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Introduction
Motivation

Complex datasets arise in many disciplines, including health care, business, and engi-
neering. In problems involving data-driven optimization based on such complex 
datasets, it is difficult to characterize optimality. The difficulty results from the many 
variables in the data (including nonmodifiable features as well as modifiable decision 
variables) and the numerous sources that generate the data at high speed. The complex-
ity of a dataset might affect the optimization task since relevant features might fail to be 
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matched, and considerations of all combinations of the decision variables might yield a 
computationally intractable problem. By leveraging machine learning (ML) and big data, 
we propose a new algorithm that identifies the optimal decision variables that affect the 
target variable while matching the relevant features. The proposed algorithm builds on 
the markov blanket (MB) and the associated d-separation property in Bayesian network 
(BN) models. We apply the algorithm to the management of patients who have comor-
bidities (i.e., multiple coexisting diseases) and take several comedications (a.k.a. polyp-
harmacy). It is quite challenging to identify the optimal combination of medications for 
these patients.

Approaches such as outcome-based prescribing and individualized comparative effec-
tiveness attempt to provide patients with the best set of medication recommendations 
based on what has worked for similar patients [1–3]. Many researchers have highlighted 
the need for comparative effectiveness studies to improve patient outcomes [4–8]. Data 
for conducting outcome-based prescribing are available, but the method of analysis 
is not clear, and various suggested methods have led to contradictory findings [9, 10]. 
Through a case study, we use type 2 diabetes (T2D) to test the proposed algorithm and 
its applications in complex disease management. We demonstrate how the optimal com-
bination of diabetic medications can be found by examining the comparative effective-
ness of a small, yet statistically sufficient, subset of medications among similar patients. 
In this article, we use polypharmacy and comedication interchangeably.

Outcome‑based prescribing for management of patients with comorbidities 

and comedications

The main idea in outcome-based prescribing is to characterize similar cases. One would 
expect that, at a minimum, a similar case in the dataset will match (i.e., share) diagno-
ses with the patient at hand. However, limiting the matching to patients with the same 
diagnoses is not an easy task. For example, a polypharmacy patient may have q diagnoses 
and take q medications, and each medication could have m alternatives. This suggests 
that outcomes must be examined for 2q×m combinations of medications and diagnoses. 
When q and m are large numbers, which is the case in big data, the analysis becomes 
cumbersome. Our proposed solution is to rule out those features and decision variables 
that are irrelevant in optimizing the target variable of interest.

An example of such complex problems is the management of patients with T2D. Dia-
betes is a public health problem affecting 400 million patients worldwide. The risks of 
death and cardiovascular events among diabetic patients are two to four times greater 
than those risks in the general population [11]. Moreover, controlling diabetes is crucial 
in delaying cardiovascular complications [12].

In this study, we propose a novel algorithm to address the above complexity problem 
by showing how a BN, learned from data, can be used for large scale data-driven optimi-
zation. BNs can model the stochastic and complex relationships among features, deci-
sion variables, and target variables. Moreover, in these models, the concepts of MB and 
the associated d-separation property can be used for each decision variable to identify 
the variables outside the blanket that are statistically independent of the target varia-
ble, given the knowledge of variables inside the blanket [13, 14]. We use this property to 
overcome dimensionality challenges with data-driven optimization in complex datasets.
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Related works

In this section, we review the relevant research published mostly after 2015. This lit-
erature includes (1) management of polypharmacy for patients with comorbidities, (2) 
applications of ML/Artificial Intelligence (AI) in disease management for patients with 
polypharmacy and/or comorbidity, (3) overall applications of ML/AI in diabetes man-
agement, and (4) exclusive applications of BNs in disease management.

Management of polypharmacy for patients with comorbidities is an active area of 
research in the medical community. The studies within this research stream focus mainly 
on predicting clinical outcomes or investigating the effectiveness of combinations of 
medications. Wami and associates [15] used logistic regression to predict HbA1C (the 
average level of blood sugar as a measure of diabetes status) among T2D patients with 
comorbidity and comedications. Their study confirmed the potential impact of coex-
isting diseases and multiple medications on the efficacy of treatment and highlighted 
the research gap in developing treatment policies that take both factors into account. 
Research groups led by Utz and Ruzicka [16, 17] investigated the difficulty of treatment 
for patients with Gaucher disease Type 1 and chronic hepatitis C virus, respectively. 
Both studies emphasized the need to optimize medication treatment strategies for such 
complex diseases. Indu et al. [18] conducted a descriptive study that investigated the role 
of polypharmacy and comorbidity in the treatment of T2D. They also underlined the 
excessive complexity of treating T2D patients and called for more research on identify-
ing the appropriate drug combinations for these patients.

