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Introduction
Data streams can be defined as data generated in the form of text, audio, or video contin-
uously. The data stream can be categorized as structured and unstructured data. Some 
challenges in managing data streams include unlimited lengths, feature evolution, con-
cept evolution, and concept drift. Chandak proposed an efficient methodology string for 
processing data streams and could be an alternative challenge to concept-drift, concept 
evolution, and infinite-length [1].

Big data is a growing trend; practical computing challenges created by data streams 
can be found in several types of applications. It is known that data streams are usually 
obtained from sensors and monitors which accumulatively can make data very large. 
This can result in the inability of real-time processing to be carried out. Some important 
points regarding the challenges and trends of big data are currently explained by Rao 
et al. In addition to the development of models and tools for managing big data, it is also 
mapping and presentation so that it can be applied to solve real-world problems [2]. One 
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of the examples of real-world problem that was solved by Fong. et al. They introduced 
stream-based holistic analytics and parallel reasoning (SHARP) to solve human activity 
recognition problems [3].

Traditional databases do not have sufficient ability to manage volumes from high real-
time datasets and unstructured data. The dataset is currently structured and very dif-
ficult to store, organize, and retrieve useful information in the dataset. So that tools and 
mechanisms are needed in processing large amounts of data.

In data stream clustering research, some researchers tried to propose a new modifica-
tion method for data stream clustering. Duda proposed a pre-processing algorithm for 
data stream clustering algorithm. The approach used in his research is equi-width cubes 
[4]. Also, Madjid et  al. proposed a DCSTREAM method that utilizes k-means divide 
and conquer and vector mechanism. The algorithm is compared to STREAM and Con-
Stream and produces better results [5].

Real-time information mining for regression problems is becoming an increas-
ingly challenging task in the data mining community. This condition motivated some 
researchers to develop an incremental algorithm that is fast in execution and able to 
adapt accurately to different problems. An algorithm of incremental stream mining that 
can predict and form model trees was introduced by Ikonomovska et al. [6]. This algo-
rithm uses standard deviation reduction (SDR) as a method to determine the splitting 
criterion and uses the Hoeffding bound to evaluate and decide the mechanism of the 
tree splitting process [7]. It uses Binary Search Tree (E-BST) to form its tree structure 
and calculates a linear model in the leaves using linear model perceptron. Moreover, 
online change detection of this algorithm is measured by Page–Hinckley (Ph) change 
detection. Wibisono et  al. have improved the accuracy of the fast-incremental model 
tree with drift detection (FIMT-DD) algorithm, which was developed by Ikonomovska 
et al. [8]. The authors suggested using tanh as its activation function rather than using a 
linear activation function.

Zhang has presented Bennet-type generalization bounds for a learning process with 
independent and identically distributed (i.i.d.) samples [9]. The authors provide two 
types of Bennet-deviations: the first provides generalization bound using uniform 
entropy numbers and the second uses Rademacher complexity. The results showed that 
an alternative expression that is developed give a faster rate of convergence than tradi-
tional results. Beygelzimer et al. proposed an online algorithm to develop a logarithmic 
depth tree to predict the conditional probability of a label [10]. The natural reduction of 
the problem is examined to make a set of binary regressions in the form of a tree, and 
then it determines a regret bound that changes based on the depth of the tree. A new 
algorithm framework for non-parametric testing was introduced by Balsuramani and 
Ramdas [11]. The authors presented the sequential non-parametric testing with the law 
of the iterated algorithm. The novel approach presented in this paper is the on-the-fly 
computation of testing, which takes linear time and constant space.

Several researchers use various techniques to observe a large traffic dataset. Koes-
dwiady et al. present the discovery of a connection between traffic flow and weather 
parameters [12]. It constructs a deep belief networks architecture to predict weather 
and traffic flow. The result of this research showed that the weather data affected the 
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traffic flow prediction and a data fusion technique gave an increase in the accuracy of 
traffic flow prediction.

