
Lifelong Machine Learning and root cause
analysis for large‑scale cancer patient data
Gautam Pal1*  , Xianbin Hong2, Zhuo Wang2, Hongyi Wu2, Gangmin Li2 and Katie Atkinson1

Abstract 

Introduction:  This paper presents a lifelong learning framework which constantly
adapts with changing data patterns over time through incremental learning approach.
In many big data systems, iterative re-training high dimensional data from scratch is
computationally infeasible since constant data stream ingestion on top of a historical
data pool increases the training time exponentially. Therefore, the need arises on how
to retain past learning and fast update the model incrementally based on the new
data. Also, the current machine learning approaches do the model prediction without
providing a comprehensive root cause analysis. To resolve these limitations, our frame-
work lays foundations on an ensemble process between stream data with historical
batch data for an incremental lifelong learning (LML) model.

Case description:  A cancer patient’s pathological tests like blood, DNA, urine or tis-
sue analysis provide a unique signature based on the DNA combinations. Our analysis
allows personalized and targeted medications and achieves a therapeutic response.
Model is evaluated through data from The National Cancer Institute’s Genomic Data
Commons unified data repository. The aim is to prescribe personalized medicine based
on the thousands of genotype and phenotype parameters for each patient.

Discussion and evaluation:  The model uses a dimension reduction method to
reduce training time at an online sliding window setting. We identify the Gleason
score as a determining factor for cancer possibility and substantiate our claim through
Lilliefors and Kolmogorov–Smirnov test. We present clustering and Random Decision
Forest results. The model’s prediction accuracy is compared with standard machine
learning algorithms for numeric and categorical fields.

Conclusion:  We propose an ensemble framework of stream and batch data for incre-
mental lifelong learning. The framework successively applies first streaming clustering
technique and then Random Decision Forest Regressor/Classifier to isolate anomalous
patient data and provides reasoning through root cause analysis by feature correlations
with an aim to improve the overall survival rate. While the stream clustering technique
creates groups of patient profiles, RDF further drills down into each group for com-
parison and reasoning for useful actionable insights. The proposed MALA architecture
retains the past learned knowledge and transfer to future learning and iteratively
becomes more knowledgeable over time.

Keywords:  Lifelong learning, Real-time data processing, Lambda Architecture,
Streaming k-means, Random Decision Forest, Dimension reduction

Open Access

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

CASE STUDY

Pal et al. J Big Data (2019) 6:108
https://doi.org/10.1186/s40537-019-0261-9

*Correspondence:
gautam.pal@liverpool.ac.uk
1 Department of Computer
Science, Liverpool, UK
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-2594-9699
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-019-0261-9&domain=pdf

Page 2 of 29Pal et al. J Big Data (2019) 6:108

Introduction
Motivation

Using the past acquired knowledge to improve future learning leads to the next gen-
eration of machine learning. Lifelong learning mimics incremental and always learning
experience of human life. Training a large volume of a historical dataset requires large
cluster and expensive infrastructure set up to make the long-running one-shot batch
jobs unrealistic on a big data pile. Batch tasks are not agile enough to adapt quickly with
each new wave of ever arriving datasets. Hadoop and its de facto MapReduce framework
make the learning process wait until a full set of data is collected and hours or even days
long batch jobs get completed. On the other hand, streaming learning enables models to
get trained and updated after each passing mini-batch of a window. So, the model can
catch up to the newest trends faster and with a much smaller cluster size, reducing the
infrastructure overhead significantly. But streaming learning gets overwhelmed with a
large set of the historical data pool, to begin with. To address the responsiveness issue to
the traditional batch model, in this paper, we introduce a mix-model approach through
a big data Lambda Architecture that considers batch and stream as two collaborating
multi-agent systems. To start with, the batch system saves its learning to the Hadoop
Distributed File System (HDFS) for later use by stream engine. The streaming system can
then update the model incrementally. The streaming model initializes itself with saved
learning from the batch by loading the trained model from HDFS into Apache Spark
Discretized Stream (DStream). Through a configurable mini-batch of the time window
of few hours, the model gets re-trained and at the same time, predicts continually on test
data. The updated model through stream engine is persisted and replicated into HDFS
at a periodic interval of 6 h to run any ad-hoc batch query. Additional static data can
be merged to stored HDFS data by a stream processor and the mini-batch can pick and
continue from thereon.

Lambda Architecture

Lambda Architecture (LA) [1] is a simultaneous hybrid processing approach, enabling
access to low latency real-time frameworks along with a high throughput MapReduce
batch framework over a distributed setup. New data is fed into both the batch and
stream layers simultaneously with an objective to serve both real-time events with low-
latency responses while a comprehensive analysis of the data is done through the batch
pipeline. See Fig. 1.

Our contributions

Through the period of the last two decades, there has been significant progress in
machine learning algorithms and frameworks. However, much less emphasis was put
on how these methods and algorithms can be used to train over an extended period of
time to incrementally become more knowledgeable through knowledge retainment and
transfer. Also, the current predictive analysis frameworks provide forecasting without
much explanation and root cause analysis. We addressed these research gaps between
just analytics and more explicit actionable insights through reasoning and a truly lifelong

Page 3 of 29Pal et al. J Big Data (2019) 6:108

learning platform. The framework is effective in high dimensional big data applications
through its Apache spark in-memory data processing capability, unique dimension
reduction technique and incremental never-ending learning approach as outlined below:

Lifelong learning model

In this work, we propose a Multi-agent Lambda Architecture (MALA), a collabora-
tive ensemble framework for stream and batch data. Initializing with batch processing
results as offset, the framework successively applies (i) a streaming clustering procedure
to group the target data points, followed by (ii) a Random Decision Forest Regressor and
Classification algorithm to provide reasoning through dynamic root cause analysis, com-
pare between groups and performs forecasting. The model’s real-time and batch agents
use Spark MlLib APIs. In the MALA framework, a Knowledge Miner (KM) consolidates
the past learning with recent stream updates into a Knowledge Base (KB), making the
model a Lifelong Learning System.

Streaming clustering through dimension reduction

The objective is to achieve clusters of similar data profiles and isolate the specific clusters
for further investigations. The basic idea for an online version of K-Means clustering is to
divide the data stream into mini-batch windows and to incorporate knowledge learned
in the previous window into the following ones. Hence, in streaming K-means cluster-
ing, the model is updated with each rolling window based on a combination between
cluster centers computed from the preceding mini-batches and the current mini-batch.
The framework further enables the merging of a large static historical data pool with the
latest and most updated streaming model. We adapt to a unique dimension reduction
method of the feature vector to drastically reduce the model training time.

Fig. 1  The Lambda Architecture combines low latency real-time frameworks with a comprehensive, high
throughput MapReduce batch framework through distributed frameworks like Hadoop and Spark. Observe,
while data is processed real-time as Spark DStreams, simultaneous batch processing takes place through the
stored data from HDFS. A NoSQL store (Cassandra) stores the consolidated view from stream and batch

Page 4 of 29Pal et al. J Big Data (2019) 6:108

Random Decision Forest‑based forecasting and root cause analysis

A Random Decision Forest Regressor graph further drills down into each anomalous
cluster and provides a comprehensive root cause analysis and prediction for future
items. The proposed framework produces the Decision Tree graph in JSON formatted
data as well as in a tree structure. A number of optimizations are proposed for the Ran-
dom Decision Forest model including data sampling, important feature selection, and
optimal Decision Tree hyperparameters to improve the training time through reduced
data volume without affecting the overall accuracy.

