
Decreasing the execution time of reducers
by revising clustering based on the futuristic
greedy approach
Ali Bakhthemmat1* and Mohammad Izadi2

Introduction
The amount of data generated on the internet grows every day at a high rate. This rate
of data generation requires rapid processing. The MapReduce technique is applied for
distributed computing of huge data, whose main idea is job parallelization. The MapRe-
duce algorithm deals with two important tasks, namely Map and Reduce. Initially, the
Map includes a set of data, which is broken down into tuples (key/value pairs). Secondly,
reduce task takes the map output as an input whereby Reducers run the tasks. Job clus-
tering can determine an allocation of jobs to the reducers and mappers. In recent years,
this method has been used frequently for job allocation in MapReduce for shortening
the execution time of big data processing [1].

Abstract 

MapReduce is used within the Hadoop framework, which handles two important tasks:
mapping and reducing. Data clustering in mappers and reducers can decrease the
execution time, as similar data can be assigned to the same reducer with one key. Our
proposed method decreases the overall execution time by clustering and lowering the
number of reducers. Our proposed algorithm is composed of five phases. In the first
phase, data are stored in the Hadoop structure. In the second phase, we cluster data
using the MR-DBSCAN-KD method in order to determine all of the outliers and clusters.
Then, the outliers are assigned to the existing clusters using the futuristic greedy
method. At the end of the second phase, similar clusters are merged together. In the
third phase, clusters are assigned to the reducers. Note that fewer reducers are required
for this task by applying approximated load balancing between the reducers. In the
fourth phase, the reducers execute their jobs in each cluster. Eventually, in the final
phase, reducers return the output. Decreasing the number of reducers and revising the
clustering helped reducers to perform their jobs almost simultaneously. Our research
results indicate that the proposed algorithm improves the execution time by about
3.9% less than the fastest algorithm in our experiments.

Keywords:  Futuristic greedy, MapReduce, Load balancing, Decreasing the number of
reducers

Open Access

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/.

RESEARCH

Bakhthemmat and Izadi ﻿J Big Data (2020) 7:6
https://doi.org/10.1186/s40537-019-0279-z

*Correspondence:
bakhthemmat@ce.sharif.edu
1 Kish International
Campus, Sharif University
of Technology, Tehran, Iran
Full list of author information
is available at the end of the
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-019-0279-z&domain=pdf

Page 2 of 21Bakhthemmat and Izadi ﻿J Big Data (2020) 7:6

Previous research has shown that clustering methods can be useful for big data analy-
sis. K-means as one of the clustering methods (partitioning based) is simple and fast,
which outperforms many other methods. Another clustering method is known as hier-
archical clustering method which is performed by splitting or merging data. However,
the time complexity of the hierarchical clustering method is not suitable in practice.
Also, in this method, the number of clusters is not constant. Grid-based method is a
type of clustering method which uses on spatial data, with the EM algorithm function-
ing effectively in big data clustering. Finally, the density-based clustering method offers
adequate precision and proper execution time [2].

Decreasing the execution time of jobs is the main motivation of clustering methods.
Therefore, the purpose of this paper is to present a new method based on clustering for
big data processing in Hadoop framework using the MapReduce programming model.
We use the MR-DBSCAN-KD method as it is one of the fastest density-based cluster-
ing methods. However, MR-DBSCAN-KD has two main drawbacks: First, the outli-
ers’ allocation to reducers is not determined in this method. Thus, we propose an FGC
algorithm in order to solve this challenge. Secondly, MR-DBSCAN-KD creates various
clusters with significantly different densities. Use of this method of clustering does not
lead to load balancing in the clusters [3]. Accordingly, we propose an algorithm in order
to solve this problem. Our proposed method is based on MR-DBSCAN clustering, the
futuristic greedy approach, and approximated load balancing.

Related work
Clustering operations of big data involve expensive computation. Hence, the execution
time of sequential algorithms is very long. Parallelization of clustering algorithms is rec-
ommended for processing big data which can be fulfilled by MapReduce programming.
The MapReduce programming can decrease the execution time provided that it uses
proper density-based clustering techniques. In this section, we focus on new approaches
to big data processing. We also try to categorize these approaches into the idea struc-
ture of prior research and discuss their strengths plus weaknesses. We have classified the
new approaches into five categories: clustering based on pure parallelizing, clustering
based on load balancing, clustering based on traffic-aware, clustering based on innova-
tive methods, and clustering based on cluster optimization.

The first category of this categorization is called density-based clustering based on
pure parallelizing. Zhao et al. [3] proposed a clustering algorithm based on pure paral-
lelizing. They applied parallel k-means clustering in MapReduce for big data processing.
The results of their work showed that the proposed algorithm functions in a reasonable
time as the data grow. Srivastava et al. [4] proposed a parallel K-medoid clustering algo-
rithm in Hadoop to be accurate in clustering. When the number of reducers increases
in this method, the make span time diminishes as it correlates with the data growth. Dai
et al. [5] stated that the parallel DBSCAN algorithms are not efficient for big data pro-
cessing in MapReduce when the number of the reducers with small data increases. They
illustrated the MR-DBSCAN-KD algorithm for bulky data. In this method, the execution
time of small data in reducers was negligible. Most methods based on pure paralleliz-
ing in density-based clustering create heterogeneous clusters. The jobs in heterogeneous
clusters are never executed simultaneously, which prolong the run of jobs.

