
Impact of class distribution on the detection
of slow HTTP DoS attacks using Big Data
Chad L. Calvert*  and Taghi M. Khoshgoftaar

Introduction
The continued rise of network and cloud-based applications allow for companies to pro-
vide robust and dynamic services to their customers across the world both cheaply and
efficiently. In 2018, nearly 80% of enterprises have begun to experiment with apps run-
ning on cloud or network based platforms [1]. Due to the growing reliance on such ser-
vices, the security of the networks hosting these applications is more paramount than
ever. Attackers are very much aware of the importance these applications hold for vari-
ous companies, making them obvious targets for malicious exploits. Industry domains
ranging from telecommunications to software publishing are finding themselves under

Abstract 

The integrity of modern network communications is constantly being challenged by
more sophisticated intrusion techniques. Attackers are consistently shifting to stealthier
and more complex forms of attacks in an attempt to bypass known mitigation strate-
gies. In recent years, attackers have begun to focus their attack efforts on the appli-
cation layer, allowing them to produce attacks that can exploit known issues within
specific application protocols. Slow HTTP Denial of Service attacks are one such attack
variant, which targets the HTTP protocol and can imitate legitimate user traffic in order
to deny resources from a service. Successful mitigation of this attack type requires net-
work analysts to evaluate large quantities of network traffic to identify and block intru-
sive traffic. The issue, is that the number of legitimate traffic instances can far outnum-
ber the amount of attack instances, making detection problematic. Machine learning
techniques can be used to aid in detection, but the large level of imbalance between
normal (majority) and attack (minority) instances can lead to inaccurate detection
results. In this work, we evaluate the use of data sampling to produce varying class dis-
tributions in order to counteract the effects of severely imbalanced Slow HTTP DoS big
datasets. We also detail our process for collecting real-world representative Slow HTTP
DoS attack traffic from a live network environment to create our datasets. Five class
distributions are generated to evaluate the Slow HTTP DoS detection performance
of eight machine learning techniques. Our results show that the optimal learner and
class distribution combination is that of Random Forest with a 65:35 distribution ratio,
obtaining an AUC value of 0.99904. Further, we determine through the use of signifi-
cance testing, that the use of sampling techniques can significantly increase learner
performance when detecting Slow HTTP DoS attack traffic.

Keywords:  Class imbalance, Slow HTTP DoS, Class imbalance, Big Data

Open Access

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Calvert and Khoshgoftaar ﻿J Big Data (2019) 6:67
https://doi.org/10.1186/s40537-019-0230-3

*Correspondence:
ccalver3@fau.edu
Florida Atlantic University,
777 Glades Road, Boca Raton,
FL, USA

http://orcid.org/0000-0003-4630-9364
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-019-0230-3&domain=pdf

Page 2 of 18Calvert and Khoshgoftaar ﻿J Big Data (2019) 6:67

constant bombardment from cyber attacks such as distributed denial of service (DDoS)
attacks [2, 3]. According to the NETSCOUT Threat Intelligence Report for 2018, the
overall number of DDoS attacks has increased by nearly 26% over the previous year [4].
Although continued efforts are in effect to mitigate such attacks, attackers are constantly
evolving their attack methodologies to avoid the newest detection techniques. In recent
years, attackers have moved towards the implementation of application layer attacks,
as these have proven harder to detect as opposed to traditional network layer based
approaches [5]. These attacks target specific application protocols being utilized by the
target, many of which are prone to proven exploits.

One such protocol with known exploits is the Hypertext Transfer Protocol (HTTP),
which is often the target of attacks such as Slowloris and Slow POST DoS attacks [6, 7].
Both of these attack variants are easily executed by attackers, and are difficult to detect
as the resulting traffic is difficult to differentiate from normal HTTP communications
[8]. Because of this, these attacks can prove extremely detrimental to any service being
hosted on a network utilizing this application protocol.

One component to mitigating network attacks is continuous network traffic analysis,
which is an important aspect of maintaining proper network security. During this pro-
cess, organizations often encounter enormous amounts of normal traffic during daily
operations. Parsing this big data for the occurrences of malicious traffic can be a daunt-
ing effort, as the total number of traffic instances encountered can easily range in the
millions. To aid in this detection, analysts often turn to machine learning techniques.
However, depending on the type of attack, the resulting traffic may only contain a rel-
atively low number of attack instances. This can lead to a relatively high level of class
imbalance, where the minority class (attack) instances are vastly fewer than the majority
class (normal) instances. As the size of the dataset increases, this issue is often exac-
erbated as the gap between number of minority and majority instances increases [9].
This occurrence can be even more predominant in network attack datasets, considering
the large amount of network communications which can be collected. The issue of high
or severe class imbalance can prove especially problematic when attempting to apply
machine learners to detect attack instances. Since so few instances may exist, there may
not be enough discernible behavioral patterns to correctly identify the other malicious
instances within the remaining data. One approach to mitigate the issue of class imbal-
ance is the use of data sampling techniques, which aims to change the ratio of minority
and majority instances by selecting a subset of the original data, thus lessening the per-
ceived severity between the two classes.

In this work, we evaluate the benefit of applying data sampling to a severely imbal-
anced big dataset from the cyber security domain. Our collected dataset consists of
two Slow HTTP DoS attacks (Slowloris and Slow POST), implemented on a live pro-
duction network. The resulting dataset consists of approximately 1.89 million instances,
with 6646 total minority (attack) instances. As the minority class ratio is less than 0.01%,
we consider this dataset severely imbalanced [10]. Although the minimum number of
instances to define a dataset as “big” data has not formally been defined, other works on
the use of big data have utilized datasets far smaller than ours, some as low as 100,000
instances [10]. Therefore, as our dataset contains well over 1 million instances, we con-
sider our dataset as big data.

Page 3 of 18Calvert and Khoshgoftaar ﻿J Big Data (2019) 6:67

As our dataset consists of an over representation of the majority (normal) class, we
utilize random undersampling (RUS) to create a total of five class distributions: 99:1,
90:10, 75:25, 65:35, and 50:50. RUS was chosen as our data sampling technique due to
its relative success in mitigating the effects of class imbalance in other works [11, 12].
These five sampling ratios were applied to eight learners and were evaluated using
5 runs of twofold cross validation with 10 iterations. The learners evaluated were:
5-Nearest Neighbor (5NN), Naïve Bayes (NB), Multilayer Perceptron (MLP), Support
Vector Machines (SVM), JRIP using Repeated Incremental Pruning to Produce Error
Reduction (RIPPER), Random Forest (RF), C4.5 decision trees, and Logistic Regression
(LR). The detection performance of all learners were evaluated using Area Under the
Receiver Operating Characteristics (ROC) Curve (AUC).