We present a unique dimension reduction method of feature vectors enabling quick
re-training for clustering and Random Decision Forest through the MALA architecture.
With this approach, the batch model creates the offset (or initial point). On each stream-
ing window of the dataset, the streaming model just needs to learn the updated features
or corrections during the re-training process.

The two-stage process of the proposed architecture is depicted in Fig. 2.

Related work
Our work addresses a problem that is analogous to and has gathered attention from
several machine learning models such as lifelong learning, incremental learning,
multi-task learning, transfer learning, and streaming learning. Thrun [1] first stud-
ied supervised lifelong learning through the decade of the 90s. The work explored
the information sharing across multiple collaborating tasks through neural network
binary classification. A neural network approach to LML was introduced and sub-
sequently improved by Silver et al. through the years 1996 to 2015 [2–7]. Cumula-
tive learning is explored in the form of LML which builds a classifier to classify all
the previous and the new classes by updating the old classifier [8]. Ruvolo et al. [9]
proposed an LML system based on the multi-task learning developed by Kumar
et al. [10]. Here, the learning tasks are autonomous and distributed. In the area of

Patient profile

Historical items Streaming items

Clustering step

Random
Decision

Forest step

Lambda Architecture

Future patient
 profile forcasting

Root cause
analysis

Fig. 2  The End-to-end flow of the proposed architecture. The method proceeds in two stages. (i) A hybrid
clustering procedure creates a similar data profile and detects outliers. (ii) A Random Decision Forest process
creates a decision graph on each anomalous clusters providing reasoning with root cause analysis and
forecasting for future items

Page 5 of 29Pal et al. J Big Data (2019) 6:108

lifelong Unsupervised Learning, Zhiyuan et al. [11] and Wang et al. [12] proposed
various lifelong modeling techniques to generate topics from a set of historical tasks
and use the past knowledge to develop better topics. A notable application area like
the item recommender system using LML emerged [13]. In the field of lifelong Semi-
Supervised Learning, a Never-Ending Language Learner is proposed by Carlson et al.
[14] and Mitchell et al. [15]. In this approach, through the continuous web crawling
a large volume of information is gathered representing entities and relations. A test-
ing scheme for the LML system is proposed by Lianghao et al. [16], where the incre-
mental learning ability of LML is tested to verify the system becomes gradually more
knowledgeable over time through accumulation, transfer of knowledge in each itera-
tion. Leveraging the previous research in the area of LML, our model uses an Incre-
mental Lifelong Learning (ILML) approach through Spark Streaming which initializes
itself with batch offset at the starting.

We leverage Spark Streaming APIs in our MALA architecture for lifelong learn-
ing architecture. Spark Streaming provides an abstraction on streaming datasets called
DStreams, or Discretized Streams. DStream is a sequence of data arriving over time [17,
18]. Internally, each DStream is represented as a sequence of RDDs arriving at each time
step (hence the name discretized. DStreams can be created from various input sources,
such as Flume, Kafka, or HDFS. Once built, they offer two types of operations: trans-
formations, which yield a new DStream, and output operations, which write data to an
external system. DStreams provide many of the same operations available on RDDs and
additionally provide new operations related to time, such as sliding windows [19]. Spark
MLlib library includes APIs for sliding window-based clustering on streaming data.

Datastream clustering widely researched and improved over the years. Among the
early works in this area, Guha et al. [20] proposed the STREAM algorithm which pro-
duces a constant factor approximation for the k-Median problem in a single pass and
using small space. Gupta et al. [21] present a study for outlier detection approaches
and case studies for different forms of temporal data. A time decay function that puts
variable weights decreasing over time while updating the model is suggested. Our work
extends the STREAM algorithm with an enhancement that allows further merging of a
large static historical data pool with the latest and most updated streaming model.

Various improvement techniques were proposed for dimension reduction in large
scale high-dimensional data. Agarwal et al. [22] present a dimension reduction pro-
cess for the online learning component where only the limited parameters are learned
online and remaining item features are learned through an offline batch process. The
model is proved through a recommender system implementation for Yahoo! front
page and My Yahoo!. We leverage this approach for the LML system. Apache Spark
MLlib implements Random Decision Forest (RDF) for APIs supporting binary and
multiclass classification and also for regression models. APIs can handle both numer-
ical and categorical features extending existing MLlib Decision Tree APIs [23]. How-
ever, the APIs are computationally infeasible for repeated model re-training with high
dimensional data in a streaming setting. To improve the efficiency of the Random
Decision Forest algorithm and speed up model updation, we propose online dimen-
sion reduction and data sampling technique on Spark DStreams which improves each
re-training time by reducing the volume of the training dataset.

Page 6 of 29Pal et al. J Big Data (2019) 6:108

This paper is the continuation of our previous work on hybrid incremental learning. As
a precursor to the current work [24], first introduces the concept of MALA in the con-
text of Lifelong Learning architecture. Pal et al. [25] further improves the MALA archi-
tecture through a novel scheme for reasoning and root cause analysis, streaming hybrid
clustering, dimension reduction techniques and in-memory processing capabilities.

Case description
Application scenario

The National Cancer Institute’s Genomic Data Commons (GDC) releases the unified
data repository for the cancer research community in support of personalized medicine.
The repository contains over 32,000 patient cases including clinical data, treatment data,
biopsy results, gene expression data, as well as a whole host of other information [26].
This allows accessibility to researchers who want to uncover novel biomarkers and find a
correlation between genes and survival.

Personalized cancer medicine is customized to each individual patient’s need for
chemotherapy or drugs based on patients’ specific set of DNA or genes. A cancer
patient’s pathological tests like blood, DNA, urine or tissue analysis provide a unique
signature based on the DNA combinations. Our analysis enables personalized and tar-
geted medications and achieves a therapeutic response based on the thousands of geno-
type and phenotype parameters.

Data metadata and model training

The patient repository contains over 32,000 patient cases including clinical data, treat-
ment data, biopsy results, gene expression data, as well as a whole host of other informa-
tion. This allows us to uncover novel biomarkers, and find a correlation between genes
and survival. Each patient data comprises thousands of biometric data for each of the
patient’s DNA/RNA sequencing, gene expression, molecular profile, mutational sta-
tus, drug therapies, survival length, physical characteristics, etc. There are about 21,000
parameters associated with each of the patients, the majority of which is sourced from
gene expression data (> 20,500) and the remaining are other pathological identifiers
( > 100 ). For example, primary human genes influencing prostate cancer patient’s overall
survival rates are gene HOXB13, MSMB, and CDH1 and the gene expression level in
each patient varies with MSMB gene expression level differs between 6 and 15 among all
patients in the database. Refer Fig. 3.

Our model selects the priority of each feature from about 20,000 genotype and pheno-
type parameters linked with each record in our training dataset and eliminates a signifi-
cant number of unrelated parameters. Important features as extracted by the model are
listed in below Tables 1 and 2 .

In our model, we create a truly lifelong learning mechanism by dividing the dataset
as 50% for batch data at the initialization and remaining data is ingested at a never-
ending loop of 30 s sliding window interval. Training and test data volume ratio is
kept 80% to 20% with one row relates to one patient records and columns areas men-
tioned in Tables 1 and 2. The proposed system aims to improve overall survival days
by correlating the factors that influence the survivability most. Data is first clustered
by a hybrid model of batch and stream. The clustering step isolates the target data

Page 7 of 29Pal et al. J Big Data (2019) 6:108

points which then proceeds through a three steps process of sampling, feature selec-
tion and dimension reduction to built a Decision Tree for reasoning and root cause
analysis. Future elements are predicted through Decision Tree Classifier and Regres-
sor for categorical and numerical fields.