A technique to predict the traffic flow using deep learning and Dempsters–Shafer 
theory was introduced by Soua et al. [13]. In this research, the authors divided data 
into two categories: event-based data and the stream of data. The authors proposed 
deep belief networks to predict traffic flow using a stream of data and event-based 
data while the Dempsters–Shafer theory is used to renew the belief and integrate the 
results.

Wibisono et al. created a framework to visualize and predict a very large traffic flow 
dataset by using the FIMT-DD algorithm [14]. Detailed visualization of traffic flow is 
developed from the prediction system that has been trained by a traffic dataset. The 
result of the research showed that the accuracy performance (error measurement) of 
the FIMT-DD algorithm described a decreasing trend in the stream evaluation process. 
Another author proposed an intelligent system architecture based on a verified police 
department account [15]. The authors described the system architecture and algorithm 
to classify the street status into the low traffic flow, medium traffic flow, or high traffic 
flow. The authors use a standard neural network approach, which is called Learning Vec-
tor Quantization, to train on the dataset and predict traffic flow for 30–60 min ahead of 
the current time.

A proposed mechanism of the first deep architecture model, which includes stacked 
autoencoders, to learn the genetic traffic flow features to be used in a prediction sys-
tem was introduced by Yishleng et al. [16]. The results of the research showed that this 
method can represent the latent traffic flow. A greedy layer-wise unsupervised learn-
ing algorithm is used to train the deep network and the model parameters are tuned to 
improve the prediction performance. The proposed method of the authors is superior 
compared to the Backpropagation (BP) neural network (NN), Support Vector Machine 
(SVM), and Radial Basis Function (RBF) NN models.

Xia et al. discovered traffic flow prediction using a Hadoop architecture [17]. A parallel 
K-nearest neighbor approach was implemented in the MapReduce mechanism, which 
was used to predict traffic flow. A correlation analysis was also incorporated in the 
MapReduce platform. A real-time prediction system was developed using two key mod-
ules: offline distributed training and online parallel prediction. The result of this research 
showed that the error measurement of traffic flow prediction using correlation analysis 
showed significant improvement compared to Autoregressive integrated moving average 
(ARIMA), Naive Bayes, and Multilayer Perceptron. Additionally, this method provided a 
solution to be scaled up because it is implemented in the Hadoop platform.

Hou and Li presented a repeatability and similarity method to predict big traffic data 
in China [18]. By using the repeatability and similarity of traffic flow, the authors were 
able to combine the prediction for short- and long-term traffic flow forecasting. The 
result showed that the repeatability and similarity approach could effectively observe 
and predict traffic flow of big data in China.

An optimized RBF neural network based on the artificial bee colony algorithm in a 
big data environment was presented by Dawei et al. [19]. The algorithm could balance 
local and global searching. Additionally, the results showed that weight optimization 
and a threshold value of the RBF neural network indicate higher prediction accuracy 
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measurement than K neareast neighbour (KNN), standard RBF, and CARB for traffic 
data stream prediction.

In addition to improving accuracy performance, some researchers also contributed to 
scheduling the arrival of data streams. Safaei proposed Real-time Streaming Big Data 
(RT-SBD) processing engine which is a modification of the storm processing engine. 
Based on the results of the experiments that have been carried out, RT-SBD has a better 
performance in terms of system throughput, miss ratio, and tuple latency [20].

Furthermore, some researchers whose research in the field of scheduling platforms 
for data streams are Sun and Buyya. They proposed the E-Stream framework, some of 
the features of the framework include (1) creating a mathematical relationship between 
the streams that occur and the response time system, (2) enlarging and improving graph 
data streams by calculating the costs of communication and computing, (3) elastic per-
forms graph scheduling based on priority-based earliest finish time, (4) evaluation of the 
response time of the system. E-stream has better measurement results compared to the 
pre-existing framework storm [21].

Processing data streams can be categorized as a mechanism to store data in a data 
warehouse in the form text, video, or database. Some conventional data storage 
approaches that are still used today are data stored in the form of databases or writing 
data into a file. To be able to create a machine learning model or knowledge, analysis 
of the data that has been stored is needed. Data needs to be loaded first to be analyzed. 
However, current data processing has moved towards a new paradigm, namely, data 
stream processing. In processing data streams, the analysis process is carried out in real 
time when the data arrives so that the process of storing new data is done after the data 
is analyzed [22].

