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Facdulcty of Information Process of information extraction (IE) is used to extract useful information from unstruc-
ani ommunication . . . . .
Technology, Universiti turgd or semrstructuvred data. Big data arise new c.haller.wges for IE techniques with the
Tunku Abdul Rahman, rapid growth of multifaceted also called as multidimensional unstructured data. Tradi-
31900 Kampar, Perak, tional IE systems are inefficient to deal with this huge deluge of unstructured big data.

Malaysia The volume and variety of big data demand to improve the computational capabilities

of these IE systems. It is necessary to understand the competency and limitations of
the existing IE techniques related to data pre-processing, data extraction and transfor-
mation, and representations for huge volumes of multidimensional unstructured data.
Numerous studies have been conducted on IE, addressing the challenges and issues
for different data types such as text, image, audio and video. Very limited consolidated
research work have been conducted to investigate the task-dependent and task-inde-
pendent limitations of IE covering all data types in a single study. This research work
address this limitation and present a systematic literature review of state-of-the-art
techniques for a variety of big data, consolidating all data types. Recent challenges of
IE are also identified and summarized. Potential solutions are proposed giving future
research directions in big data IE. The research is significant in terms of recent trends
and challenges related to big data analytics. The outcome of the research and recom-
mendations will help to improve the big data analytics by making it more productive.

Keywords: Big data, Information extraction (IE), Literature review, Learning-based
techniques, Multimedia data, Unstructured data

Introduction

Information extraction (IE) process extracts useful structured information from the
unstructured data in the form of entities, relations, objects, events and many other
types. The extracted information from unstructured data is used to prepare data for
analysis. Therefore, the efficient and accurate transformation of unstructured data in the
IE process improves the data analysis. Numerous techniques have been introduced for
different data types i.e. text, image, audio, and video.

The advancement in technology promoted the rapid growth of data volume in recent
years. The volume, variety (structured, unstructured, and semi-structured data) and
velocity of big data have also changed the paradigm of computational capabilities of the
systems. IBM estimated that more than 2.5 quintillion bytes of data are generated every
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day. Among these statistics, it was also predicted that unstructured data from diverse
sources will grow up to 90% in few years. IDC estimated that unstructured data will be
95% of the global data in 2020 with estimated 65% annual growth rate [1]. The com-
mon characteristics of unstructured data are, (i) it comes in multiple formats [2—5] (text,
images, audio, video, blogs, and websites, etc.) (ii) schema-less due to non-standardi-
zation [2—4] (iii) it comes from diverse sources (e.g. social media, clouds, sensors, etc.)
[2-4, 6].

Due to the huge volume and complexity of unstructured data, it became a tedious
task to extract useful information from different types of data. In this regard, system-
atic literature review have been conducted to identify state-of-the-art challenges. The
primary contribution of this work is twofold. First, a systematic review of existing tech-
niques for IE subtasks for each data type i.e. text, image, audio and video. The system-
atically extracted and synthesized knowledge can be leveraged by the researchers to
understand the concept of IE, its subtasks for each data types and state-of-the-art tech-
niques. Second, a taxonomy of IE research is designed to identify and classify the chal-
lenges of IE in big data environment. The main categories include task-related challenges
and unstructured data-related challenges. Finally, the IE improvement model is designed
to overcome the identified limitations of existing IE techniques for multidimensional
unstructured big data.

The remaining document is organized as follows: research methodology with all phases
and activities is presented in “Research methodology” section. “Information extraction
from text” section presents detailed discussion on IE subtasks such as NER, RE, EE, their
techniques and comparison of techniques for text data. In “IE from images” section, vis-
ual relationship detection, text recognition and face recognition techniques as IE sub-
task, recent work, and limitations have been described. “Audio IE” section presents the
detailed discussion on IE from audio, its subtasks such as AED and ASR with state-of-
the-art techniques and challenges. Text recognition and automatic video summarization
are elaborated in “Video IE” section. Results and discussion on this systematic litera-
ture review are presented in “Results and discussion” section whereas “Conclusion” and

“Future work” section present the conclusion and future work, respectively.

Research methodology

Systematic literature review (SLR) is a process to identify, select and critically analyzing
the research to answer the identified research questions. Transparency, clarity, integra-
tion, focus, equality, accessibility and coverage are key principles of SLR. It is a compre-
hensive investigation of existing literature on the identified research question. Therefore,
SLR has been selected for this review article on IE solutions for unstructured big data
and followed the well-formed guidelines [7, 8]. SLR is more suitable for this study
because it provides guidelines to conduct review and present findings in more system-
atic way. Generally, the process of SLR is divided into three main phases named as plan-
ning, conduct and reporting the review. These phases and their corresponding activities
followed in this review are depicted in Fig. 1.

Planning the review
The activities performed during the planning phase of the SLR are as follows:
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«Identification of research
questions

*Selection of data sources

*Defining the inclusion and
exclusion criteria

Plan review

Fig. 1 Review process

Conduct review

*Defining Quality criteria

*Primary study selection

*Data Extraction &
Synthesis

Report review

*Documenting the results

Table 1 Research questions and rationale

Research question

Rationale

RQ1

RQ2

RQ3

What are the state-of-the-art approaches for IE from
unstructured big data?

What are the issues related to the unstructured big
data IE for different types of data?

What are the common challenges of IE from a
variety of big data?

To explore the state-of-the-art approaches for IE in
big data environment for text, images, audio, and
video data

To investigate the impact of unstructured big data
on IE techniques

To identify the common challenges for IE from
the variety of unstructured data types i.e. text,

images, audio, and video

. Research questions

The research questions and their rationale have been given in Table 1.

. Search string and data sources

The following search strings have been used to search the most relevant literature to
address the research questions.

TITLE-ABS-KEY ((“information extraction” OR “information extraction system” OR
“visual relationship” OR “named entity” OR “relation extraction” OR “event extrac-
tion” OR “summarization” OR “speech recognition”) AND (“big data” OR “large-scale
data” OR “large data” OR “volume”) AND (“unstructured data” OR “nonstructured
data” OR “nonrelational data” OR “free text” OR “image” OR “audio” OR “video”)).
ACM, IEEE Xplore, Springer, ScienceDirect, Scopus, and Wiley online library were
selected as data sources for this review. The search was conducted in April 2019
using advanced search on the identified data sources. The details of searched and
selected articles from each data source are presented in Table 2.

. Inclusion conditions

The inclusion criteria have been defined to select the most relevant research studies
according to the research questions. The inclusion criteria for this study are as fol-
lows:

i. Research work published between January 2013 and April 2019 inclusively.
ii. Studies conducted in the English language.
ili. Studies related to IE for text, images, audio and/or video.
iv. Research work on unstructured data.
v. Research work on data analytics.
vi. Research work related to the IE techniques for big data implicitly or explicitly.