The complexity of disease management in the presence of comorbidity and polyphar-
macy has been the focus of studies based on data analytics using ML/AI. For example, 
Keine and colleagues [19] investigated the effect of polypharmacy on older adults with 
dementia or Alzheimer’s disease and predicted the medication burden using ML. Other 
investigators [20–22] raised computational challenges with predicting the effects of 
drug combination (both synergism and antagonism) and suggested ML as an effective 
method for tackling the challenge when data are available. A recent review article [23] 
that assessed the applications of ML/AI in drug combinations revealed that most stud-
ies focus on predictive analytics (e.g., predicting the outcomes of drug combinations) 
as opposed to prescriptive analytics (e.g., optimizing the combinations of drugs). It also 
reported limited applications of BNs compared with other ML/AI methods.

There is also an extensive literature on the applications of ML/AI in diabetes manage-
ment. A recent seminal paper by Dankwa-Mullan et  al. [24] reviewed more than 450 
articles (published between 2009 and 2018) to investigate the role of ML/AI in trans-
forming diabetic care. Despite overall success with the use of ML/AI in diabetic care, the 
article reported inadequate attention to the treatment aspects of diabetes management 
or BN applications. In another recent review article, Contreras and Vehi [25] considered 
141 articles published between 2010 and 2018. Their study highlights the complexity of 
diabetes management and the need to optimize therapeutic decisions, and concludes 
with confidence in a growing and promising use of ML/AI methods for diabetes man-
agement. It also notes that the prediction and prevention of the diabetes-related com-
plications are the dominant topics, while treatment optimization has been explored less. 
Their review article supports our observation that BNs have not been used widely for 
diabetes management.
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Finally, we instigated the applications of BNs in disease management. BNs have been 
successfully used in the treatment of cancer [26, 27] and cardiovascular disease [28]. 
Among the few papers assessing the applications of BNs for diabetes management, is 
the one by Sambo and associates, who used BNs for probabilistic reasoning and imput-
ing missing risk factors in T2D [29]. Chamaria et  al. [30] investigated the control of 
blood cholesterol level using monotherapy among patients with T2D. Finally, Porta et al. 
[31] employed BNs to investigate the relationships between epigenetic, cytokine, and 
endocrine variables in patients with T2D. None of these articles use BNs for treatment 
optimization.

The most noticeable gap in the body of the literature discussed above is treatment 
optimization for patients with complex diseases involving comorbidities and comedica-
tions. We fill this gap by proposing a data-driven algorithm for disease management, 
which (a) can handle the complexity arising from big health care data in the presence of 
coexisting diseases and multiple medications, and (b) can be used efficiently to optimize 
complex treatment decisions. To our knowledge, this is the first study that utilizes the 
MB property of BNs to optimize treatment decisions in a complex health care problem.

Materials and method
In this section, first, we provide an overview of the technical background required for 
this study. Next, we present our proposed method, followed by a description of the data-
set that we used in our experimental study.

Technical background

A Bayesian network (BN) captures all dependence and independence relationships 
among a set of random variables in a compact network graph. Variables are the nodes 
of the network, and the arcs between the nodes imply the dependence/independence 
relationships among those variables. All nodes leading directly to an individual node 
are its “parents” and the nodes that directly follow it are its “children.” Following the 
arrowheads in a BN, a node is dependent only on its parents. More specifically, a node 
is independent of all other ancestors (i.e., the parents of its parents) conditional on the 
adjacent parent nodes. Such conditional independence leads to simple and compact fac-
torization of the joint probability distribution of the entire network. In order for a BN 
to be represented by such compact joint probability factorization, the network must be 
acyclic (depicted by a Directed Acyclic Graph, referred to as DAG), meaning that the 
arrows leaving a node cannot return to it [32]. More formally, a BN model denoted by 
BN = (X , E) is a set of all nodes (captured in the set X  ) and all edges (captured in the 
set ε ) of the model. In such a network, the joint probability distribution of the entire net-
work can be factorized as follows:

where X = {X1, . . . ,XN } is the set of all N  variables indexed by n , and pa(Xn) denotes 
the set of parents of the random variable Xn.

