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Introduction
The amount of data generated on the internet grows every day at a high rate. This rate 
of data generation requires rapid processing. The MapReduce technique is applied for 
distributed computing of huge data, whose main idea is job parallelization. The MapRe-
duce algorithm deals with two important tasks, namely Map and Reduce. Initially, the 
Map includes a set of data, which is broken down into tuples (key/value pairs). Secondly, 
reduce task takes the map output as an input whereby Reducers run the tasks. Job clus-
tering can determine an allocation of jobs to the reducers and mappers. In recent years, 
this method has been used frequently for job allocation in MapReduce for shortening 
the execution time of big data processing [1].
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Previous research has shown that clustering methods can be useful for big data analy-
sis. K-means as one of the clustering methods (partitioning based) is simple and fast, 
which outperforms many other methods. Another clustering method is known as hier-
archical clustering method which is performed by splitting or merging data. However, 
the time complexity of the hierarchical clustering method is not suitable in practice. 
Also, in this method, the number of clusters is not constant. Grid-based method is a 
type of clustering method which uses on spatial data, with the EM algorithm function-
ing effectively in big data clustering. Finally, the density-based clustering method offers 
adequate precision and proper execution time [2].

Decreasing the execution time of jobs is the main motivation of clustering methods. 
Therefore, the purpose of this paper is to present a new method based on clustering for 
big data processing in Hadoop framework using the MapReduce programming model. 
We use the MR-DBSCAN-KD method as it is one of the fastest density-based cluster-
ing methods. However, MR-DBSCAN-KD has two main drawbacks: First, the outli-
ers’ allocation to reducers is not determined in this method. Thus, we propose an FGC 
algorithm in order to solve this challenge. Secondly, MR-DBSCAN-KD creates various 
clusters with significantly different densities. Use of this method of clustering does not 
lead to load balancing in the clusters [3]. Accordingly, we propose an algorithm in order 
to solve this problem. Our proposed method is based on MR-DBSCAN clustering, the 
futuristic greedy approach, and approximated load balancing.

Related work
Clustering operations of big data involve expensive computation. Hence, the execution 
time of sequential algorithms is very long. Parallelization of clustering algorithms is rec-
ommended for processing big data which can be fulfilled by MapReduce programming. 
The MapReduce programming can decrease the execution time provided that it uses 
proper density-based clustering techniques. In this section, we focus on new approaches 
to big data processing. We also try to categorize these approaches into the idea struc-
ture of prior research and discuss their strengths plus weaknesses. We have classified the 
new approaches into five categories: clustering based on pure parallelizing, clustering 
based on load balancing, clustering based on traffic-aware, clustering based on innova-
tive methods, and clustering based on cluster optimization.

The first category of this categorization is called density-based clustering based on 
pure parallelizing. Zhao et al. [3] proposed a clustering algorithm based on pure paral-
lelizing. They applied parallel k-means clustering in MapReduce for big data processing. 
The results of their work showed that the proposed algorithm functions in a reasonable 
time as the data grow. Srivastava et al. [4] proposed a parallel K-medoid clustering algo-
rithm in Hadoop to be accurate in clustering. When the number of reducers increases 
in this method, the make span time diminishes as it correlates with the data growth. Dai 
et al. [5] stated that the parallel DBSCAN algorithms are not efficient for big data pro-
cessing in MapReduce when the number of the reducers with small data increases. They 
illustrated the MR-DBSCAN-KD algorithm for bulky data. In this method, the execution 
time of small data in reducers was negligible. Most methods based on pure paralleliz-
ing in density-based clustering create heterogeneous clusters. The jobs in heterogeneous 
clusters are never executed simultaneously, which prolong the run of jobs.
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We place the load balancing approach in the second category for solving heteroge-
neous clusters’ problem in parallelized clustering. A number of scientists investigated 
the total execution time by load balancing in parallel clustering. He et al. [6] used this 
approach to big data processing. They proposed the MR-DBSCAN algorithm based on 
load balancing for heavily skewed data. Their method was implemented completely in 
parallel. They achieved load balancing in heavily skewed data and their results verified 
the efficiency and scalability of MR-DBSCAN. Also, Verma et al. [7] studied job schedul-
ing in MapReduce in order to minimize the span and improve clustering. They presented 
an innovative heuristic structure for job scheduling. This method generated balanced 
workload, thereby reducing the completion time of jobs. Ramakrishnan et  al. [8] and 
Fan et al. [9] load-balancing methods based on MapReduce have also been reviewed. Xia 
et al. [10] used a new greedy algorithm with load balancing for MapReduce program-
ming. In this method, data were allocated to the reducers based on iterative calculation 
of sample data. This method used a greedy algorithm instead of a hash algorithm since 
its execution time was shorter than that of hash portioning algorithms. Clustering meth-
ods based on load balancing have not focused very much on issues of online job arrival 
and clustering accuracy. In clustering methods, jobs traffic changes irregularly when a 
job arrives online. Thus, load balancing in clusters disappears.