Our results show that the use of RUS offered significant performance increases
when compared to the performance using no data sampling. Overall, we suggest that
the combination of RF with a class ratio of 65:35 is the optimal choice, achieving an
AUC mean of 0.99904.

The remainder of this paper is organized as follows. In "Attack background" section,
we detail the Slow HTTP DoS attack methods collected in our dataset. In "Related
works" section, we discuss related works associated with utilized data sampling on
highly imbalanced big data. "Methods/experimental" section outlines our collection
procedure and our empirical design. In "Results and discussion" section, we discuss
our findings. Lastly, in "Conclusion" section, we conclude our works and identify
future endeavors.

Attack background
Slow HTTP DoS attacks focus on targeting the application layer, in this instance the
HTTP protocol, and can be implemented through several variations such as Slowlo-
ris, and Slow POST [13]. In a Slowloris attack, an attacker begins their initial com-
munications with a web server, with the goal of leaving the connection open as long
as possible. The server will continue to send new requests to the attacker attempt-
ing to further the communication. The attacker, on the other hand, simply sends
partial packet headers back to the server, never fully resolving the communication.
The behavior is represented in Algorithm 1. This behavior continues until either the
server experiences a communication time-out or the attacker ends the attack. Server
resources are eventually depleted so that future legitimate connections are unable to
be fulfilled, due to the attacker’s stranglehold on server communications.

In a Slow POST attack, an attacker sends legitimate POST requests to a server. The
packet information associated with this request specifies a content-length header
value of an extreme size. The server then waits for the entire message body specified
by the header value to be received. Throughout the interaction, the attacker will con-
tinue to send data at a rate as low as one byte per transmission. To bypass the server’s
client idle timeout, the data is transmitted in regular time intervals. Therefore the
server’s resources are made unavailable until the request is completed. The behavior
of this attack can be seen in Algorithm 2.

Page 4 of 18Calvert and Khoshgoftaar ﻿J Big Data (2019) 6:67

The effects of both of the aforementioned attack variants can be exacerbated depend-
ing on the attack method of execution. These attacks can easily be implemented in a
distributed fashion using multiple hosts, or can even be configured to enact multiple
attack instances from a single machine depending on the tools being utilized. This allows
the attacker to perform a potentially devastating attack while using very little in terms of
their own personal resources.

For both Slow HTTP attack variants, numerous tools and scripts exist that are publicly
and freely available to attackers to utilize. A benefit of these tools is that many are capa-
ble of making multiple connections from a single machine, lessening the need to execute
distributed attacks if the attacker’s resources are limited. However, attackers with ample
resources can still choose to run these tools in a distributed fashion, making a small
army of hosts even more dangerous.

Low orbit ion cannon (LOIC) Slow [14] is a variant of the popular LOIC DoS tool,
which specifically focuses on performing Slow HTTP attacks such as Slow HTTP
POST. Although this tool is easily accessible, it does offer a limited range of configurable
options, such as the inability to adjust the content-length value or target specific pages
on a server.

R U Dead Yet (R.U.D.Y.) [15] is another Slow DoS tool which allows the user to select
the number of connections as well as target specific pages/forms on a server. However,
the attacker is still unable to specify the timeout or content-length. What is of interest
is how R.U.D.Y. targets specific POST values within a form. Before executing the attack,
R.U.D.Y. will scan the target URL for a POST form, then display the available POST vari-
ables to the user for specific targeting.

Open web application security project (OWASP) Switchblade [16] is a stress test tool
used for testing the availability, performance, and capacity of a web application. The tool
was made publicly available in 2010 and offers a robust amount of configurable attack

Page 5 of 18Calvert and Khoshgoftaar ﻿J Big Data (2019) 6:67

options. Switchblade allows users to set the number of connections, connection rate,
timeout value, content-length, and user agent values. This allows for attackers to enact
very targeted attacks with varied conditions.

Suites such as SlowHTTPTest [17], provide highly configurable attack scenarios which
give attackers a high level of control when executing their attacks. Attackers are able to
select the number of connections, connection rate, length of follow up data, and more to
fine tune their attack setups. SlowHTTPTest is a Linux-based application, but can easily
be executed on Windows platforms utilizing the Cygwin environment for added flexibil-
ity in execution.

Several other script-based tools also exist, such as Slowloris.pl [18], Slowloris.py [19],
and PyLoris [20]. As these tools are written in common languages such as Perl and
Python, they are easily modifiable by attackers to fit customized attack criteria. They are
also lightweight tools which can be executed from nearly any environment.

Related works
In our literature review, few works specifically relating to the problem of class imbalance
within cyber security big datasets have been identified. However, in work performed by
Roy et al. [21], a study was conducted with the aim of addressing a series of common
challenges that may affect machine learning based approaches to malware detection
in the Android domain. For this work, a dataset was collected consisting of real-world
Android malware apps, totalling approximately 430,000 instances. The data contained
8500 minority instances with an imbalance ratio of 50:1. Based upon these specifica-
tions, the data is considered imbalanced, but not severely. We also view the data as a
large dataset, but not specifically big data. The challenges addressed, and how they are
tested, represent interesting questions relating to how they may affect other domains,
such as Network Based Intrusion Detection. Six total research questions were posed.
The most relevant question related to our work, asked if performance degrades as the
class ratio approaches more real-world levels (for Android domain, approx. 1:100). Six
class distribution ratios were evaluated (1:1, 1:5, 1:10, 1:20, 1:50, and 1:100) using the
K-nearest neighbor (KNN) classifier. As the imbalance increases, the area under the
precision recall curve (AUPRC) performance does decrease substantially (decreasingly
steadily from 0.964 to 0.456). Overall, this work does well to address several domain spe-
cific challenges, but does have several shortcomings. Most obvious is the fact that only
one classifier (KNN) was evaluated. Further, no specific value for K was given. The find-
ings in this work could have been better verified through the use of a wider range of
machine learners.

