data consumer 
in NIST RA [22] may be considered as a subset of the high level view of the RA (Fig. 3) 
we have proposed in this paper. NIST RA has additionally separated processing, plat-
forms, and infrastructures as part of the big data framework provider. We consider pro-
cessing as part of the RA, and platforms/infrastructures as part of the deployment view 
of the architectures (deployment environments).

The edge computing RA by H2020 FAR-Edge project [23] differs from our approach by 
focusing on high-level placing of system components to different scopes (plant, enter-
prise ecosystem). Intel-SAP RA [23] is based on Intel and SAP platforms, and divides 
functional components into edge endpoint, edge gateway, and cloud. The RA may be 
used for understanding how to integrate edge-related SW projects into the technol-
ogy platforms (provided by Intel and SAP), while we focus on providing a technology 
independent RA. Edge Computing RA 2.0 [23] is comprised of horizontal layers: Smart 
services, Service Fabric, Connectivity and Computing Fabric, and Edge Computing 
Node. The model-driven Smart Services-layer of the RA, which includes a model-driven 
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service development framework, is related to our development and deployment view 
(Fig. 5). However, we have focused on DevOps [24] /AIOps [25] approach in the design 
of our system view. Industrial Internet Consortium RA [23] includes three tiers (edge, 
platform, enterprise). Decision support system or user interface of the enterprise layer 
generates control commands, which are analysed in the platform layer, and finally 
relayed to the edge layer. The horizontal layer structure of the RA may be considered 
as a simplification of the vertical structure in the high level view (Fig. 3) we provided. 
The Global Edge Computing Architecture [23] consists of IoT, Edge, and Business solu-
tion layers. IoT layer comprises collection and storing of data from IoT-devices based 
on blockchain-technology. The edge-layer is responsible for filtering and pre-processing 
of collected data, which is passed to the cloud-layer consisting of services and business 
applications. The horizontal layers of the RA could be considered as a simplification of 
our high level view of the RA consisting of vertical layers (Fig. 3).

In overall, the proposed RAs are different from ours. Industrial Internet Consortium 
RA and The Global Edge Computing Architecture may be considered as horizontally lay-
ered more simplified architectures (3 layers) of our high level architecture view (Fig. 3), 
which consists of vertical processing layers. Smart services-layer of the Edge Computing 
RA 2.0 is related to our system view (Fig. 5), which focuses on development and deploy-
ment of services based on DevOps [24]/AIOps [25]. Finally, none of the proposed RAs 
focus specifically on the utilisation of ML in the edge computing environments, which is 
the contribution of our work.

Finally, Chen and Ran [8] provided a comprehensive review of deep learning with edge 
computing. Particularly, literature was reviewed regarding implementation architectures 
for optimising inference and training in edge environment. However, the review didn’t 
focus on reference architecture design, which is the contribution of this paper.

Discussion
First, only realised prototypes were considered, when publications were selected for the 
design of the RA. Publications focusing on simulations were not considered, because 
important implementation details regarding edge environments might be neglected in 
such studies. Additionally, we focused on ML and big data-based decision making on 
providing end user related services (e.g. image classification [27], augmented reality [29], 
object recognition [34], vehicle traffic flow prediction [40]), and didn’t consider other 
problems (e.g. end-to-end connectivity and navigation between sensor nodes [48]), 
which might also be important within the context of edge computing environments. In 
the following, the lessons learnt from the design process are discussed.

The design process of the RA was not straightforward, because of the heterogeneity 
of the implementation architectures. Some of the reviewed prototypes contained only a 
subset of functionality in few computing domains. For example, most of the model train-
ing prototypes (e.g. [36–39]) focused on distributed training in edge computing devices. 
On the contrary, most of the inference-related prototypes (e.g. [27–29, 32, 34]) focused 
on improving inference performance in edge devices for providing services with end 
user devices. Only a few prototypes [41, 46] had realised a full pipeline of data extraction 
and processing, model training and inference for visualising results to the end user.