In recent years, a third category has been introduced, which is based on traffic aware-
ness for arrival of irregular jobs. Xia et  al. [11] proposed an algorithm based on traf-
fic awareness. They applied efficient MapReduce-based parallel clustering algorithm for 
distributed traffic subarea division. In this research, a metric distance is innovated for 
the k-means-parallelized algorithm. Evaluation of the experimental results indicates the 
efficiency in execution time and high accuracy of clustering. Ke et  al. [12] and Reddy 
et  al. [13] also proposed a traffic-aware partition and aggregation in big data applica-
tions. They classified data based on job traffic. Also, Venkatesh et al. [14] investigated 
MapReduce based on traffic-aware partition and aggregation for huge data via an inno-
vative approach. This method considerably reduces the response time for big data in the 
Hadoop framework and consists of three layers: The first layer performs partitioning and 
mapping on big data. In the second layer, data are shuffled based on traffic aware map-
ping. In the third layer, data are reduced; this layer reduces the network traffic in the 
traffic aware clustering algorithm in response to which the execution time diminishes. 
However, in spite of the available methods, clustering time in some data sets is very high.

Indeed, recent methods could still be implemented within a shorter time by decreas-
ing the clustering computation. Hence, innovative methods of the fourth category have 
aided to reducing the clustering computations. For example, HajKacem et al. [15] pre-
sented a one-pass MapReduce-based clustering method called the AMRKP method, 
for mixed large-scale data. The AMRKP method reduces the computation required 
for calculating the distance between clusters. Also, the data are read and written only 
once. Consequently, the number of I/O operations on the disk would be reduced and 
operation iterations would improve the execution time. Sudhakar Ilango et  al. [16] 
developed an algorithm with an artificial bee colony based on clustering approach for 
big data processing. It minimized the execution time but did not always provide good 
precision for clustering. Fan et al. [17] focused on multimedia big data. They observed 
that Canopy + K-means algorithm operates faster than k-means as the amount of data 
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increases. Canopy algorithm is composed of two steps. In the first step, the data are 
grouped based on new distance function calculation through greater precision in clus-
tering. These group data are introduced as canopy. Thereafter, the groups are assigned 
to clusters. This structure could improve the total execution time. Jane et al. [18] pro-
posed an algorithm by sorting based on the K-means algorithm and the Median-based 
algorithm for clustering. This algorithm uses the multi-machine technique for big data 
processing (SBKMMA). It also reduces the number of iterations in the k-means algo-
rithm. The drawback of this algorithm is the determination of the number of clusters as 
the primary number of clusters affects the execution time of algorithm. Kaur et al. [19] 
presented SUBSCALE, a novel clustering algorithm, to find non-trivial subspace clus-
ters for a k-dimensional data set. Their algorithm is applied for high dimensionality of 
the dataset. Note that parallelism in this method is independent of multiple dimensions, 
and thus iterations of SUBSCALE algorithm diminish. Kanimozhi et al. [20] proposed 
an approach for clustering based on bivariate n-gram frequent items. This approach 
reduced the amount of big data for processing in reducers, leading to an increase in the 
speed of execution in big data. Nevertheless, in innovative methods, many clusters are 
not clustered precisely because of the border points (outliers) in them. Accordingly, it is 
better to optimize the clusters.