Other works have attempted to address the issue of severely imbalanced big data,
albeit in a differing domain. Bauder et al. [22] conducted an empirical study to evaluate
the impact of varying class distributions on learner behavior for Medicare fraud big data.
In this work, the focus is placed on the detection of Medicare Part B provider fraud.
A novel approach to mapping fraud labels based on known fraudulent providers is also
proposed. The resulting dataset is considered severely imbalanced, containing very few
fraudulent instances. Seven class distributions were created using RUS (99.9:0.1, 99:1,
95:5, 90:10, 75:25, 65:35, and 50:50) to evaluate the performance of six machine learning
methods (NB, LR, KNN, SVM, C45, and RF). Their results indicated that a learner and

Page 6 of 18Calvert and Khoshgoftaar ﻿J Big Data (2019) 6:67

distribution combination of RF with a 90:10 class ratio produced the best results with an
AUC value of 0.87302.

Rio et al. [23] address the issue of class imbalance by focusing on the use of random
oversampling (ROS) techniques. Their experiments utilized data from the ECBDL’14
Big Data competition [24], which relates to the Bioinformatics domain. This dataset
consisted of nearly 32 million instances and less than 2% minority class instances. A
MapReduce [25] version of ROS was utilized to produce oversampled datasets with rates
of 105%, 115%, 130%, 140%, 150%, 160%, 170%, and 180%. The resulting datasets were
evaluated using the RF algorithm. Their results suggested that setting the oversampling
ratio to a value that balances true positive rate (TPR) and true negative rate (TNR) can
lead to better performance in terms of accuracy. Fernadez et al. [26] also investigated
class imbalance in big data using the MapReduce framework. They compared RUS and
ROS using MapReduce with two subsets of the ECBDL’14 dataset, one with 12 million
instances and the other with less than 1 million. The authors examined the performance
of RF and decision trees, using both Apache Spark and Apache Hadoop MapReduce
frameworks. Key observations from this work are that models using Apache Spark gen-
erally performed better than models using Hadoop. Further, ROS performed better with
more MapReduce partitions while RUS performed better with less partitions, indicating
that the number of Hadoop partitions impacts performance. Lastly, Apache Spark-based
RF and decision tree algorithms produced better results with RUS compared to ROS.

Methods/experimental
This section outlines the procedure for the execution of our Slow HTTP DoS attacks
and our associated data collection process. Our network topology and normal network
usages are defined as well. We also detail the machine learning methods applied to our
collected dataset.

Data collection

Our capture framework allows for us to perform our attacks within a real-world network
environment servicing numerous active users. Our campus network consists of hosts
from classrooms, labs, and offices. To facilitate our network usages, we utilize a series
of switches, servers, and routers capable of servicing on and off campus users. A Cisco
adaptive security appliance (ASA) is used as a firewall and is capable of providing us
with virtual private network (VPN) capabilities. An Apache web server was established
to be utilized as a student resource portal, and also serves as the target for our attacks.
This server is configured with CentOS 6.8 and runs on a Dell 2950 Poweredge with two
quad-core Intel Xeon 5300 processors and 16 GBs of memory. Figure 1 shows our archi-
tecture in more detail.

The Apache student resource server is configured using WordPress, and hosts lec-
ture material, assignments, assessments, and other content required by student users.
General, normal traffic related to course work may consist of, but is not limited to,
downloads, uploads, website navigation, and other communications with the web
server. Within the context of our network usages, students both locally on our net-
work and from online may request course material from our server concurrently. Our

Page 7 of 18Calvert and Khoshgoftaar ﻿J Big Data (2019) 6:67

extended network also supports other faculty and student usages ranging from virtu-
alization to audio/video streaming.

For our attack implementation we opted to enact two common Slow HTTP DoS
attack variants to represent a broader range of attack traffic, the first being a Slowloris
attack, based on targeting HTTP GET communications. For our Slowloris collection,
our attacks were performed on a physical host machine using popular attack tools,
rather than through simulation. Several tools were compared, such as SlowHTTPT-
est [17], PyLoris [20], and Slowloris.py [19]. This was done to identify if any one tool
produced different traffic patterns. Based on our comparison, the traffic across these
tools produced similar traffic, and therefore only one tool was utilized in our experi-
ments. For our experiments, we chose the Slowloris.py attack script, as it allowed for
the most verbose configuration options.

To represent different levels of Slowloris attacks, we ran three different attack sce-
narios with varying configurations. As some attacks are performed in a “low and slow”
[27] manner, we opted to run a series of attacks in a stealthy configuration. To repre-
sent this stealthy attack, in which an attacker is attempting to avoid detection through
the use of minimal connections, we enacted one attack instance using a single connec-
tion with a random connection interval between 1 and 20 s. A more moderate level
attack was performed, executing 125 connections using a random connection interval
between 1 and 10 s. Lastly, to represent a non-stealthy attack, we incorporated 250

Fig. 1  Topology of campus network

Page 8 of 18Calvert and Khoshgoftaar ﻿J Big Data (2019) 6:67

connections and a random connection interval of 1 and 5 s. Each attack ran from a
single host machine for 1 h, and targeted our student resource server.

For our second Slow HTTP DoS attack, we enacted as series of Slow POST attacks. For
this implementation, we used OWASP Switchblade 4.0 as our attack tool. As with our
Slowloris experiment, we once again ran tests using a wide range of popular attack tools,
such as LOIC Slow [14], R.U.D.Y [15], Railgun [28], and Torshammer [29]. We settled
on Switchblade as it provided us with the most configurable options, and the resulting
traffic behavior from all tools tested were identical. Like our Slowloris implementation,
our attacks were run from a single physical host machine utilizing multiple connections.

To more fully represent varying attack conditions in a real-world attack, we once again
chose to implement varying scenarios ranging from stealthy to non-stealthy attack con-
figurations. In total, nine different attack configurations were implemented, separated
into three distinct categories. Our stealthy set of configurations utilized single connec-
tions to prolong potential detection. We scaled up the connection amount to 125 to rep-
resent a moderate level attack. Lastly, we increased the number of connections to 250 to
represent a non-stealthy attack. For each of these three categories, we ran three attacks
with varying timeout values: 10 s, 50 s, and 100 s. For all attacks, we used a content-
length value of 1000. This value was chosen as it was a default value across most attack
tools. All attacks targeted the same php form element on our web server, and ran for one
hour each, resulting in a total of nine hours of attack traffic.

Full packet captures (FPCs) [30] allow us to observe all traffic communications as they
are received. The key issue with analyzing full packets is that it can be quite resource
intensive to analyze all available packet features. To lessen this resource impact, we
opted to use Netflow [31] features extracted from our FPCs. Netflow traffic refers to a
high-level summary of network communications. A Netflow record is identified based
upon the standard 5-tuple attribute set that makes up a conversation: source IP, destina-
tion IP, source port, destination port, and transport protocol. Based upon which Netflow
standard is being implemented, other attribute fields can also be produced. We utilize
the IPFIX [32] standard for our flow extraction. The resulting features can be seen in
Table 1.