Page 3 of 38
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Table 2 Data sources and publication for each step of phase 2 of SLR

Data sources Publication count

Searched results Selected based Selected based Selected based on full

on title on abstract study + duplicate
removal
Wiley Online Library 1012 531 24 3
Scopus 461 146 31 12
Springer 548 204 47 22
IEEE Xplore 203 124 68 36
ACM 633 183 42 10
ScienceDirect 281 122 36 8
Total 3138 1310 248 91

Publication Venues w.r.t. data types

o N B O

2013 2014 2015 2016 2017 2018

Text Image Audio ==@=Video
Fig. 2 Publication venues

D. Exclusion conditions
i. Studies that used other than the English language.
ii. Short papers, presentations, keynotes, and articles.
ili. Duplicate or redundant studies.
iv. Studies that are not relevant to the research questions.
v. Research work older than January 2013.

Conducting the review

After planning the review, studies were refined and selected based on the inclusion and
exclusion criteria. The selected studies have been filtered based on the relevance to the
study objectives. The selection process started with reading the “title” of the selected
studies. Next, studies were filtered on the basis of “abstract” and “keywords” and finally
selected on the basis of “full article reading” The publication count of each step to select
the most relevant studies for this review is presented in Table 2.

Reporting the review
Figure 2 illustrates the publication venues for each data type from 2013 to 2018, and
Fig. 3 illustrates the selected studies distribution over data sources.

Table 3 presents a summary of the categorization of selected studies according to
each data type.
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Fig. 3 Selected studies publication venues

Table 3 Distribution of selected studies w.r.t study type and data types

Category Sub category Selected studies J Ch C Total
Related to text IE Named entity recognition [9-16] 4 3 1 8
Relation extraction [17-23] 3 3 1 7
Entity + relation extraction [24-29] 4 1 1 6
Event extraction [30-35] 30 3 6
Total selected studies for text 14 7 6 27
Related to images IE Visual relationship detection [36-45] 30 710
Text extraction from images [46-57] 3 1 8 12
Face recognition [58-61] 2 2 0 4
Total selected studies for images 8 3 15 26
Related to audio IE Acoustic event detection [62-68] 4 0 3 7
Automatic speech recognition [69-79] 9 0 2 1
Total selected studies for audio data 130 5 18
Related to video IE General information Extraction [80-82] o 0 3 3

from video

Text recognition [83-92] 4 1 510
Automatic video summarization [93-99] T2 4 7
Total selected studies for video data 5 3 12 2
Total selected studies 40 13 38 91

J journal article, Ch chapter; C conference

A. Process validation
The key doubts about the SLR process validation depend upon “study selection’,
“Inaccurate data extraction’, “inaccurate classification” and “potential author bias” To
ensure the process validation for this SLR, two authors were involved in the “selec-
tion” and “classification” of each study. Mutual understanding was developed for con-
flict resolution between authors.

Information extraction from text

The term NLP refers to the methods to interpret the data i.e. spoken or written by
humans. In order to process human languages using NLP, several tasks like machine
translation, question-answering system, information retrieval, information extraction
and natural language understanding are considered high-level tasks. The process of
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information extraction (IE) is one of the important tasks in data analysis, KDD and data
mining [100] which extracts structured information from the unstructured data. IE is
defined as “extract instances of predefined categories from unstructured data, building
a structured and unambiguous representation of the entities and the relations between
them” [101].

One of the intents of IE is to populate the knowledge bases to organize and access use-
ful information. It takes collection of documents as input and generates different repre-
sentations of relevant information satisfying different criteria. IE techniques efficiently
analyze the text in free form by extracting most valuable and relevant information in
a structured format. Hence, the ultimate goal of IE techniques is to identify the salient
facts from the text to enrich the databases or knowledge bases. The following subsec-
tions discuss the literature selected in SLR process according to the IE subtasks for text
data.

Named entity recognition (NER)

Named Entity Recognition is one of the important tasks of IE systems used to extract
descriptive entities. It helps to identify the generic or domain-independent entities such
as location, persons and organization, and domain-specific entities such as disease, drug,
chemical, proteins, etc. In this process, entities are identified and semantically clas-
sified into pre-characterized classes [102]. Traditional NER systems were using Rule-
Based Methods (RBM), Learning-Based Methods (LBM) or hybrid approaches [103]. IE
together with NLP plays a significant role in language modeling and contextual IE using
morphological, syntactic, phonetic, and semantic analysis of languages. Rich morpho-
logical languages like Russian and English make IE process easier. IE is difficult for mor-
phologically poor languages because these languages need extra effort for morphological
rules to extract noun due to non-availability of complete dictionary [104].

Question answering, machine translation, automatic text summarization, text mining,
information retrieval, opinion mining and knowledgebase population are major applica-
tions of NER [105]. Hence, the higher efficiency and accuracy of these NER systems is
very important but big data brings new challenges to these systems i.e. volume, variety
and velocity. In this regard, this review investigates these challenges and explores the
latest trends. Table 4 presents related work of NER using unstructured big data sets. It
summarizes techniques, motivation behind research, domain analysis, dataset used in
the research and evaluation of proposed solutions to identify the limitations of tradi-
tional techniques, impact of big data on NER systems and latest trends. Evaluation of
proposed techniques for IE is performed using precision, recall and F1-score. Precision
and recall are the measures for completeness and correctness, respectively. F1-score
measures the accuracy of the system and harmonic combination of precision and recall
(106, 107].

It has been identified that text ambiguity, lack of resources, complex nested entities,
identification of contextual information, noise in the form of homonyms, language varia-
bility and missing data are important challenges in entity recognition from unstructured
big data [11, 16, 105]. It is also found that the volume of unstructured big data changed
the technological paradigm from traditional rule-based or learning-based techniques to
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advanced techniques. Variations of deep learning techniques such as CNN are perform-
ing better for these NER systems [9, 10].

Relation extraction (RE)

Relation extraction (RE) is a subtask of IE that extracts substantial relationships between
entities. Entities and relations are used to correctly annotate the data by analyzing the
semantic and contextual properties of data. Supervised approaches use feature-based
and kernel-based techniques for RE. DIPRE, Snowball, KnowlItAll are some examples
of semi-supervised RE [108]. Several supervised, weakly supervised and self-supervised
approaches have been introduced to extract one to one and many to many relationships
between entities. In the present study, various lexical, semantic, syntactic and morpho-
logical features have been extracted and then relationship between entities using learn-
ing-based techniques have been identified. Table 5 summarizes the work presented on
relation extraction or entities relationship pairs.

Traditional learning-based or rule-based techniques are insufficient to handle the vol-
ume and dimensionality of unstructured big data [18]. The supervised LBM needs large
annotated corpora and it is very laborious task to annotate large data sets manually. In
order to reduce manual annotation effort, weakly supervised methods are more effective
[20]. Semantic RE with appropriate features [17, 21] and semantic annotation [17, 20]
are two critical challenges of RE.