Finally, the fifth category of algorithms is designed to optimize clusters for improving 
the clustering accuracy. Zerabi et al. [21] developed a new clustering method using con-
ditional entropy index. This method involves a process with three tasks with each dealing 
with MapReduce operations. These tasks operate based on the conditional entropy index, 
whereby the clusters will be optimized. Hosseini et al. [22] proposed a scalable and robust 
fuzzy weighted clustering based on MapReduce through micro array gene expressions. This 
method merges data based on similarity index. Data are processed in a parallelized and 
distributed platform offering a reasonable execution time in this method. Hemant Kumar 
Reddy et al. [23] improved the map-reduce performance by novel-entropy-based data place-
ment strategy (EDPS). They extracted data-groups based on dependencies among datasets. 
Then, data-groups are assigned to the data centre heterogeneity. Finally, data-groups are 
assigned to clusters based on their relative entropy, whereby clusters are optimized approxi-
mately. Beck et al. [24] applied mean shift clustering for grouping big data. They applied 
NNGA + algorithm for dataset pre-processing. They could improve the quality of cluster-
ing and execution time via the mean shift model for big data clustering. Gates et al. [25] 
showed that random models can have an impact on similar clustering pairs. These models 
can be applied for evaluating several methods in Map-Reduce. Heidari et al. [26] discussed 
clustering with variable density based on huge data. They presented MR-VDBSCAN in this 
method. Their idea search local density of points for avoiding of connecting clusters with 
various densities. In this way, clustering optimization is performed.

Researchers have tried to improve execution time by approaches such as parallelism, 
load balancing, jobs categorization based on traffic-aware, reducing clustering computa-
tion and cluster optimization. Parallelism creates heterogeneous clusters, which signifi-
cantly affect the runtime in the reducers. In this way, the total execution time of jobs in 
clusters increases. Load balancing in clustering could create approximately homogenous 
clusters. Nevertheless, the jobs arriving online disrupt the load balance while also gen-
erating heavy computations in the clustering based on load balancing. For this reason, 
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clustering was performed based on job traffic. This approach did not solve the problem of 
high computation in clustering either. We consider parallelization and reduction of cal-
culations as well as optimization of clusters and load balances in the proposed method, 
respectively. Innovative methods have reduced runtime by reducing computation and 
using local options. Nonetheless again because of the boundary points, the clusters are not 
carefully clustered. Cluster optimization can be done with the minimum number of clus-
ters suitable for reducers. Lowering the number of reducers with proper clustering and 
load balancing can diminish the total runtime as reducers can function almost simultane-
ously. Since with fewer reducers the execution time decreases, we can consider maximizing 
the usage of reducers with load balancing. Hence, we tried to present a new method that 
would decrease the number of reducers by clustering jobs and load balancing in reducers. 
The main challenge is the bounded points (outliers) created in density-based clustering. 
We try to cluster data based on density and subsequently, apply approximated load balanc-
ing to the clusters. The proposed idea presents a distance function called Futuristic Greedy 
Index for appending outliers to clusters. Also, it can shorten the execution time by correct-
ing the clusters. Cluster correction is done by discovering similar data and assigning them 
to clusters, provided that interdependence between clusters is minimized.

Methods
We consider two main goals for designing the proposed algorithm (diminishing and load 
balancing of reducers). We design the proposed algorithm by mapping, where reducing 
operations are performed in the Hadoop structure. In the proposed method, the jobs are 
stored in HDFS structure in order and without heavy computation. The jobs are stored 
in file systems equally. Thereafter, the file systems are assigned to mappers sequentially. 
Each mapper is clustered by MR-DBSCAN algorithm. Accordingly, clusters and outli-
ers are generated. Then, the generated outliers merge together or other clusters based 
on FGI. Next, the generated clusters merge together based on centroids distance. Sub-
sequently, new clusters are created by load balancing, which are assigned to reducers. 
Finally, the results of reducers are combined together, and the output is returned. The 
proposed method is composed of five phases.

In the first phase, jobs are stored in the HDFS structure (Vi). They are assigned to the 
file systems equally. Each file system (fs) can store a limited number of jobs because each 
file system accommodates limited capacity.

In the second phase, mapping operations are performed. This phase consists of three 
steps. In the first step, the data are assigned to the mappers, and then data in each map-
per are clustered using the MR-DBSCAN method. The output of this operation is an 
uncertain number of heterogeneous clusters and outliers.
(

Cij ,Oij

)

 . In the second step, FGC algorithm is employed in order to assign outliers 
to existing clusters or together. In the final step, some of the generated clusters merge 
together based on centroid distance. The output of the second phase contains new clus-
ters (C ′

ij) . Hence, the number of reducers diminishes.
In the third phase, clusters must be assigned to reducers. Clusters have almost sim-

ilar jobs, but they are heterogeneous. Therefore, if clusters are assigned to reducers, 
then reducers will have a variable work load, which can increase the total execution 
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time. Thus, clusters are grouped based on the average cluster workload (ETAk) . 
Accordingly, the grouped clusters are assigned to reducers based on the approxi-
mated load balancing.