Fig. 3  The repository contains over 32,000 patient cases including clinical data, treatment data, biopsy
results, gene expression data, as well as a whole host of other information. There are about 21,000 parameters
associated with each of the patients, majority of which is coming from gene expression data (>20,500) and
remaining are other pathological identifiers ( >100 ). The objective is to improve overall survival days through
root cause analysis and personalized medicine

Table 1  Column labels: common genes associated with cancer

AR CHEK2 EZH2 HOXB13 LRP2 MXI1 PTEN BRCA1

EHBP1 FGFR2 MAD1L1 NBN RNASEL WRN BRCA2 ELAC2

FGFR4 IGF2 MED12 SRD5A2 WT1 CD82 EP300 GNMT

ITGA6 MSMB PCNT STAT3 ZFHX3 CDH1 EPHB2 HNF1B

KLF6 MSR1 PLXNB1 TGFBR1

Table 2  Column labels: other pathological identifiers

Overall survival (OS) Pathologic T

Biochemical recurrence PSA value

Days to first biochemical recurrence Additional radiation therapy

Gleason score Sample type

Pathologic N

Page 8 of 29Pal et al. J Big Data (2019) 6:108

Proposed ensemble framework: MALA

The proposed system is based on successive streaming clustering and Random Deci-
sion Forest Regressor and Classifier process which uses MALA, a Multi-agent ensemble
framework. MALA is described in this section, in the following sections we discuss clus-
tering and Random Decision Forest algorithms.

MALA is a consolidation framework for stream and batch modules based on the fun-
damentals of LA. MALA is developed as an extension to the standard LA framework
and the MALA framework is our main contribution that extends this line of work.
The framework itself with batch processing results for streaming engine to incremen-
tally build on top of batch offset. The framework successively applies a streaming clus-
tering procedure followed by a Random Decision Tree algorithm to provide dynamic
root cause analysis and forecasting. The framework enables collaborative, accumula-
tive learning through big data tools and APIs. Streaming and batch components act as a
cooperative autonomous Multi-agent system. See Fig. 4.

Historical Data Store

A large volume static data pool gets ingested, all at once and at a periodic interval, then
is processed and written back, using frameworks like Apache Hadoop and Spark. Input
data is stored over time in a distributed file system like HDFS, NoSQL databases or
Amazon Simple Storage Service (S3). The model is trained against the entire data pool.
In batch mode, the response time is not a big constraint but rather a design is inclined
towards a comprehensive coverage of the data. Historical Data Store (HDS) persists the
trained models.

Stream processor

The MALA updates its model on each new wave of incoming data. The streaming model
initializes itself with saved learning from the batch by loading the trained model from
persistent distributed storage into distributed memory. The continuous data stream

Fig. 4  Three layers of MALA consists of the Historical Data Store, stream processor, Knowledge Miner.
Real-time and batch layers act as autonomous Multi-agent systems in collaboration. A Multi-agent decision
maker component is placed in the MALA stack at the gateway of the data pipeline for further processing

Page 9 of 29Pal et al. J Big Data (2019) 6:108

updates its model incrementally. The training time largely depends on the mini-batch
data size and window length. The duration can vary from a few milliseconds to hours.
We use Apache Spark Streaming to create in-memory DStreams from the stored model
in HDFS produced by the batch jobs. After each iteration of re-training, the updated
model gets persisted into memory and disk. Since the model keeps getting larger, the
most recent data is cached into distributed memory and the remaining goes to disk.
The amount of distributed memory size is configurable through the Spark configuration
file. Stream processing includes filtration of data rows and converting, transforming the
ingested flow into structured data.

Knowledge Miner and Knowledge Base

Knowledge Miner (KM) consolidates the past learning with recent stream updates into
Knowledge Base (KB). KM is responsible for filtration (eliminating unwanted and faulty
records), knowledge aggregation and data governance for monitoring and reporting pur-
poses. Filtration and aggregation logic is ad-hoc developed for a specific case study. In
our implementation, KM schedules the Spark batch jobs which create the initial training
model spawns the Spark streaming clustering jobs to iteratively re-train the model. KM
builds the Decision Tree from JSON formatted data provides visualizations and predic-
tive analytics results by ad-hoc query through a web-based search interface. HDFS is
used as the persistent storage option for Knowledge Base.

Streaming incremental learning framework

Successive streaming clustering and a Random Decision Forest Regressor and Classifier
use a MALA ensemble framework (discussed in preceding section). The system gets its
initial offset (or the starting point) through the batch operation. Thereafter, each mini-
batch window of stream data needs to re-train the model iteratively. As the data vol-
ume grows over time, re-training the entire system on each streaming window becomes
computationally infeasible. The proposed framework therefore selectively updates the
training model through a dimension reduction method avoiding re-training the entire
system.

Problem statement (Cumulative Hybrid Learning): At time t, the system maintains
a set of cluster Ct = C1,C2, ..,Cn with training model Mt from a past dataset. Once
enough training data is collected for a mini-batch window interval δt , Mt is updated to
cover new training model Mt+1 . Our objective is to build Mt+1 with minimum latency
by selectively re-training a specific cluster.

(Lifelong Machine Learning (LML) through MALA Architecture: At any point of
time t, the learning system has performed n training tasks τ1, τ2, ..., τn on past datasets
D1,D2, ...,Dn . On arrival of the new streaming set Dn+1 the training system uses the
past acquired knowledge stored in the knowledge base to help learn the current task
τn+1.

After accumulation of knowledge τn+1 , the Knowledge Base is iteratively updated
(Fig. 4). The updating involves selective re-training, remove inconsistency, and updating
metadata. The learning system updates the current model Mt to Mt+1 , that can clus-
ter new data Dn+1 into an existing old cluster or form an unseen new cluster. The steps
involved are summarized as below:

Page 10 of 29Pal et al. J Big Data (2019) 6:108

1.	 Searching for the similar cluster in Ct that is similar to new dataset Dn+1 . Create a
separate cluster from the clusters in Ct.

2.	 An incremental clustering procedure groups the dataset through the dimension
reduction method (“Streaming clustering step” section).

3.	 The Random Decision Forest algorithm further drills down into each group for com-
parison between groups and provides reasoning through a Decision Tree graph and
predicts each future elements (“Decision tree and Random Decision Forest step” sec-
tion).

Streaming clustering step

Under the streaming setting, in the bounded small space S, data is accessed through a
linear scan (i.e. only once and viewed in order). Established methods for producing a rea-
sonable streaming learning algorithm can be applied here including [27, 28]. The batch
version of the k-means algorithm provides an offset (or initial point) for the streaming
learning to update the model iteratively.

Algorithm:

1.	 Divide S into n disparate pieces a1, . . . ,an.
2.	 For each i, find O (k) centers in ai , allocate each element in ai to their closest cluster

center according to the Euclidean distance function.
3.	 Let C is the O (nk) center computed in (2), while each center c ǫ C is weighted by a

number of points allocated to it.
4.	 Cluster C to get k number of cluster
5.	 For every streaming window, re-compute new cluster centers using:

where nt is the historical data set and ct is the old cluster centroid. mt is the newest
data points and xt is the cluster center computed with new data points. α is the decay
factor. With α = 0 , only the latest window dataset is used; for α = 1 , an entire his-
torical dataset is used.