Table 6 presents the research work related to extracted entities and their relation-
ship from free text corpora. Most of the traditional RE techniques were extracting one
to one relationship between entities due to limited text input. In this regard, many-to-
many relations have been identified from the large scale datasets that reduce the time
as well as increase the performance efficiency. Apache Hadoop provides a platform to
adopt parallelization in many to many relation extraction tasks using MapReduce. The
system was evaluated with 100 GB free text and many to many relationships were identi-
fied [24]. Traditional methods are ineffective to handle data sparsity and scalability [24].
Distant supervised learning, CNN and transfer learning have outperformed the existing
traditional methods [23, 25, 26].

Event extraction (EE) and salient facts extraction
An event represents a trigger and arguments. A trigger is a verb or normalized verb that
denotes the presence of an event whereas the arguments are usually entities which assign
semantic roles to illustrate their influence towards event description [30]. The literature
on event extraction and other salient fact extraction has been summarized in Table 7.
The present study identifies several challenges in IE from unstructured big data related
to volume, variety and IE techniques. Unstructured big data comes with the hetero-
geneity of data types, different representations and complex semantic interpretation.
These intrinsic problems of unstructured data generate challenges for big data analysis.
In order to make unstructured data available in the form ready for analysis, it must be
transformed into structured content and prepare for analysis. IE process must be effi-
cient enough to improve the effectiveness of big data analysis. Heterogeneity, dimen-
sionality and diversity of data are important to handle for IE using big data [32, 33].
However, volume of unstructured data is getting double every year [1], it is becoming
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more critical to extract semantic information from such a huge deluge of unstructured
data. Nevertheless, big data bring some challenges also for learning-based approaches
which are dimensionality of data, scalability, distributed computing, adaptability and
usability [109-111]. In this regard, advancements in learning-based approaches are try-
ing their best to handle the complexity of big data.

State-of-the-art IE techniques

Two major categories of IE techniques are rule-based methods (RBM) and learning-
based methods (LBM). It is difficult to identify which method is more popular and
effective in IE. In this regard, two studies [112, 113] have shown totally different analy-
sis. First, according to a systematic literature review on the popularity comparison of
these two methods, it was concluded that more than 60% of the studies included in the
review used pure rule-based IE systems. Whereas it was considered that rule-based IE
techniques are obsoleted in academic research domain [112]. Another comparison has
demonstrated totally different results by examining 177 research papers of four spe-
cific conferences on NLP. Among these 177 research papers, only 6 papers relied on
pure rule-based IE approach [113]. It was also observed that the IE Systems by large
vendors i.e. IBM, SAP and Microsoft are purely rule-based [113]. This review identifies
that LBMs are more popular in academic research domain as compared to RBM but the
importance of RBM could not be neglected. However, the debate on the comparison of
these two approaches is subjective to various factors such as the cost, benefits and task
specifications. Table 8 presents a comparison of these two approaches in general.

The comparative analysis explores different pros and cons of both approaches but the
selection of approach for any task is highly dependent on the user needs and task at hand
because IE is community-based process [100]. In general, learning-based approaches
are divided into supervised, semi-supervised and unsupervised techniques. These tech-
niques also have limitations to handle large scale big datasets and complexity of huge
volume of unstructured data. Supervised techniques require manually labeled training
data which is one of the major drawbacks of these techniques. Large scale labeled corpus
construction is laborious and time consuming task [9]. These techniques are effective for
domain-specific IE where specific information is required to be extracted. The efficiency

Table 8 Rule-based vs learning-based techniques

Rule-based approaches Learning-based approaches

Interpretable and suitable for rapid developmentand ~ The performance of machine learning approaches is
domain transfer [114] better in terms of precision and recall but appropriate
feature selection is important [115]

Humans and machines can contribute to the same Generating training data is time consuming in learning-
model. So it is easy to incorporate domain knowl- based approaches whereas rule-based approaches
edge [114] require pre-defined vocabularies [116]

Heavily rely on domain thesauri [11]

Although rule-based systems require domain knowl- No experts are required and system can be developed
edge and are time consuming, results proved that quickly with relatively low cost [118]

these are more reliable and useful for automated
processing [117]

Declarative [119] Adaptable [119]
Requires tiresome manual work [118] Less manual effort [118]
Highly transparent and expressive Higher portability than rule-based [9]
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of these techniques also depends on the selected features like morphological, syntactic,
semantic and lexical features. Whereas, unsupervised IE techniques do not need labeled
data. These techniques extract entity mentions from the text, clusters the similar entities
and identify relations [120]. In this case, intensive data preprocessing will be required
for big data because unstructured big data sets have missing values, noise and other
errors [16] that produce uninformative as well as incoherent extractions. Semi-super-
vised techniques use both labeled and unlabeled corpus with small degree of supervision
[121]. For large scale data, distant supervised learning [26], deep learning (CNN, RNN,
DNN) [9, 10, 18, 23, 31-33], transfer learning [25] techniques are more suitable for IE
from free-text data.

Deep learning approaches show better results for large datasets despite its own limita-
tions and challenges. It has the ability to generalize the learning and also has a unique
characteristic to utilize unlabeled data during training. Deep learning has the ability
to learn different features as it has multiple hidden layers. These techniques are more
suitable for pattern recognition [122]. Unsupervised learning (deep) have large model
capacity/complexity, high learning speed [32]. Feature learning-based systems are com-
putationally expensive for large scale data [123]. For the selection of appropriate tech-
nique for large scale datasets, computational cost, scalability and accuracy are the key
factors [124]. More advanced algorithms and techniques are required to achieve higher
accuracy and efficiency [125]. Over-fitting can be resolved with self-training [18] and to
overcome the limitation of large annotated dataset availability, reinforcement learning or
distant supervision can be used because these techniques use small labeled dataset [26],
[126]. Timeliness of distribution of data [126], balance of informativeness, representa-
tiveness, and diversity [127], data modeling performance for heterogeneous, dimen-
sional, sparse and imbalance data [16] and structuring the unstructured data [10] are
open challenges for IE using unstructured big data sets.

Unstructured big data barriers for IE
With huge volume and complexity of unstructured big data, natural language free text
data implies various issues for the users to extract the most relevant and required infor-
mation. Noisy and low-quality data is one of the major challenges in IE from big data [16,
31, 128, 129]. It causes difficulties in identifying semantic relatedness among entities and
terms [130], improving the effectiveness and performance of IE systems [128], extracting
contextually relevant information [31], data modeling [16] and structuring the data [10].
IE from text is also facing natural language barrier. Data diversity [124], ambigui-
ties in text, nested entities [105], heterogeneity [131], automatic format identification
[13], sparsity, dimensionality [16], homonym identification and removal [31] are some
important challenges to IE from unstructured free text. The exponential growth of
unstructured big data is making IE task more arduous. However, MapReduce has the
capability to deal with large scale datasets by distributing the data into different clusters
that increases the time efficiency [15, 22, 24]. Hence, the volume can be effectively han-
dled using Apache Hadoop, whereas, the issues related to the variety of data needs to be
focused. Unstructured big data is adding more challenges to IE from natural language
text. Hence, advanced and adaptive preprocessing techniques are required to improve
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the quality and usability of unstructured big data. After preprocessing the data, IE tech-
niques i.e. RBM or LBM will be able to produce more effective and efficient results.

