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Introduction
The continued rise of network and cloud-based applications allow for companies to pro-
vide robust and dynamic services to their customers across the world both cheaply and 
efficiently. In 2018, nearly 80% of enterprises have begun to experiment with apps run-
ning on cloud or network based platforms [1]. Due to the growing reliance on such ser-
vices, the security of the networks hosting these applications is more paramount than 
ever. Attackers are very much aware of the importance these applications hold for vari-
ous companies, making them obvious targets for malicious exploits. Industry domains 
ranging from telecommunications to software publishing are finding themselves under 
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constant bombardment from cyber attacks such as distributed denial of service (DDoS) 
attacks [2, 3]. According to the NETSCOUT Threat Intelligence Report for 2018, the 
overall number of DDoS attacks has increased by nearly 26% over the previous year [4]. 
Although continued efforts are in effect to mitigate such attacks, attackers are constantly 
evolving their attack methodologies to avoid the newest detection techniques. In recent 
years, attackers have moved towards the implementation of application layer attacks, 
as these have proven harder to detect as opposed to traditional network layer based 
approaches [5]. These attacks target specific application protocols being utilized by the 
target, many of which are prone to proven exploits.

One such protocol with known exploits is the Hypertext Transfer Protocol (HTTP), 
which is often the target of attacks such as Slowloris and Slow POST DoS attacks [6, 7]. 
Both of these attack variants are easily executed by attackers, and are difficult to detect 
as the resulting traffic is difficult to differentiate from normal HTTP communications 
[8]. Because of this, these attacks can prove extremely detrimental to any service being 
hosted on a network utilizing this application protocol.

One component to mitigating network attacks is continuous network traffic analysis, 
which is an important aspect of maintaining proper network security. During this pro-
cess, organizations often encounter enormous amounts of normal traffic during daily 
operations. Parsing this big data for the occurrences of malicious traffic can be a daunt-
ing effort, as the total number of traffic instances encountered can easily range in the 
millions. To aid in this detection, analysts often turn to machine learning techniques. 
However, depending on the type of attack, the resulting traffic may only contain a rel-
atively low number of attack instances. This can lead to a relatively high level of class 
imbalance, where the minority class (attack) instances are vastly fewer than the majority 
class (normal) instances. As the size of the dataset increases, this issue is often exac-
erbated as the gap between number of minority and majority instances increases [9]. 
This occurrence can be even more predominant in network attack datasets, considering 
the large amount of network communications which can be collected. The issue of high 
or severe class imbalance can prove especially problematic when attempting to apply 
machine learners to detect attack instances. Since so few instances may exist, there may 
not be enough discernible behavioral patterns to correctly identify the other malicious 
instances within the remaining data. One approach to mitigate the issue of class imbal-
ance is the use of data sampling techniques, which aims to change the ratio of minority 
and majority instances by selecting a subset of the original data, thus lessening the per-
ceived severity between the two classes.

In this work, we evaluate the benefit of applying data sampling to a severely imbal-
anced big dataset from the cyber security domain. Our collected dataset consists of 
two Slow HTTP DoS attacks (Slowloris and Slow POST), implemented on a live pro-
duction network. The resulting dataset consists of approximately 1.89 million instances, 
with 6646 total minority (attack) instances. As the minority class ratio is less than 0.01%, 
we consider this dataset severely imbalanced [10]. Although the minimum number of 
instances to define a dataset as “big” data has not formally been defined, other works on 
the use of big data have utilized datasets far smaller than ours, some as low as 100,000 
instances [10]. Therefore, as our dataset contains well over 1 million instances, we con-
sider our dataset as big data.
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As our dataset consists of an over representation of the majority (normal) class, we 
utilize random undersampling (RUS) to create a total of five class distributions: 99:1, 
90:10, 75:25, 65:35, and 50:50. RUS was chosen as our data sampling technique due to 
its relative success in mitigating the effects of class imbalance in other works [11, 12]. 
These five sampling ratios were applied to eight learners and were evaluated using 
5 runs of twofold cross validation with 10 iterations. The learners evaluated were: 
5-Nearest Neighbor (5NN), Naïve Bayes (NB), Multilayer Perceptron (MLP), Support 
Vector Machines (SVM), JRIP using Repeated Incremental Pruning to Produce Error 
Reduction (RIPPER), Random Forest (RF), C4.5 decision trees, and Logistic Regression 
(LR). The detection performance of all learners were evaluated using Area Under the 
Receiver Operating Characteristics (ROC) Curve (AUC).