Decision tree and Random Decision Forest step

A collection of Decision Trees is generalized to form a more powerful algorithm as Ran-
dom Decision Forests. The flexibility of Random Decision Forests makes these worth-
while to examine in our dataset. For the number of n features in the dataset, there is
2n − 2 possible decision rule (all subset except the empty set and entire set). This leads to
the possibility of creating a few billion decision rules for even moderate size data. These
decision rules use several heuristics to select the top n decision rule as described below
in the steps for constructing a Random Decision Forest:

(1)ct+1 =
ct ntα + xtmt

ntα +mt

(2)nt+1 = nt +mt

Page 11 of 29Pal et al. J Big Data (2019) 6:108

Step 1. Sampling training subsets

n subsets are sampled from the raw training dataset S using Spark MLLib stratified
sampling methods [29]. providing a fraction of sample size and a random seed. For
instance, from the patient dataset, men and women patients can be sampled as gen-
der being the key in sampleByKey() method.

Step 2. Important feature selection

Decide how much each feature contributes to the final prediction through Spark fea-
tureImportances API [29]. Find the list of the important features over the sampled
dataset in the previous step. For a tree ensemble model, Spark RandomForest.feature-
Importances [30] finds the importance of each feature from about 20,000 genotype
and phenotype features associated with each record in our training dataset and elimi-
nate a significant number of unrelated parameters. The method generalizes the con-
cept of Gini Importance for approximating the independent target variable.

Step 3. Dimension reduction of feature vector

We present a unique dimension reduction method of feature vector enabling quick
re-training through MALA architecture discussed in the previous section. With this
approach, the batch model creates the offset (or initial point). On each streaming
window of the dataset, the streaming model just needs to learn the updated features
or corrections during the re-training process. Let pit be the feature vector of item i at
time t and let qit latent factor vector of item i at time t. Then expected training model
M at time t is:

where b and A are the regression weight matrix learned through the offline training pro-
cess. p′itb+ p′itA provides an initial offset for the online training process. Suppose qit
consists of a k-dimensional linear subspace extended by the columns of a random pro-
jection matrix Br×k (r ≫ k) that is,

The online component only learns a k-dimensional vector δi To eliminate numerical ill-
fitting during computations let us assume, δi ∼ MVN (O, σ 2

δ I)

where MVN denotes the multivariate normal distribution [22] and σ 2 is
the variance of noise in actual data. Marginalizing over δi , it is evident that
qit ∼ MVN (O, σ 2BmathnormalB′) . Because rank(B) = k < r , then the probability dis-
tribution in a lower-dimensional subspace extended by the columns of B . It is usually
better to go with a model which assumes qit = Bδi + ǫjt , where ǫjt ∼ MVN (O, τ 2I) is
an error of the model after the k-dimensional linear projection. The process eliminates
the rank inadequacy and the distribution of qit ∼ MVN (O, σ 2BmathnormalB′)+ τ 2I) .
In spite of the model’s easy compatibility with Gaussian response, due to the mod-
el’s computational overhead to the our current model, we assume τ 2 = 0 . So,
qit ∼ MVN (O, σ 2BB′).

(3)Mit = p′itb+ p′itA+ p′itqit

(4)qit = Bδi

Page 12 of 29Pal et al. J Big Data (2019) 6:108

Step 4. Constructing the Decision Tree

The Decision Tree is built using the C4.5 algorithm. Primary improvements with C4.5
over the ID3 algorithm are the pruning technique and the capability of handling con-
tinuous attributes, null values, and noisy data [31, 32]. In the building process of the
tree, for each set of n important features decided in the previous step, select the fea-
ture fi with the highest normalized information gain on splitting on the feature as the
root. Once a feature fi is selected as the root of a node, the remaining nodes create
the children by recursively calling C4.5.

Sampling n training subset (line 6): n subsets are sampled from the raw training
dataset S using the Spark RDD sampling method. For instance, the dataset can be
sampled based on gender, age group or patient genetic type.

Extracting important features (lines 7–9): Find a list of the important features over
the sampled dataset. The current training dataset contains around 20,000 genotype
and phenotype features associated with each patient. This step reduces the number of
features to a few hundred based upon the contribution of features to the interdepend-
ent variable and removing insignificant features.

Apply batch computation rule (line 10): The batch computation rule process is
applied to the historical dataset to update the Knowledge Base and initializes the
stream processing engine.

Page 13 of 29Pal et al. J Big Data (2019) 6:108

Kafka message queue, (line 11): Kafka acts as a message queue as the subscriber to the
stream processing engine.

Re-train the model (lines 13–15): Spark consumes the Kafka queue as a series of
DStreams and re-trains the model with the dimension-reduced feature vector. The
Knowledge Base is updated subsequently.

Persist the model (line 17): Updated model and Knowledge Base is persisted into
HDFS.

Implementing Random Decision Forest through Spark APIs

The Random Decision Forest prediction is based on the weighted average of each tree’s
predicted values. For our current dataset, the Random Decision Forest prediction is
based on the weighted average on most probable values from each tree and comput-
ing the most likely value out of it. On the implementation level, the Spark Random-
ForestClassifier API is used to build the Random Decision Forest model for categorical
features. We have used Spark RandomForestRegressor APIs for numerical features. See
“Discussion and evaluation” section for detailed results for numerical and categori-
cal features. The algorithm requires all feature vector to be collected into one column.
We use VentorAssembler as a DataFrame transformer within the Spark MlLib pipelines
API to build the initial Decision Tree feature vector as the training dataset. The clas-
sifier model’s return type is DecisionTreeClassificationModel as MLLib API transforms
the data frame and the return value contains predictions as objects. A MulticlassClas-
sificationEvaluator computes the accuracy of classifiers with the F1 score representing
a weighted average of precision and recall. We also produce a confusion matrix for the
quality of the classifier’s output. A confusion matrix is n× n where n is the number of
possible outcomes. Values across the rows representing real values while predicted val-
ues are placed along columns. The entry at row i and column j represent a count the
number of times an instance with true category i was predicted as category j. So, the
counts for the correct predictions placed along with the diagonal cells, counts for incor-
rect predictions are placed in the rest of the cells. See Fig. 5.

Tuning Decision Tree hyperparameters

The following model hyperparameters are tuned to fetch the optimal result: maximum
depth, maximum bins, impurity measure, and minimum information gain. Maximum

Fig. 5  Confusion Matrix for MALA categorical forecasting. Along the diagonal cells counts for the correct
predictions placed, counts for incorrect predictions are placed in the rest of the cells

Page 14 of 29Pal et al. J Big Data (2019) 6:108

depth is the most number of connected decisions the classifier takes. The value for
maximum depth is selected after several trials run on the training set to prevent model
overfitting. Bin size is proportional to cluster size with a large bin size leading to an opti-
mal decision rule. The model uses Gini impurity as impurity measure which is directly
related to the accuracy of the random-guess classifier measured through the following
equation:

where pi is the proportion of elements of class i out of N available classes. Minimum
Information Gain helps to reject candidate decision rules that do not improve the sub-
sets’ impurity thus resisting model overfitting. We try a number of combinations of the
hyperparameters and report the results. The model is trained and evaluated with two
values of each hyperparameters producing 16 models in combination. Each model is
evaluated by MulticlassClassificationEvaluator in Spark MlLib API [33] to compute the
evaluation results for each of the combination of model hyperparameters in terms of
accuracy and F1 Score. The objective is o find the optimal values for maximum depth
and maximum bins which are just sufficient but not excessive to improve the training
time and could resist overfitting. getEstimatorParamMaps [6] API provides accuracy of
each combinations of hyperparameters through a single run. This lets us avoid poten-
tial thousands of independent test runs for each combination. Note, CrossValidator APIs
can also be used for n-fold cross-validations. But it also induces n times more computa-
tion complexity and unsuitable for big data applications. The results for the tests select
the best combinations for model hyperparameters. The results reveal the Gini impu-
rity works best at a max depth of 30, along with 55 bins. See Fig. 6 showing the sample
screenshot of the tests.