The independence relations in a BN can be captured in the Markov Blanket (MB) of a 
node, denoted by MB(Xn) . The MB of a node identifies the smallest subset of the variables 

(1)Pr (X ) =
N
∏

n=1

Pr (Xn|pa(Xn))
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around it (i.e., inside the blanket), conditional on which the node becomes independent of 
all other variables in the network (i.e., outside the blanket). Graphically, MB(Xn) consists of 
parents, children, and co-parents (i.e., parents of the children) of Xn . The MB(Xn) d-sepa-
rates Xn from all other nodes in X  ; otherwise, they are said to be d-connected [13, 33]. Fig-
ure 1 illustrates the MB of a node inside a BN.

While the graph on the left shows a complete BN of a problem with X = {D1,X1, . . . ,X7} , 
the subgraph on the right illustrates the Markov blanket of the variable D1 . One can observe 
that the network of MB(D1) is more parsimonious than the whole BN as it includes two 
fewer random variables and seven fewer edges. The resulting parsimony translates into 
not only fewer computations needed for calculating the conditional and joint probabilities 
of the network but also more computationally tractable optimizations around D1 . This is 
because (a) the number of computations needed to characterize the joint/conditional prob-
abilities grows exponentially with the number of node and edges, and (b) the computations 
for characterizing the optimal value of the decision variables (such as D1 ) become less trac-
table with the growth in the number of features to be matched and the number of decision 
variables to be examined around D1 . The resulting computational efficiency becomes more 
prominent when dealing with complex datasets such as the ones arising from big data. We 
capitalize on this simplification for optimizing decision-making in complex problems.

In the above example, the joint probability distribution of the entire network can be fac-
torized as follows:

However, a variable of interest, e.g., D1 , can be fully characterized by a simplified propor-
tionality relationship in the MB(D1) as follows:

(2)Pr (X ) = Pr (X1,X2, . . . ,X7,D1)

= Pr (X1)Pr (X2|X1)Pr (X3|X1)Pr (X4|X2,D1)Pr (X5|X3,X4,X6,D1)

Pr (X6|X2,X4)Pr (X7|X5,X6)Pr (D1|X1)

(3)Pr (D1|X1,X2, . . . ,X7) ∝ Pr (X4|X2,D1)Pr (X5|X3,X4,D1)Pr (D1|X1)

(a) (b)
Fig. 1  Bayesian network (a) versus Markov blanket (b)
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where the equality holds with a normalization constant independent of D1 [34].
The elegance of the MB concept, which plays a key role in our proposed algorithm, is 

that it includes sufficient information for calculating the probability distribution of the 
node [13]. In other words, to fully characterize a node within a network, we only need 
information about the MB of that node, because, by definition, all other information (i.e., 
outside the MB) becomes irrelevant.

In the context of our case study, we define the set of all variables as X = {F ,D, M} , 
where F  denotes the set of feature variables (i.e., the diagnoses and patient characteris-
tics), D denotes the set of decision variables (i.e., medications), and M denotes the tar-
get variable (i.e., mortality). Therefore, we utilize the d-separation property based on the 
features in F  that d-separate the decision variable in D from the target variable M . In 
the next subsection, we show how we use this property to identify the smallest subset of 
variables that affect the relationship between the decision variables and the target vari-
able, thereby reducing the complexity of the optimization task.