Once all Netflow instances were extracted, we labeled any instances correlating to any
of our attack implementations as “attack” and all remaining traffic collected from our
network as “normal”. In total, we collected 1,892,161 instances, with 6646 representing
“attack” instances.

Machine learning methods

Eight classification algorithms were selected to build predictive models based on our col-
lected datasets: KNN, NB, MLP, SVM, C4.5 decision trees, RF, JRIP, and LR. This variety
of learners was selected to broaden the scope of our analysis. All models were built using
the WEKA machine learning toolkit [33].

KNN [34] is an instance-based learning algorithm that contains all available instances
and assigns new instance labels based upon distance functions. These distance functions
utilize K, which represents the amount of closest instances to the test instance to decide
its label. For our study, K is assigned a value of 5.

Page 9 of 18Calvert and Khoshgoftaar ﻿J Big Data (2019) 6:67

NB [35] is based upon Bayes’ theorem and is well suited for datasets with high dimen-
sionality. The algorithm works upon the assumption that features are independent, and
utilizes this premise to calculate the posteriori probability that an instance is a member
of a specific class. Although a simple premise, Naive Bayes has been known to outper-
form other more sophisticated classification methods.

MLPs [36], also referred to simply as artificial neural networks, utilize neurons (per-
ceptrons) to compute an individual value from multiple inputs using non-linear trans-
formations. Although a single neuron can be rather limiting, MLPs use these neurons
as building blocks to create much larger networks. MLPs can also utilize several hidden
layers to help transform inputs into usable values by the outer layers.

SVMs [37] are discriminate classifiers used as supervised learning models with associ-
ated learning algorithms. SVMs utilize hyper-planes to separate instances in a dataset
into two distinct groups, and assign new instances to one class or another. The aim is
for the SVM to identify the most optimal hyper-plane with the largest gap between class
instances as possible.

The C4.5 decision tree [38] is a tree-based learning algorithm. In WEKA, this is the
implementation of the J48 decision tree. In these algorithms a decision tree is built
based on the training data. Each branch of the tree represents a feature in the data which
divides the instances into more branches based on the values which that feature can
take. The leaves represent the final class label. The C4.5 algorithm uses a normalized ver-
sion of Information Gain to decide the hierarchy of features in the final tree structure.
Information Gain is based on the decrease in entropy after a dataset is split on a feature.
The aim is to find the feature that returns the most homogeneous branches.

RF is an ensemble learning method, created from the construction of multiple deci-
sion tress. RF can be used for both classification and regression tasks and is a popular
choice due to its typically strong performance and relative simplicity [39].

JRIP uses a proportional ruler learner called RIPPER . It uses association rules with
reduced error pruning (REP) and splits the training data into a growing and pruning set

Table 1  Description of selected Netflow features

Feature name Description

Protocol Transport-layer protocol number of flow

Packets Number of packets in flow

Bytes Number of bytes in flow

Flags Logical OR of TCP flag fields of flow

Initial Flags TCP flags in initial packet

Session Flags All TCP flags in entire connection

Attributes Flow attributes [SFTC]

Duration Duration length (in milliseconds) of flow

Payload Bytes Size of payload measured in bytes

Payload Rate Non-overhead packet data per second

Packets/Second Number of packets per second

Bytes/Second Number of bytes per second

Bytes/Packet Number of bytes per packet

Class Class label (attack or normal)

Page 10 of 18Calvert and Khoshgoftaar ﻿J Big Data (2019) 6:67

[40]. At each simplification step, the pruning operator with the greatest REP is chosen.
Simplification ends when pruning increases the error on the set.

LR represents a machine learning algorithm utilized for classification scenarios con-
sisting of two outcomes [41]. Unlike linear regression, in LR a sigmoidal function is used
to give us class probability values, either being 0 or 1. We utilize Weka’s default ’ridge’
parameter value. This represents the penalized maximum likelihood estimation with a
quadratic penalty function.

Metrics

To evaluate each model, we utilize AUC [42]. The ROC curve graphs the TPR and false
positive rate (FPR) of the model. TPR represents the percentage of the attack instances
that are correctly predicted as attacks. FPR represents the percentage of the normal data
which is wrongly predicted as attack data. The ROC curve is built by plotting TPR vs
FPR as the classifier decision threshold is varied. Higher AUC values tend to correlate to
higher TPR and lower FPR, both of which are preferred outcomes.

We utilize twofold cross validation to evaluate our AUC values. Using twofold cross
validation divides the data into 2 non-overlapping parts, representing our folds. For each
iteration, the first part is reserved as test data and the remaining part is used as training
data. We opted to use twofold, as using higher fold counts can take far more computa-
tional time depending on the learner being evaluated. Our final AUC values are calcu-
lated by aggregating the AUC values of the models being tested for each of 2 parts of
the data. In order to decrease the bias of randomly selected folds, we applied five runs of
twofold cross validation with 10 iterations to provide each performance value.

In total, our collected dataset consists of 1,898,807 instances, with 1,892,161 normal
(majority) instances and 6646 attack (minority) instances. This results in a severe class
imbalance of approximately 0.004%. High levels of class imbalance can often lead to a
classifier biasing the majority class [43]. To counteract this bias, we utilize RUS to ran-
domly select a subset of instances from the majority class, while keeping all instances
of the minority class [44]. We generate five class distribution ratios of normal instances
to attack instances from which to build our models. The ratios created are 99:1, 90:10,
75:25, 65:35, and 50:50.

To further reinforce the results of our performance metric, we perform significance
testing to evaluate the impact each learner and class distribution has on AUC values.
We use ANalysis Of VAriance (ANOVA) [45] as a means to determine if our factors are
equal. As we are evaluating the significance of both learner and distribution impact, we
perform two-way ANOVA [46]. We also implement a post hoc analysis via Tukey’s hon-
estly significant difference (HSD) test [47]. A Tukey’s HSD test determines if factor means
are significantly different from one another. Factor means are grouped based upon their
similarity. Means within the same letter grouping represent no significant difference,
whereas means in different letter groupings do indicate a significant difference.