In the fourth phase, jobs are assigned to reducers, and then each reducer executes 
the related jobs. We expect that the execution time decreases as the clusters are being 
assigned to fewer reducers with load balancing. It results in diminished communication 
cost of data transmission.

In the fifth phase, the outputs of the reducers are combined together, and then the final 
outputs are displayed.

The phases of the proposed method are illustrated in Fig. 1. Table 1 presents the nota-
tions utilized in the proposed algorithm.

Phase 1: Storing the data set in HDFS

Data are stored in the Hadoop structure as a set of data nodes where each data node pre-
sents a data point. Clustering operations are performed on each data point separately. 
Data points are presented by V1, V2, V3,…,Vn. Each of the data points is stored in a file 
in the distributed file system denoted by fs. Algorithm1 presents the storing operations. 
The time complexity of storing the data set in HDFS is:

Algorithm 1. Storing operations in Hadoop.

Phase 2: FGC‑Mapping

FGC-Mapping is performed in the following steps (clustering mappers, assigning outli-
ers to clusters, merging clusters).

Step 1. Clustering mappers

In the previous phase, big data were split equally among V1,V2,V3,…,Vn data nodes 
which were assigned to the mappers. In this step, first the MR-DBSCAN-KD algorithm 
is applied to the mappers, both in parallel and separately. This step is illustrated in 
Fig. 2 where the data are split among three mappers. The data points assigned to each 
mapper are clustered, generating mappers that are comprised of clusters and outliers. 
The clusters are presented by Cij with each of them possessing different densities. For 
example, mapper 1 includes clusters c11, c12, c13, and four outliers. Outliers are jobs 
that do not fall in any cluster. Algorithm  2 presents the first step of FGC-Mapping. 
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The time complexity of the MR-DBSCAN algorithm equals 
(

N
n

)2

 such that Nn  is the 

number of jobs in each mapper, n represents the number of mappers, and N denotes 
the number of all data. In the parallel structure, the time complexity of step 1 is:

Fig. 1  Block diagram of proposed method phases
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Algorithm 2. Assigning data points to mappers.

Table 1  Notations

Notice: cluster centre for each outlier is same as Oij

Notation Description

Vi i-th data point

Mapperi i-th mapper

Cij j-th cluster of i-th mapper

Oij j-th outlier if i-th mapper

Ĉij
cluster centre of Cij or

n Number of data points

N Number of input data

reduceri i-th reducer

j Number of jobs in each cluster

k Number of new clusters before centroids clustering

p Number of new clusters after centroids clustering

C′

ij New cluster after centroids clustering

C′′

ij Produced cluster of centroids clustering

F number of reducers

ETAk Density average of jobs in k-th cluster.

Fig. 2  Mapping with MR-DBSCAN-KD (step 1 of phase 2)
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Step 2. Assigning outliers to clusters.

Each of the clusters includes a cluster centre called centroid. Further, each cluster may 
include outliers as illustrated in Fig. 2. The accuracy of the MR-DBSCAN-KD algorithm 
is high; however, creating outliers and heterogeneous clusters are some of the drawbacks 
of the MR-DBSCAN-KD algorithm [3]. The proposed algorithm appends outliers to the 
existing clusters or other outliers using the Futuristic Greedy Index function (FGI). FGI is a 
new distance function which calculates the distance between the outliers and the clusters. 
The outliers are assigned to the closest cluster using this function. Algorithm 3 illustrates 
the steps of assigning the outliers to the clusters in the second step of the FGC-Mapping.

Algorithm 3. Assigning outliers by FGA.
The FGI function is calculated using Eqs. 1 and 2. Equation 1 calculates the Euclidean 

distance, while Eq. 2 computes the futuristic index. FGI function is designed based on of 
two parts (futuristic and greedy) in Eq. 3.