Page 3 of 21Bakhthemmat and Izadi ﻿J Big Data (2020) 7:6

We place the load balancing approach in the second category for solving heteroge-
neous clusters’ problem in parallelized clustering. A number of scientists investigated
the total execution time by load balancing in parallel clustering. He et al. [6] used this
approach to big data processing. They proposed the MR-DBSCAN algorithm based on
load balancing for heavily skewed data. Their method was implemented completely in
parallel. They achieved load balancing in heavily skewed data and their results verified
the efficiency and scalability of MR-DBSCAN. Also, Verma et al. [7] studied job schedul-
ing in MapReduce in order to minimize the span and improve clustering. They presented
an innovative heuristic structure for job scheduling. This method generated balanced
workload, thereby reducing the completion time of jobs. Ramakrishnan et al. [8] and
Fan et al. [9] load-balancing methods based on MapReduce have also been reviewed. Xia
et al. [10] used a new greedy algorithm with load balancing for MapReduce program-
ming. In this method, data were allocated to the reducers based on iterative calculation
of sample data. This method used a greedy algorithm instead of a hash algorithm since
its execution time was shorter than that of hash portioning algorithms. Clustering meth-
ods based on load balancing have not focused very much on issues of online job arrival
and clustering accuracy. In clustering methods, jobs traffic changes irregularly when a
job arrives online. Thus, load balancing in clusters disappears.

In recent years, a third category has been introduced, which is based on traffic aware-
ness for arrival of irregular jobs. Xia et al. [11] proposed an algorithm based on traf-
fic awareness. They applied efficient MapReduce-based parallel clustering algorithm for
distributed traffic subarea division. In this research, a metric distance is innovated for
the k-means-parallelized algorithm. Evaluation of the experimental results indicates the
efficiency in execution time and high accuracy of clustering. Ke et al. [12] and Reddy
et al. [13] also proposed a traffic-aware partition and aggregation in big data applica-
tions. They classified data based on job traffic. Also, Venkatesh et al. [14] investigated
MapReduce based on traffic-aware partition and aggregation for huge data via an inno-
vative approach. This method considerably reduces the response time for big data in the
Hadoop framework and consists of three layers: The first layer performs partitioning and
mapping on big data. In the second layer, data are shuffled based on traffic aware map-
ping. In the third layer, data are reduced; this layer reduces the network traffic in the
traffic aware clustering algorithm in response to which the execution time diminishes.
However, in spite of the available methods, clustering time in some data sets is very high.

Indeed, recent methods could still be implemented within a shorter time by decreas-
ing the clustering computation. Hence, innovative methods of the fourth category have
aided to reducing the clustering computations. For example, HajKacem et al. [15] pre-
sented a one-pass MapReduce-based clustering method called the AMRKP method,
for mixed large-scale data. The AMRKP method reduces the computation required
for calculating the distance between clusters. Also, the data are read and written only
once. Consequently, the number of I/O operations on the disk would be reduced and
operation iterations would improve the execution time. Sudhakar Ilango et al. [16]
developed an algorithm with an artificial bee colony based on clustering approach for
big data processing. It minimized the execution time but did not always provide good
precision for clustering. Fan et al. [17] focused on multimedia big data. They observed
that Canopy + K-means algorithm operates faster than k-means as the amount of data

Page 4 of 21Bakhthemmat and Izadi ﻿J Big Data (2020) 7:6

increases. Canopy algorithm is composed of two steps. In the first step, the data are
grouped based on new distance function calculation through greater precision in clus-
tering. These group data are introduced as canopy. Thereafter, the groups are assigned
to clusters. This structure could improve the total execution time. Jane et al. [18] pro-
posed an algorithm by sorting based on the K-means algorithm and the Median-based
algorithm for clustering. This algorithm uses the multi-machine technique for big data
processing (SBKMMA). It also reduces the number of iterations in the k-means algo-
rithm. The drawback of this algorithm is the determination of the number of clusters as
the primary number of clusters affects the execution time of algorithm. Kaur et al. [19]
presented SUBSCALE, a novel clustering algorithm, to find non-trivial subspace clus-
ters for a k-dimensional data set. Their algorithm is applied for high dimensionality of
the dataset. Note that parallelism in this method is independent of multiple dimensions,
and thus iterations of SUBSCALE algorithm diminish. Kanimozhi et al. [20] proposed
an approach for clustering based on bivariate n-gram frequent items. This approach
reduced the amount of big data for processing in reducers, leading to an increase in the
speed of execution in big data. Nevertheless, in innovative methods, many clusters are
not clustered precisely because of the border points (outliers) in them. Accordingly, it is
better to optimize the clusters.

Finally, the fifth category of algorithms is designed to optimize clusters for improving
the clustering accuracy. Zerabi et al. [21] developed a new clustering method using con-
ditional entropy index. This method involves a process with three tasks with each dealing
with MapReduce operations. These tasks operate based on the conditional entropy index,
whereby the clusters will be optimized. Hosseini et al. [22] proposed a scalable and robust
fuzzy weighted clustering based on MapReduce through micro array gene expressions. This
method merges data based on similarity index. Data are processed in a parallelized and
distributed platform offering a reasonable execution time in this method. Hemant Kumar
Reddy et al. [23] improved the map-reduce performance by novel-entropy-based data place-
ment strategy (EDPS). They extracted data-groups based on dependencies among datasets.
Then, data-groups are assigned to the data centre heterogeneity. Finally, data-groups are
assigned to clusters based on their relative entropy, whereby clusters are optimized approxi-
mately. Beck et al. [24] applied mean shift clustering for grouping big data. They applied
NNGA + algorithm for dataset pre-processing. They could improve the quality of cluster-
ing and execution time via the mean shift model for big data clustering. Gates et al. [25]
showed that random models can have an impact on similar clustering pairs. These models
can be applied for evaluating several methods in Map-Reduce. Heidari et al. [26] discussed
clustering with variable density based on huge data. They presented MR-VDBSCAN in this
method. Their idea search local density of points for avoiding of connecting clusters with
various densities. In this way, clustering optimization is performed.