Results and discussion
This section evaluates the results of our learners and the varying combinations of class
imbalance ratios to determine which learner performs best, as well as the significance
of using data sampling to improve performance on big datasets. As stated previously,

Page 11 of 18Calvert and Khoshgoftaar ﻿J Big Data (2019) 6:67

we created a total of five class distributions based upon our original dataset. The ratios
used are 50:50, 65:35, 75:25, 90:10, and 99:1. We have also included results relating to
the original non-sampled dataset, which we refer to as “None”, to further represent any
performance difference between using and not-using RUS. For all class distributions,
we evaluate each of the following eight learners: 5NN, RF, C4.5, LR, MLP, SVM, JRIP,
and NB. For each learner and class ratio combination, 5 runs of twofold cross valida-
tion are applied. The average AUC values of the resulting runs are shown in Table 2. The
table displays the results for each of the five class imbalance ratios and the non-sampled
“None” dataset. It should be noted, that most of our learners achieve high AUC values
in regards to the detection of our Slow HTTP attach dataset. This has been attributed
in part to the feature set used by Netflow, which has proven to be highly discrimina-
tive in prior works for these types of attack instances [48, 49]. The highest AUC value
of 0.99905 is achieved with RF and a class ratio of 50:50. The second highest AUC of
0.99904 is also achieved by RF, but with a class ratio of 65:35. As the ratios become more
imbalanced, C4.5 achieves higher performance, with AUC values of 0.99890 and 0.99889
corresponding to the ratios of 75:25 and 90:10 respectively. When observing the most
imbalanced ratio of 99:1, 5NN performs best with an AUC value of 0.99894. Interest-
ingly, 5NN also performs best for the original dataset with no sampling applied, obtain-
ing an AUC value of 0.99826. The worst learners, on average, for all class distributions
were MLP and NB. These results are further visualized in Figs. 2 and 3.

The overall high AUC metrics are certainly encouraging when attempting to deter-
mine the validity of the learner’s ability to detect Slow HTTP attack traffic. However,

Table 2  Cross validation results

Ratio 5NN RF C4.5 LR MLP SVM JRIP NB

99:1 0.99894 0.99480 0.98168 0.98535 0.79018 0.98689 0.95682 0.96982

90:10 0.99871 0.99856 0.99889 0.98958 0.98396 0.98820 0.98962 0.96851

75:25 0.99875 0.99889 0.99890 0.99376 0.98816 0.99095 0.99288 0.97327

65:35 0.99877 0.99904 0.99867 0.99338 0.98919 0.99138 0.99290 0.97464

50:50 0.99862 0.99905 0.99844 0.99420 0.99074 0.99150 0.99437 0.97581

None 0.99826 0.98850 0.96145 0.98223 0.75768 0.98150 0.89414 0.97273

Fig. 2  AUC results for all learners

Page 12 of 18Calvert and Khoshgoftaar ﻿J Big Data (2019) 6:67

when evaluating the significance of using sampling techniques to improve classifier
performance on big data, the initial benefits are not as easily discerned from our cross
validation results alone. Therefore, to further evaluate any potential performance
gains using RUS, we perform significance testing using ANOVA and post hoc analysis
with Tukey’s HSD. Table 3 displays our two-factor ANOVA test results. The factors

a 5NN b C4.5

c LR d MLP

e NB f RF

g JRIP h SVM

Fig. 3  AUC results by learner

Page 13 of 18Calvert and Khoshgoftaar ﻿J Big Data (2019) 6:67

being considered are Class Distribution and Learner. Based on a significance value of
0.05, we can conclude the following:

1.	 The distribution p-value of < 2e−16 indicates that the class distribution ratio is asso-
ciated with AUC performance

2.	 The learner p-value of < 2e−16 indicates that the chosen machine learner is associ-
ated with AUC performance

3.	 The p-value for the interaction between distribution and learner of < 2e−16 indicates
that this interaction effect is statistically significant.

To further understand the significance of each specific learner and each class ratio,
we utilize a Tukey’s HSD test to separate our learners and ratios into groups based
upon their significant differences. Learners and ratios belonging to the different letter
groupings indicate that they are significantly different. Table 4 displays the signifi-
cance groupings of each learner’s performance across all class distributions. From this
we identify four levels of performance groupings amongst our learners. Both 5NN and
RF were significantly better than other learners and placed in group ‘a’. C4.5, LR, and
SVM following behind in the second grouping ‘ab’. NB and JRIP were categorized into
group ‘b’, with MLP residing at the lowest performing group ‘c’. Similar to Tables 4, 5
displays the result groupings of our Tukey’s HSD test, but this time focusing on each
class distribution across all learners. Here only two groupings were identified. Distri-
butions of 50:50, 65:35, 75:25, and 90:10 were assigned to the top performing group
‘a’. The most severe imbalance ratio of 99:1 as well as the original non-sampled dataset
were relegated to group ‘b’. Figures 4 and 5 have been provided to visualize the result-
ing groupings. Table 6 represents all results from our Tukey’s HSD test organized by
learner.

Table 3  ANOVA Results

Df Sum Sq Mean Sq F value Pr ( > F)

Distribution 5 0.09756 0.01951 25.571 < 2e −16

Learner 7 0.15021 0.02146 28.123 < 2e −16

Distribution:learner 35 0.25811 0.00738 9.665 < 2e −16

Residuals 192 0.14650 0.00076

Table 4  Tukey’s HSD learner results

Learner AUC​ AUC std r Min Max Group

5NN 0.99867 0.00025 30 0.99789 0.99910 a

RF 0.99647 0.00399 30 0.98601 0.99925 a

C4.5 0.98967 0.01503 30 0.96096 0.99908 ab

LR 0.98975 0.00483 30 0.97891 0.99514 ab

SVM 0.98840 0.00364 30 0.98105 0.99205 ab

NB 0.97243 0.00600 30 0.95555 0.97969 b

JRIP 0.97012 0.03982 30 0.82635 0.99529 b

MLP 0.91665 0.12416 30 0.64263 0.99468 c

Page 14 of 18Calvert and Khoshgoftaar ﻿J Big Data (2019) 6:67

Based on these results, we recommend an optimal learner and ratio combination be
chosen from their respective group ‘a’s. As RF, assigned to learner group ‘a’, achieved
better performance than 5NN for the distributions assigned to distribution group ‘a’,
we select RF as the best overall learner based upon our significance testing. In regards
to class distribution, both group ‘a’ ratios of 50:50 and 65:35 provided comparable per-
formance when using RF. When evaluating which distribution is the most optimal, we
must also consider the type of attack being detected. When detecting standard flood
based DDoS attacks, the significance of missing a few individual attack instances is