IE from images

The IE from images is a field with great opportunities and challenges such as extracting
linguistic descriptions, semantic, visual and tag features, context understanding and face
recognition. Content and context level IE from different types of images could improve
image analytics, mining and processing. Following sections review the IE from images
w.r.t. different subtasks.

Visual relationship detection

Visual relationship detection extracts interaction information of objects in images. These
semantic representations of the relationship of objects are presented in the form of tri-
ples (Subject, Predicate, Object). The semantic triples extraction from images would
benefit various real-world application such as content-based information retrieval [132],
visual question answering [133], sentence to image retrieval [134] and fine-grained rec-
ognition [135]. Object classification and detection and context or interaction recogni-
tion are main tasks of visual relationship detection in image understanding.

In object detection and classification, objects are recognized based on appearance and
its class labels have clear association. CNN based solutions in object classification are
outperforming such as VGG [36] and ResNet [37].Whereas, Faster R-CNN and R-CNN
achieved great success in deep learning [38, 39]. Unlike object detection, visual relation-
ship detection extracts the interaction of objects. For example, “horse eating grass” and
“person eating bread” are two visually dissimilar sentences but both are sharing the same
interaction type “eating” Thus, subject, object and interaction are important in relation-
ship detection as well as context of the interaction. The model of interaction and its con-
text are treated as a single class where images are classified according to the interaction
classes [40]. Single class modeling has poor generalization and scalability as it requires
training images for each combination of interaction and context. Language priors [41] or
structural language [38] are used to overcome the limitations of single class modeling.
Intraclass variance, long-tail distribution, class overlapping are three major challenges
of visual relationship detection [41]. Long-tail distribution challenges were addressed by
introducing spatial vector for imbalance distribution of triples [41]. Long-tail distribu-
tion problem causes difficulties in collecting enough training images for all relationships.
In this regard, incorporating linguistic knowledge to DNN can regularize the perfor-
mance [42]. Several modified state of the art deep learning based techniques to extract
context and interaction detection have been discussed Table 9.

It can be concluded that deep learning techniques are outperforming in IE from large
scale unstructured images. CNN, RCNN and reinforcement learning achieved better
recalls. Also, it has been observed that Faster-RCNN and R-CNN have achieved remark-
able achievement in object detection [38, 39]. Whereas language prior and language
structures are also improving performance of relationship detection [38]. CNN based
VRD techniques extract features from subject and object union box before classification.
The training samples contain various same predicate categories which can be used in
different context with different entities. CNN based models have the limitation to learn
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common features in same predicate category [45]. So, intraclass variance is a challenge
for CNN based VRD. In order to overcome the limitation of CNN models in VRD, visual
appearance gap between same predicates and visual relationship should be reduced. For
this, Context and visual appearance features can be used to overcome the identified limi-
tation [44, 45]. Further, modified deep learning techniques are required to overcome the
challenges of visual relationship detection for large scale unstructured data. To the best
of our knowledge, the impact of volume, variety and velocity of big data is not addressed
well in visual relationship detection techniques.

Text recognition

A vast array of information can be extracted from the text content in images. Text within
images and videos describes more about the useful information about the visual con-
tent and also improves the efficiency of keyword-based searching, indexing, information
retrieval and automatic image captioning. Text information extraction (TIE) systems
detect, localize and recognize the text in visual data like images and videos. The visual
content can be categorized into perceptual content and semantic content. Perceptual
content includes color features, shape, texture features, temporal attributes, whereas
semantic content deals with the identification and recognition of objects, entities and
events [136]. TIE systems follow detection, localization, tracking, extraction or enhance-
ment and recognition phases in terms of detecting and identifying text in the visual data.
Each subtask of TIE systems has different techniques, challenges and limitations. In TIE
systems, text detection and localization tasks are used to identify different features such
as color-based, edge based, texture-based and text-specific features [136, 137]. All these
subtasks are important to extract useful information from visual data but only recogni-
tion task is more relevant to the identification of objects, entities and characters. Text
recognition is a process to identify the character-forming meaningful words. So, recent
literature have been discussed, in this section, to identify the potential challenges of text
recognition task from images in information extraction.

Text recognition task is tightly coupled with the OCR (Optical Character Recognition)
approach to recognize characters from images or scanned documents. Character recog-
nition from the Tamil text in ancient documents and palm manuscripts to extract use-
ful information from document images using OCR involved a segmentation technique
which included different stages: image preprocessing, feature extraction, character rec-
ognition and digital text conversion. According to the experimental results, the accuracy
of conversion for the Brahmi was 91.57% and 89.75% for the Vattezhuthu [46]. Whereas,
character recognition using neural networks from handwritten text has shown differ-
ent results. The Radial Basis Function (RBF) with one input layer and one output layer
has been used to train RBF network. As compared to back propagation neural network,
gradient feature extraction resulted in less accuracy with RBF using directional group
values [47]. OCR systems perform better for scanned documents but different variation
in images have shown inappropriate results [137]. The underlying reasons could be the
geometric variation, complex background, variation of text layout and font, uneven illu-
mination, multilingual content, low resolution and low quality [138].

Extracting text from the visual data, semantic features use learning-based approaches
such as supervised and unsupervised. Supervised learning methods are used to learn
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structure or concepts from the features such as Support Vector Machine (SVM) and
Bayesian classifier. These classifiers are trained to learn the structure and are tested on
the unlabeled regions. In this regard, distorted character recognition using Exempler
SVM beat the existing state of the art by over 10% for English and 24% for Kannada
on the benchmarked dataset Chars74k and ICDAR [48]. Similarly, CRF classifier was
used in a framework to recognize characters with scores, spatial constraint and linguistic
knowledge that performed 79.3% on ICDAR2003 and 82.79% on ICDAR2011 accuracy
[49]. Another system, Stroklete, was designed to detect and recognize characters from
the images using histogram features i.e. bag-of-Strokletes to learn the structure of the
letters and train the system with Random Forest classifier. The system was trained and
tested on English letters and Arabic numbers. It had shown 80% and 75% supporting
results on ICDAR2003 and SVT respectively [50]. However, robustness to distortion and
generality to variant language are challenging for these systems. To explore the advance-
ment in TIE techniques, Table 10 summarizes the literature on the state of the art TIE
techniques for high dimensional or large scale datasets.