Researchers have tried to improve execution time by approaches such as parallelism,
load balancing, jobs categorization based on traffic-aware, reducing clustering computa-
tion and cluster optimization. Parallelism creates heterogeneous clusters, which signifi-
cantly affect the runtime in the reducers. In this way, the total execution time of jobs in
clusters increases. Load balancing in clustering could create approximately homogenous
clusters. Nevertheless, the jobs arriving online disrupt the load balance while also gen-
erating heavy computations in the clustering based on load balancing. For this reason,

Page 5 of 21Bakhthemmat and Izadi ﻿J Big Data (2020) 7:6

clustering was performed based on job traffic. This approach did not solve the problem of
high computation in clustering either. We consider parallelization and reduction of cal-
culations as well as optimization of clusters and load balances in the proposed method,
respectively. Innovative methods have reduced runtime by reducing computation and
using local options. Nonetheless again because of the boundary points, the clusters are not
carefully clustered. Cluster optimization can be done with the minimum number of clus-
ters suitable for reducers. Lowering the number of reducers with proper clustering and
load balancing can diminish the total runtime as reducers can function almost simultane-
ously. Since with fewer reducers the execution time decreases, we can consider maximizing
the usage of reducers with load balancing. Hence, we tried to present a new method that
would decrease the number of reducers by clustering jobs and load balancing in reducers.
The main challenge is the bounded points (outliers) created in density-based clustering.
We try to cluster data based on density and subsequently, apply approximated load balanc-
ing to the clusters. The proposed idea presents a distance function called Futuristic Greedy
Index for appending outliers to clusters. Also, it can shorten the execution time by correct-
ing the clusters. Cluster correction is done by discovering similar data and assigning them
to clusters, provided that interdependence between clusters is minimized.

Methods
We consider two main goals for designing the proposed algorithm (diminishing and load
balancing of reducers). We design the proposed algorithm by mapping, where reducing
operations are performed in the Hadoop structure. In the proposed method, the jobs are
stored in HDFS structure in order and without heavy computation. The jobs are stored
in file systems equally. Thereafter, the file systems are assigned to mappers sequentially.
Each mapper is clustered by MR-DBSCAN algorithm. Accordingly, clusters and outli-
ers are generated. Then, the generated outliers merge together or other clusters based
on FGI. Next, the generated clusters merge together based on centroids distance. Sub-
sequently, new clusters are created by load balancing, which are assigned to reducers.
Finally, the results of reducers are combined together, and the output is returned. The
proposed method is composed of five phases.

In the first phase, jobs are stored in the HDFS structure (Vi). They are assigned to the
file systems equally. Each file system (fs) can store a limited number of jobs because each
file system accommodates limited capacity.

In the second phase, mapping operations are performed. This phase consists of three
steps. In the first step, the data are assigned to the mappers, and then data in each map-
per are clustered using the MR-DBSCAN method. The output of this operation is an
uncertain number of heterogeneous clusters and outliers.
(

Cij ,Oij

)

 . In the second step, FGC algorithm is employed in order to assign outliers
to existing clusters or together. In the final step, some of the generated clusters merge
together based on centroid distance. The output of the second phase contains new clus-
ters (C ′

ij) . Hence, the number of reducers diminishes.
In the third phase, clusters must be assigned to reducers. Clusters have almost sim-

ilar jobs, but they are heterogeneous. Therefore, if clusters are assigned to reducers,
then reducers will have a variable work load, which can increase the total execution

Page 6 of 21Bakhthemmat and Izadi ﻿J Big Data (2020) 7:6

time. Thus, clusters are grouped based on the average cluster workload (ETAk) .
Accordingly, the grouped clusters are assigned to reducers based on the approxi-
mated load balancing.

In the fourth phase, jobs are assigned to reducers, and then each reducer executes
the related jobs. We expect that the execution time decreases as the clusters are being
assigned to fewer reducers with load balancing. It results in diminished communication
cost of data transmission.

In the fifth phase, the outputs of the reducers are combined together, and then the final
outputs are displayed.

The phases of the proposed method are illustrated in Fig. 1. Table 1 presents the nota-
tions utilized in the proposed algorithm.

Phase 1: Storing the data set in HDFS

Data are stored in the Hadoop structure as a set of data nodes where each data node pre-
sents a data point. Clustering operations are performed on each data point separately.
Data points are presented by V1, V2, V3,…,Vn. Each of the data points is stored in a file
in the distributed file system denoted by fs. Algorithm1 presents the storing operations.
The time complexity of storing the data set in HDFS is:

Algorithm 1. Storing operations in Hadoop.

Phase 2: FGC‑Mapping

FGC-Mapping is performed in the following steps (clustering mappers, assigning outli-
ers to clusters, merging clusters).

Step 1. Clustering mappers

In the previous phase, big data were split equally among V1,V2,V3,…,Vn data nodes
which were assigned to the mappers. In this step, first the MR-DBSCAN-KD algorithm
is applied to the mappers, both in parallel and separately. This step is illustrated in
Fig. 2 where the data are split among three mappers. The data points assigned to each
mapper are clustered, generating mappers that are comprised of clusters and outliers.
The clusters are presented by Cij with each of them possessing different densities. For
example, mapper 1 includes clusters c11, c12, c13, and four outliers. Outliers are jobs
that do not fall in any cluster. Algorithm 2 presents the first step of FGC-Mapping.