FGI assigns each outlier to a cluster. In some cases, the distance between an outlier 
and different clusters may not be significantly different. The futuristic in FGI function 
determines that the outlier point is far from the other clusters, while the greedy in FGI 
function specifies that the outlier point is the closest to one cluster. Closeness in Eq. 1 is 
determined by the greedy distance index denoted by dist

(

Oij , Ĉij

)

 . The greedy distance 

index may create improper clustering since the boundary point may not be assigned to 

(1)dist(Oij , Ĉij) =

√

√

√

√

n
∑

j=1

(Oij − Ĉij)
2 for Mapperi

(2)Futuristic_Index =
1

∑n
j=1 dist

(

Oij , Ĉij

)

(3)FGI
(

Oij ,Cij ,Mapperi
)

=

dist
(

Oij , Ĉij

)

∑n
j=1 dist

(

Oij , Ĉij

)
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the proper cluster. Thus, we consider future in Eq. 2. Equation 3 presents the futuristic 
greedy index. Indeed, Eq. 3 is an outcome of the multiplication of Eq. 1 and Eq. 2.

Finally, FGI is calculated by Eq. 2. We append the outlier points to the clusters pro-
vided that clustering does not deteriorate in the next iteration of the greedy algorithm as 
greedy selections do not guarantee appropriate selections in the subsequent steps. Fig-
ure 3 illustrates the output of Algorithm 3. Value ‘j’ is number of jobs in mappers and 
value ‘c’ denotes the number of mappers. The time complexity of step 2 is:

Step 3. Merging clusters.

In this step, clusters that are located close in the mappers are merged together. Algo-
rithm 4 presents the merging method used in the third step of the FGC-Mapping. Ini-
tially, centroids are clustered by MR-DBSCAN-KD. The outputs of this clustering are 
presented by ( C ′′

11C
′′
11(1),C

′′
12(2), . . .,C

′′
ij (k) ), where C ′′

ij (t) denotes centroid of the t-th clus-
ter. Clusters linked by centroids merge together according to centroids’ clustering. A new 
set of clusters is updated in the existing mappers. Hence, new clusters will be considered 
( C ′

11(1),C
′
12(2), . . .,C

′
ij(p) ), which have different densities. Figure 4 illustrates algorithm 4. 

Note that when the clusters are merged, a to new cluster is formed. Hence, the number 
of merged clusters is fewer than the number of previous clusters. Accordingly, clustering 
based on centroids can lower the number of clusters. The time complexity of step 3 is:

Algorithm 4. Merging clusters based on centroids.

iii.O
(

b ∗ n ∗ j + b ∗ j
)

= O
(

n ∗ j
)

, j =
N

c
, c < N ⇒O

(

n ∗
N

c

)

= O(N )
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Phase 3: Load balancing in clusters

The result of the MR-DBSCAN-KD algorithm is a set of heterogeneous clusters. In the 
previous phase, the number of clusters was reduced by merging some clusters. In phase 
3, the clusters are modified with load balancing. The number of clusters is represented 
by P and the proper number of reducers is denoted by F. ETAk presents the average den-
sity of the k-th cluster in MR-DBSCAN. We design Algorithm 5 (the third phase of the 
proposed method) based on ETAk . We assign reducers to clusters with an approximately 
similar density to ETAk . Hence, load balancing will be accomplished in cluster densities.

In Algorithm 5, the clusters with densities greater than ETAk are split into equal clus-
ters with ETAk density. They are then assigned to reducers. The remaining clusters are 
assigned to other reducers using the Best Fit algorithm [27]. Accordingly, load balancing 
in reducers leads to distribution of traffic balance.

Fig. 3  Outlier allocation to clusters (step 2 of phase 2) 
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The time complexity of phase 3 is:

Algorithm 5. Cluster revising based on load balancing.

Fig. 4  Merge of clusters to new clusters in mappers (step 3 of phase 2)
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Phase 4: Job execution in reducers

In phase 4, clusters are assigned to reducers, and then reducers execute the jobs in par-
allel. Load balancing in reducers leads them to execute jobs almost simultaneously. As 
a result, the execution time of the jobs diminishes. It is because the fewer number of 
reducers results in less communication cost. Subsequently, the total execution time 
decreases. Algorithm 6 illustrates phase 4.

Algorithm 6  Assigning clusters to reducers.