The development of the amount of data increases the need for real-time information 
processing, fast processing of big data is needed. Zhang et al. tried to compare compre-
hensively the good performance of execution time and accuracy of incremental learning 
and ensemble learning in various types of concept drift scenarios [23].

This is a challenge and open problem when the speed of processing and analyzing data 
is slower than the speed of data arrival. There is a possibility that information failed to be 
analyzed. Also, data stream processing algorithms that have high accuracy is needed, so 
that the predictions needed by the decision maker can be done correctly [24].

We have seen some open problems in data stream area that are performance accuracy 
improvement challenges and scheduling mechanism to process data stream. Looking at 
the background, motivation, and challenges in the field of data streams, in this paper we 
contribute to improving the performance accuracy of the data stream algorithm based 
on tree stream mining. In this paper, we propose Chernoff bound as a substitute for the 
Hoeffding bound. The main reason we use Chernoff bound as bound for the splitting 
tree in this algorithm, the Chernoff bound can force the tree algorithm to have sev-
eral leaves than the Hoeffding bound. The detail explanation of how this can be done is 
described in “Proposed method” section.

In this research, we propose a new approach in splitting criteria process in FIMT-
DD algorithm. It utilizes MOA (Massive Online Analysis) as a framework. A chart 
which is displayed in Ref. [31] display tools and its role in the data stream. Our pro-
posed approach is in the part of algorithm enhancement not in the data stream process. 
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Apache Spark, Storm, and Flink are data stream tools that are used to stream data which 
utilized distributed stream processing, while in this paper, we propose a change in the 
machine learning algorithm to process incoming data stream.

We introduce a Chernoff bound approach to perform the split criterion process in the 
FIMT-DD algorithm. The standard FIMT-DD algorithm uses the Hoeffding bound for 
its split criterion process. A Chernoff bound approach causes the FIMT-DD algorithm 
to split the tree more often and accurately in every stage of learning. It performs more 
tree splitting because the value of the Chernoff bound is smaller than the Hoeffding 
bound used by the standard FIMT-DD algorithm.

Mathematically, the Chernoff inequality will have a smaller value of ε compared to the 
Hoeffding bound, because the value of the denominator in the Chernoff bound is multi-
plied by μ, whereas the denominator value of Hoeffding bound equation is multiplied by 
n , where each equation is described in “Proposed method” section.

Although the Hoeffding bound has a role in decreasing the probability of the sum of 
random variables, the Chernoff bound further decreases it. The detailed calculations of 
the upper and lower bounds are presented in “Research methodology” section. Further-
more, we evaluate the error value by calculation of Mean Absolute Error (MAE), Root 
Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). Therefore, 
based on the analysis and experiment that we have done, the Chernoff bound approach 
demonstrates a lower error value and improved accuracy compared with the Hoeffding 
bound approach. It significantly decreases the error value measurement in every stream 
evaluation process.

This paper is organized into five sections; the first section presents an introduction 
of stream data mining applications and an overview of our result. The second section 
is a short explanation of the FIMT-DD algorithm. The third section presents an analy-
sis of the Chernoff bound approach to enhance the accuracy of the FIMT-DD algo-
rithm. It describes both the Chernoff bound approach and the existing Hoeffding bound 
approach. In the fourth section, we verify our approach by experimenting with real 
big data problems. Our experimental dataset is traffic flow data from the UK Highway 
Agency, road weather data in Seattle, and infrastructure monitoring in Chicago. It con-
sists of 100,000,000, 30,000,000, and 13,000,000 instances respectively. The last section 
concludes our work and suggests further improvements.

Research methodology
Nowadays, datasets are increasing in size. An incremental algorithm to process exten-
sive data is needed because it is impossible to store and process the whole datasets at 
once. The FIMT-DD algorithm works iteratively based on the instances arrival. This 
algorithm decides the best splitting for all of its attributes. It will split attributes if the 
splitting criterion is met. Then, the adaptation strategy will be performed if the local 
concept drift occurs.