Page 7 of 21Bakhthemmat and Izadi ﻿J Big Data (2020) 7:6

The time complexity of the MR-DBSCAN algorithm equals
(

N
n

)2

 such that Nn is the

number of jobs in each mapper, n represents the number of mappers, and N denotes
the number of all data. In the parallel structure, the time complexity of step 1 is:

Fig. 1  Block diagram of proposed method phases

Page 8 of 21Bakhthemmat and Izadi ﻿J Big Data (2020) 7:6

Algorithm 2. Assigning data points to mappers.

Table 1  Notations

Notice: cluster centre for each outlier is same as Oij

Notation Description

Vi i-th data point

Mapperi i-th mapper

Cij j-th cluster of i-th mapper

Oij j-th outlier if i-th mapper

Ĉij
cluster centre of Cij or

n Number of data points

N Number of input data

reduceri i-th reducer

j Number of jobs in each cluster

k Number of new clusters before centroids clustering

p Number of new clusters after centroids clustering

C′

ij New cluster after centroids clustering

C′′

ij Produced cluster of centroids clustering

F number of reducers

ETAk Density average of jobs in k-th cluster.

Fig. 2  Mapping with MR-DBSCAN-KD (step 1 of phase 2)

Page 9 of 21Bakhthemmat and Izadi ﻿J Big Data (2020) 7:6

Step 2. Assigning outliers to clusters.

Each of the clusters includes a cluster centre called centroid. Further, each cluster may
include outliers as illustrated in Fig. 2. The accuracy of the MR-DBSCAN-KD algorithm
is high; however, creating outliers and heterogeneous clusters are some of the drawbacks
of the MR-DBSCAN-KD algorithm [3]. The proposed algorithm appends outliers to the
existing clusters or other outliers using the Futuristic Greedy Index function (FGI). FGI is a
new distance function which calculates the distance between the outliers and the clusters.
The outliers are assigned to the closest cluster using this function. Algorithm 3 illustrates
the steps of assigning the outliers to the clusters in the second step of the FGC-Mapping.

Algorithm 3. Assigning outliers by FGA.
The FGI function is calculated using Eqs. 1 and 2. Equation 1 calculates the Euclidean

distance, while Eq. 2 computes the futuristic index. FGI function is designed based on of
two parts (futuristic and greedy) in Eq. 3.

FGI assigns each outlier to a cluster. In some cases, the distance between an outlier
and different clusters may not be significantly different. The futuristic in FGI function
determines that the outlier point is far from the other clusters, while the greedy in FGI
function specifies that the outlier point is the closest to one cluster. Closeness in Eq. 1 is
determined by the greedy distance index denoted by dist

(

Oij , Ĉij

)

 . The greedy distance

index may create improper clustering since the boundary point may not be assigned to

(1)dist(Oij , Ĉij) =

√

√

√

√

n
∑

j=1

(Oij − Ĉij)
2 for Mapperi

(2)Futuristic_Index =
1

∑n
j=1 dist

(

Oij , Ĉij

)

(3)FGI
(

Oij ,Cij ,Mapperi
)

=

dist
(

Oij , Ĉij

)

∑n
j=1 dist

(

Oij , Ĉij

)

Page 10 of 21Bakhthemmat and Izadi ﻿J Big Data (2020) 7:6

the proper cluster. Thus, we consider future in Eq. 2. Equation 3 presents the futuristic
greedy index. Indeed, Eq. 3 is an outcome of the multiplication of Eq. 1 and Eq. 2.

Finally, FGI is calculated by Eq. 2. We append the outlier points to the clusters pro-
vided that clustering does not deteriorate in the next iteration of the greedy algorithm as
greedy selections do not guarantee appropriate selections in the subsequent steps. Fig-
ure 3 illustrates the output of Algorithm 3. Value ‘j’ is number of jobs in mappers and
value ‘c’ denotes the number of mappers. The time complexity of step 2 is:

Step 3. Merging clusters.

In this step, clusters that are located close in the mappers are merged together. Algo-
rithm 4 presents the merging method used in the third step of the FGC-Mapping. Ini-
tially, centroids are clustered by MR-DBSCAN-KD. The outputs of this clustering are
presented by ( C ′′

11C
′′
11(1),C

′′
12(2), . . .,C

′′
ij (k) ), where C ′′

ij (t) denotes centroid of the t-th clus-
ter. Clusters linked by centroids merge together according to centroids’ clustering. A new
set of clusters is updated in the existing mappers. Hence, new clusters will be considered
( C ′

11(1),C
′
12(2), . . .,C

′
ij(p) ), which have different densities. Figure 4 illustrates algorithm 4.

Note that when the clusters are merged, a to new cluster is formed. Hence, the number
of merged clusters is fewer than the number of previous clusters. Accordingly, clustering
based on centroids can lower the number of clusters. The time complexity of step 3 is:

Algorithm 4. Merging clusters based on centroids.

iii.O
(

b ∗ n ∗ j + b ∗ j
)

= O
(

n ∗ j
)

, j =
N

c
, c < N ⇒O

(

n ∗
N

c

)

= O(N)

Page 11 of 21Bakhthemmat and Izadi ﻿J Big Data (2020) 7:6

Phase 3: Load balancing in clusters

The result of the MR-DBSCAN-KD algorithm is a set of heterogeneous clusters. In the
previous phase, the number of clusters was reduced by merging some clusters. In phase
3, the clusters are modified with load balancing. The number of clusters is represented
by P and the proper number of reducers is denoted by F. ETAk presents the average den-
sity of the k-th cluster in MR-DBSCAN. We design Algorithm 5 (the third phase of the
proposed method) based on ETAk . We assign reducers to clusters with an approximately
similar density to ETAk . Hence, load balancing will be accomplished in cluster densities.