Discussion and evaluation
In this section, we present results for experiments with GDC cancer patient data. We start
with clustering results that pivot the focus area through outliers. Random Forest results
then drills down further to trace the possible consequences leading to a specific outcome.

(5)IG(p) = 1−

n
∑

n=1

p2i

Fig. 6  Sample screenshot of the tests. The test finds the combination of model hyperparameters to produce
the best accuracy

Page 15 of 29Pal et al. J Big Data (2019) 6:108

we provide a comparative study about the model performance against the standard
machine learning algorithms predicting categorical and numerical features. We also men-
tion probable limitations of the model and alternative approaches.

Experiment setup

The server setup is shown in Table 3. The database for the test was Cassandra Datastax
Enterprise Edition (DSE) with a replication factor of 3. All nodes are installed with Cloudera
Distribution of Hadoop (CDH) 6.1 and Apache Spark 2.3.1. Algorithms are developed with
Scala 2.12.6. Spark adds up the computational power of each individual resource. The total
cluster resource is 100 cores, 375 GB memory, 25 TB of HDD. Each node is running 2 Spark
executors in the Hadoop YARN cluster mode. Setting the number of executors per node is
crucial to achieving optimal parallelism. Small executors will decrease CPU and memory
efficiency and big executors will introduce a heavy GC overhead. Spark is run on the YARN
cluster mode where the Hadoop Resource Manager performs the role of Spark master and
Node Manager work as executor nodes. A Spark Driver running in YARN mode submits an
application to the Resource Manager and the Resource Manager designates an Application
Master for the Spark application.

Results with GDC cancer patient data

Clustering results

Our database is composed of real-world patient data diagnosed with prostate cancer. 50%
of the data is used as historical items and remaining data is streamed at a rate of 10 records
per 30 s sliding window interval to re-train the model iteratively. Visualizations are ren-
dered through Splunk Machine Learning Toolkit [34]. We base our Spark API based algo-
rithms through the Python for Scientific Computing add-on in Splunkbase [35].

First, the data is clustered for patient profiling and detecting the outliers. Outliers are fur-
ther analyzed with a Decision Tree for root cause analysis with the ultimate objective to
improve the Overall Surviving (XOS) rate. Cluster charts for first biochemical recurrence
and Gleason Score with XOS are shown in Figs. 7 and 8.

The clustering step also detects outliers through distance from the mean computed by the
standard deviation (Figs. 9 and 10).

The cluster plot reveals that gene expression level along with the Gleason score has a
strong correlation to be diagnosed with prostate cancer but no correlation to overall sur-
vival days. Figs. 11 and 12 shows the overall survival by target gene TP53 when the Gleason
score is categorized into 3 groups (6–7, 8, and 9–10).

We remark that the clustering methods provide an efficient and actionable grouping and
detect the outlier for the patient profiles. Subsequently, the anomalous behavior is correctly
summarized in the outlier chart. The efficiency of the process gets improved over time
with the incremental lifelong learning approach. Figure 10 shows an explanation for outlier
detection. Therefore, in summary, the prototype is said to provide a robust estimation.

Table 3  AWS instance types

Instance type Instance count vCPUs Memory (GB) Instance storage EBS optimized bandwidth

m1.large 25 4 15 1 TB Moderate

Page 16 of 29Pal et al. J Big Data (2019) 6:108

Random Decision Forest results

The Random Decision Forest (RDF) Regressor graph further illustrates possible conse-
quences leading to a specific Overall Survival value. Figure 13 shows the Decision Tree

Fig. 7  Cluster chart for first biochemical recurrence (daysXtoXfirstXbiochemicalXrecurrence)
with overall survival (XOS) in days in 3 clusters. In this matrix representation of 4 charts,
daysXtoXfirstXbiochemicalXrecurrence and XOS (along x-axis) are plotted with each other and itself along the
y-axis. Outliers are further analyzed with a Decision Tree for root cause analysis

XOS Gleason Score

X
O

S
G

le
as

on
 S

co
re

Fig. 8  Cluster chart for Gleason Score (gleasonXscore) with overall survival (XOS) in days in 3 clusters. In this
matrix representation of 4 charts, gleasonXscore and XOS (along x-axis) are plotted with each other and itself
along the y-axis. Outliers are further analyzed with a Decision Tree for root cause analysis

5k

4k

3k

2 23
2k outliers

lk

0

– lk

50 100 150 200 250 300 350 400 450 5000

Fig. 9  Outliers chart for anomalous Overall Survival (XOS) data. Total 23 outliers are detected (yellow dots)
which are further analyzed with Decision Tree for Root Cause Analysis(RCA). Anomalous values are detected
through distance from the mean as shown in Fig. 10

Page 17 of 29Pal et al. J Big Data (2019) 6:108

splitting process for the portion of the tree. From the tree, it appears that there are sig-
nificantly contributing genotypes, phenotypes, and other clinical parameters. For instance,
days to first biochemical recurrence is an influencing attribute clearly dividing the data pool.
A similar conclusion is derived for genes like KFF6 or LRP2.

lk

100

10

0.1

points within threshold

0 2 3

standard deviations from mean
1 4 5

1

C
ou

nt

Fig. 10  Anomalous values are detected through distance from the mean computed by standard deviation.
The shaded area illustrates the data points within the allowable threshold

Fig. 11  Overall survival by cancer causing gene TP53TG5 along with Gleason score clustered into 3
groups (6–7, 8, and 9–10). The data is clustered by proposed hybrid streaming clustering step discussed
in “Streaming clustering step” section. The plot shows strong possibility of being diagnosed with prostate
cancer with a gene TP53TG5 expression level of 0.5 to 1.5 and Gleason score between 6 to 7

Fig. 12  Overall survival by cancer-causing gene TP53TG35 along with Gleason scores clustered into 3
groups (6–7, 8, and 9–10). The data is clustered by the proposed hybrid streaming clustering step discussed
in “Streaming clustering step” section. Prostate cancer patients have a much higher probability of TP53TG35
gene expression level between 0.5 to 3 with a Gleason score between 6 to 7

Page 18 of 29Pal et al. J Big Data (2019) 6:108

Figure 14 provides a comparison between influent human genes contributing towards
lower Overall Survival (XOS) in days. A Random Decision Forest classifier detects the com-
monly present genes among prostate cancer patients, this chart facilitates further break-
down by ranking among the available gene pool.

Random Decision Forest provides reasoning through the Decision Tree graph to do the
root cause analysis for every anomalous cluster detected by the previous clustering step.
We observe the overall survival rate positively influenced if Gleason score < 7 , if the sample
type is not the primary tumor, the patient did not receive radiation therapy and days to bio-
chemical recurrence > 200 as identified by the red lines in Fig. 15.

The Decision Tree is shown in Fig. 15 and it accurately indicates the Gleason score as a
contributing factor for the overall survival days (see red lines). Figure 16 by the Random
Decision Forest algorithm further proves a Gleason score between 6 and 9 has a much
lower survival rate of fewer than 1000 days. Finally, a Kaplan–Meier estimator plot [36, 37]
is presented based on the Random Decision Forest algorithm. The estimator of survival is
given by Eq. 6.

where di and ni are the number of deaths and survival at time t1 . See Fig. 17.