Our results show that the use of RUS offered significant performance increases 
when compared to the performance using no data sampling. Overall, we suggest that 
the combination of RF with a class ratio of 65:35 is the optimal choice, achieving an 
AUC mean of 0.99904.

The remainder of this paper is organized as follows. In "Attack background" section, 
we detail the Slow HTTP DoS attack methods collected in our dataset. In "Related 
works" section, we discuss related works associated with utilized data sampling on 
highly imbalanced big data. "Methods/experimental" section outlines our collection 
procedure and our empirical design. In "Results and discussion" section, we discuss 
our findings. Lastly, in "Conclusion" section, we conclude our works and identify 
future endeavors.

Attack background
Slow HTTP DoS attacks focus on targeting the application layer, in this instance the 
HTTP protocol, and can be implemented through several variations such as Slowlo-
ris, and Slow POST [13]. In a Slowloris attack, an attacker begins their initial com-
munications with a web server, with the goal of leaving the connection open as long 
as possible. The server will continue to send new requests to the attacker attempt-
ing to further the communication. The attacker, on the other hand, simply sends 
partial packet headers back to the server, never fully resolving the communication. 
The behavior is represented in Algorithm 1. This behavior continues until either the 
server experiences a communication time-out or the attacker ends the attack. Server 
resources are eventually depleted so that future legitimate connections are unable to 
be fulfilled, due to the attacker’s stranglehold on server communications.

In a Slow POST attack, an attacker sends legitimate POST requests to a server. The 
packet information associated with this request specifies a content-length header 
value of an extreme size. The server then waits for the entire message body specified 
by the header value to be received. Throughout the interaction, the attacker will con-
tinue to send data at a rate as low as one byte per transmission. To bypass the server’s 
client idle timeout, the data is transmitted in regular time intervals. Therefore the 
server’s resources are made unavailable until the request is completed. The behavior 
of this attack can be seen in Algorithm 2.
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The effects of both of the aforementioned attack variants can be exacerbated depend-
ing on the attack method of execution. These attacks can easily be implemented in a 
distributed fashion using multiple hosts, or can even be configured to enact multiple 
attack instances from a single machine depending on the tools being utilized. This allows 
the attacker to perform a potentially devastating attack while using very little in terms of 
their own personal resources.

For both Slow HTTP attack variants, numerous tools and scripts exist that are publicly 
and freely available to attackers to utilize. A benefit of these tools is that many are capa-
ble of making multiple connections from a single machine, lessening the need to execute 
distributed attacks if the attacker’s resources are limited. However, attackers with ample 
resources can still choose to run these tools in a distributed fashion, making a small 
army of hosts even more dangerous.

Low orbit ion cannon (LOIC) Slow [14] is a variant of the popular LOIC DoS tool, 
which specifically focuses on performing Slow HTTP attacks such as Slow HTTP 
POST. Although this tool is easily accessible, it does offer a limited range of configurable 
options, such as the inability to adjust the content-length value or target specific pages 
on a server.

R U Dead Yet (R.U.D.Y.) [15] is another Slow DoS tool which allows the user to select 
the number of connections as well as target specific pages/forms on a server. However, 
the attacker is still unable to specify the timeout or content-length. What is of interest 
is how R.U.D.Y. targets specific POST values within a form. Before executing the attack, 
R.U.D.Y. will scan the target URL for a POST form, then display the available POST vari-
ables to the user for specific targeting.

Open web application security project (OWASP) Switchblade [16] is a stress test tool 
used for testing the availability, performance, and capacity of a web application. The tool 
was made publicly available in 2010 and offers a robust amount of configurable attack 
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options. Switchblade allows users to set the number of connections, connection rate, 
timeout value, content-length, and user agent values. This allows for attackers to enact 
very targeted attacks with varied conditions.

Suites such as SlowHTTPTest [17], provide highly configurable attack scenarios which 
give attackers a high level of control when executing their attacks. Attackers are able to 
select the number of connections, connection rate, length of follow up data, and more to 
fine tune their attack setups. SlowHTTPTest is a Linux-based application, but can easily 
be executed on Windows platforms utilizing the Cygwin environment for added flexibil-
ity in execution.

Several other script-based tools also exist, such as Slowloris.pl [18], Slowloris.py [19], 
and PyLoris [20]. As these tools are written in common languages such as Perl and 
Python, they are easily modifiable by attackers to fit customized attack criteria. They are 
also lightweight tools which can be executed from nearly any environment.