Table 5  Tukey’s HSD class distribution results

Distribution AUC​ AUC std r Min Max Group

50:50 0.99284 0.00736 40 0.96879 0.99921 a

65:35 0.99225 0.00777 40 0.96864 0.99925 a

75:25 0.99194 0.00825 40 0.96778 0.99917 a

90:10 0.98950 0.01018 40 0.95555 0.99904 a

99:1 0.95806 0.08238 40 0.64263 0.99910 b

None 0.94206 0.08457 40 0.67230 0.99873 b

Fig. 4  Tukey’s HSD groupings by learner

Fig. 5  Tukey’s HSD groupings by distribution

Page 15 of 18Calvert and Khoshgoftaar ﻿J Big Data (2019) 6:67

not necessarily substantial. Therefore, it may be preferred to choose a distribution that
produces less computational overhead to make detection more efficient. As the 50:50
class distribution produces a smaller dataset, evaluation on said dataset will be signifi-
cantly faster than distributions with more traffic instances. However, considering that
we are evaluating Slow HTTP DoS attacks, the significance of each attack instance is
more important. This is due to that fact that each individual instance can be held for
an immense amount of time, draining resource availability over longer periods of time.
Such attacks also do not have to be performed in a distributed fashion to be successful,
making the identification of each individual attack instance more important. For such
attack types where each missed instance could ultimately result in significant losses or
ramifications, we make the argument that a ratio of 65:35 is a better choice, as it retains
a larger number of instances from the majority class. By keeping a larger number of
majority instances, we allow for a better representation of normal traffic behavior. This
allows for more confidence that our learner performance is more accurate of results that
may be found in a real-world scenario.

Regarding the overall results obtained from our significance analysis, it would seem to
indicate that there is little to no difference between the distribution ratios within group
‘a’. However, this conceived lack of significance between these ratios could be attributed
to the initially high performance values originally obtained. As the AUC values are so
high, there is little room for variances between each performance value. It is possible,

Table 6  Tukey’s HSD by learner results

Learner Distribution AUC​ Group Learner Distribution AUC​ Group

5NN 99:1 0.99894 a MLP 50:50 0.99074 a

65:35 0.99877 a 65:35 0.98919 a

75:25 0.99875 a 75:25 0.98816 a

90:10 0.99871 a 90:10 0.98396 a

50:50 0.99862 a 99:1 0.79018 c

None 0.99826 a None 0.75768 c

RF 50:50 0.99905 a SVM 50:50 0.99150 a

65:35 0.99904 a 65:35 0.99138 a

75:25 0.99889 a 75:25 0.99095 a

90:10 0.99856 a 90:10 0.98820 a

99:1 0.99480 a 99:1 0.98689 a

None 0.98850 a None 0.98150 a

C4.5 75:25 0.99890 a JRIP 50:50 0.99437 a

90:10 0.99889 a 65:35 0.99290 a

65:35 0.99867 a 75:25 0.99288 a

50:50 0.99844 a 90:10 0.98962 a

99:1 0.98168 a 99:1 0.95682 ab

None 0.96145 ab None 0.89414 b

LR 50:50 0.99420 a NB 50:50 0.97581 a

75:25 0.99376 a 65:35 0.97464 a

65:35 0.99338 a 75:25 0.97327 a

90:10 0.98958 a None 0.97273 a

99:1 0.98535 a 99:1 0.96982 a

None 0.98223 a 90:10 0.96851 a

Page 16 of 18Calvert and Khoshgoftaar ﻿J Big Data (2019) 6:67

that a similar dataset utilizing a feature set other than Netflow, may produce a wider
range of performance values and hence show greater significance between class distri-
butions. Still, the fact remains that even with such high AUC values, a clear significant
difference was determined when evaluating the most severe class ratio of 99:1 and the
original dataset. This shows that the use of RUS and the chosen class distribution can
provide a statistically significant performance increase.

Conclusion
As application layer attacks become more prevalent and more sophisticated, the neces-
sity for quick identification is paramount. However, successful detection and mitigation
commonly require network analysts to sift through immense amounts of traffic instances
in order to find those corresponding to malicious behavior. Furthermore, as the number
of attack instances can be substantially less than those of legitimate users, successfully
identifying illegitimate traffic can be like finding a needle in a haystack.

In this work, we implement data sampling techniques with the intent of increasing the
detection performance of Slow HTTP DoS attacks on severely imbalanced big datasets.
Our collection procedure for collecting representative real-world big data from a pro-
duction network is also outlined. The collected data consists of over 1.8 million total
instances, with less than 0.01% attack instances, thus resulting in a severely imbalanced
dataset. Five class distributions were generated from this dataset, in an attempt to miti-
gate the severe level of class imbalance between the majority and minority instances. We
evaluated eight machine learners on each of the produced distributions to identify the
optimal learner and class ratio combinations. From our results, we determined that RF
combined with a 65:35 class distribution was the best combination, achieving an AUC
cross validation value of 0.99904. This pairing is also preferred due to the fact that more
of the majority instances were retained, as compared to other learner/distribution com-
binations. This allows for the resulting dataset to better represent normal traffic behav-
iors for more accurate detection. Furthermore, we performed significance testing using
two-factor ANOVA and Tukey’s HSD. These results showed that both the choice of
learner and class distribution make a statistically significant impact on AUC values.

Future works aim to evaluate our methodology using other cyber security related big
datasets. We also plan to examine other performance metrics beyond AUC values, such
as Geometric Mean and AUPRC.

Abbreviations
5NN: 5-nearest neighbor; ANOVA: analysis of variance; ASA: adaptive security appliance; AUC​: area under the curve;
AUPRC: area under the precision recall curve; DDoS: distributed denial of service; FPC: full packet capture; FPR: false posi-
tive rate; HSD: honestly significant difference; HTTP: hypertext transfer protocol; KNN: K-nearest neighbor; LOIC: low orbit
ion cannon; LR: logistic regression; MLP: multilayer perceptron; NB: Naive Bayes; OWASP: open web application security
project; R.U.D.Y.: R U Dead Yet; REP: reduced error pruning; RF: random forest; RIPPER: repeated incremental pruning to
produce error reduction; ROC: receiver operating characteristics; ROS: random oversampling; RUS: random undersam-
pling; SVM: support vector machine; TNR: true negative rate; TPR: true positive rate; VPN: virtual private network.

Acknowledgements
The authors would like to thank the various members of the Data Mining and Machine Learning Laboratory, Florida
Atlantic University, for assistance with the reviews. The authors would also like to give special thanks to Clifford Kemp for
his data collection efforts.

Authors’ contributions
CLC performed the literature review and drafted the manuscript. TMK worked with CLC to develop the article’s frame-
work and focus. TMK introduced this topic to CLC. All authors read and approved the final manuscript.