Model comparisons

Several experiments are conducted comparing the proposed MALA model with
a Decision Tree Regressor, Kernel Ridge, Elastic Net, Ridge, Linear Regression and
Lasso models for numeric field predictions. Models are compared in terms of R2
statistics and RMSE. In general, higher R2 and lower RMSE signify the model fit-
ting the data better. Results are presented in Table 4. Model prediction accuracy for

(6)Ŝ(t) =
∏

i:ti≤t

(

1−
di

ni

)

Fig. 13  The Decision Tree split process. Part of the tree is displayed here. The information gain for each
feature variable is calculated. The feature with the highest information gain is chosen as the root and splitting
node. In each node, information gain is shown as a value along with impurity level which is measured after
each split. The process is iterated until the leaf nodes are generated

Page 19 of 29Pal et al. J Big Data (2019) 6:108

categorical fields is presented in Table 5. In categorical forecasting, the proposed
MALA model is compared with GaussianNB, Bernoulie NB, Decision Tree Classifier,
SVM and Logistic Regression in terms of Precision, Recall, Accuracy, and F1 Score. A
good model is supposed to exhibit higher values for all comparison parameters. The
split for training and test dataset was 50% for both the experiments. Since MALA
uses both batch and stream data to fit its model, 50% of the training dataset is used to
train at batch setting and the remaining used at streaming setting.

We report actual vs. predicted Line Chart and Scatter Chart (Fig. 18), Residuals
Line Chart and Residuals Error Histogram (Fig. 19) for comparative models. Lower
values in the Residuals Line Chart and Residuals Error Histogram should prove good
model predictions.

The classification accuracy for MALA is 4% greater than SVM, 29% greater that
Bernoulie NB and more than 30% greater than all other algorithms. In terms of
regression RMSE, the proposed model is 4% better than the Elastic Net, 37% better
than the Decision Tree Regressor and more than 40% better than the rest of the algo-
rithms. Furthermore, due to the lifelong incremental learning capabilities, the pro-
posed model significantly improves over time without adding latency in training time.
Therefore, compared with comparative models, MALA improves classification and
regression accuracy significantly for multiple scales and parameters.

Results analysis

The proposed framework provides reasoning through dynamic root cause analysis. Thus,
the model’s overall success largely depends on the accuracy of reasoning illustrated through
the decision graph. For instance, the Gleason score categorized into 3 groups (6–7, 8, 9–10)
has a major influence on the overall Survivability (XOS). To verify the claim, we first plot

Fig. 14  Overall Survival (XOS) in days (along with the x-axis) is charted against influent genes. While a
Random Decision Forest classifier detects the commonly present genes among prostate cancer patients, this
chart identifies the top human genes influencing XOS values as follows: HOXB13, MSMB, and CDH1

Page 20 of 29Pal et al. J Big Data (2019) 6:108

the probability distribution of XOS to identify if XOS follows a normal distribution through
the Lilliefors test [38, 39]. See Fig. 20.

The result h is 1 if the test rejects the null hypothesis at the 5% significance level, and 0
otherwise.

from the Lilliefors test, we reject the null hypothesis at the 5% significance level. There-
fore, XOS does not satisfy normal distribution.

h = lillietest(x)

Fig. 15  Random Decision Forest drill down for the anomalous cluster. The Decision Tree provides reasoning
for root cause analysis. The red lines in the Decision Tree show the positive influence of the Gleason score
( < 7 ), sample type (not a primary tumor), no radiation therapy and days to biochemical recurrence ( > 200 )
on overall survival rate (XOS)

Page 21 of 29Pal et al. J Big Data (2019) 6:108

Fig. 16  Gleason score with overall survival days

Fig. 17  Kaplan–Meier estimator plot for the Gleason score

Table 4  Model prediction accuracy for numeric fields

a  Proposed model is 4% better than the Elastic Net, 37% better than the Decision Tree Regressor and more than 40% better
than the rest of the algorithms

Algorithm R
2 Statistics RMSE

Decision Tree Regressor − 0.9600 1149.84

Kernel Ridge − 4.4322 1678.87

Elastic Net − 0.2219 875.24

Ridge − 12.8802 3032.13

Linear Regression − 8.1000 2213.07

Lasso − 13.8496 2768.54

Proposed MALAa − 0.3840 839.14

Table 5  Model prediction accuracy for categorical fields

a  MALA is 4% greater than SVM, 29% greater that Bernoulie NB and more than 30% greater than all other algorithms

Algorithm Precision Recall Accuracy F1 Score

GaussianNB 0.10 0.17 0.17 0.13

Bernoulie NB 0.36 0.52 0.52 0.43

Decision Tree Classifier 0.45 0.50 0.50 0.47

SVM 0.76 0.71 0.71 0.73

Logistic Regression 0.34 0.48 0.48 0.40

Proposed MALAa 0.74 0.74 0.74 0.74

Page 22 of 29Pal et al. J Big Data (2019) 6:108

a

b

c

d
Fig. 18  Performance comparison of different machine learning models. Actual vs predicted Line Chart and
Scatter Chart. Blue and yellow lines or dots show the actual and predicted values. Proposed MALA shows
the higher accuracy than remaining models. a Proposed MALA, b decision tree regressor, c lasso, d linear
regression, e kernel ridge, f ridge, g elastic net

Page 23 of 29Pal et al. J Big Data (2019) 6:108

Given that XOS does not satisfy normal distribution, we should use other methods
to find if the Gleason score has an influence on the overall survival. Hence, we choose
a Two-sample Kolmogorov–Smirnov test [40, 41] to validate if the Gleason score has
an influence on the overall survival rate. Kolomogorov-Smirnov test determines if two
one dimensional probability distribution curve differs. The null hypothesis is: Glea-
son score groups (6–7, 8, 9–10) does not have any influence on the overall survivabil-
ity. The objective here is to deny the null hypothesis and prove the model’s reasoning
favorably. We call:

(7)
[h, p] = kstest2(XOS(10 < GleasonScore < 6),

XOS(group[1/2/3]),α, 0.1)

e

f

g
Fig. 18  continued

Page 24 of 29Pal et al. J Big Data (2019) 6:108

a

b

c

d
Fig. 19  Performance comparison of different models. Residuals Line Chart and Residuals Histogram. a
Proposed MALA, b decision tree regressor, c lasso, d linear regression, e kernel ridge, f ridge, g elastic net

Page 25 of 29Pal et al. J Big Data (2019) 6:108

The Test returns an h and a p-value. If h=1 we reject the hypothesis (Eq. 7), which means
the two vectors XOS (10 < Gleason Score < 6) and XOS(group[1/2/3]) have the different
distributions as the test is sensitive to location and shape of the cumulative empirical
distribution functions of the two samples. A small p-value (typically ≤ 0.1) disproves the
null hypothesis . The result is shown Table 6 at 10% significance level.

The value of h is a test decision for the null hypothesis if the two groups of data are
from the same continuous distribution (no significant difference). The result h is 1 if the
test rejects the null hypothesis at the 10% significance level, and 0 otherwise. We report
a positive correlation between Gleason score and overall survivability from Table 6 out-
come with h = 1 and p ≤ α for all 3 groups. A small p-value provides evidence against
the null hypothesis with a significant distance between cumulative empirical distribution

e

f

g
Fig. 19  continued

Page 26 of 29Pal et al. J Big Data (2019) 6:108

functions for two samples. The populations may differ in the shape of the distribution,
variability or median. However, in our test, the correlation seems to be tenuous with
relatively bigger p values.