Complexity time of step 4 is:

Phase 5: Determining the outputs

In the last phase, the outputs of the reducers are combined together where the final out-
put is returned. Algorithm 7 depicts the last phase of the proposed algorithm. Complex-
ity time of step 5 is:

Algorithm 7  Combining the outputs of reducers.

vi.O(p+ p) = O(p)

vii.O

(

p ∗
N

p

)

= O(N )
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Results and Discussion
The time complexity of the proposed method is calculated by the complexity from phase 
1 to phase 5 in Sect. 3 of this paper, which is shown in Table 2. Thu, the complexity of the 
proposed algorithm is:

The time complexity of phase 3 (load balancing in clusters) is O
(

PlogP
)

 . P represents 
the number of clusters which is far lower than N. Phase 3 is additional phase that we add 
to the main steps of MapReduce. Phase 3 creates waiting time with complexity 
O
(

P2 ∗ logP
)

 . Note that it is negligible in contrast to O
(

N 2

n

)

 since P ≪ N. Also, the 

approximated load balancing in reducers improves the execution. The experimental 
results confirm this claim.

The experimental platform is implemented using Hadoop and is composed of one 
master machine plus eight slave machines. All of the machines had the following specifi-
cations: Intel Xeon E7-2850 @ 2.00 GHz (Dual Cpu) and 8.00 GB RAM. All of the experi-
ments were performed on Ubuntu 16.04 with Hadoop 2.9.1 and JDK 1.8. The codes were 
implemented by Java in the Hadoop environment.

Table  3 presents datasets employed in this research. These datasets are big data in 
this research for two reasons: Firstly, part of the main memory of available computers 
is occupied by the operating system and other information required. Thus, it is not pos-
sible to load all of data in datasets into the existing main memory of the available com-
puter. Datasets in this research are too large and complex to be processed by traditional 
algorithms and computers. As the second reason, datasets are composed of several types 
and several attributes.

Four types of datasets have been used in the experiments called NCDC, PPG-DaLiA, 
HARCAS, and YMVG. The NCDC dataset [29] contains files with every station sub-
hourly (5-min) data in terms of year from U.S. Climate Reference Network (USCRN). 
Sub-hourly data include air temperature, precipitation, global solar radiation, surface 
infrared temperature, relative humidity, soil moisture and temperature, wetness, and 
1.5-m wind speed. Instances are from 2006 to 2019, where the size of this dataset is 
about 26G. PPG-DaLiA dataset contains data from 15 subjects wearing physiological and 
motion sensors, providing a PPG dataset for motion compensation and heart rate esti-
mation in daily life activities. PG-DaLiA dataset is a publicly available dataset for PPG-
based heart rate estimation. This multimodal dataset features physiological and motion 
data, recorded from both a wrist- and a chest-worn device, of 15 subjects while perform-
ing a wide range of activities under close to real-life conditions. The included ECG data 
provides the heart rate ground truth. The included PPG- and 3D-accelerometer data 
can be used for heart rate estimation, while compensating for motion artifacts. Human 
activity recognition from Continuous Ambient Sensor dataset (HARCAS) represents 
the ambient data collected in houses with volunteer residents. Data are collected con-
tinuously while residents perform their normal routines. Ambient PIR motion sensors, 
door/temperature sensors, and light switch sensors are placed throughout the house of 
the volunteer, which are related to specific activities of daily living we wish to capture. 

O(N )+

(

O

(

N 2

n

)

+ O(N )+ O(N )

)

+ O
(

P2
∗ logP

)

+ O(P)+ O(N ) = O

(

N 2

n

)
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The dataset should be useful particularly for research on multi-view (multimodal) learn-
ing, including multi-view clustering and/or supervised learning, co-training, early/late 
fusion, and ensemble techniques. YouTube Multiview Video Games (YMVG) dataset 
consists of feature values and class labels for about 120,000 videos (instances). Each 
instance is described by up to 13 feature types, from three high level feature families: 
textual, visual, and auditory features. There are 31 class labels, 1 through 31. The first 30 
labels correspond to popular video games. Class 31 is not specific, which means none of 
the 30. Note that neither the identity of the videos nor the class labels (video-game titles) 
are released. Again, the dataset should be useful particularly for research on multi-view 
(multimodal) learning, including multi-view clustering and/or supervised learning, co-
training, early/late fusion, and ensemble techniques.