Page 17 of 18Calvert and Khoshgoftaar ﻿J Big Data (2019) 6:67

Funding
None.

Availability of data and materials
Not available now.

Ethics approval and consent to participate
Not applicable.

Consent for publication
All authors have consented to the publication of this work.

Competing interests
The authors declare that they have no competing interests.

Received: 24 May 2019 Accepted: 16 July 2019

References
	1.	 Columbus L. Roundup Of cloud computing forecasts and market estimates, 2018. https​://www.forbe​s.com/sites​/

louis​colum​bus/2018/09/23/round​up-of-cloud​-compu​ting-forec​asts-and-marke​t-estim​ates-2018/#427f5​98050​7b.
Accessed 20 March 2019.

	2.	 Security response: the continued rise of DDoS attacks. Technical report. 2014. http://www.syman​tec.com/conte​nt/
en/us/enter​prise​/media​/secur​ity_respo​nse/white​paper​s/the-conti​nued-rise-of-ddos-attac​ks.pdf. Accessed 22 Feb
2019.

	3.	 Liu Y, Zhang H, Yang Y. A dos attack situation assessment method based on qos. In: Proceedings of 2011 interna-
tional conference on computer science and network technology, IEEE, 2011. pp. 1041–5.

	4.	 Modi H. NETSCOUT threat intelligence report. Technical report. 2018. https​://www.netsc​out.com/sites​/defau​lt/
files​/2019-02/SECR_001_EN-1901%20-%20NET​SCOUT​%20Thr​eat%20Int​ellig​ence%20Rep​ort%202H%20201​8.pdf.
Accessed 20 March 2019.

	5.	 Durcekova V, Schwartz L, Shahmehri N. Sophisticated denial of service attacks aimed at application layer. In: 2012
ELEKTRO, IEEE, 2012. pp. 55–60.

	6.	 Yevsieieva O, Helalat SM. Analysis of the impact of the slow http dos and ddos attacks on the cloud environment.
In: 2017 4th international scientific-practical conference problems of infocommunications. Science and technology
(PIC SI&T), IEEE, 2017. pp. 519–23.

	7.	 Hirakaw T, Ogura K, Bista BB, Takata T. A defense method against distributed slow http dos attack. In: 2016 19th
international conference on network-based information systems (NBiS)), IEEE, 2016. pp. 519–23.

	8.	 Marquette S. Types of DDoS attacks 2017. https​://www.esecu​rityp​lanet​.com/netwo​rk-secur​ity/types​-of-ddos-attac​
ks.html. Accessed 22 Feb 2019.

	9.	 Arellano P. Making decisions with data—still looking for a needle in the Big Data Haystack? 2017. https​://www.birst​
.com/blog/makin​g-decis​ions-data-still​-looki​ng-needl​e-big-data-hayst​ack/. Accessed 5 Apr 2019.

	10.	 Leevy JL, Khoshgoftaar TM, Bauder RA, Seliya N. A survey on addressing high-class imbalance in big data. J Big Data.
2018;5(1):42.

	11.	 Prusa J, Khoshgoftaar TM, Dittman DJ, Napolitano A. Using random undersampling to alleviate class imbalance on
tweet sentiment data. In: 2015 IEEE international conference on information reuse and integration, IEEE, 2015. pp.
197–202.

	12.	 Dai D, Hua S. Random under-sampling ensemble methods for highly imbalanced rare disease classification. In:
International conference on data mining 2016, CSREA, 2016. pp. 54–8.

	13.	 Kumar G. Denial of service attacks—an updated perspective. In: Systems science & control engineering, 2016. pp.
285–94.

	14.	 LOIC SLOW. https​://sourc​eforg​e.net/proje​cts/loics​low/. Accessed 5 Mar 2019.
	15.	 R.U.D.Y. https​://sourc​eforg​e.net/proje​cts/r-u-dead-yet/. Accessed 5 Mar 2019.
	16.	 OWASP Switchblade. https​://www.owasp​.org/index​.php/OWASP​_HTTP_Post_Tool. Accessed 5 Mar 2019.
	17.	 SlowHTTPTest. http://www.r00ts​ec.com/2012/01/slowh​ttpte​st-appli​catio​n-layer​-dos.html. Accessed 10 Mar 2019.
	18.	 Slowloris.pl. https​://githu​b.com/llaer​a/slowl​oris.pl. Accessed 10 Mar 2019.
	19.	 Slowloris.py. https​://githu​b.com/gkbrk​/slowl​oris. Accessed 8 Mar 2019.
	20.	 PyLoris. https​://sourc​eforg​e.net/proje​cts/pylor​is/. Accessed 8 Mar 2019.
	21.	 Roy S, DeLoach J, Herndon N, Cargea D, Ou X, Ranganath VP, Lit H, Guevara N. Experimental study with real-world

data for android app security analysis using machine learning. In: Proceedings of the 31st annual computer security
applications conference, ACM, 2015. pp. 81–90.

	22.	 Bauder R, Khoshgoftaar TM. The effects of varying class distribution on learner behavior for medicare fraud detec-
tion with imbalanced big data. In: Health Information Science and Systes 2018. Berlin: Springer; 2018. pp. 1–14.

	23.	 Rio Sd, Benitex JM, Herrer F. Analysis of data preprocessing increasing the oversampling ratio for extremely imbal-
anced big data classification. In: 2015 IEEE Trustcom/BigDataSE/ISPA, IEEE; 2015. pp. 180–5.

	24.	 “EcBDL”14 Big Data Competition. http://crunc​her.ncl.ac.uk/bdcom​p/. Accessed 10 Apr 2019.
	25.	 Dean J, Ghemawat S. Mapreduce: simplified data processing on large clusters. Commun ACM. 2018;51(1):107–13

ACM.
	26.	 Fernandez A, del Rio S, Chawla NV, Herrera F. An insight into imbalanced big data classification: outcomes and chal-

lenges. Comp Intellig Syst. 2017;3:105–20 Springer.