Unlike traditional OCR techniques, CNN, RNN and LSTM are achieving high per-
formance in text recognition in images. Deep learning techniques are showing preva-
lent results to date. CNN as feature extractor to detect, slice and recognize pipeline [57]
and as encoder in attention mechanism outperformed others [56]. Although, these tech-
niques are showing promising results, but diversity in data sources makes the system
complex [55]. The effectiveness of these techniques for complex, diverse, high dimen-
sional and heterogeneous datasets must be investigated. The huge volume of unstruc-
tured data is creating noisy and low-quality images such that multilingual text in images
should be addressed to improve the IE from images [58, 59]. CNN based OCR have
also shown pretty good results but the performance of technique on unstructured big
datasets is still to be investigated. The attention mechanism is a new approach in text
recognition [54, 56]. Initially, the results are satisfactory but there is a huge room for
improvement in terms of unstructured and multidimensional big data. It is predicted
that OCR with attention mechanism will be the emerging phenomenon in near future
for text recognition [54]. In this regard, robust and adaptive techniques are required for
unstructured big datasets for semantic understanding of text in images.

Face recognition

The task to recognize similar faces is a computational challenge. It is evident that
humans have very strong face recognition abilities and these abilities are superior
to known faces but ability to recognize the unfamiliar faces are error-prone [139].
This distinction of face recognition in human lead towards the finding that face rec-
ognition depends on different set of facial features for familiar and unfamiliar faces.
These features are categorized into internal and external features respectively [140].
In this regard, [60] examined the role of high-PS and low-PS features in face recog-
nition of familiar and unfamiliar faces and role of these critical features for DNN
based face recognition. The review concluded that high-PS features are critical for
human face recognition and are also used in DNN based trained on unconstrained
faces.
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In the domain of computer vision, face recognition is a holistic method that analyzes
the face images. Various techniques have been proposed for face recognition for different
datasets but these traditional techniques are inadequate to deal with large scale datasets
efficiently. A comparative analysis shows that these traditional techniques have limita-
tions to handle low-quality large scale image datasets whereas deep learning methods
are producing better results for these datasets but with optimal architecture and hyper-
parameters [58]. The face recognition in low quality i.e. blur and low-resolution images
degrades its performance. Sparse representation and deep learning methods combined
with handcrafted features outperformed in case of low-resolution images [59]. Face rec-
ognition techniques should be able to recognize faces with different face expressions
and poses in different lighting conditions [58]. Various deep learning based solutions are
proposed to address the limitations of traditional techniques. Deep CNN face recogni-
tion technique without extensive feature engineering reduces the effort of most appro-
priate feature selection. Deep CNN face recognition technique was evaluated on U] face
database of 50 images and the results have shown validation accuracy of 22% goes to
80% after 10 epochs and 100% after 80 iterations [52]. Certain limitations were also asso-
ciated with the solution such as overfitting and very small dataset. To reduce overfitting,
application of early stopping method will require extra effort. VGG-face architecture
and modified VGG-face architecture with 5 convolutional layers, 3 pooling layers, 3 fully
connected layers and softmax layer was evaluated using five different image datasets,
i.e. ORL face database with 400 images, yale face database with 165 images, extended
yale-B cropped face database with 2470 images, faces 94, Feret with 11,338 images and
CVL face db. For all datasets, the proposed approach performed better as compared to
traditional methods [58]. Although, the proposed technique outperformed five differ-
ent datasets but the datasets were not complex and large-scale datasets. Deep learning
based face recognition techniques such as deep convolutional network or VGG-face and
lightened CNN have capability to handle huge amount of wild datasets [61].

Deep learning based face representations are more robust to handle misaligned
images [61]. Deep CNN can perform better to recognize objects from partially
observed data but image enhancement is important in deep CNN before the con-
volutional operation for low quality images [58]. Although deep learning techniques
have capabilities to improve the performance of face recognition, certain challenges
have also been associated with deep learning techniques that should be considered
beforehand. Quality of images, missing data in images, noise should be handled
because these factors degrade the performance of the deep learning based face rec-
ognition techniques [58, 59]. Face recognition with different face expressions, illu-
minations, using accessories causes partial occlusion [61]. This partial occlusion
detection requires new optimal deep learning architecture and hyper-parameters to
overcome these challenges. However, the selection of appropriate technique highly
depends on the data size and quality. Further, more robust and optimal solutions are
required for large scale datasets with high accuracy and low latency.
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Audio IE

Companies like call centers and music files are the major sources which generate a huge
volume of audio data. Different type of information can be extracted from this data to
help predictive and descriptive analytics. The subtasks of IE from audio data are classi-
fied as acoustic event detection and automatic speech recognition.

Acoustic event detection

Sound event extraction or acoustic event extraction is an emerging field which aims to
process the continuous acoustic signals, convert them into the symbolic description. The
applications of automatic sound event detection are multimedia indexing and retrieval
[141], pattern recognition [62], surveillance [142] and other monitoring applications.
This symbolic representation of sound events is used in automatic tagging and segmen-
tation [143]. These auditory sounds come from diverse sources and contain overlapping
events and background noise [63, 64]. Moreover, parametric accuracy of training model
on limited training data is also difficult to achieve [62].

As presented in Table 11, data scarcity and overfitting are common limitations of
AED solutions. In this regard, modified data augmentation achieved better results due
to modification in frequency characteristics with particular frequency band [65]. Con-
text recognition is one of the solutions to overcome the overlapping issue and improve
the accuracy of AED but identifying the specific context sound event is one of the criti-
cal challenges for AED. Adding language or knowledge prior can help to extract con-
text sound events [64]. In recent work on AED, deep neural networks are outperforming
traditional techniques. The capability to jointly learn feature representation is one of
the major advantages of DNN. Whereas, supported by large amount of training data,
DNN is well progressing in the field of computer vision. But non-availability of large
scale datasets publically reduces the progress in this research area [64]. Creating large
scale annotated data can be a time-consuming process. Therefore, weakly supervised or
self-supervised data for training can perform better. In this context, CNN based weakly
supervised technique was compared to the technique trained with fully-supervised data.
On evaluating both techniques on UrbanSound and UrbanSound8k datasets, weakly
supervised performed better for arbitrary duration without human labor for segmenta-
tion and cleaning [67]. On the implementation side of AED techniques on large scale,
high computational power, efficient parallelism and support for training large models
are important factors to consider [68]. The research on automatic AED is hindering by
the complexity of overlapping sound events. Improved accuracy to handle overlapping
sound events, efficient solutions to achieve labeled datasets, improved processing time
with parallelism for large scale data are important dimensions for the development of
optimal solutions for AED with unstructured big data.

Automatic speech recognition (ASR)

Automatic speech recognition (ASR) is a task to recognize and convert speech into any
other medium such as text, that’s why it is also known as speech to text (STT). Voice
dialing, call routing, voice command and control, computer-aided language learning,
spoken search and robotics are major applications of ASR [144]. In the process of speech
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recognition, sound waves of speaker’s speech are converted into the electrical signal and
then transformed into digital signals. These digital speech signals are then represented
in discrete sequence of feature vectors [145]. The pipeline of speech recognition system
consists of feature extraction, acoustic modeling, pronunciation modeling and decoder.
Generally, these automatic speech recognition systems are divided into five categories
according to classification methods such as Template-based approaches, Knowledge-
based approaches, dynamic time warping (DTW), hidden Markov model (HMM) and
artificial neural network (ANN) based approaches [146]. Recently, the exponential
growth of unstructured big data and computational power, ASR is moving towards
more advanced and challenging applications such as mobile interaction with voice, voice
control in smart systems, communicative assistance [147]. For such large scale and real
world applications, Table 12 presents the recent literature on ASR to discuss state-of-art
classification approaches, its variants, evaluation results and remarks on the proposed
solution.