The results are compared with K-means-parallel, GRIDDBSCAN, DB-Scan, Mean 
shift clustering, and EM clustering methods. Table 4 summarizes the execution time for 
these algorithms. The proposed method executes jobs faster than the other algorithms 
due to four reasons. Firstly, big data are categorized and assigned to mappers equally 
without heavy calculations. Also, each mapper consists of small data. Hence, the clus-
tering operation is performed on small data of each mapper within a short execution 
time. Then, clusters and outliers are created and outliers are assigned to other clusters 
or together within a short execution time. Secondly, the generated clusters are merged 
based on their centroids’ distance. Therefore, the distance function is not computed 
for each node of cluster and only is calculated based on centroids. It prevents from 
high computation. Accordingly, computation of distance in clustering is decreased. 
Thirdly, the load balancing in clusters divides the workload between the reducers 
almost equally. Thus, reducers execute the jobs almost simultaneously. Also, it results 
in diminished number of reducers. The low number of reducers shortens the time of 
data transmission in the Hadoop framework. Accordingly, the communication cost in 

Table 2  Complexity of the algorithm phases

Phase Complexity

Complexity of phase 1 O(N)

Complexity of phase 2 O
(

N2

n

)

+ O(N)+ O(N)

Complexity of phase 3 O
(

P2 ∗ logP
)

Complexity of phase 4 O(P)

Complexity of phase 5 O(N)

Table 3  Datasets

Data set Type Attribute 
Characteristics

Number 
of attributes

Number 
of instances

Size Description

YMVG [28] Multivariate Integer, Real 1,000,000 120,000 9.2 G Video youtube

NCDC [29] Multivariate Categorical 9 14 26 G Weather data

PPG-DaLiA [28] Multivariate Real 11 8,300,000 8.4 G Physiological and 
motion data

HARCAS [28] Multivariate Integer, Real 37 13,956,534 28.9 G Ambient data in 
home
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the Hadoop framework drops. Note that the communication cost consists of coordina-
tion between reducers, which is performed by a coordinator. Also, load balancing in the 
traffic of reducers leads to less data transmission between reducers. If load balancing is 
not established, then it is possible to transfer high loads to one reducer. Hence, the total 
execution time increases in the parallel structure of MapReduce. Furthermore, each of 
the clusters is composed of jobs with almost similar computation. These clusters are 
assigned to the reducers and since the computation of jobs is almost similar, the reduc-
ers execute jobs very fast. Accordingly, some similar operations in reducers do not need 
to be recalculated. Also, several similar operations can be processed fast (for example, 
a similar key in the key-value structure of MapReduce for counting the number of one 
word). Consequently, iterations of operations and execution time will be reduced. Fig-
ure 5 indicates that the proposed algorithm performs faster than other methods when 
applied to the four datasets. The speed of algorithms is shown based on the percentage 
of improvement in the total execution time. Near clusters in the mappers are merged 
together in order to lower the total number of clusters.

We can compare clustering methods with a similar index. The Rand Index in data 
clustering is a measure of the similarity between two clusters. It shows view the meas-
ure of the percentage of correct decisions made by the algorithm. The Rand Index is 
calculated using Eq. (4) [30]:

Rand Index is calculated for every two clusters. Subsequently, we consider the aver-
age Rand Index, and compare clusters with it. TP is the number of true positives, TN 
represents the number of true negatives, FP shows the number of false positives, and 
FN denotes the number of false negatives. Rand Index can calculate clustering accu-
racy, and it is applied even when class labels are not used [31].

Table 5 shows that the K-means-parallel has the minimum Rand Index while our pro-
posed method offers the largest Rand Index. Figure 6 illustrates the Rand Index of the five 
algorithms when applied to the four. It demonstrates the percentage of improvement of 
Rand Index. Table 5 presents the Rand index in various algorithms. This table shows that 
the proposed method performs more efficiently compared to the other clustering methods 
in creating similar clusters. This efficiency is the result of usage of FGI for assigning outliers 
and merging near small clusters. In the second phase of the proposed algorithm, the data 
points in the mappers are clustered quickly using MR-DBSCAN-KD. The quick clustering 
is a result of the fact that the data are of normal size and are not considered big data as 

(4)Rand Index =
TP + FN

TP + FP + TN + FN

Table 4  Comparison of execution time (seconds)

Datasets K-means parallel GRIDDBSCAN DB-scan Mean shift 
clustering

EM clustering Proposed method

YMVG 745.13 763.12 633.74 814.93 876.61 619.78

NCDC 2458.37 2345.67 1880.46 2671.47 2593.21 1790.34

PPG-DaLiA 616.23 697.65 457.21 491.43 623.81 447.16

HARCAS 2766.26 2537.23 1983.71 2719.39 2643.12 1837.37
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we apply distributed processing by mappers and reducers. The clusters are merged based 
on centroids’ clustering. This clustering and calculating the distance between the centroids 
occur quickly as number of the centroids is k (k ≪ N). Meanwhile, merging the clusters 
together leads to a reduction in the number of clusters, and the merged clusters in this step 
are approximately similar. In subsequent phases, the operations are performed on the clus-
ters created in this phase. Thus, less calculation is established in each phase of the proposed 
algorithm. Load balancing of jobs in the third step leads to a balanced assignment of jobs 
to the reducers. Hence, reducers finish jobs almost simultaneously. Our proposed method 
improves the average execution time compared to other methods.