Page 15 of 29Pääkkönen and Pakkala ﻿J Big Data            (2020) 7:25 	

Implementation architectures of the reviewed publications were mapped to most of 
the elements of the original RA [4]. However, the RA had to be extended, and modified 
based on more detailed design regarding model development and deployment, which 
were not considered in the original design [4].

In the design of the RA, different processing stages were identified in model devel-
opment and deployment. When DNNs are trained, synchronization is needed between 
distributed nodes [36–39] in order to reduce communication cost and training time. The 
communication between distributed nodes is usually optimized by utilising lossy/loss-
less compression techniques [35, 36, 39]. An intermediary data store [Modeling buffer 
(Fig. 3)] may be needed in the synchronization process. After training, the models are 
packaged [45] and scheduled for distribution. Particularly, it has to be determined how 
to partition DNNs to be executed on edge/mobile devices to achieve optimal perfor-
mance in terms of latency. Prior to partitioning, models may need to be experimented 
on edge/mobile devices [28] in order to determine a plan for model distribution [27, 28, 
31]. After the distributed models have been loaded [27, 28, 32] for inference at the target 
devices, data may need to be handled intelligently in order to optimize performance of 
inference [29].

In general, the deployment view of the RA may be considered as a guideline for con-
crete architecture design regarding the needed architectural elements, and deploy-
ment environments where the elements may be deployed. Also, the relationship 
between architectural elements and model development and deployment process has 
been described (Fig. 25). Finally, the system view (Fig. 5) illustrates the possible role of 
SW engineering actors in the development and deployment of different architectural 
elements.

Future work
In general, the value of RAs has been related to facilitation of concrete system design, 
reduction of development costs and risks [10], and facilitation of communication 
between important stakeholders within organisations [10]. In the future, the value of the 
presented views of the RA should be studied (in more detail) in the development of con-
crete edge computing systems, which utilise ML techniques in providing services to end 
users. Particularly, the provided system view (Fig. 5) indicating SW engineering relation-
ship to the elements of the RA, should be evaluated in a real SW project, which focuses 
on model development and deployment within an edge environment.

The RA was designed based on implementation architectures where aspects of dis-
tributed model development, and deployment/inference were not integrated in a single 
prototype. Instead, the architectural elements of the implementation architectures of 
prototypes were integrated into a common RA. Thus, in the future the proposed RA 
should be evaluated with a prototype, which covers model development and deployment 
within an edge environment of a single prototype system (step 6 of the RA design pro-
cess [44]).

Security, monitoring, and management layers are among the aspects [5], which 
are missing from the developed RA. Also, a lacking metadata layer has been seen as a 
drawback of the developed RA [6]. Previously a metadata layer has been developed for 
management of quality in social media data, and the original RA was extended with an 
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overlay [49, 50]. Similarly, the RA could be extended with additional layers (e.g. monitor-
ing) in the future.

Various use case scenarios have been designed for 5G networks, where ML/AI tech-
niques could be utilised for optimizations [51, 52]. Selforganizing Networks (SONs) have 
been developed for reducing the cost of installation and management of 5G networks 
by enabling capability to configure, optimize and heal itself [51]. Resource elasticity has 
been designed by embedding AI-functionality to the 5G network (European Telecom-
munications Standards Institute’s (ETSI) Experiential Network Intelligence (ENI) archi-
tecture) [52]. However, it has not been addressed how to manage ML/deep learning 
flows [8] within the 5G architecture.

Conclusion
The first research question was related to the elements comprising a RA of a big data 
system, which enables development of ML-based models in edge computing environ-
ment. The RA was developed inductively based on 16 published implementation archi-
tectures, which were focused on ML model development and inference. The previously 
published RA for big data systems was utilised as a starting point, which was extended 
in this work. In the design, new architectural elements were added to the high level view 
of the RA (Fig. 3). Thus, the presented RA and the elements within provide an answer to 
the research question.