Proposed method

The main idea behind our proposed algorithm is that if a BN can be characterized, 
then d-separation can be used to identify a handful of relevant features that affect the 
impact of the decision variables on the target variable. However, not all elements within 
the MB of the decision variable can be controlled by the decision-maker. For example, 
the clinician cannot modify the patient’s demographics. Therefore, similar cases within 
the dataset should be restricted to cases that match these features of the case at hand. 
Diagnoses can be treated in two ways, depending on whether they are the cause for tak-
ing medication (i.e., Diagnosis → Medication ) or side effects of the medication (i.e., 
Medication → Diagnosis ). A diagnosis cannot change by itself. Therefore, all similar 
cases should share the diagnoses in the MB that lead to the selection of the patient’s 
medication. We denote by F1k the set of features pointing to medication Dk . The MB 
may also contain diagnoses that result from the use of medication. Although clinicians 
can prescribe different medications and modify doses, they cannot control medication 
effects. Therefore, the consequence of these medications cannot be fixed as this is the 
mechanism through which the medications affect the risk of mortality. These diagnoses 
are allowed to vary and do not need to be matched. The set of features resulting from 
medication Dk is denoted by F2k . Finally, there are typically several medications within 
MB(Dk) . These are the decision variables, the set of which is denoted by Dk . The analy-
sis needs to find their optimal combination leading to the minimum risk of mortality. 
In summary, the MB of decision variable Dk consists of three sets of variables: the set 
of features that need to be matched (i.e., F1k ), the set of features that do not need to be 
matched (i.e., F2k ), and the set of decision variables Dk . Their combinations have to be 
optimized with respect to the target variable M . In other words,

(4)

if : MB(Dk) = {F1k ,F2k ,Dk}

then, optimal actions for particular realization of the feature set, denoted by F0
1 will be :

= argmin
c

Pr
(

M = 1|F1k = F
0
1 ,Dk = D

c
k

)

,
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where M = 1 indicates death and Dc
k indicates an instantiation of decision variables 

inside Dk.
When different MBs share decision variables, contradictory optimal recommendations 

may arise. To resolve these conflicting recommendations, we merge the conflicting MBs 
and repeat the algorithm with the new MB. The mathematical interpretation of merging 
two MBs is simply to find their union set. This leads to the identification of the optimal 
recommendations based on the majority voting rule commonly used in ML [35, 36]. Fig-
ure 2 summarizes the proposed algorithm for optimizing a set of decision variables with 
respect to a target variable while matching the set of relevant features in a BN.

The conflicting recommendations emerge when different optimal recommendations 
are suggested through different MBs. In other words, V ∗

ij �= V ∗
i′j identifies conflicting 

optimal recommendations through MB(Di) and MB(Di′) for the patient type j . To 
resolve this issue, we combine the conflicting MBs to create a virtual 
MB(Di′′) = MB(Di) ∪MB(Di′) and rerun the algorithm for MB(Di′′) starting from step 
“A” in the proposed algorithm.

Source of data for experimental study

Dataset description and general preprocessing

This study examined data from the electronic health records of diabetic patients seen 
at the Washington DC Veterans Administration Medical Center. Each subject had dif-
ferent first and last visit dates. The average earliest visit date was April 2002, and the 
average latest visit date was June 2008. The first date of visit across all subjects was 
March 1998, and the last date of visit was May 2011. The analysis was conducted on 
19,223 diabetic patients.

Eligibility criteria  The eligibility criteria for inclusion in the final dataset included 
the following:

a.	 Diabetic: The patient must have had two diagnoses of diabetes in the past 2 years. 
A diagnosis of diabetes refers to any of the following International Classification of 
Disease codes: 250.xx, 357.2, 362.0x, 366.41 or 648.0x. The x in the following codes 
refers to any digit.

b.	 Minimum data required: The first and last visits should be at least 180 days apart. 
Patients with fewer than 180 days between first and last visits were excluded on sus-
picion that they could have been receiving care elsewhere.

c.	 Inconsistent date of death: Patients with a recorded date of death 30  days prior 
to their last visit were not included in the analysis. A 30-day interval was allowed 
because, occasionally, test results become available after the date of death or visits 
are coded to have been completed after the death date.

Among the diabetic patients examined, 17,773 (92.2%) met the eligibility criteria. 
We found no records with missing data.
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Dependent variable  The primary target variable in this study was all-cause mortality. 
We focused on mortality because it provides an endpoint for all illnesses, not just those 
related to diabetes [37].

Independent variables  The independent variables included the following:

1.	 Severity of illness: Severity of illness was calculated from all patients’ diagnoses dur-
ing the study period based on the procedure patented by Alemi and Walters [38] for 
the following set of complications: renal; diabetic; other endocrine; cardiac; hypogly-
cemic; digestive; circulatory; ear, nose, and throat; endocrine; eye; female reproduc-
tive; health care status; hematopoietic; hepatobiliary; HIV; infection; injury; kidney; 
male reproductive; mental; musculoskeletal; neoplasia; nerve; respiratory; skin; sub-
stance abuse; and other diseases.