https://www.forbes.com/sites/louiscolumbus/2018/09/23/roundup-of-cloud-computing-forecasts-and-market-estimates-2018/#427f5980507b
https://www.forbes.com/sites/louiscolumbus/2018/09/23/roundup-of-cloud-computing-forecasts-and-market-estimates-2018/#427f5980507b
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the-continued-rise-of-ddos-attacks.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the-continued-rise-of-ddos-attacks.pdf
https://www.netscout.com/sites/default/files/2019-02/SECR_001_EN-1901%20-%20NETSCOUT%20Threat%20Intelligence%20Report%202H%202018.pdf
https://www.netscout.com/sites/default/files/2019-02/SECR_001_EN-1901%20-%20NETSCOUT%20Threat%20Intelligence%20Report%202H%202018.pdf
https://www.esecurityplanet.com/network-security/types-of-ddos-attacks.html
https://www.esecurityplanet.com/network-security/types-of-ddos-attacks.html
https://www.birst.com/blog/making-decisions-data-still-looking-needle-big-data-haystack/
https://www.birst.com/blog/making-decisions-data-still-looking-needle-big-data-haystack/
https://sourceforge.net/projects/loicslow/
https://sourceforge.net/projects/r-u-dead-yet/
https://www.owasp.org/index.php/OWASP_HTTP_Post_Tool
http://www.r00tsec.com/2012/01/slowhttptest-application-layer-dos.html
https://github.com/llaera/slowloris.pl
https://github.com/gkbrk/slowloris
https://sourceforge.net/projects/pyloris/
http://cruncher.ncl.ac.uk/bdcomp/

Page 18 of 18Calvert and Khoshgoftaar ﻿J Big Data (2019) 6:67

	27.	 “Radware’s ddos handbook: The ultimate guide to everything you need to know about ddos attacks. https​://secur​
ity.radwa​re.com/WorkA​rea/Downl​oadAs​set.aspx?id=793. Accessed 2 Feb 2019.

	28.	 Railgun. https​://githu​b.com/rapid​7/metas​ploit​-frame​work/wiki/How-to-use-Railg​un-for-Windo​ws-post-explo​itati​
on. Accessed 8 Mar 2019.

	29.	 Hammer Tor’s. https​://sourc​eforg​e.net/proje​cts/torsh​ammer​/. Accessed 5 Mar 2019.
	30.	 Koch M. Implementing full packet capture. In: SANS institute information security reading room, SAN6; 2016. pp.

1–27.
	31.	 Zhenqi W, Xinyu W. Netflow based intrusion detection system. In: 2008 international conference on multiMedia and

information technology, IEEE; 2008. pp. 825–8.
	32.	 Claise B, Trammell B, Aitken P. Specification of the IP flow information export (IPFIX) protocol for the exchange of

flow information. CISCO. Technical report, Cisco (September 2013). https​://tools​.ietf.org/html/rfc70​11. Accessed 15
Mar 2019.

	33.	 Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The weka data mining software: an update. SIGKDD
Explor Newsl. 2009;11:10–8 ACM.

	34.	 Guo G, Wang H, Bell D, Bi Y, Greer K. Knn model-based approach in classification. In: IJCAI workshop on empirical
methods in artifcial intelligence, IBM; 2001. pp. 41–6

	35.	 Rish I. An empirical study of the naive bayes classifier. In: On the move to meaningful internet systems 2003: CoopIS,
DOA, and ODBASE. OTM 2003. Lecture notes in computer science. Berlin: Springer; 2003. pp. 986–96.

	36.	 Mubarek AM, Adali E. Multilayer perceptron neural network technique for fraud detection. In: 2017 international
conference on computer science and engineering (UBMK), IEEE; 2017. pp. 383–7.

	37.	 Campbell C, Ying Y. Learning with support vector machines. Williston: Morgan & Claypool Publishers; 2011.
	38.	 Kohavi R, Quinian JR. Data mining tasks and methods: classification: decision-tree discovery. In: Handbook of data

mining and knowledge discovery. Oxford University Press, Inc; 2002. pp. 267–76.
	39.	 Khoshgoftaar TM, Golawala M, Van Hulse J. An empirical study of learning from imbalanced data using random for-

est. In: 19th IEEE international conference on tools with artificial intelligence (ICTAI 2007), IEEE; 2007. pp. 310–7.
	40.	 Choudhury S, Bhowal A. Comparative analysis of machine learning algorithms along with classifiers for network

intrusion detection. In: 2015 international conference on smart technologies and management for computing,
communication, controls, energy and materials (ICSTM), IEEE; 2015. pp. 89–95.

	41.	 Shukla P, Rai R. Ara-mac: Attacker identification using logistic regression. In: 2017 international conference on recent
innovations in signal processing and embedded systems (RISE), IEEE; 2017. pp. 124–8.

	42.	 Seliya N, Khoshgoftaar TM, Hulse JV. A study on the relationships of classifier performance metrics. In: 2009 21st IEEE
international conference on tools with artificial intelligience, IEEE; 2009. pp. 59–66.

	43.	 Johnson JM, Khoshgoftaar TM. Survey on deep learning with class imbalance. In: Journal of Big Data. 2019. pp. 1–54.
	44.	 Van Hulse J, Khoshgoftaar TM, Napolitano A. Experimental perspectives on learning from imbalanced data. In:

Proceedings of the 24th international conference on machine learning, ACM; 2007. pp. 935–42.
	45.	 Chandrakantha L. Learning anova concepts using simulation. In: Proceedings of the 2014 zone 1 conference of the

American Society for Engineering Education, IEEE; 2014. pp. 1–5.
	46.	 Pandis N. Two-way analysis of variance: Part 2. In: American journal of orthodontics and dentofacial orthopedics,

AAO; 2016. pp. 137–9.
	47.	 Tukey JW. Comparing individual means in the analysis of variance. Biometrics. 1949;5:99–114 International Biometric

Society.
	48.	 Calvert C, Khoshgoftaar TM, Kemp C, Najafabadi MM. Detection of slowloris attacks using netflow traffic. In: 24th

ISSAT international conference on reliability and quality in design, ISSAT; 2018. pp. 1–6.
	49.	 Calvert C, Kemp C, Khoshgoftaar TM, Najafabadi MM. Detecting slow http post dos attacks using netflow features.

In: The 32nd international FLAIRS conference, FLAIRS; 2019. pp. 1–4.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://security.radware.com/WorkArea/DownloadAsset.aspx?id=793
https://security.radware.com/WorkArea/DownloadAsset.aspx?id=793
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-Railgun-for-Windows-post-exploitation
https://github.com/rapid7/metasploit-framework/wiki/How-to-use-Railgun-for-Windows-post-exploitation
https://sourceforge.net/projects/torshammer/
https://tools.ietf.org/html/rfc7011

	Impact of class distribution on the detection of slow HTTP DoS attacks using Big Data
	Abstract
	Introduction
	Attack background
	Related works
	Methodsexperimental
	Data collection
	Machine learning methods
	Metrics

	Results and discussion
	Conclusion
	Acknowledgements
	References