The second research question focused on the deployment location of the architectural 
elements. Based on the high level view of the architecture, the architectural elements 
were mapped into deployment environments, which were utilised in the prototypes of 
the reviewed papers. As a result, a new deployment view of the architecture was pro-
vided, which illustrated the architectural elements as a matrix between the deployment 
environments and the functional areas of the high level view of the RA. The deployment 
view provides an answer to the second research question.

Additionally, the role of the actors in the business layer, who would participate to the 
development and deployment of ML-based models was identified with a system view.
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Appendix
Mapping of implementation architectures focusing on inference

Figure 6 describes mapping of computation offloading architecture in web application 
environment [27] to the big data RA. Codes, libraries, web browser, and NN-model are 
distributed to the edge server in a Virtual Machine (VM)-overlay (Model distribution), 
which is used for creating a running instance of the NN-model. Machine learning model 
is loaded (with CaffeJS) for inference in the client’s and server’s browsers. In the end 
user application images are partially classified (Inference) in the web browser. A snap-
shot including execution state of the web browser (including image to be analysed) is 
transmitted to the edge server, where full/partial inference is executed, and results are 
transmitted back to the web browser.

Figure 7 presents the mapping of distributed DNNs over cloud, edge, and end devices 
[30] to the big data RA. Initially, camera images are extracted, and resized (Processing). 
Then, convolutional and fully connected NN layers are utilised for inference of pro-
cessed images at the edge server, and results are locally aggregated. Output from the 

Fig. 6  The mapping of computation offloading architecture [27] to the big data RA
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convolutional network is transmitted to the cloud for aggregation, and further inference 
for providing the final classification result (Analysis results).

Figure 8 presents mapping of DeepDecision [34] architecture to the big data RA. Ini-
tially, video was compressed (Data compression) at the mobile device, and streamed to 
the edge server for object detection (Stream analysis/inference). Object detection was 
executed also at the mobile device.

Figure  9 presents the mapping of incremental offloading of NN computations 
from mobile devices to edge servers [28] to the big data RA. When a DNN model is 

Fig. 7  The mapping of distributed DNNs over cloud, edge, and end devices [30] to the big data RA

Fig. 8  The mapping of DeepDecision architecture [34] to the big data RA
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experimented at a mobile client (Model experimentation), execution times of NN layers 
are recorded, and saved into a DNN profile (Analysis results: DNN execution profile). 
The edge server uses execution data of DNN layers (Analysis results: DNN execution 
data) in the creation of prediction functions (Machine learning). The prediction func-
tions are transferred to the client for creating a partitioning plan (Model distribution 
scheduling). DNN partitions are uploaded to the edge server based on the plan (Model 
distribution), which are used for loading/building a DNN model (Model loading). The 
end user application sends queries for image classification, which are partly inferred at 
the client (Local inference). The client sends the result of local inference, and indices of 
DNN layers to the edge server, which are utilised for remote inference. Finally, the edge 
server provides the output results back to the client.

Figure  10 presents the mapping of distributed DNNs in containerized edge servers 
[31] to the big data RA. Edge device information and performance data (Analysis results) 
were used for partition point calculation (Model distribution scheduling) of models. 
Particularly, execution of partitions was solved as a multi-variate optimisation problem. 
Then, the partitions were parallelized for execution (Model distribution) in Kubernetes 
Pods, where inference was executed.

Fig. 9  The mapping of incremental offloading of NN computations [28] to the big data RA
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Figure 11 presents the mapping of augmented reality acceleration at the edge [32] to 
the big data RA. Initially, video is streamed, proxied and decoded (Stream processing) 
at the edge server. Processed video is queued (Stream data), and objects are detected/
inferred (Stream analysis/inference). A pre-trained Tensorflow-model is loaded and uti-
lised for object detection. Subsequently, video frames are modified (with OpenCV) and 
encoded (Transformation), and the resulting stream is proxied (Serving) for visualisation 
at the end user application.