2.	 Diabetic medications: This set of independent variables identified the diabetes medi-
cation that the patient was prescribed in the last year of care. These included the 
following: insulin, acarbose, chlorpropamide, dipeptidyl peptidase-4 (DPP4), glime-
piride, glipizide, glyburide, metformin, pioglitazone, repaglinide, rosiglitazone, tola-
zamide, and troglitazone. For each medication, the prescribed daily dose (PDD) was 
calculated in the last year of care as the measure of the rate of use according to [39].

3.	 Demographics: Year of birth, gender, race, and ethnicity were used to characterize 
patient demographics.

Methods and dataset preprocessing for BN learning

To capture meaningful relationships between the variables in the BN, first, we intro-
duced three classes of variables:

1.	 Root nodes (variables that could not be affected by other variables): Birth year, His-
panic, white, married, and male were preset as root nodes. They are highlighted in 
pink in the model (Fig. 3).

2.	 End node (variables that could not affect other variables): Mortality was set as the 
target variable and is represented by the blue spiral node in the model.

3.	 Intermediate nodes (variables that could be both the cause and effect of other vari-
ables): Medications and their various complications were set as intermediary nodes. 
They are presented as green nodes (diabetic medications) and red nodes (complica-
tions) in the model.

Next, the following sets of arcs were prohibited when building the BN: all arcs from 
the intermediate class to the root class, all arcs from the end class to the root class, and 
all arcs from the end class to the intermediate class.

Finally, we used a combination of Augmented Naïve Bayes [40, 41] and Taboo order 
[42] BN learning from data. We implemented the algorithm in the software application 
BayesiaLab version 5.0.6, using its supervised and unsupervised modules for BN learn-
ing and the Decision Tree Optimization module for the optimization task [43].
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Results and discussion
BN model

The learning procedure resulted in a BN with a total precision of 88.75% and area under 
receiver operating characteristic curve (AUC) of 71.15% (using tenfold cross-valida-
tion), which together suggest an acceptable model fit. Figure 3 depicts the resulting BN 
constructed from data. It shows the impact of diabetic medications (green nodes on 
the left), demographic variables (pink nodes on the top), and severity of illness in vari-
ous body systems (red nodes) on mortality (blue spiral node at the right). The network 
model shows a set of interesting relationships. For example, Hispanic ethnicity affects 
what medications are taken and whether patients are sicker, and severity of illness affects 
mortality directly, as it should. Also, the use of medications affects mortality through 
side-effects and severity of illness, which, again, makes intuitive sense.

Descriptive results

To examine the practical relevance of the BN model and to further motivate our pro-
posed algorithm for treatment optimization, in this section, we present the results of 
simple descriptive analytics using the BN model. In doing so, we conducted the follow-
ing conditional probability queries as a hard evidence analysis common in BN analysis 
[44]:

where M = 1 represents death, Xn is the variable of interest in the query and xcn is the 
realization of interest for Xn.

The impact of demographics on mortality

Figure 4 illustrates the effect of demographic variables on the risk of mortality (i.e., Xn 
in Eq.  (8) is a demographic variable). On average, 12.28% of our diabetic patients died 
(the horizontal red line in all panels of Fig.  4). Being Hispanic increased mortality by 
4.18% (from 11.03% for not being Hispanic, [the red bar] to 15.21% for being Hispanic 
[the green bar]). The increased risk of mortality among the US-born Hispanics has also 
been reported in other studies [45]. Younger patients survived longer than older ones, 
with mortality dropping to 4.35% for young patients versus 19.58% for older patients. 
The effect of aging on mortality is well established in the literature [46]. Marriage had a 
negligible effect on survival (as there is no significant difference between the two bars), 
which contradicts findings of other studies that suggested a protective effect for mar-
riage [45, 47]. Being male increased mortality by 0.81%. The increased risk associated 
with being male has been reported in several studies [48–50], although some other stud-
ies have shown no difference [51–53]. Other demographic variables in our dataset did 
not affect the mortality rate.