Split criterion

The attributes selection, which is used to determine the best attribute between samples, 
is decided by the Hoeffding bound and SDR. In particular, the S dataset with the size of 
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N  is introduced, attribute A will split the data into two categories, SL and SR with the size 
of NL and NR ; S = SL U SR ; N  = NL + NR . SDR (hA) is calculated by Eq. (1).

where SL subset dataset in the left leaf node, SR subset dataset in the right leaf node, N is 
the size of the dataset, NL is the size of the dataset in the left area of the leaf node, NR is 
the size of the dataset in the right area of the leaf node, hA is the best split for attribute 
A, hB is the best split for attribute B, SDR is standard deviation reduction.

It can be observed in Eq. (2) that the FIMT-DD algorithm preserves the value of attrib-
ute y and y2. We can determine the real random variable r is the ratio of the SDR values 
for hA and hB ; its value varies between 0 and 1, if (hA) is the best split of attribute A and 
(hB) is the best split of attribute B.

Then, the evaluation ratio can be obtained by Eq. (3). Each r value of each stream can 
be represented in real numbers r1, r2,…,rn. To get a high confidence interval of the mean 
random variables, FIMT-DD uses the Hoeffding bound probability. It enables us to 
decide 1 − δ, the value of δ is 5%. This is the average of a random sample of N  i.i.d. vari-
ables with range R within a distance ε of the true mean.

Equation (4) can be used to calculate the value of ε.

When values have been observed, the value of ε continues to decrease. The sample 
mean will get nearer to the true mean. In this process, the Hoeffding bound contrib-
utes to decreasing the sum of a random variable’s deviation from its expected value. The 
FIMT-DD algorithm calculates the lower and upper bound on the estimated sample 
with Eq. (5).

where r+ is the upper bound and r− is lower bound.

Linear models in leaves

The gradient descent method is used to calculate the weight update for every instance in 
the stream. It uses the linear equation perceptron to weight the relation among the param-
eters. The weights are updated regularly for every arrival of new instances. It did note you 

(1)SDR(hA) = sd(S)−
NL

N
sd(SL)−

NR

N
sd(SR)

(2)sd(S) =

�

�

�

�

1

N

�

N
�

i=1

�

yi − y
�2

�

=

�

�

�

�

�

1

N





N
�

i=1

yi2 −
1

N

�

N
�

i=1

yi

�2




(3)r =
SDR(hB)

SDR(hA)

(4)
ε =

√

√

√

√

R2 ln
(

1
δ

)

2N

(5)r+ = r + ε and r− = r − ε and r− ≤ rtrue ≤ r+



Page 7 of 21Wibisono et al. J Big Data            (2019) 6:58 

use the whole dataset at once to calculate the weights. To be able to obtain the output value, 
every weight is updated using the value of the difference in the normalized attributes ( xi ), 
real value (y), learning rate (η), and output (o). The formula for the weight can be seen in 
formula (6).

Before the learning process, the variables are categorized and changed into binary 
(numerical) variables. The normalization is conducted for all of the attributes. Therefore, all 
of the attributes will have the same effect in the straining process. The normalization pro-
cess is conducted incrementally.

Proposed method
We propose the use of Chernoff bound and standard deviation calculation from instance 
streams to be considered in the splitting criteria process. In Fig.  1, it described the dif-
ference between the existing and our proposed approach in splitting criteria process. 
We utilize the Chernoff bound and use standard deviation value divided by the number 
of instances as a split criteria process. The multiplication product between the Chernoff 
bound and the standard deviation is added to the value of r which is explained in Eq. 7. In 
this section, we consider the standard forms of the Hoeffding and Chernoff bound without 
loss of generality [24, 25]. The definition and theorem of Hoefding and Chernoff bound are 
provided in Appendixes.

We propose to add the value of k, which is the actual value of the standard deviation d 
divided by sum of the actual values y for n instances. The Chernoff bound has bigger 
denominator μn, wheras the Hoeffding bound only has 2n . Moreover, in Eq. (7), the addi-
tion of the variable k in combination with the Chernoff bound value, causes the tree to split 
more often compared to the Hoeffding bound. Our experiments clarify that the Chernoff 
bound approach causes the FIMT-DD algorithm to split more often than the Hoeffding 
bound approach.