In Algorithm 5, the clusters with densities greater than ETAk are split into equal clus-
ters with ETAk density. They are then assigned to reducers. The remaining clusters are
assigned to other reducers using the Best Fit algorithm [27]. Accordingly, load balancing
in reducers leads to distribution of traffic balance.

Fig. 3  Outlier allocation to clusters (step 2 of phase 2)

Page 12 of 21Bakhthemmat and Izadi ﻿J Big Data (2020) 7:6

The time complexity of phase 3 is:

Algorithm 5. Cluster revising based on load balancing.

Fig. 4  Merge of clusters to new clusters in mappers (step 3 of phase 2)

Page 13 of 21Bakhthemmat and Izadi ﻿J Big Data (2020) 7:6

Phase 4: Job execution in reducers

In phase 4, clusters are assigned to reducers, and then reducers execute the jobs in par-
allel. Load balancing in reducers leads them to execute jobs almost simultaneously. As
a result, the execution time of the jobs diminishes. It is because the fewer number of
reducers results in less communication cost. Subsequently, the total execution time
decreases. Algorithm 6 illustrates phase 4.

Algorithm 6  Assigning clusters to reducers.

Complexity time of step 4 is:

Phase 5: Determining the outputs

In the last phase, the outputs of the reducers are combined together where the final out-
put is returned. Algorithm 7 depicts the last phase of the proposed algorithm. Complex-
ity time of step 5 is:

Algorithm 7  Combining the outputs of reducers.

vi.O(p+ p) = O(p)

vii.O

(

p ∗
N

p

)

= O(N)

Page 14 of 21Bakhthemmat and Izadi ﻿J Big Data (2020) 7:6

Results and Discussion
The time complexity of the proposed method is calculated by the complexity from phase
1 to phase 5 in Sect. 3 of this paper, which is shown in Table 2. Thu, the complexity of the
proposed algorithm is:

The time complexity of phase 3 (load balancing in clusters) is O
(

PlogP
)

 . P represents
the number of clusters which is far lower than N. Phase 3 is additional phase that we add
to the main steps of MapReduce. Phase 3 creates waiting time with complexity
O
(

P2 ∗ logP
)

 . Note that it is negligible in contrast to O
(

N 2

n

)

 since P ≪ N. Also, the

approximated load balancing in reducers improves the execution. The experimental
results confirm this claim.

The experimental platform is implemented using Hadoop and is composed of one
master machine plus eight slave machines. All of the machines had the following specifi-
cations: Intel Xeon E7-2850 @ 2.00 GHz (Dual Cpu) and 8.00 GB RAM. All of the experi-
ments were performed on Ubuntu 16.04 with Hadoop 2.9.1 and JDK 1.8. The codes were
implemented by Java in the Hadoop environment.

Table 3 presents datasets employed in this research. These datasets are big data in
this research for two reasons: Firstly, part of the main memory of available computers
is occupied by the operating system and other information required. Thus, it is not pos-
sible to load all of data in datasets into the existing main memory of the available com-
puter. Datasets in this research are too large and complex to be processed by traditional
algorithms and computers. As the second reason, datasets are composed of several types
and several attributes.

Four types of datasets have been used in the experiments called NCDC, PPG-DaLiA,
HARCAS, and YMVG. The NCDC dataset [29] contains files with every station sub-
hourly (5-min) data in terms of year from U.S. Climate Reference Network (USCRN).
Sub-hourly data include air temperature, precipitation, global solar radiation, surface
infrared temperature, relative humidity, soil moisture and temperature, wetness, and
1.5-m wind speed. Instances are from 2006 to 2019, where the size of this dataset is
about 26G. PPG-DaLiA dataset contains data from 15 subjects wearing physiological and
motion sensors, providing a PPG dataset for motion compensation and heart rate esti-
mation in daily life activities. PG-DaLiA dataset is a publicly available dataset for PPG-
based heart rate estimation. This multimodal dataset features physiological and motion
data, recorded from both a wrist- and a chest-worn device, of 15 subjects while perform-
ing a wide range of activities under close to real-life conditions. The included ECG data
provides the heart rate ground truth. The included PPG- and 3D-accelerometer data
can be used for heart rate estimation, while compensating for motion artifacts. Human
activity recognition from Continuous Ambient Sensor dataset (HARCAS) represents
the ambient data collected in houses with volunteer residents. Data are collected con-
tinuously while residents perform their normal routines. Ambient PIR motion sensors,
door/temperature sensors, and light switch sensors are placed throughout the house of
the volunteer, which are related to specific activities of daily living we wish to capture.

O(N)+

(

O

(

N 2

n

)

+ O(N)+ O(N)

)

+ O
(

P2
∗ logP

)

+ O(P)+ O(N) = O

(

N 2

n

)

Page 15 of 21Bakhthemmat and Izadi ﻿J Big Data (2020) 7:6

The dataset should be useful particularly for research on multi-view (multimodal) learn-
ing, including multi-view clustering and/or supervised learning, co-training, early/late
fusion, and ensemble techniques. YouTube Multiview Video Games (YMVG) dataset
consists of feature values and class labels for about 120,000 videos (instances). Each
instance is described by up to 13 feature types, from three high level feature families:
textual, visual, and auditory features. There are 31 class labels, 1 through 31. The first 30
labels correspond to popular video games. Class 31 is not specific, which means none of
the 30. Note that neither the identity of the videos nor the class labels (video-game titles)
are released. Again, the dataset should be useful particularly for research on multi-view
(multimodal) learning, including multi-view clustering and/or supervised learning, co-
training, early/late fusion, and ensemble techniques.