Related works
In our literature review, few works specifically relating to the problem of class imbalance 
within cyber security big datasets have been identified. However, in work performed by 
Roy et al. [21], a study was conducted with the aim of addressing a series of common 
challenges that may affect machine learning based approaches to malware detection 
in the Android domain. For this work, a dataset was collected consisting of real-world 
Android malware apps, totalling approximately 430,000 instances. The data contained 
8500 minority instances with an imbalance ratio of 50:1. Based upon these specifica-
tions, the data is considered imbalanced, but not severely. We also view the data as a 
large dataset, but not specifically big data. The challenges addressed, and how they are 
tested, represent interesting questions relating to how they may affect other domains, 
such as Network Based Intrusion Detection. Six total research questions were posed. 
The most relevant question related to our work, asked if performance degrades as the 
class ratio approaches more real-world levels (for Android domain, approx. 1:100). Six 
class distribution ratios were evaluated (1:1, 1:5, 1:10, 1:20, 1:50, and 1:100) using the 
K-nearest neighbor (KNN) classifier. As the imbalance increases, the area under the 
precision recall curve (AUPRC) performance does decrease substantially (decreasingly 
steadily from 0.964 to 0.456). Overall, this work does well to address several domain spe-
cific challenges, but does have several shortcomings. Most obvious is the fact that only 
one classifier (KNN) was evaluated. Further, no specific value for K was given. The find-
ings in this work could have been better verified through the use of a wider range of 
machine learners.

Other works have attempted to address the issue of severely imbalanced big data, 
albeit in a differing domain. Bauder et al. [22] conducted an empirical study to evaluate 
the impact of varying class distributions on learner behavior for Medicare fraud big data. 
In this work, the focus is placed on the detection of Medicare Part B provider fraud. 
A novel approach to mapping fraud labels based on known fraudulent providers is also 
proposed. The resulting dataset is considered severely imbalanced, containing very few 
fraudulent instances. Seven class distributions were created using RUS (99.9:0.1, 99:1, 
95:5, 90:10, 75:25, 65:35, and 50:50) to evaluate the performance of six machine learning 
methods (NB, LR, KNN, SVM, C45, and RF). Their results indicated that a learner and 
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distribution combination of RF with a 90:10 class ratio produced the best results with an 
AUC value of 0.87302.

Rio et al. [23] address the issue of class imbalance by focusing on the use of random 
oversampling (ROS) techniques. Their experiments utilized data from the ECBDL’14 
Big Data competition [24], which relates to the Bioinformatics domain. This dataset 
consisted of nearly 32 million instances and less than 2% minority class instances. A 
MapReduce [25] version of ROS was utilized to produce oversampled datasets with rates 
of 105%, 115%, 130%, 140%, 150%, 160%, 170%, and 180%. The resulting datasets were 
evaluated using the RF algorithm. Their results suggested that setting the oversampling 
ratio to a value that balances true positive rate (TPR) and true negative rate (TNR) can 
lead to better performance in terms of accuracy. Fernadez et  al. [26] also investigated 
class imbalance in big data using the MapReduce framework. They compared RUS and 
ROS using MapReduce with two subsets of the ECBDL’14 dataset, one with 12 million 
instances and the other with less than 1 million. The authors examined the performance 
of RF and decision trees, using both Apache Spark and Apache Hadoop MapReduce 
frameworks. Key observations from this work are that models using Apache Spark gen-
erally performed better than models using Hadoop. Further, ROS performed better with 
more MapReduce partitions while RUS performed better with less partitions, indicating 
that the number of Hadoop partitions impacts performance. Lastly, Apache Spark-based 
RF and decision tree algorithms produced better results with RUS compared to ROS.

Methods/experimental
This section outlines the procedure for the execution of our Slow HTTP DoS attacks 
and our associated data collection process. Our network topology and normal network 
usages are defined as well. We also detail the machine learning methods applied to our 
collected dataset.

Data collection

Our capture framework allows for us to perform our attacks within a real-world network 
environment servicing numerous active users. Our campus network consists of hosts 
from classrooms, labs, and offices. To facilitate our network usages, we utilize a series 
of switches, servers, and routers capable of servicing on and off campus users. A Cisco 
adaptive security appliance (ASA) is used as a firewall and is capable of providing us 
with virtual private network (VPN) capabilities. An Apache web server was established 
to be utilized as a student resource portal, and also serves as the target for our attacks. 
This server is configured with CentOS 6.8 and runs on a Dell 2950 Poweredge with two 
quad-core Intel Xeon 5300 processors and 16 GBs of memory. Figure 1 shows our archi-
tecture in more detail.