The impact of diabetic medications on mortality

Using our BN model, we conducted descriptive analytics to assess the impact of pre-
scribing a medication on the risk of mortality (i.e., Xn in Eq. (8) is a medication variable). 
Figure 5 shows the probability of mortality associated with diabetes medications in our 
data. The dashed line shows the apriori rate of mortality in the population examined, 

(8)Pr
(

M = 1|Xn = xcn
)
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i.e., the rate that is expected for an average patient. Values below this line indicate that 
the medication might be protective and thus reduce the mortality rate to less than the 
average rate. The values above the line indicate the reverse. The range of values suggests 
that the extent to which the medications impact the mortality rate depends on other 
factors in the model. Most of our findings are aligned with the literature. For example, 
our results show that the use of insulin increases the probability of mortality by 1.4%, 
from 11.87% for little or no use to 13.27% for higher dosages (these figures correspond 
to the minimum and maximum height of the bar associated with insulin in the figure, 
respectively). The association between insulin use and mortality has been reported in 
the literature [54]. The use of rosiglitazone increased mortality by 5.43%. The associa-
tion between the use of rosiglitazone and an increased risk of cardiovascular illness and 
sudden death has been reported in the literature [55]. The use of acarbose increased 
mortality by 1.99%. However, the use of glipizide reduced mortality by 0.36%. Higher 
rates of use of pioglitazone had a negligible effect on mortality. Recent studies have 
shown that pioglitazone might protect patients against some cardiovascular risks [56]. 
The use of glyburide increased mortality rate from 11.15% for patients with little or no 
use to 12.41% for patients with further use. This increase in mortality rate has also been 
reported in the literature [57]. The use of glimepiride decreased mortality from 12.98% 
for patients with little or no use to 12.28% for patients with further use. The literature 
suggests that the use of glimepiride might be associated with increased mortality risks 
[58]. The use of DPP4 decreased mortality to 12.13% compared with 12.28% for patients 
who did not use this medication. These findings have also been reported in the literature 
[59].

Despite the concordance between our findings and the literature, the reported impact 
of single medications largely depends on the patients’ conditions and the medications 
they are taking. The key takeaway is that for several medications, notably metformin, 
rosiglitazone, acarbose, insulin, and glyburide, the range of effect is dispersed both above 
and below the average mortality rate. This suggests that under certain conditions, these 
medications can both increase and decrease the risk of mortality. For example, since a 
major portion of the graph for metformin is below the horizontal line, this medication 
seems to be the most promising intervention for an average patient to reduce the risk 
of mortality. An important question, therefore, is how to distinguish patients who are 
likely to benefit from the medications from those who are not. More specifically, how do 
we find the best combination of medications for different patients? The question can be 
answered by running an exhaustive number of conditional probability queries and char-
acterizing the optimal medication decisions for the patient group of interest. However, 
running all conditional probability queries of all mixes of medications for all combina-
tions of feature variables can be computationally intensive and sometimes even intrac-
table. This is particularly true for complex problems arising from big data. In the next 
section, we present the results of our proposed optimization algorithm for character-
izing the optimal combination of diabetic medications among various patient types. As 
discussed earlier, the algorithm does not rely on the exhaustive list of conditional prob-
ability computations. Instead, the optimization task will be conducted on the set of sta-
tistically relevant features and medications identified through the MBs in the BN model.
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Optimization results

In this section, we illustrate the results of our proposed optimization algorithm. Before 
presenting the results for all medications, we provide details regarding the implementa-
tion of the proposed algorithm, using metformin as an example.

An illustrative example

Suppose a young, Hispanic patient who is in good health status is using metformin. Would 
this patient’s outcomes be improved if he or she discontinues metformin or adds other medi-
cations? First, the BN allows us to predict the patient’s average risk of mortality, which is 
2.14%. Notice that birth year, Hispanic ethnicity, glyburide, glipizide, rosiglitazone, insulin, 
health status, renal condition, and circulatory conditions are in the MB of metformin (in bold-
face type in Fig. 6). In other words, following the notations introduced previously, we have:

where:

Therefore, all variables outside MB
(

Metformin
)

 are irrelevant to the decision, as they 
are d-separated from Mortality by the variables inside the MB. On the MB

(

Metformin
)

 , 
the variables belonging to F1,Metformin (namely, Hispanic ethnicity, age, and health sta-
tus) affect the selection of Metformin (at they lead to it) and hence should be matched 
to the patient. The medications on the MB

(

Metformin
)