The results are compared with K-means-parallel, GRIDDBSCAN, DB-Scan, Mean
shift clustering, and EM clustering methods. Table 4 summarizes the execution time for
these algorithms. The proposed method executes jobs faster than the other algorithms
due to four reasons. Firstly, big data are categorized and assigned to mappers equally
without heavy calculations. Also, each mapper consists of small data. Hence, the clus-
tering operation is performed on small data of each mapper within a short execution
time. Then, clusters and outliers are created and outliers are assigned to other clusters
or together within a short execution time. Secondly, the generated clusters are merged
based on their centroids’ distance. Therefore, the distance function is not computed
for each node of cluster and only is calculated based on centroids. It prevents from
high computation. Accordingly, computation of distance in clustering is decreased.
Thirdly, the load balancing in clusters divides the workload between the reducers
almost equally. Thus, reducers execute the jobs almost simultaneously. Also, it results
in diminished number of reducers. The low number of reducers shortens the time of
data transmission in the Hadoop framework. Accordingly, the communication cost in

Table 2  Complexity of the algorithm phases

Phase Complexity

Complexity of phase 1 O(N)

Complexity of phase 2 O
(

N2

n

)

+ O(N)+ O(N)

Complexity of phase 3 O
(

P2 ∗ logP
)

Complexity of phase 4 O(P)

Complexity of phase 5 O(N)

Table 3  Datasets

Data set Type Attribute
Characteristics

Number
of attributes

Number
of instances

Size Description

YMVG [28] Multivariate Integer, Real 1,000,000 120,000 9.2 G Video youtube

NCDC [29] Multivariate Categorical 9 14 26 G Weather data

PPG-DaLiA [28] Multivariate Real 11 8,300,000 8.4 G Physiological and
motion data

HARCAS [28] Multivariate Integer, Real 37 13,956,534 28.9 G Ambient data in
home

Page 16 of 21Bakhthemmat and Izadi ﻿J Big Data (2020) 7:6

the Hadoop framework drops. Note that the communication cost consists of coordina-
tion between reducers, which is performed by a coordinator. Also, load balancing in the
traffic of reducers leads to less data transmission between reducers. If load balancing is
not established, then it is possible to transfer high loads to one reducer. Hence, the total
execution time increases in the parallel structure of MapReduce. Furthermore, each of
the clusters is composed of jobs with almost similar computation. These clusters are
assigned to the reducers and since the computation of jobs is almost similar, the reduc-
ers execute jobs very fast. Accordingly, some similar operations in reducers do not need
to be recalculated. Also, several similar operations can be processed fast (for example,
a similar key in the key-value structure of MapReduce for counting the number of one
word). Consequently, iterations of operations and execution time will be reduced. Fig-
ure 5 indicates that the proposed algorithm performs faster than other methods when
applied to the four datasets. The speed of algorithms is shown based on the percentage
of improvement in the total execution time. Near clusters in the mappers are merged
together in order to lower the total number of clusters.

We can compare clustering methods with a similar index. The Rand Index in data
clustering is a measure of the similarity between two clusters. It shows view the meas-
ure of the percentage of correct decisions made by the algorithm. The Rand Index is
calculated using Eq. (4) [30]:

Rand Index is calculated for every two clusters. Subsequently, we consider the aver-
age Rand Index, and compare clusters with it. TP is the number of true positives, TN
represents the number of true negatives, FP shows the number of false positives, and
FN denotes the number of false negatives. Rand Index can calculate clustering accu-
racy, and it is applied even when class labels are not used [31].

Table 5 shows that the K-means-parallel has the minimum Rand Index while our pro-
posed method offers the largest Rand Index. Figure 6 illustrates the Rand Index of the five
algorithms when applied to the four. It demonstrates the percentage of improvement of
Rand Index. Table 5 presents the Rand index in various algorithms. This table shows that
the proposed method performs more efficiently compared to the other clustering methods
in creating similar clusters. This efficiency is the result of usage of FGI for assigning outliers
and merging near small clusters. In the second phase of the proposed algorithm, the data
points in the mappers are clustered quickly using MR-DBSCAN-KD. The quick clustering
is a result of the fact that the data are of normal size and are not considered big data as

(4)Rand Index =
TP + FN

TP + FP + TN + FN

Table 4  Comparison of execution time (seconds)

Datasets K-means parallel GRIDDBSCAN DB-scan Mean shift
clustering

EM clustering Proposed method

YMVG 745.13 763.12 633.74 814.93 876.61 619.78

NCDC 2458.37 2345.67 1880.46 2671.47 2593.21 1790.34

PPG-DaLiA 616.23 697.65 457.21 491.43 623.81 447.16

HARCAS 2766.26 2537.23 1983.71 2719.39 2643.12 1837.37

Page 17 of 21Bakhthemmat and Izadi ﻿J Big Data (2020) 7:6

we apply distributed processing by mappers and reducers. The clusters are merged based
on centroids’ clustering. This clustering and calculating the distance between the centroids
occur quickly as number of the centroids is k (k ≪ N). Meanwhile, merging the clusters
together leads to a reduction in the number of clusters, and the merged clusters in this step
are approximately similar. In subsequent phases, the operations are performed on the clus-
ters created in this phase. Thus, less calculation is established in each phase of the proposed
algorithm. Load balancing of jobs in the third step leads to a balanced assignment of jobs
to the reducers. Hence, reducers finish jobs almost simultaneously. Our proposed method
improves the average execution time compared to other methods.

Before executing Algorithm 5, the proposed algorithm allocates each cluster to simi-
lar jobs, which may suggest that heterogeneous clusters are created. Some heterogeneous
clusters have high density. Hence, these clusters cannot be assigned to reducers since load
imbalance in cluster density causes some reducers to execute jobs within a long time. Sub-
sequently, the total execution time increases.