ANN based approaches are followed in most of the research studies because these
approaches can handle complex interactions and are easier to use as compared to statis-
tical methods. ASR systems can be speaker-independent or speaker-dependent recogni-
tion systems. For speaker-dependent recognition systems, template-based methods are
performing better due to individual reference template for each speaker which requires
large training data from each individual [69]. Due to separate template for each individ-
ual, high accuracy can be achieved even in noise, but these methods are suitable for small
scale data because, at large scale, it is ineffective to collect large training data from each
individual. Rather than collecting large data for training, reinforcement learning can be
adopted to make speaker identification automated. To implement speaker-dependent
recognition systems at large scale, Apache Hadoop can be used to implement parallel-
ism to make system computationally efficient. Whereas speaker-independent speech
recognition systems are not achieving as high accuracy due to noise and overlapping in
speech, and language used in speech. Rule-based approaches in speaker-independent
recognition system require linguistic skills to implement rules that is a laborious task
but rule-based approaches provide quality pronunciation dictionaries [70]. Rule-based
methods have limitations of poor generalizability to implement multilingual recognition
system or switching for different languages. HMM based speech recognition uses statis-
tical method for data modeling [71]. These systems require large training data for huge
number of parameters for HMM. In contrast, ANN-based methods are more flexible
and nonlinear e.g. DNN [72, 73], CNN [69, 74], RNN [75]. ANN-based speech recogni-
tion systems are more generalize and have flexibility towards changing environments.
ANN-based data models are informative and nonlinear. Several ANN-based solutions
have been developed for different languages other than English such as Punjabi [76],
Tunisian [70], Chhattisgarhi [77], Tamil [78], Amazigh [71] and Russian [79]. The evalu-
ation of LSTM RNN based ASR have proved that word level acoustic models without
language model are more efficient to improve accuracy [75]. The performance of ASR
is sensitive to pooling size but insensitive to overlap between pooling units with CNN
implementation [74]. Although ANN-based ASR systems achieved overall better perfor-
mance, these systems also have some limitations. The quality of results is unpredictable
due to its black box and empirical nature. To improve its computational power, cluster
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based solution was proposed with DNN framework that speeds up the process 4.6 times
and reduces the error rate by 10% [68]. Overall, ANN based ASR systems are performing
better than other classification approaches. Hence, modified ANN based ASR systems
are required to improve the accuracy of these systems.

Video IE
The primary goal of IE from the video is to understand and extract relevant information
from video content carried in videos. The applications of IE from video are semantic
indexing [148], content-based analysis and retrieval, content-oriented video coding, Vis-
ually impaired people assistance and automation in supermarkets [149]. In the era of big
data, social media and many other platforms are producing digital videos at very high
speed. It is not only about size of data that matters, high computational power and speed
are also essential to extract useful information from these digital videos. In this regard,
Apache Hadoop has been used to implement an extensible distributed video processing
framework in cloud environment [80]. FFmpeg and OpenCYV for video coder and image
processing respectively were implemented using MapReduce showing 75% scalability.
Generally, perceptual and semantic content can be extracted from videos. Seman-
tic contents deal with the objects and their relationship [149]. The spatial and tempo-
ral association among objects and entities have been used to reduce the semantic gap
between visual appearance and semantics with the help of fuzzy logic and RBM [81].
The proposed system achieved high precision but relatively low recall. Similarly, event
extraction from audio-visual content consisting of CNN based audio-visual multimodal
recognition was developed and incorporated knowledge from the website using HHMM
was used to improve the efficiency. The proposed approach outperformed in terms of
accuracy and concluded that CNN provides noise and occlusion robustness [82]. The
following subsections extensively discuss the issues and state of the art techniques for

subtasks of IE from video content.

Text recognition
The large volume of video data is produced and shared every day on social media. Text
in videos plays an important role to extract rich information and provides semantic clues
about the video content. Text extraction and analysis in video have shown considerable
performance in image understanding. A wide variety of methods have been proposed in
this regard. Caption text and scene text are two categories of text that can be extracted
from videos [150]. Caption text provides high-level semantic information in captions,
overlays and subtitles, whereas scene text is normally embedded in the images such as
sign boards, trademarks, etc. Caption text or artificial text recognition is easier than
scene text because caption text is added over the video to improve the understandability.
Whereas, scene text recognition is complex due to low contrast, background complex-
ity, different font size, orientation, type and language [83]. Besides, low-quality video
frames, blur frames and high computation time are specific challenges related to video
text extraction process [84].

The pipeline of text detection and extraction consists of text detection, text localiza-
tion, text tracking, text binarization and text recognition stages. Focusing on IE tech-

niques, this review presents only state of the art techniques for text recognition. Text
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recognition system to extract semantic content from Arabic Tv channel using CNN
with auto encoder was developed. The accuracy of character recognition was 94.6%
[85]. Moreover, a similar system for Arabic News video was developed for video index-
ing using OCR engine ABBYY FineReader with linguistic analysis and achieved 80.52%
F-measure [86]. Another text recognition system was developed for overlay text extrac-
tion and person information extraction using rule-based approach for NER to extract
person, organization and location information. To extract text, ABBYY FineReader was
used [148]. These text recognition systems deal with printed and artificial text only that
is comparatively easy to extract. On the other hand, text binarization is important to
segment natural scene text with filtering and iterative variance-based threshold calcu-
lation [87]. DNN has the ability to provide robust solution in end to end text recogni-
tion in videos. In this regard, Faster R-CNN [88], CNN [89, 90], LSTM based method
[91] have shown comparatively better performance on scene text recognition. In general,
temporal redundancy can be used in tracking for text detection and recognition from
complex videos [92].

Traditional systems are not capable of managing and efficiently analyzing the complex
big data. MapReduce based parallel processing system has been proposed to detect text
in videos. The proposed system achieved high-speed performance on YouTube videos
but the system only detects the text from videos using texture-based features [84]. Text
recognition plays an important role in understanding multimedia data and multimedia
retrieval, visually impaired people assistance, content-based multimedia analysis [151].
Multimedia big data is growing very fast in batch or streaming, more advanced and
computationally powerful techniques are required for text recognition from multimedia
big data. More robust algorithm to recognize variety of scene and artificial text from
low-quality videos are required having the capability to address the space and speed per-

formance in this area.