Limitations of the proposed model

The framework has the limitation of managing the identical code base for batch and
stream layer which yields the same results. This code redundancy may lead to a typical
code sync problem since changes in one layer (batch or stream) requires to reflect back
the changes to another layer. Also, comparing accuracy, our model would be no supe-
rior to the batch only model when trained on the same data volume. But Incremental
Lifelong Learning framework gradually improves the prediction accuracy over time and
with additional data. One of the shortcomings of Kolmogorov–Smirnov test is that it
may not be very powerful since it is modeled to be responsive against every possible kind
of deviations between two sample distribution functions. As an alternative to Kolmogo-
rov–Smirnov tests, Area Under The Curve (AUC) measure [42, 43] can also adopted to
quantify the efficiency of the proposed model in distinguishing different Gleason Score
groups.

Conclusion
In this paper, we proposed an ensemble framework of stream and batch data for
incremental lifelong learning. The proposed framework successively applies the first
streaming clustering technique and then Random Decision Forest Regressor and Clas-
sifier to isolate anomalous patient data and provides reasoning through root cause

Fig. 20  Lilliefors test

Table 6  Kolmogorov–Smirnov test

Returned Parameters Group 1 Group 2 Group 3

h-value 1 1 1

p-value 0.09 0.10 0.10

Page 27 of 29Pal et al. J Big Data (2019) 6:108

analysis by feature correlations with an aim to improve the overall survival rate for
patients with prostate cancer. While the stream clustering technique creates groups of
patient profiles, RDF further drills down into each group for comparison and reason-
ing. The proposed MALA architecture retains the past learned knowledge and trans-
fers to future learning. The model is able to update the dimension-reduced feature
set in every streaming sliding-window without requiring to rebuild the entire training
set from scratch. With the arrival of new datasets over time, the model quickly re-
trains itself and iteratively becomes more knowledgeable. The Random Decision For-
est rule provides the root cause analysis through Decision Tree graphs for only on the
anomalous cluster extracted by the clustering rule, removing unnecessary data clutter
and pivoting the exact problem domain faster. The proposed Decision Tree contains
a relatively complex optimization structure, and capable of predicting the profile of
future patients. The Decision Tree, however, is erroneous in a few instances for root
cause analysis and forecasting. The classification and regression error in the Decision
Tree often arises from null entries in patient genotype and phenotype parameters. In
the future, we plan to engage oncologists and clinical pathologists along withC work
in practice.

Abbreviations
GDC: Genomic Data Commons; HDFS: Hadoop Distributed File System; DStream: Discretized Stream; LA: Lambda Archi-
tecture; MALA: multi-agent Lambda Architecture; KM: Knowledge Miner; KB: Knowledge Base; RDF: Random Decision
Forest; S: Simple Storage Service; HDS: Historical Data Store; LML: Lifelong Machine Learning; DSE: Datastax Enterprise
Edition; CDH: Cloudera Distribution of Hadoop; XOS: overall survival; RCA​: Root Cause Analysis.

Acknowlegements
The authors thank the anonymous reviewers for their helpful suggestions and comments.

Authors’ contributions
All mentioned authors contribute to the elaboration of the paper. All authors read and approved the final manuscript.

Funding
This research was funded by Accenture Technology Labs, Beijing, China. Grant number RDF 15–02–35, Project Code:
RDS10120180003.

Availability of data and materials
The National Cancer Institute’s Genomic Data Commons (GDC) unified data repository for the cancer patient is available
online at Government website: https​://gdc.cance​r.gov/.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Computer Science, Liverpool, UK. 2 Research Institute of Big Data Analytics, Xian Jiaotong-Liverpool
University, Suzhou, China.

Received: 4 June 2019 Accepted: 18 October 2019

References
	1.	 Thrun S. Explanation-based neural network learning: a lifelong learning approach. Boston: Kluwer Academic

Publishers; 1996.
	2.	 Silver DL. The parallel transfer of task knowledge using dynamic learning rates based on a measure of relatedness.

Connect Sci. 1996;8(2):277–94. https​://doi.org/10.1080/09540​09961​16929​.
	3.	 Silver DL, Mercer RE. The task rehearsal method of life-long learning: overcoming impoverished data. In: Cohen R,

Spencer B, editors. Advances in artificial intelligence. Berlin: Springer; 2002. p. 90–101.
	4.	 Silver DL, Poirier R. Sequential consolidation of learned task knowledge. In: Tawfik AY, Goodwin SD, editors. Advances

in artificial intelligence. Berlin: Springer; 2004. p. 217–32.
	5.	 Silver DL, Mason G, Eljabu L. Consolidation using sweep task rehearsal: overcoming the stability-plasticity problem.

In: Barbosa D, Milios E, editors. Advances in artificial intelligence. Cham: Springer; 2015. p. 307–22.

https://gdc.cancer.gov/
https://doi.org/10.1080/095400996116929

Page 28 of 29Pal et al. J Big Data (2019) 6:108

	6.	 Hong X, Wong P, Liu D, Guan S-U, Man KL, Huang X. Lifelong machine learning: outlook and direction. In: Proceed-
ings of the 2nd international conference on big data research. New York: ACM; 2018. p. 76–79.

	7.	 Hong X, Pal G, Guan S-U, Wong P, Liu D, Man KL, Huang X. Semi-unsupervised lifelong learning for sentiment
classification: Less manual data annotation and more self-studying. In: Proceedings of the 2019 3rd high perfor-
mance computing and cluster technologies conference. HPCCT 2019. New York: ACM; 2019. p. 87–92. https​://doi.
org/10.1145/33410​69.33429​92.

	8.	 Fei G, Wang S, Liu B. Learning cumulatively to become more knowledgeable. In: Proceedings of the 22Nd ACM
SIGKDD international conference on knowledge discovery and data mining. KDD ’16. New York: ACM; 2016. p.
1565–1574. https​://doi.org/10.1145/29396​72.29398​35.

	9.	 Ruvolo P, Eaton E. ELLA: an efficient lifelong learning algorithm. In: Dasgupta S, McAllester D, editors. Proceedings of
the 30th international conference on machine learning. Proceedings of machine learning research, vol. 28. Atlanta:
PMLR; 2013. p. 507–515. http://proce​eding​s.mlr.press​/v28/ruvol​o13.html. Accessed 4 June 2019.

	10.	 Kumar A, Daume III, H. Learning task grouping and overlap in multi-task learning. 2012; arXiv preprint arXiv​
:1206.6417.

	11.	 Chen Z, Liu B. Topic modeling using topics from many domains, lifelong learning and big data. In: International
conference on machine learning; 2014. p. 703–711.

	12.	 Wang S, Chen Z, Liu B. Mining aspect-specific opinion using a holistic lifelong topic model. In: Proceedings of the
25th international conference on world wide web; 2016; International World Wide Web Conferences Steering Com-
mittee. p. 167–176.

	13.	 Liu Q, Liu B, Zhang Y, Kim DS, Gao Z. Improving opinion aspect extraction using semantic similarity and aspect
associations. Menlo Park: AAAI; 2016. p. 2986–92.

	14.	 Carlson A, Betteridge J, Wang RC, Hruschka Jr ER, Mitchell TM. Coupled semi-supervised learning for information
extraction. In: Proceedings of the third ACM international conference on web search and data mining. New York:
ACM; 2010. p. 101–110.

	15.	 Mitchell T, Cohen W, Hruschka E, Talukdar P, Yang B, Betteridge J, Carlson A, Dalvi B, Gardner M, Kisiel B, et al. Never-
ending learning. Commun ACM. 2018;61(5):103–15.

	16.	 Li L, Yang Q. Lifelong machine learning test. In: Proceedings of the workshop on “Beyond the Turing Test” of AAAI
conference on artificial intelligence; 2015.