The Apache student resource server is configured using WordPress, and hosts lec-
ture material, assignments, assessments, and other content required by student users. 
General, normal traffic related to course work may consist of, but is not limited to, 
downloads, uploads, website navigation, and other communications with the web 
server. Within the context of our network usages, students both locally on our net-
work and from online may request course material from our server concurrently. Our 
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extended network also supports other faculty and student usages ranging from virtu-
alization to audio/video streaming.

For our attack implementation we opted to enact two common Slow HTTP DoS 
attack variants to represent a broader range of attack traffic, the first being a Slowloris 
attack, based on targeting HTTP GET communications. For our Slowloris collection, 
our attacks were performed on a physical host machine using popular attack tools, 
rather than through simulation. Several tools were compared, such as SlowHTTPT-
est [17], PyLoris [20], and Slowloris.py [19]. This was done to identify if any one tool 
produced different traffic patterns. Based on our comparison, the traffic across these 
tools produced similar traffic, and therefore only one tool was utilized in our experi-
ments. For our experiments, we chose the Slowloris.py attack script, as it allowed for 
the most verbose configuration options.

To represent different levels of Slowloris attacks, we ran three different attack sce-
narios with varying configurations. As some attacks are performed in a “low and slow” 
[27] manner, we opted to run a series of attacks in a stealthy configuration. To repre-
sent this stealthy attack, in which an attacker is attempting to avoid detection through 
the use of minimal connections, we enacted one attack instance using a single connec-
tion with a random connection interval between 1 and 20 s. A more moderate level 
attack was performed, executing 125 connections using a random connection interval 
between 1 and 10  s. Lastly, to represent a non-stealthy attack, we incorporated 250 

Fig. 1  Topology of campus network
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connections and a random connection interval of 1 and 5 s. Each attack ran from a 
single host machine for 1 h, and targeted our student resource server.

For our second Slow HTTP DoS attack, we enacted as series of Slow POST attacks. For 
this implementation, we used OWASP Switchblade 4.0 as our attack tool. As with our 
Slowloris experiment, we once again ran tests using a wide range of popular attack tools, 
such as LOIC Slow [14], R.U.D.Y [15], Railgun [28], and Torshammer [29]. We settled 
on Switchblade as it provided us with the most configurable options, and the resulting 
traffic behavior from all tools tested were identical. Like our Slowloris implementation, 
our attacks were run from a single physical host machine utilizing multiple connections.

To more fully represent varying attack conditions in a real-world attack, we once again 
chose to implement varying scenarios ranging from stealthy to non-stealthy attack con-
figurations. In total, nine different attack configurations were implemented, separated 
into three distinct categories. Our stealthy set of configurations utilized single connec-
tions to prolong potential detection. We scaled up the connection amount to 125 to rep-
resent a moderate level attack. Lastly, we increased the number of connections to 250 to 
represent a non-stealthy attack. For each of these three categories, we ran three attacks 
with varying timeout values: 10  s, 50  s, and 100  s. For all attacks, we used a content-
length value of 1000. This value was chosen as it was a default value across most attack 
tools. All attacks targeted the same php form element on our web server, and ran for one 
hour each, resulting in a total of nine hours of attack traffic.

Full packet captures (FPCs) [30] allow us to observe all traffic communications as they 
are received. The key issue with analyzing full packets is that it can be quite resource 
intensive to analyze all available packet features. To lessen this resource impact, we 
opted to use Netflow [31] features extracted from our FPCs. Netflow traffic refers to a 
high-level summary of network communications. A Netflow record is identified based 
upon the standard 5-tuple attribute set that makes up a conversation: source IP, destina-
tion IP, source port, destination port, and transport protocol. Based upon which Netflow 
standard is being implemented, other attribute fields can also be produced. We utilize 
the IPFIX [32] standard for our flow extraction. The resulting features can be seen in 
Table 1.

Once all Netflow instances were extracted, we labeled any instances correlating to any 
of our attack implementations as “attack” and all remaining traffic collected from our 
network as “normal”. In total, we collected 1,892,161 instances, with 6646 representing 
“attack” instances.