Automatic video summarization

Automatic tools are essential to analyze and understand visual content. People are
generating huge volume of videos using mobile phones, wearable cameras and Google
Glass, etc. Some examples of this explosive growth are: 144,000 h videos are uploaded
daily on YouTube, lifeloggers generate Gigabytes videos using wearable cameras, 422,000
CCTV cameras are generating videos 24/7 in London [93]. The explosive growth of
video data on daily basis highlighted the need to develop fast and efficient automatic
video summarization algorithms. AVS has many applications in real life like surveil-
lance, social media, monitoring, etc. [152]. It provides the summary of the video con-
tent in skim through video that presents the short video of semantic content of original
long video, known as skimmed based summarization or dynamic video summarization.
The second is key-frame based video summarization, a.k.a static video summarization,
where frames and audio-visual features are extracted [94]. Selecting the most relevant or
important frames or subshots from the video for video summarization is a critical task.
Several supervised, unsupervised and other techniques are introduced in the literature
of computer vision and multimedia. Selection and prioritization criteria for frames and
skims is designed manually in unsupervised approach [95, 96] whereas supervised tech-
niques leverage user-generated summaries for learning [94, 97, 98]. Each technique has



Adnan and Akbar J Big Data (2019) 6:91 Page 27 of 38

different properties for representativeness, diversity and interestingness [93]. Recently,
supervised techniques are achieving promising results as compared to traditional unsu-
pervised techniques [94]. Recent literature on user-generated videos have been pre-
sented in Table 13.

Poor quality e.g. erratic camera motion, variable illumination, etc. and content sparsity
i.e. difficulty in finding representative frames, are two important challenges for AVS with
user-generated videos [95]. Despite the limitations of unsupervised techniques, modifi-
cations such as incorporating prior information about category [95], selection of deep
features rather than shallow features [96] have been presented. Unfortunately, the sys-
tems were unable to show promising improvement. Furthermore, it is difficult to define
optimized joint criteria for frame selection due to the selection complexity of frame
among large number of possible subsets. In contrast, supervised techniques require
large annotated data that is one of its major limitations due to the shortage of large data-
sets [98]. Overall, supervised techniques are outperforming unsupervised techniques.
However, more efficient and fast algorithms are required for AVS specially to deal with
the variety and velocity of big data.

Results and discussion

This SLR distills the key insights from the comprehensive overview of IE techniques for
a variety of data types and take a fresh look at older problems, which nevertheless are
still highly relevant today. Big data brings a computational paradigm shift to IE tech-
niques. In this regard, this SLR presents a comprehensive review of existing IE tech-
niques for variety of data types. To the best of our knowledge, IE techniques from variety
of unstructured big data at a single platform have not been addressed yet. In order to
achieve this goal, SLR methodology has been followed to explore the advancements in
IE techniques in recent years. To meet the objectives of the study, most relevant and up
to date literature on IE techniques for text, images, audio and video data have been dis-
cussed. The selected studies have been classified according to IE subtasks for each data
type and shown in Fig. 4.

Big data value chain defines high-level activities that are important to find useful infor-
mation from big data where IE process is concerned with the data analysis. Therefore,
the impact of inefficiencies of IE techniques will ultimately decrease the performance
of big data analytics or decision making. In order to improve the big data analytics and
decision making, this SLR was aimed to investigate the challenges of IE process in the
age of big data for variety of data types. The objective of combining IE techniques for
variety of data types at single platform was twofold. First, to identify the state of the art
IE techniques for variety of big data and second, to investigate the major challenges of
IE associated with unstructured big data. Further, the need for new consolidated IE sys-
tems is highlighted and some preconditions are also proposed to improve the IE process
for the variety of data types in big data. This identified challenges of IE associated with
unstructured big data have been discussed in the following subsection.

Unstructured big data challenges for IE
The challenges of IE from unstructured big data are categorized into task-dependent
and task-independent categories. The task-dependent challenges have been discussed
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Table 14 Independent challenges identified from selected studies
Challenges of unstructured big data IE Studies Frequency
Data quality [31,58,59, 63,64, 84,95,138] 9
Data sparsity [16,22,31,34,95] 6
Data volume [10,13, 15,19, 65] 5
Data usability [11-13,27,28] 5
Context understanding [27,31, 39, 64] 4
Computational requirements [15,68,84,124] 4
Data dimensionality [16, 18, 66] 3
Heterogeneity [33,131] 2
Diversity [55,124] 2
Semantic understanding [43,44] 2
Data modeling [16,68] 2
Ambiguities in data [31,105] 2
Data scarcity [62] 1
Balance among informativeness, representativeness, [127] 1

and diversity

in their corresponding sections with state of the art techniques in each area. Task-
independent challenges are discussed in this section. Table 14 presents a summary of

the challenges identified from the selected studies.

A. Quality of unstructured big data

Noise [31, 63, 64], missing data [59], incomplete data [15] and low quality data [58
59, 84, 95, 138] are major quality issues of unstructured big data that degrades the
performance of IE process. The quality issues of unstructured big data are huge bar-
riers in extracting useful and most relevant information that makes IE process ardu-

ous. Quality improvement, early in the process, is the utmost requirement of IE from

unstructured big data.

B. Data sparsity

Page 29 of 38
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The enormous growth of user-generated content increased the data sparsity (a.k.a.
data sparseness and data paucity) issues where only small fraction of data contains
interesting and useful information [16, 22, 31, 95]. Text analysis of social media data,
summarization of visual data are directly associated with user-generated content.
Due to the sparsity of content, it became difficult to find most relevant representa-
tive data to produce semantically rich results. There is a false assumption about large
datasets that frequent extractions from large datasets can produce better results [22].
Extracting a small amount of evidence in the corpus to present useful information
is a challenge for unstructured big datasets. Therefore, sparse IE for large scale and
variety of big data for user-generated content have great opportunities along with the
challenges to improve the IE process.

C. Volume of unstructured big data
People and machines are great producers of unstructured big data. The volume of
data brings some opportunities as well as challenges for IE from the huge deluge of
user and machine-generated content. Existing techniques should adopt new size and
time requirements to deal with IE from big data [15, 84]. Automatic IE and structur-
ing the unstructured big data requires the scaling of existing methods designed for
very small data to process millions of data records [10, 13]. Therefore, distributed and
parallel computing should be adopted for improved efficacy of IE from unstructured
big data.

D. Dimensionality and heterogeneity
Unstructured big data comes with high dimensionality [16, 18, 66], diversity [55,
124], dynamicity [32] and heterogeneity [33, 131]. Dimensionality reduction [18] and
semantic annotation [131] can further improve the IE performance of high dimen-
sional and heterogeneous data respectively. The techniques with high representa-
tional power are appropriate for high dimensional data [66]. With the influx of data
from increasingly diverse sources, big data IE and analytics require advanced tech-
niques to handle more than data accessibility.

E. Data usability
Unstructured big data is a rich source of information but exploitation of relevant
information is one of the major challenges [27, 28]. It is more relevant to the optimal
data selection with balance of cost, speed and accuracy [12]. The main problem with
unstructured big data is, huge deluge of data is available, but it is not usable. Usability
of data is defined as the capacity of data to fulfill the requirements of user for a given
purpose, area and epoch. According to the definition of data usability [153], “Usabil-
ity is the degree to which each stakeholder is able to effectively access and use the
data” Data usability helps to know more about data, its understanding and its usage.
Therefore, usability varies due to the different interpretation of meaning of data val-
ues and different nature of tasks that relates IE process improvement to data usability
improvement.