Figure  12 presents the mapping of “Edge Assisted Real-time Object Detection for 
Mobile Augmented Reality” [29] to the big data RA. First, frames were captured from 
a video stream (Stream extraction), and cached (Stream temp data) at the client. Then, 
RoIs were detected (Information extraction), macroblocks with overlapping RoIs were 

Fig. 10  The mapping of distributed DNNs in containerized edge servers [31] to the big data RA

Fig. 11  The mapping of augmented reality acceleration at the edge [32] to the big data RA
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identified (Stream processing), and lossy compression (Data compression) was applied 
for changing encoding quality of frames. The frames were sliced (Stream processing), 
and motion vectors and macroblock types were extracted (Information extraction). 
Then, the frames were selectively offloaded to the edge server (Transfer), where the 
frames were decoded (Stream processing). After parallel inference at the edge server 
(Stream analysis/inference), the results were sent back to the client and cached (Stream 
analysis results). Finally, the client performed motion vector based object tracking based 
on the results, and augmented video was rendered in the end user application.

Figure 13 presents the mapping of smart surveillance system on edge and cloud com-
puting [45] to the big data RA.

First, faces were detected (Information extraction) based on an extracted (Stream 
extraction) video stream of an IP camera. The detection was made based on a data-
base of encoded (Information extraction) photos of faces (Analysis results: Face DB). 
The detected faces were load balanced (Transfer, load), recognized (Inference), and the 
results were saved to a database (Analysis results) in the cloud. The recognized faces 
were saved to a face database (Analysis results). Face recognition (Inference) was per-
formed again in the cloud. Inference models were packaged to Docker images, which 
were distributed to the nodes.

Mapping of implementation architectures focusing on model development

Figure  14 presents the mapping of DLion [38] implementation architecture to the big 
data RA. Image data set was used for training of models with distributed workers (Deep 
analytics). The workers synchronized gradients and weights in modelling via a messag-
ing broker (Modeling buffer).

Figure  15 presents the mapping of Adacomp [35] to the big data RA. A DNN was 
trained based on an image data set (Deep learning). Model training was synchronized 

Fig. 12  The mapping of “Edge Assisted Real-time Object Detection for Mobile Augmented Reality” [29] to the 
big data RA
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via a parameter server, and learning updates were compressed (Model compression) for 
faster training.

Figure  16 presents the mapping of 3LC [36] implementation architecture to the big 
data RA. Image data was used for distributed training of DNNs (Deep analytics). In the 
distributed training steps, gradients were calculated (Model synchronization) and com-
pressed (Model compression) at the worker. The parameter server decompressed the 
gradients (Model compression), which were aggregated (Model synchronization) to a 
global model. The parameter server calculated model deltas (Model synchronization), 
which were compressed (Model compression) and decompressed (Model compression) 
at the worker, and applied to the local model.

Figure 17 presents the mapping of network accelerated distributed DNN learning [39] 
to the big data RA. An image data set was used for model training by distributed workers 
(Deep analytics). Each worker maintained a local copy of the trained model. Gradients 
were compressed and decompressed (Model compression) in the FPGA-chip. A virtual 

Fig. 13  The mapping of smart surveillance system on edge and cloud computing [45] to the big data RA

Fig. 14  The mapping of DLion [38] to the big data RA
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first in, first out (FIFO) (Modeling buffer) was used as an intermediate buffer between 
workers, which synchronized by exchanging gradients.

Figure 18 presents the mapping of Gaia [37] implementation architecture to the big 
data RA. Three different types of source data sets (Image data set for image classifica-
tion, news data set (New York Times) were used for topic modeling, and Netflix matrix 
(for matrix factorization) was used in distributed deep learning (Deep analytics). The 
worker maintained a local copy of the trained model, and transferred modelling updates 
(Model synchronization: synchronize local updates) to the parameter server at the local 
data center. The parameter server maintained a global model. Global updates between 
parameter servers across a WAN in different data centers (Model synchronization: syn-
chronize global updates) were exchanged via modelling buffers. A significance filter was 
used for controlling the amount of updates to be exchanged. Detailed operation of the 
global updating process is described in [37].