Machine learning methods

Eight classification algorithms were selected to build predictive models based on our col-
lected datasets: KNN, NB, MLP, SVM, C4.5 decision trees, RF, JRIP, and LR. This variety 
of learners was selected to broaden the scope of our analysis. All models were built using 
the WEKA machine learning toolkit [33].

KNN [34] is an instance-based learning algorithm that contains all available instances 
and assigns new instance labels based upon distance functions. These distance functions 
utilize K, which represents the amount of closest instances to the test instance to decide 
its label. For our study, K is assigned a value of 5.
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NB [35] is based upon Bayes’ theorem and is well suited for datasets with high dimen-
sionality. The algorithm works upon the assumption that features are independent, and 
utilizes this premise to calculate the posteriori probability that an instance is a member 
of a specific class. Although a simple premise, Naive Bayes has been known to outper-
form other more sophisticated classification methods.

MLPs [36], also referred to simply as artificial neural networks, utilize neurons (per-
ceptrons) to compute an individual value from multiple inputs using non-linear trans-
formations. Although a single neuron can be rather limiting, MLPs use these neurons 
as building blocks to create much larger networks. MLPs can also utilize several hidden 
layers to help transform inputs into usable values by the outer layers.

SVMs [37] are discriminate classifiers used as supervised learning models with associ-
ated learning algorithms. SVMs utilize hyper-planes to separate instances in a dataset 
into two distinct groups, and assign new instances to one class or another. The aim is 
for the SVM to identify the most optimal hyper-plane with the largest gap between class 
instances as possible.

The C4.5 decision tree [38] is a tree-based learning algorithm. In WEKA, this is the 
implementation of the J48 decision tree. In these algorithms a decision tree is built 
based on the training data. Each branch of the tree represents a feature in the data which 
divides the instances into more branches based on the values which that feature can 
take. The leaves represent the final class label. The C4.5 algorithm uses a normalized ver-
sion of Information Gain to decide the hierarchy of features in the final tree structure. 
Information Gain is based on the decrease in entropy after a dataset is split on a feature. 
The aim is to find the feature that returns the most homogeneous branches.

RF is an ensemble learning method, created from the construction of multiple deci-
sion tress. RF can be used for both classification and regression tasks and is a popular 
choice due to its typically strong performance and relative simplicity [39].

JRIP uses a proportional ruler learner called RIPPER . It uses association rules with 
reduced error pruning (REP) and splits the training data into a growing and pruning set 

Table 1  Description of selected Netflow features

Feature name Description

Protocol Transport-layer protocol number of flow

Packets Number of packets in flow

Bytes Number of bytes in flow

Flags Logical OR of TCP flag fields of flow

Initial Flags TCP flags in initial packet

Session Flags All TCP flags in entire connection

Attributes Flow attributes [SFTC]

Duration Duration length (in milliseconds) of flow

Payload Bytes Size of payload measured in bytes

Payload Rate Non-overhead packet data per second

Packets/Second Number of packets per second

Bytes/Second Number of bytes per second

Bytes/Packet Number of bytes per packet

Class Class label (attack or normal)
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[40]. At each simplification step, the pruning operator with the greatest REP is chosen. 
Simplification ends when pruning increases the error on the set.

LR represents a machine learning algorithm utilized for classification scenarios con-
sisting of two outcomes [41]. Unlike linear regression, in LR a sigmoidal function is used 
to give us class probability values, either being 0 or 1. We utilize Weka’s default ’ridge’ 
parameter value. This represents the penalized maximum likelihood estimation with a 
quadratic penalty function.

Metrics

To evaluate each model, we utilize AUC [42]. The ROC curve graphs the TPR and false 
positive rate (FPR) of the model. TPR represents the percentage of the attack instances 
that are correctly predicted as attacks. FPR represents the percentage of the normal data 
which is wrongly predicted as attack data. The ROC curve is built by plotting TPR vs 
FPR as the classifier decision threshold is varied. Higher AUC values tend to correlate to 
higher TPR and lower FPR, both of which are preferred outcomes.

We utilize twofold cross validation to evaluate our AUC values. Using twofold cross 
validation divides the data into 2 non-overlapping parts, representing our folds. For each 
iteration, the first part is reserved as test data and the remaining part is used as training 
data. We opted to use twofold, as using higher fold counts can take far more computa-
tional time depending on the learner being evaluated. Our final AUC values are calcu-
lated by aggregating the AUC values of the models being tested for each of 2 parts of 
the data. In order to decrease the bias of randomly selected folds, we applied five runs of 
twofold cross validation with 10 iterations to provide each performance value.