 (i.e., metformin, glyburide, glip-
izide, insulin, and rosiglitazone) are the decision variables and should be optimized with 
respect to mortality. Therefore, it is important that we examine the outcome for all pos-
sible combinations of these medications. This is accomplished using the decision tree 
optimization algorithm, which is based on finding the best medication combination 
among all possible combinations, taking the matched variables into account [43]. Our 
results show that the probability of mortality among patients who are Hispanic, young, 
and less sick is 2.28% (see the first column in Table 1). After implementing the optimiza-
tion algorithm with MB

(

Metformin
)

 , our results show that the optimal combination of 
medications for this patient type is metformin, no insulin, and no glipizide. This decision 
yields 2.13% as the minimum risk of mortality. In other words: 

The algorithm gives the following optimal solutions: 

MB
(

Metformin
)

=
{

DMetformin,F1,Metformin, F2,Metformin

}

DMetformin =
{

Glyburide, Glipizide, Rosiglitazone, Insulin
}

F1,Metformin =
{

BirthYear, Hispanic, Status
}

F2,Metformin =
{

Renal, Circulatory
}

for i and j such that:

{

patient type: Pj =
{

BirthYear = young , Hispanic = yes, Status = low
}

Markov blanket:Di = Metformin

Optimal action:V ∗
ij =

{

Metformin = 1, Insulin = 0,Glipizide = 0
}

Optimal outcome:m∗
ij = 2.13%.
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For the above patient type, the best treatment strategy is to use monotherapy with 
metformin, and this optimal action minimizes the patient’s risk of mortality to 2.13%.

Optimal medication recommendations

Table 1 summarizes the results of our proposed algorithm for all MBs of the medica-
tions in the data for a selected patient type based on the features in the set F1,medication . 
The table should be read column-wise. Each column identifies the results of analyses for 
each MB (column title) for the matched features in the MB (corresponding to the green 
rows) and the optimal medication decisions (corresponding to the yellow rows). The first 
orange row indicates the average risk of mortality before implementing the algorithm for 
the selected patient type specified through the corresponding matched variables. The 
second orange row indicates the minimum risk of mortality if the patient follows the 
optimal medication decisions identified in the column.

An interesting observation from the results of our algorithm is that only six features 
belong to the set F1 of all MBs. In other words, many features had no impact on the 
selection of the optimal medication combination. Clearly, this simplifies the optimiza-
tion procedure significantly.

We extensively discussed the results for MB
(

Metformin
)

 . The same optimal recom-
mendation (i.e., monotherapy with metformin) is made for the selected patient (in col-
umn 7), who has high hypoglycemic and skin severities in addition to the characteristics 
of the patient in column 1. Indeed, monotherapy with metformin is the optimal medica-
tion for the selected patient types in columns 1, 2, 7, 8, and 10. Rosiglitazone alone is 
the optimal medication for a white patient with good health status (column 4). For the 
selected patients in columns 5 and 6 (i.e., an average patient), the optimal medication 
prescription is monotherapy with glipizide, whereas, for the selected patient in column 
9, the optimal treatment is monotherapy with glyburide. Double therapy (metformin 
and pioglitazone) is recommended only for the patient in column 3. Other optimal rec-
ommendations could have been obtained if we had matched the selected patient with 
different states of the variables in the green rows. Column 10 shows the results of resolv-
ing conflicting recommendations between Columns 2 and 4. To resolve this conflict, we 
repeated the optimization procedure with the union of the two MB’s. The revised rec-
ommendation is now to use metformin only and stop using rosiglitazone.

One interesting observation is that metformin appeared more than all other medica-
tions, at least as a part of the optimal treatment recommendation. This is consistent with 
the descriptive results in Fig. 5, where metformin had the largest range of values below 
the horizontal line (i.e., positive effects in reducing mortality).

Our analysis relied on diabetes medications and not non-diabetic medications. When 
we include these decision variables, a much more complex BN model emerges (see the 
“Appendix”). The resulting network is a lot larger, and the MB for the medications is 
much more complex. Nevertheless, the procedure for analysis remains similar.
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Concluding remarks
This paper demonstrates how a BN could help in optimal decision-making when facing 
complex problems such as those arising from big data. We propose an algorithm that 
takes advantage of the MB of the decision variables to identify matched features and the 
optimal combination of the decision variables. To our knowledge, this is the first study 
that utilizes the MB property of BNs for optimizing treatment decisions in a complex 
health care problem.