Figure 19 presents the mapping of distributed deep learning with video surveillance 
systems using edge servers [40] to the big data RA. Initially, traffic monitoring video was 
extracted from cameras (Extraction). The stream was divided into data frames (Stream 
processing), and data blocks were extracted (Information extraction). Then, model(s) 
were trained for vehicle classification and traffic flow prediction among distributed 

Fig. 15  The mapping of Adacomp [35] to the big data RA

Fig. 16  The mapping of 3LC [36] to the big data RA
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edge servers (Deep analytics). Task and model level parallel training was synchronized 
between edge nodes (Model synchronization).

Figure  20 presents the mapping of DeepCham [41] to the big data RA. First, a per-
son specified an adaptation task for recognizing of objects (Job specification). The task 
was forwarded to the mobile device, where images from the device were scanned and 
pruned (Cleaning). Also, candidate images were clustered (Machine learning) for find-
ing subsets of images with a large visual difference. The mobile clients sent image fea-
tures to the master, where another clustering task (Machine learning) was executed, and 
the results were sent back to the mobile clients. At the mobile clients training object 
images were created (Information extraction), and labels/features were suggested based 
on a pre-trained deep learning model (Inference). Then, the end users labeled images 
with the mobile clients. The training instances were utilised for training a shallow adap-
tation model (Machine learning). The model was used for recognizing the objects (Infer-
ence), which was finally fused with the results (Inference: fuse results) produced by a 
deep model.

Fig. 17  The mapping of network accelerated distributed DNN learning [39] to the big data RA

Fig. 18  The mapping of Gaia [37] to the big data RA
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Figure 21 presents the mapping of HealthFog system [46] to the big data RA. Health-
related sensor data was extracted (Extraction) from patients. The managed data (Pro-
cessing) was delivered via a gateway device (mobile phone) and broker (laptop) to edge 
devices (RPi) or to an instance in the cloud (AWS). The data was preprocessed (Clean-
ing), and trained (Deep analytics). The trained model predicts (Inference) heart disease 
of patients. The gateway included an application, which was used for submitting pre-
diction jobs (Job specification) to the system. An edge-device (a laptop) scheduled (Job 
scheduling) the received jobs to edge devices or to the cloud (AWS).

Integrated views of use case mapping

Figure 22 presents an integrated view, which includes mapping of all inference-related 
implementation architectures to the big data RA.

Figure 23 presents an integrated view, which includes mapping of all modeling-related 
implementation architectures to the big data RA.

Fig. 19  The mapping of distributed deep learning with video surveillance systems using edge servers [40] to 
big data RA

Fig. 20  The mapping of DeepCham [41] to the big data RA
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Fig. 21  The mapping of HealthFog [46] to the big data RA

Fig. 22  Mapping of all inference-related implementation architectures to the big data RA. Publications are 
referred to from the architectural elements as follows: L: Liu [29]; Tr:Trinelli [32]; R:Ran [34]; Z:Zhou [31]; T:Teera 
[30]; J:Jeong [27]; J2:Jeong [28]; K:Kascavalci [45]

Fig. 23  Mapping of all modeling-related implementation architectures to the big data RA. Publications 
are referred to from the architectural elements as follows: Ho:Hong [38]; Ha:Hardy [35]; Li:Li [41]; Li2:Li2 [39]; 
Lim:Lim [36]; Hs:Hsieh [37]; C:Chen [40]; T:Tuli [46]
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Model development and deployment: detailed views

Figure 24 describes the elements of the big data architecture, which are associated with 
model development or deployment (or both) activities.

Fig. 24  Architectural big data RA elements associated with model development (red) and model 
deployment (blue). Green indicates association to model development and deployment

Fig. 25  Architectural elements of the deployment environment view of the big data RA associated with 
model development (red) and model deployment (blue). Green indicates association to model development 
and deployment
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Figure 25 describes the architectural elements of the deployment environment view of 
the big data RA, which are associated with model development or deployment (or both) 
activities.
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