In total, our collected dataset consists of 1,898,807 instances, with 1,892,161 normal 
(majority) instances and 6646 attack (minority) instances. This results in a severe class 
imbalance of approximately 0.004%. High levels of class imbalance can often lead to a 
classifier biasing the majority class [43]. To counteract this bias, we utilize RUS to ran-
domly select a subset of instances from the majority class, while keeping all instances 
of the minority class [44]. We generate five class distribution ratios of normal instances 
to attack instances from which to build our models. The ratios created are 99:1, 90:10, 
75:25, 65:35, and 50:50.

To further reinforce the results of our performance metric, we perform significance 
testing to evaluate the impact each learner and class distribution has on AUC values. 
We use ANalysis Of VAriance (ANOVA) [45] as a means to determine if our factors are 
equal. As we are evaluating the significance of both learner and distribution impact, we 
perform two-way ANOVA [46]. We also implement a post hoc analysis via Tukey’s hon-
estly significant difference (HSD) test [47]. A Tukey’s HSD test determines if factor means 
are significantly different from one another. Factor means are grouped based upon their 
similarity. Means within the same letter grouping represent no significant difference, 
whereas means in different letter groupings do indicate a significant difference.

Results and discussion
This section evaluates the results of our learners and the varying combinations of class 
imbalance ratios to determine which learner performs best, as well as the significance 
of using data sampling to improve performance on big datasets. As stated previously, 
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we created a total of five class distributions based upon our original dataset. The ratios 
used are 50:50, 65:35, 75:25, 90:10, and 99:1. We have also included results relating to 
the original non-sampled dataset, which we refer to as “None”, to further represent any 
performance difference between using and not-using RUS. For all class distributions, 
we evaluate each of the following eight learners: 5NN, RF, C4.5, LR, MLP, SVM, JRIP, 
and NB. For each learner and class ratio combination, 5 runs of twofold cross valida-
tion are applied. The average AUC values of the resulting runs are shown in Table 2. The 
table displays the results for each of the five class imbalance ratios and the non-sampled 
“None” dataset. It should be noted, that most of our learners achieve high AUC values 
in regards to the detection of our Slow HTTP attach dataset. This has been attributed 
in part to the feature set used by Netflow, which has proven to be highly discrimina-
tive in prior works for these types of attack instances [48, 49]. The highest AUC value 
of 0.99905 is achieved with RF and a class ratio of 50:50. The second highest AUC of 
0.99904 is also achieved by RF, but with a class ratio of 65:35. As the ratios become more 
imbalanced, C4.5 achieves higher performance, with AUC values of 0.99890 and 0.99889 
corresponding to the ratios of 75:25 and 90:10 respectively. When observing the most 
imbalanced ratio of 99:1, 5NN performs best with an AUC value of 0.99894. Interest-
ingly, 5NN also performs best for the original dataset with no sampling applied, obtain-
ing an AUC value of 0.99826. The worst learners, on average, for all class distributions 
were MLP and NB. These results are further visualized in Figs. 2 and 3.

The overall high AUC metrics are certainly encouraging when attempting to deter-
mine the validity of the learner’s ability to detect Slow HTTP attack traffic. However, 

Table 2  Cross validation results

Ratio 5NN RF C4.5 LR MLP SVM JRIP NB

99:1 0.99894 0.99480 0.98168 0.98535 0.79018 0.98689 0.95682 0.96982

90:10 0.99871 0.99856 0.99889 0.98958 0.98396 0.98820 0.98962 0.96851

75:25 0.99875 0.99889 0.99890 0.99376 0.98816 0.99095 0.99288 0.97327

65:35 0.99877 0.99904 0.99867 0.99338 0.98919 0.99138 0.99290 0.97464

50:50 0.99862 0.99905 0.99844 0.99420 0.99074 0.99150 0.99437 0.97581

None 0.99826 0.98850 0.96145 0.98223 0.75768 0.98150 0.89414 0.97273

Fig. 2  AUC results for all learners
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when evaluating the significance of using sampling techniques to improve classifier 
performance on big data, the initial benefits are not as easily discerned from our cross 
validation results alone. Therefore, to further evaluate any potential performance 
gains using RUS, we perform significance testing using ANOVA and post hoc analysis 
with Tukey’s HSD. Table 3 displays our two-factor ANOVA test results. The factors 

a 5NN b C4.5

c LR d MLP

e NB f RF

g JRIP h SVM

Fig. 3  AUC results by learner
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being considered are Class Distribution and Learner. Based on a significance value of 
0.05, we can conclude the following:

1.	 The distribution p-value of < 2e−16 indicates that the class distribution ratio is asso-
ciated with AUC performance

2.	 The learner p-value of < 2e−16 indicates that the chosen machine learner is associ-
ated with AUC performance

3.	 The p-value for the interaction between distribution and learner of < 2e−16 indicates 
that this interaction effect is statistically significant.