Algorithm 5 creates two states. In the first state, if a cluster has a density higher than the
average number of clusters, then the cluster is evenly divided into multiple partitions. Next,
each partition is allocated to a reducer. In the second state, if the cluster has density less
than the average density, then it is allocated to a reducer. Thus, the entire capacity of reduc-
ers is not used. Accordingly, load balancing is not fully achieved in reducers. It is important
to note that the majority of the clusters have density higher than mean density of cluster-
ing before Algorithm 5 due to merging smaller clusters in the previous steps. An excessive
increase in the number of clusters with a higher density than the average density causes a
very small amount of imbalance to be increased.

Reducers must process similar jobs in one cluster with approximal similar density. Empir-
ical tests show that Algorithm 5 performs properly when the number of clusters with high
density is very large. Also, experimental results suggest that the number of high-density

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

YMVG

NCDC

PPG-DaLiA

HARCAS

Fig. 5  Percentage of improvement for execution time

Page 18 of 21Bakhthemmat and Izadi ﻿J Big Data (2020) 7:6

clusters increases before running Algorithm 5 as many small clusters merge together in
previous steps. If the proposed algorithm presents proper load balancing, then the total
execution time will decrease as reducers execute jobs almost simultaneously. Note that our
proposed algorithm presents approximated load balancing. Table 6 reports the load balanc-
ing and total execution time in datasets by the proposed method. The load balancing of
reducers is defined by Eq. 5, which indicates the average difference of execution time in the
reducers. Table 6 shows that dataset size enlargement has had a proper effect on execution
time and little effect on load balancing in reducers.

tr is the execution time of reducer rth

t̄ represents the average execution time of reducers

r is the number of reducers

LB denotes load balancing in the execution time

Table 5  Comparison of Rand Index

Datasets K-means parallel GRIDDBSCAN DB-scan Mean shift
clustering

EM clustering Proposed
method

YMVG 70.79 84.31 81.64 90.78 89.83 92.41

NCDC 69.46 83.64 79.54 90.21 87.93 91.83

PPG-DaLiA 72.39 85.76 82.17 91.52 90.26 93.47

HARCAS 67.37 81.93 76.87 89.86 86.87 90.57

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

YMVG

NCDC

PPG-DaLiA

HARCAS

Fig. 6  Percentage of improvement for Rand Index

Page 19 of 21Bakhthemmat and Izadi ﻿J Big Data (2020) 7:6

Conclusions
In this paper, we proposed a new method based on MR-DBSCAN-KD and futuristic
greedy index for processing big data. Our proposed method was composed of 5 steps. In
the first step, big data were partitioned into data points and the data points were stored
in the Hadoop structure. In the second step, the data points stored in Hadoop were clus-
tered using MR-DBSCAN-KD in parallel. The outliers were then assigned to the existing
clusters using the Futuristic Greedy Index. At the end of the second step, the clusters
were merged together based on the distance between their centroids. As a result, the
number of clusters decreased. In the third step, the clusters were classified based on the
decline in the number of reducers. In the fourth step, the clusters were assigned to the
reducers, and in the fifth step the outputs of the reducers were merged together.

Our experimental results indicated that use of this method reduced the execution
time of jobs. A reasonable execution time was achieved since less data were processed
in parallel in mappers and reducers throughout each phase. Meanwhile similar data
were located in the same reducer. This led the reducers to execute the jobs faster. A
decrease in the number of reducers resulted in shorthand execution time. Note that
creation of outliers is a drawback of MR-DBSCAN-KD. As a solution, the proposed
method used futuristic greedy method for assigning these outliers to existing clusters.
Exchange of jobs between clusters is likely to improve load balancing, and is recom-
mended to be considered in future research. Also, utilisation of novel density-based
algorithms instead of MR-DBSCAN-KD might decrease the execution time.

Abbreviations
FGI: Futuristic Greedy Index; FGC: Futuristic Greedy Clustering; fs: File System; HDFS: Hadoop Distributed File System.

Authors’ contributions
All authors read and approved the final manuscript.

Funding
The authors declare that they have no funding.

 Availability of data and materials
All data used in this study are publicly available and accessible in the cited sources. Dataset: including details of Dataset
that used in experiment see the web site: https​://archi​ve.ics.uci.edu/ml.

Ethics approval and consent to participate
The authors ethics approval and consent to participate.

(5)LB = 1−

∑r
i=1

∣

∣tr − t̄
∣

∣

r

Table 6  Correlation between load balancing and total execution time

Datasets Load balancing time (phase 3) Total time LB

YMVG 32.96 619.78 0.8937

NCDC 88.31 1790.34 0.793

PPG-DaLiA 22.61 447.16 0.836

HARCAS 93.26 1837.37 0.813

https://archive.ics.uci.edu/ml

Page 20 of 21Bakhthemmat and Izadi ﻿J Big Data (2020) 7:6

Consent for publication
The authors consent for publication.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Kish International Campus, Sharif University of Technology, Tehran, Iran. 2 Department of Computer Engineering, Sharif
University of Technology, Tehran, Iran.

Received: 2 August 2019 Accepted: 23 December 2019

References
	1.	 Tsai C-W, Lai C-F, Chao H-C, Vasilakos AV. Big data analytics: a survey. J Big data. 2015;2(1):21.
	2.	 Sanse K, Sharma M. Clustering methods for Big data analysis. Int J Adv Res Comput Eng Technol. 2015;4(3):642–8.
	3.	 Zhao W, Ma H, He Q. Parallel k-means clustering based on mapreduce. In: IEEE international conference on cloud

computing. 2009. p. 674–9.
	4.	 Srivastava DK, Yadav R, Agrwal G. Map reduce programming model for parallel K-mediod algorithm on hadoop

cluster. In: 2017 7th international conference on communication systems and network technologies (CSNT). 2017.
p. 74–8.