Before executing Algorithm  5, the proposed algorithm allocates each cluster to simi-
lar jobs, which may suggest that heterogeneous clusters are created. Some heterogeneous 
clusters have high density. Hence, these clusters cannot be assigned to reducers since load 
imbalance in cluster density causes some reducers to execute jobs within a long time. Sub-
sequently, the total execution time increases.

Algorithm 5 creates two states. In the first state, if a cluster has a density higher than the 
average number of clusters, then the cluster is evenly divided into multiple partitions. Next, 
each partition is allocated to a reducer. In the second state, if the cluster has density less 
than the average density, then it is allocated to a reducer. Thus, the entire capacity of reduc-
ers is not used. Accordingly, load balancing is not fully achieved in reducers. It is important 
to note that the majority of the clusters have density higher than mean density of cluster-
ing before Algorithm 5 due to merging smaller clusters in the previous steps. An excessive 
increase in the number of clusters with a higher density than the average density causes a 
very small amount of imbalance to be increased.

Reducers must process similar jobs in one cluster with approximal similar density. Empir-
ical tests show that Algorithm 5 performs properly when the number of clusters with high 
density is very large. Also, experimental results suggest that the number of high-density 
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clusters increases before running Algorithm  5 as many small clusters merge together in 
previous steps. If the proposed algorithm presents proper load balancing, then the total 
execution time will decrease as reducers execute jobs almost simultaneously. Note that our 
proposed algorithm presents approximated load balancing. Table 6 reports the load balanc-
ing and total execution time in datasets by the proposed method. The load balancing of 
reducers is defined by Eq. 5, which indicates the average difference of execution time in the 
reducers. Table 6 shows that dataset size enlargement has had a proper effect on execution 
time and little effect on load balancing in reducers.

tr is the execution time of reducer rth

t̄ represents the average execution time of reducers

r is the number of reducers

LB denotes load balancing in the execution time

Table 5  Comparison of Rand Index

Datasets K-means parallel GRIDDBSCAN DB-scan Mean shift 
clustering

EM clustering Proposed 
method

YMVG 70.79 84.31 81.64 90.78 89.83 92.41

NCDC 69.46 83.64 79.54 90.21 87.93 91.83

PPG-DaLiA 72.39 85.76 82.17 91.52 90.26 93.47

HARCAS 67.37 81.93 76.87 89.86 86.87 90.57
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Conclusions
In this paper, we proposed a new method based on MR-DBSCAN-KD and futuristic 
greedy index for processing big data. Our proposed method was composed of 5 steps. In 
the first step, big data were partitioned into data points and the data points were stored 
in the Hadoop structure. In the second step, the data points stored in Hadoop were clus-
tered using MR-DBSCAN-KD in parallel. The outliers were then assigned to the existing 
clusters using the Futuristic Greedy Index. At the end of the second step, the clusters 
were merged together based on the distance between their centroids. As a result, the 
number of clusters decreased. In the third step, the clusters were classified based on the 
decline in the number of reducers. In the fourth step, the clusters were assigned to the 
reducers, and in the fifth step the outputs of the reducers were merged together.

Our experimental results indicated that use of this method reduced the execution 
time of jobs. A reasonable execution time was achieved since less data were processed 
in parallel in mappers and reducers throughout each phase. Meanwhile similar data 
were located in the same reducer. This led the reducers to execute the jobs faster. A 
decrease in the number of reducers resulted in shorthand execution time. Note that 
creation of outliers is a drawback of MR-DBSCAN-KD. As a solution, the proposed 
method used futuristic greedy method for assigning these outliers to existing clusters. 
Exchange of jobs between clusters is likely to improve load balancing, and is recom-
mended to be considered in future research. Also, utilisation of novel density-based 
algorithms instead of MR-DBSCAN-KD might decrease the execution time.
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