To further understand the significance of each specific learner and each class ratio, 
we utilize a Tukey’s HSD test to separate our learners and ratios into groups based 
upon their significant differences. Learners and ratios belonging to the different letter 
groupings indicate that they are significantly different. Table  4 displays the signifi-
cance groupings of each learner’s performance across all class distributions. From this 
we identify four levels of performance groupings amongst our learners. Both 5NN and 
RF were significantly better than other learners and placed in group ‘a’. C4.5, LR, and 
SVM following behind in the second grouping ‘ab’. NB and JRIP were categorized into 
group ‘b’, with MLP residing at the lowest performing group ‘c’. Similar to Tables 4, 5 
displays the result groupings of our Tukey’s HSD test, but this time focusing on each 
class distribution across all learners. Here only two groupings were identified. Distri-
butions of 50:50, 65:35, 75:25, and 90:10 were assigned to the top performing group 
‘a’. The most severe imbalance ratio of 99:1 as well as the original non-sampled dataset 
were relegated to group ‘b’. Figures 4 and 5 have been provided to visualize the result-
ing groupings. Table 6 represents all results from our Tukey’s HSD test organized by 
learner. 

Table 3  ANOVA Results

Df Sum Sq Mean Sq F value Pr ( > F)

Distribution 5 0.09756 0.01951 25.571 < 2e −16

Learner 7 0.15021 0.02146 28.123 < 2e −16

Distribution:learner 35 0.25811 0.00738 9.665 < 2e −16

Residuals 192 0.14650 0.00076

Table 4  Tukey’s HSD learner results

Learner AUC​ AUC std r Min Max Group

5NN 0.99867 0.00025 30 0.99789 0.99910 a

RF 0.99647 0.00399 30 0.98601 0.99925 a

C4.5 0.98967 0.01503 30 0.96096 0.99908 ab

LR 0.98975 0.00483 30 0.97891 0.99514 ab

SVM 0.98840 0.00364 30 0.98105 0.99205 ab

NB 0.97243 0.00600 30 0.95555 0.97969 b

JRIP 0.97012 0.03982 30 0.82635 0.99529 b

MLP 0.91665 0.12416 30 0.64263 0.99468 c
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Based on these results, we recommend an optimal learner and ratio combination be 
chosen from their respective group ‘a’s. As RF, assigned to learner group ‘a’, achieved 
better performance than 5NN for the distributions assigned to distribution group ‘a’, 
we select RF as the best overall learner based upon our significance testing. In regards 
to class distribution, both group ‘a’ ratios of 50:50 and 65:35 provided comparable per-
formance when using RF. When evaluating which distribution is the most optimal, we 
must also consider the type of attack being detected. When detecting standard flood 
based DDoS attacks, the significance of missing a few individual attack instances is 

Table 5  Tukey’s HSD class distribution results

Distribution AUC​ AUC std r Min Max Group

50:50 0.99284 0.00736 40 0.96879 0.99921 a

65:35 0.99225 0.00777 40 0.96864 0.99925 a

75:25 0.99194 0.00825 40 0.96778 0.99917 a

90:10 0.98950 0.01018 40 0.95555 0.99904 a

99:1 0.95806 0.08238 40 0.64263 0.99910 b

None 0.94206 0.08457 40 0.67230 0.99873 b

Fig. 4  Tukey’s HSD groupings by learner

Fig. 5  Tukey’s HSD groupings by distribution
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not necessarily substantial. Therefore, it may be preferred to choose a distribution that 
produces less computational overhead to make detection more efficient. As the 50:50 
class distribution produces a smaller dataset, evaluation on said dataset will be signifi-
cantly faster than distributions with more traffic instances. However, considering that 
we are evaluating Slow HTTP DoS attacks, the significance of each attack instance is 
more important. This is due to that fact that each individual instance can be held for 
an immense amount of time, draining resource availability over longer periods of time. 
Such attacks also do not have to be performed in a distributed fashion to be successful, 
making the identification of each individual attack instance more important. For such 
attack types where each missed instance could ultimately result in significant losses or 
ramifications, we make the argument that a ratio of 65:35 is a better choice, as it retains 
a larger number of instances from the majority class. By keeping a larger number of 
majority instances, we allow for a better representation of normal traffic behavior. This 
allows for more confidence that our learner performance is more accurate of results that 
may be found in a real-world scenario.