	5.	 Dai B-R, Lin I-C. Efficient map/reduce-based dbscan algorithm with optimized data partition. In: 2012 IEEE Fifth
international conference on cloud computing. 2012. p. 59–66.

	6.	 He Y, Tan H, Luo W, Feng S, Fan J. MR-DBSCAN: a scalable MapReduce-based DBSCAN algorithm for heavily skewed
data. Front Comput Sci. 2014;8(1):83–99.

	7.	 Verma A, Cherkasova L, Campbell RH. Two sides of a coin: Optimizing the schedule of mapreduce jobs to minimize
their makespan and improve cluster performance. In: 2012 IEEE 20th international symposium on modeling, analy-
sis and simulation of computer and telecommunication systems. 2012. p. 11–8.

	8.	 Ramakrishnan SR, Swart G, Urmanov A. Balancing reducer skew in MapReduce workloads using progressive sam-
pling. In: Proceedings of the Third ACM symposium on cloud computing. 2012. p. 16.

	9.	 Fan L, Gao B, Zhang F, Liu Z. OS4M: Achieving Global Load Balance of MapReduce workload by scheduling at the
operation level. arXiv Prepr arXiv14063901. 2014.

	10.	 Xia H. Load balancing greedy algorithm for reduce on Hadoop platform. In: 2018 IEEE 3rd international conference
on big data analysis (ICBDA). 2018. p. 212–6.

	11.	 Xia D, Wang B, Li Y, Rong Z, Zhang Z. An efficient MapReduce-based parallel clustering algorithm for distributed
traffic subarea division. Discret Dyn Nat Soc. 2015;2015.

	12.	 Ke H, Li P, Guo S, Guo M. On traffic-aware partition and aggregation in mapreduce for big data applications. IEEE
Trans Parallel Distrib Syst. 2015;27(3):818–28.

	13.	 Reddy YD, Sajin AP. An efficient traffic-aware partition and aggregation for big data applications using map-reduce.
Indian J Sci Technol. 2016;9(10):1–7.

	14.	 Venkatesh G, Arunesh K. Map Reduce for big data processing based on traffic aware partition and aggregation.
Cluster Comput. 2018. p. 1–7.

	15.	 HajKacem MA, N’cir C-E, Essoussi N. One-pass MapReduce-based clustering method for mixed large scale data. J
Intell Inf Syst. 2019;52(3):619–36.

	16.	 Ilango SS, Vimal S, Kaliappan M, Subbulakshmi P. Optimization using artificial bee colony based clustering approach
for big data. Cluster Comput. 2018. p. 1–9.

	17.	 Fan T. Research and implementation of user clustering based on MapReduce in multimedia big data. Multimed
Tools Appl. 2018;77(8):10017–31.

	18.	 Jane EM, Raj E. SBKMMA: sorting based K means and median based clustering algorithm using multi machine
technique for big data. Int J Comput. 2018;28(1):1–7.

	19.	 Kaur A, Datta A. A novel algorithm for fast and scalable subspace clustering of high-dimensional data. J Big Data.
2015;2(1):17.

	20.	 Kanimozhi K V, Venkatesan M. A novel map-reduce based augmented clustering algorithm for big text datasets. In:
Data Engineering and Intelligent Computing. New York: Springer; 2018. p. 427–36.

	21.	 Zerabi S, Meshoul S, Khantoul B. Parallel clustering validation based on MapReduce. In: International conference on
computer science and its applications. 2018. p. 291–9.

	22.	 Hosseini B, Kiani K. FWCMR: a scalable and robust fuzzy weighted clustering based on MapReduce with application
to microarray gene expression. Expert Syst Appl. 2018;91:198–210.

	23.	 Reddy KHK, Pandey V, Roy DS. A novel entropy-based dynamic data placement strategy for data intensive applica-
tions in Hadoop clusters. Int J Big Data Intell. 2019;6(1):20–37.

	24.	 Beck G, Duong T, Lebbah M, Azzag H, Cérin C. A Distributed and approximated nearest neighbors algorithm for an
efficient large scale mean shift clustering. arXiv Prepr arXiv190203833. 2019.

	25.	 Gates AJ, Ahn Y-Y. The impact of random models on clustering similarity. J Mach Learn Res. 2017;18(1):3049–76.
	26.	 Heidari S, Alborzi M, Radfar R, Afsharkazemi MA, Ghatari AR. Big data clustering with varied density based on MapRe-

duce. J Big Data. 2019;6(1):77.
	27.	 Kenyon C, others. Best-Fit Bin-Packing with Random Order. In: SODA. 1996. p. 359–64.
	28.	 Data set. https​://archi​ve.ics.uci.edu/ml/. Accessed 9 Feb 2018.
	29.	 Data set. ftp://ftp.ncdc.noaa.gov/pub/data/uscrn/products/subhourly01. Accessed 11 Feb 2019.

https://archive.ics.uci.edu/ml/

Page 21 of 21Bakhthemmat and Izadi ﻿J Big Data (2020) 7:6

	30.	 Sammut C, Webb GI. Encyclopedia of machine learning. New York: Springer; 2011.
	31.	 Rand WM. Objective criteria for the evaluation of clustering methods. J Am Stat Assoc. 1971;66(336):846–50.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Decreasing the execution time of reducers by revising clustering based on the futuristic greedy approach
	Abstract
	Introduction
	Related work
	Methods
	Phase 1: Storing the data set in HDFS
	Phase 2: FGC-Mapping
	Phase 3: Load balancing in clusters
	Phase 4: Job execution in reducers
	Phase 5: Determining the outputs

	Results and Discussion
	Conclusions
	References