F. Context and semantic understanding
Identifying the context of interaction among entities and objects is a crucial task in
IE [39, 64], especially with high dimensional, heterogeneous, complex and poor qual-
ity data. Data ambiguities add more challenges to contextual IE [31, 105]. Semantics
are important to find relationship among entities and objects [44]. Entities and object
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extraction from text and visual data could not provide accurate information unless
the context and semantics of interaction are identified [43]. Efficient data prioritiza-
tion and curation is important in this regard [27]. Therefore, semantic and context
understanding is important as well as challenging for big data IE due to quality and
usability issues.

G. Data modeling
As discussed earlier, learning-based techniques are more popular for IE as it reduces
manual intensive labor. Efficient data modeling is an important task in learning-
based IE techniques. High dimensionality, heterogeneity and low quality of unstruc-
tured big data add complexities to data modeling process [16]. Efficient parallelism

and computational power are required to support large data models [68].

Need for consolidated IE systems for multidimensional unstructured big data

The critical analysis of the existing literature selected in this SLR has identified vari-
ous task-specific and data-specific challenges for big data IE. Based on the findings of
this SLR, variety of big data is posing challenges to extract useful information. Every
field is using IE systems for variety of data to perform mining and analysis. New con-
solidated systems to extract useful information from variety of data types can improve
the efficiency of big data analytics by integrating the extracted information. For exam-
ple, Healthcare systems are using variety of big data in different systems like decision
support systems, disease identification, Pharmacovigilance and Healthcare analytics,
etc. Consolidated IE systems would help to improve these systems by extracting use-
ful information from variety of unstructured data. The analysis of existing IE techniques
and limitations arises the need for the consolidation of IE techniques for variety of data
types. The identified need has been depicted in Fig. 5.

As shown in Fig. 5, the identified task-specific and data-specific limitations of IE sys-
tems should be considered to design an IE system for more than one data type. Mean-
while, the proposed improvement preconditions should also be considered for the
development of these systems. The identified challenges and proposed preconditions
will help to extract relevant and useful information from variety of big data. Following

Unstructured ' Advanced IE
Big data Issues Pragmatics Techniques
v
Limitations of IE Systems Consolidated IE I -
mprove

Text Images Systems for Unst Pt b
Multidimensional nstructured Big

Audio Video Unstructured Big data data Analytics

1 )
Context & Adaptive

Semantics | | Preprocessing
Techniques

Fig. 5 Consolidated IE systems for multidimensional unstructured big data
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are some improvement preconditions that have been proposed for these new consoli-
dated IE systems for multidimensional unstructured big data.

Preconditions 1: Advanced preprocessing

Most of the challenges, identified in this SLR, are related to the quality and usabil-
ity of unstructured big data. Data and process standardization, efficient data cleaning
and quality improvement techniques are required for unstructured big data. Further,
advanced and adaptive preprocessing techniques prior to IE are required to improve the
effectiveness of big data analytics.

Precondition 2: Pragmatic IE

Pragmatics is a field of study that is related to the usefulness and usability of data [154].
It deals with the dimensions of data that are important to improve the usefulness and
usability of data. As IE is a community based process, it depends on the user needs and
available data source [100]. Therefore, IE equipped with pragmatics will help to improve
unstructured data analysis as it will extract and select data according to the user needs.
Pragmatic IE solutions are required to improve big data analytics and big data IE.

Precondition 3: Context and semantics are more important

Context and semantics play an important role in understanding relation among entities
or objects. Extracting most relevant data is a difficult task for unstructured big data due
to its complexity and quality. Therefore, contextually and semantically rich IE techniques
will increase the robustness of big data IE.

Precondition 4: Selection of technique

Selection of appropriate techniques according to the data has strong impact on the
results of IE process especially for unstructured big data due to its complexity and large
size. Traditional IE techniques are inadequate to efficiently handle unstructured big data.
It has been observed that selection of appropriate techniques highly depends on the data
characteristics. Weakly supervised or distant supervised learning techniques are suit-
able for large scale and multi domain datasets as these techniques require small training
samples [17]. Unsupervised techniques are suitable for heterogeneous data [32], whereas
deep CNN have performed better on high dimensional data [36]. Therefore, understand-
ing the data is an important factor for selection of IE technique.

Conclusion

The systematic literature review serves the purpose of exploring state-of-the-art tech-
niques for IE from unstructured big data types such as text, image, audio and video
investigating the limitations of these techniques. Besides, the challenges of IE in big data
environment have also been identified. It is found that analysis and mining of data are
getting more complex with massive growth of unstructured big data. Deep learning with
its generalizability, adaptability and less human involvement capability is playing a key
role in this regard. However, to process exponentially growing data, new flexible and
scalable techniques are required to deal with the dynamicity and sparsity of unstruc-
tured data. Quality, usability and sparsity of unstructured big data are major obstruct
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in deriving useful information. For improving the IE techniques, mining useful infor-
mation and supporting versatility of unstructured data, it is required to introduce new
techniques and make improvements and enhancements in existing techniques. Overall,
the existing IE techniques are outperforming traditional techniques for comparatively
larger datasets but inadequate to effectively deal with rapid growth of unstructured big
data especially streaming data. Scalability, accuracy and latency are important factors
in implementation of these IE techniques in big data platform. Apache MapReduce is
also facing scalability issues in big data IE. To overcome these challenges, MapReduce
based deep learning solutions are the future of big data IE systems. These systems will be
helpful for healthCare analytics, surveillance, e-Government systems, social media ana-
lytics and business analytics. The outcome of the study shows that highly scalable and
computationally efficient and consolidated IE techniques are required to deal with the
dynamicity of unstructured big data. The study significantly contributes to the identifica-
tion of the challenges to achieve more scalable and flexible IE systems. Quality, usability,
sparsity, dimensionality, heterogeneity, context and semantics understanding, scarcity,
modeling complexity and diversity of unstructured big data are major challenges in
this field. Advanced data preparation techniques, prior to extracting information from
unstructured data, semantically and contextually rich IE systems, the emergence of prag-
matics and advanced IE techniques are essential for IE systems in unstructured big data
environment. Hence, Scalable, computationally efficient and consolidated IE systems are
required the can overcome the challenges of multidimensional unstructured big data.

Future work

The major focus of the review was to investigate the challenges of IE systems for mul-
tidimensional unstructured big data. The detailed discussion on IE techniques from
variety of data types concluded that data preparation is equally important to the effi-
ciency of IE systems. Advanced data improvement techniques will also increase the
efficiency of IE systems. Therefore, the findings of the review will be used to develop
a usability improvement model for unstructured big data to extract maximum useful
information from these data.
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