Regarding the overall results obtained from our significance analysis, it would seem to 
indicate that there is little to no difference between the distribution ratios within group 
‘a’. However, this conceived lack of significance between these ratios could be attributed 
to the initially high performance values originally obtained. As the AUC values are so 
high, there is little room for variances between each performance value. It is possible, 

Table 6  Tukey’s HSD by learner results

Learner Distribution AUC​ Group Learner Distribution AUC​ Group

5NN 99:1 0.99894 a MLP 50:50 0.99074 a

65:35 0.99877 a 65:35 0.98919 a

75:25 0.99875 a 75:25 0.98816 a

90:10 0.99871 a 90:10 0.98396 a

50:50 0.99862 a 99:1 0.79018 c

None 0.99826 a None 0.75768 c

RF 50:50 0.99905 a SVM 50:50 0.99150 a

65:35 0.99904 a 65:35 0.99138 a

75:25 0.99889 a 75:25 0.99095 a

90:10 0.99856 a 90:10 0.98820 a

99:1 0.99480 a 99:1 0.98689 a

None 0.98850 a None 0.98150 a

C4.5 75:25 0.99890 a JRIP 50:50 0.99437 a

90:10 0.99889 a 65:35 0.99290 a

65:35 0.99867 a 75:25 0.99288 a

50:50 0.99844 a 90:10 0.98962 a

99:1 0.98168 a 99:1 0.95682 ab

None 0.96145 ab None 0.89414 b

LR 50:50 0.99420 a NB 50:50 0.97581 a

75:25 0.99376 a 65:35 0.97464 a

65:35 0.99338 a 75:25 0.97327 a

90:10 0.98958 a None 0.97273 a

99:1 0.98535 a 99:1 0.96982 a

None 0.98223 a 90:10 0.96851 a
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that a similar dataset utilizing a feature set other than Netflow, may produce a wider 
range of performance values and hence show greater significance between class distri-
butions. Still, the fact remains that even with such high AUC values, a clear significant 
difference was determined when evaluating the most severe class ratio of 99:1 and the 
original dataset. This shows that the use of RUS and the chosen class distribution can 
provide a statistically significant performance increase.

Conclusion
As application layer attacks become more prevalent and more sophisticated, the neces-
sity for quick identification is paramount. However, successful detection and mitigation 
commonly require network analysts to sift through immense amounts of traffic instances 
in order to find those corresponding to malicious behavior. Furthermore, as the number 
of attack instances can be substantially less than those of legitimate users, successfully 
identifying illegitimate traffic can be like finding a needle in a haystack.

In this work, we implement data sampling techniques with the intent of increasing the 
detection performance of Slow HTTP DoS attacks on severely imbalanced big datasets. 
Our collection procedure for collecting representative real-world big data from a pro-
duction network is also outlined. The collected data consists of over 1.8 million total 
instances, with less than 0.01% attack instances, thus resulting in a severely imbalanced 
dataset. Five class distributions were generated from this dataset, in an attempt to miti-
gate the severe level of class imbalance between the majority and minority instances. We 
evaluated eight machine learners on each of the produced distributions to identify the 
optimal learner and class ratio combinations. From our results, we determined that RF 
combined with a 65:35 class distribution was the best combination, achieving an AUC 
cross validation value of 0.99904. This pairing is also preferred due to the fact that more 
of the majority instances were retained, as compared to other learner/distribution com-
binations. This allows for the resulting dataset to better represent normal traffic behav-
iors for more accurate detection. Furthermore, we performed significance testing using 
two-factor ANOVA and Tukey’s HSD. These results showed that both the choice of 
learner and class distribution make a statistically significant impact on AUC values.

Future works aim to evaluate our methodology using other cyber security related big 
datasets. We also plan to examine other performance metrics beyond AUC values, such 
as Geometric Mean and AUPRC.
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