There is a concern that as data become more complex, computational difficulties 
will arise regarding characterizing optimal decisions while matching relevant features. 
Based on our proposed algorithm, however, even for very large datasets, with millions 
of records and thousands of variables, it is still possible to focus on cases that d-separate 
decision variables from the target variable. The key idea behind our proposed algorithm 
is that, in such circumstances, it is not necessary to know the full BN. Instead, we only 
need to know (a) the MB of each decision variable and (b) how controlling for the ele-
ments of the MB can alter the target variable. This is of great importance in the analy-
sis of big data when a massive number of features and decision variables are generated 
through various sources at high speed.

Comparison with other methods

To better understand the value and novelty of our proposed method and its applications, 
we compared our study with two published studies.

First, we compared our proposed method with a previous analysis conducted on the 
same dataset by Kheirbek et al. [39]. That study used logistic regression to predict the 
effectiveness of diabetic medications in relation to all-cause mortality. Although the 
analysis can be used to estimate the conditional probabilities Pr

(

M = 1|Xn = xcn
)

 , their 
predictive model does not capture the complex interactions among the variables in the 
data. In logistic regression, interaction can be included through various degrees of inter-
action terms, but this approach normally leads to computational challenges with model 
estimation and poor fit. Second, contrary to our proposed method, logistic regression 
does not provide a way to focus the computations on the smallest subset of variables 
linking decision variables to the target variable. Third, the study reported various results 
on the effectiveness of the medications, which are different from our results. For exam-
ple, the earlier work found no effectiveness of metformin in reducing mortality, whereas 
our study suggests metformin as an optimal monotherapy for several patient groups. 
Our results are more consistent with the recommendation by the American Diabetes 
Association [60] and the conclusions of Mekuria and colleagues [61], which confirms the 
effectiveness of metformin monotherapy. One reason for such discrepancies between 
our study and [39] might be the failure of the logistic regression model to capture com-
plex relationships among variables, leading to incomplete customization of the analy-
ses to various patient types. Another reason might be the lack of optimization in their 
study. Interestingly, the authors highlighted such limitation as the most important step 
in advancing the research:
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“Given the large number of hypoglycemic medications and comorbid conditions, it 
may be important to develop tools that can help selection of optimal medications for 
diabetic patients that present with comorbidities.”

Our proposed method fills the gap by providing optimal recommendations custom-
ized to the patient types.

The idea of foregoing construction of full BNs and focusing on the MB was also prom-
ulgated by Bai and colleagues [62]. While the direction of their work and ours is similar, 
there are major differences, particularly from an application perspective. The key dif-
ference is that Bai and colleagues did not employ MB for optimization purposes. Both 
approaches rely on MB, yet for different purposes and in different ways. They used MB 
around the target variable as a feature selection method to aid in predicting the tar-
get outcomes. Instead, we used MB of the decision variables to aid in optimizing their 
effect on the target variable. We relied on the MB property to understand what is rel-
evant in controlling the impact of the decision variables on a target variable. The way 
we formulated the problem is similar to theories of relevance described by Hjørland and 
Christensen [62], where the relevance of a third variable is defined in the context of the 
relationship between two variables. This epistemological perspective argues that a vari-
able is relevant (i.e., part of the MB, in our case) if it has an impact on the relationship 
between decision variables and the target variable.

Theoretical and clinical implications

Our study has both theoretical and managerial implications. On the theoretical side, it 
has suggested an efficient algorithm that facilitates data-driven optimization with com-
plex datasets. The value of such simplification becomes more eminent in large scale 
optimizations with big data, where the complexity of the computations grows exponen-
tially with the number of variables in the feature and decision sets. On the health care 
management side, the proposed algorithm can be used to optimize data-driven treat-
ment decisions in complex diseases. Other examples of complex diseases include hyper-
tension [64] and cancer [65], where multiple treatment alternatives (mainly combination 
therapy) exist for various patient types under different patient adherence scenarios.

Limitations and future work

A great deal of characterizing the comparative effectiveness of medications from big 
data remains uninvestigated. We have not shown the optimal solution when we use all 
medications (diabetic and non-diabetic) reported in the data. Future research should 
focus on optimal ways of deriving individualized comparative effectiveness in the 
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presence of both sets of medications. We were also limited by a relatively small sample 
size (n = 19,223). Given that ML methods perform better with large datasets and opti-
mization tasks become more complicated with big data, a larger set of data would likely 
better illustrate the utility of our proposed method.
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