	17.	 Salloum S, Dautov R, Chen X, Peng PX, Huang JZ. Big data analytics on apache spark. Int J Data Sci Anal.
2016;1(3–4):145–64.

	18.	 Solaimani M, Iftekhar M, Khan L, Thuraisingham B, Ingram JB. Spark-based anomaly detection over multi-source
vmware performance data in real-time. In: 2014 IEEE symposium on computational intelligence in cyber security
(CICS). New York: IEEE; p. 1–8 2014.

	19.	 Rettig L, Khayati M, Cudré-Mauroux P, Piórkowski M. Online anomaly detection over big data streams. In: 2015 IEEE
international conference on big data (Big Data). New York: IEEE; 2015. p. 1113–1122.

	20.	 Guha S, Mishra N, Motwani R, O’Callaghan L. Clustering data streams. In: 41st annual symposium On foundations of
computer science, 2000. Proceedings. New York: IEEE; 2000. p. 359–366.

	21.	 Gupta M, Gao J, Aggarwal CC, Han J. Outlier detection for temporal data: a survey. IEEE Trans Knowl Data Eng.
2014;26(9):2250–67.

	22.	 Agarwal DK, Chen B-C. Statistical methods for recommender systems, Chap. 7. New York: Cambridge University
Press; 2016. p. 120–41.

	23.	 Chen J, Li K, Tang Z, Bilal K, Yu S, Weng C, Li K. A parallel random forest algorithm for big data in a spark cloud com-
puting environment. IEEE Trans Parallel Distrib Syst. 2017;28:919–33.

	24.	 Pal G, Li G, Atkinson K. Big data ingestion and lifelong learning architecture. In: 2018 IEEE international conference
on Big Data (Big Data). New York: IEEE; 2018. p. 5420–5423.

	25.	 Pal G, Li G, Atkinson K. Multi-agent big-data lambda architecture model for e-commerce analytics. Data.
2018;3(4):58.

	26.	 https​://gdc.cance​r.gov/. Accessed 1 June 2019.
	27.	 https​://spark​.apach​e.org/docs/lates​t/mllib​-clust​ering​.html. Accessed 27 Oct 2018.
	28.	 Guha S, Meyerson A, Mishra N, Motwani R, O’Callaghan L. Clustering data streams: theory and practice. IEEE Trans

Knowl Data Eng. 2003;15(3):515–28.
	29.	 https​://spark​.apach​e.org/docs/2.2.0/mllib​-stati​stics​.html#strat​ified​-sampl​ing. Accessed 22 Jan 2019.
	30.	 https​://spark​.apach​e.org/docs/2.2.0/api/java/org/apach​e/spark​/ml/class​ifica​tion/Rando​mFore​stCla​ssifi​catio​nMode​

l.html. Accessed 22 Jan 2019.
	31.	 Hssina B, Merbouha A, Ezzikouri H, Erritali M. A comparative study of decision tree id3 and c4.5. Int J Adv Comput Sci

Appl. 2014;. https​://doi.org/10.14569​/Speci​alIss​ue.2014.04020​3.
	32.	 Ruggieri S. Efficient c4.5 [classification algorithm]. IEEE Trans Knowl Data Eng. 2002;14(2):438–44.
	33.	 https​://spark​.apach​e.org/docs/2.2.0/api/java/org/apach​e/spark​/ml/evalu​ation​/Multi​class​Class​ifica​tionE​valua​tor.

html. Accessed 22 Jan 2019.
	34.	 https​://splun​kbase​.splun​k.com/app/2890/. Accessed 2 Feb 2019.
	35.	 https​://splun​kbase​.splun​k.com/. Accessed 2 Feb 2019.
	36.	 Bland JM, Altman DG. Survival probabilities (the kaplan-meier method). BMJ. 1998;317(7172):1572–80.
	37.	 Peterson AV Jr. Expressing the kaplan-meier estimator as a function of empirical subsurvival functions. J Am Stat

Assoc. 1977;72(360a):854–8.
	38.	 Razali NM, Wah YB, et al. Power comparisons of shapiro-wilk, Kolmogorov–Smirnov, lilliefors and anderson-darling

tests. J Stat Model Anal. 2011;2(1):21–33.
	39.	 Abdi H, Molin P. Lilliefors/van soest’s test of normality. In: Salkind NJ, Rasmussen K, editors. Encyclopedia of measure-

ment and statistics. Thousand Oaks: Sage; 2007. p. 540–4.
	40.	 Lilliefors HW. On the Kolmogorov–Smirnov test for normality with mean and variance unknown. J Am Stat Assoc.

1967;62(318):399–402.
	41.	 Massey FJ Jr. The Kolmogorov–Smirnov test for goodness of fit. J Am Stat Assoc. 1951;46(253):68–78.

https://doi.org/10.1145/3341069.3342992
https://doi.org/10.1145/3341069.3342992
https://doi.org/10.1145/2939672.2939835
http://proceedings.mlr.press/v28/ruvolo13.html
http://arxiv.org/abs/1206.6417
http://arxiv.org/abs/1206.6417
https://gdc.cancer.gov/
https://spark.apache.org/docs/latest/mllib-clustering.html
https://spark.apache.org/docs/2.2.0/mllib-statistics.html#stratified-sampling
https://spark.apache.org/docs/2.2.0/api/java/org/apache/spark/ml/classification/RandomForestClassificationModel.html
https://spark.apache.org/docs/2.2.0/api/java/org/apache/spark/ml/classification/RandomForestClassificationModel.html
https://doi.org/10.14569/SpecialIssue.2014.040203
https://spark.apache.org/docs/2.2.0/api/java/org/apache/spark/ml/evaluation/MulticlassClassificationEvaluator.html
https://spark.apache.org/docs/2.2.0/api/java/org/apache/spark/ml/evaluation/MulticlassClassificationEvaluator.html
https://splunkbase.splunk.com/app/2890/
https://splunkbase.splunk.com/

Page 29 of 29Pal et al. J Big Data (2019) 6:108

	42.	 Davis J, Goadrich M. The relationship between precision-recall and roc curves. In: Proceedings of the 23rd interna-
tional conference on machine learning. New York: ACM; 2006. p. 233–240.

	43.	 Purves RD. Optimum numerical integration methods for estimation of area-under-the-curve (auc) and area-under-
the-moment-curve (aumc). J Pharm Biopharm. 1992;20(3):211–26.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Lifelong Machine Learning and root cause analysis for large-scale cancer patient data
	Abstract
	Introduction:
	Case description:
	Discussion and evaluation:
	Conclusion:

	Introduction
	Motivation
	Lambda Architecture
	Our contributions
	Lifelong learning model
	Streaming clustering through dimension reduction
	Random Decision Forest-based forecasting and root cause analysis

	Related work
	Case description
	Application scenario
	Data metadata and model training
	Proposed ensemble framework: MALA
	Historical Data Store

	Stream processor
	Knowledge Miner and Knowledge Base

	Streaming incremental learning framework
	Streaming clustering step
	Decision tree and Random Decision Forest step
	Step 1. Sampling training subsets
	Step 2. Important feature selection
	Step 3. Dimension reduction of feature vector
	Step 4. Constructing the Decision Tree
	Implementing Random Decision Forest through Spark APIs
	Tuning Decision Tree hyperparameters

	Discussion and evaluation
	Experiment setup
	Results with GDC cancer patient data
	Clustering results
	Random Decision Forest results

	Model comparisons
	Results analysis
	Limitations of the proposed model

	Conclusion
	Acknowlegements
	References