(6)ωi = ωi + η
(

o− y
)

xi, i �= 0

Fig. 1  Illustration of our proposed splitting criteria process
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Therefore, we modify Eq. (6) as

where ε is the value of the Chernoff bound [26].

Results and discussion
Data analysis

We use three real-world datasets and conducted a single test evaluation, first we use 
traffic data (TD) from UK Highway Agency, whose the size of the data is 6.4 GB. Second 
dataset is from the airline on-time performance data, consisting of departure and arrival 
details for all commercial flights within the USA, and the size of the data is 3.4 GB (AD). 
The third, we use the dataset from the Seattle Department of transportation USA, it con-
sists of records from a few weather stations, and its size is about 1.2 GB (RD). Source 
code and dataset are available within this link https​://githu​b.com/arizb​w/tree-ch.

The traffic data taken from UK Highway Agency dataset has been gathered for one 
and a half years, from 2008 to 2009 [27]. This data contains 100,000,000 instances, and 
the size of the data is approximately 6.4 GB. The original dataset only has LinkRef and 
LinkDescription fields. We have converted the LinkRef of the dataset into the form of 
latitude and longitude, as we have done previously in [14].

The airline dataset (AD) consists of 69,506,239 rows, from which we select 10 features 
related to time and schedule of flight departures and arrivals [28]. The target value pre-
dicted in this data is the delay in the arrival of aircraft. The size of the data is 3.4 GB. We 
have dropped the instances of this dataset whose values are null.

Road weather dataset record about temperature conditions from road surfaces 
issued by the US Ministry of Transportation in Seattle [29]. This data comes from sen-
sors mounted on road surfaces in the city of Seattle, where each sensor is a measure-
ment station. The measurement station has temperature sensors that measure ambient 
air temperature and road surface. This data is taken from 2014 until 2018. The size of 
these datasets is about 1.2 GB. This dataset is updated every 15 min interval. We convert 
timestamp to a day of the week format regularly every 15 min intervals. There are 24 h 
in a day; therefore, there will be 1–96 periods per day. We use timestamp, latitude, longi-
tude, air temperature to predict road surface temperature.

We measured the error of from that dataset for every 100,000 instances. The evalua-
tion metrics for the error measurement that we used are MAE (Mean Absolute Error), 
RMSE (Root Mean Square Error), and MAPE (Mean Average Percentage Error).

Experiment results

The computer specifications that we used for the simulation are: Intel(R) Core(TM) 
i7-4790K CPU @ 4.00 GHz, 32 GB RAM, SSD 240 GB SH103S3, and HDD 2 TB WDC. 
We modified the code of the FIMT-DD algorithm from Massive Online Analysis (MOA). 
The simulation was conducted on top of the MOA application [30]. The information that 
we measured from the simulation is the error measurements (MAE, RMSE, and MAPE). 

k =
d

∑n
i=1 y

(7)r+ = r + kε and r− = r − kε and r− ≤ rtrue ≤ r+

https://github.com/arizbw/tree-ch
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Moreover, we also tested the computation times of both the standard approach (Hoef-
fding bound) and our approach (Chernoff bound).

Figure 5a shows that the Chernoff bound simulation time is 34,181 s or 9 h 29 min, 
which is longer than the Hoeffding bound that took 24,506 s or 6 h 48 min. Both of the 
approaches were evaluated based on 100,000,000 instances. The target class from the 
instance that we predict is the traffic flow, which represents the number of vehicles 
between periods.

We use a sequential prediction evaluation to measure and evaluate our approach. In 
this research, the Chernoff bound approach can increase the accuracy and lower the 
error of the FIMT-DD algorithm. Two algorithms were evaluated, i.e. standard FIMT-
DD with Hoeffding bound indicated by (std) and enhanced FIMT-DD algorithm with 
Chernoff bound indicated by (ch).

The global view of the MAE evaluation for traffic data (TD) is illustrated in Fig. 1a. It 
shows the MAE measurement of 100,000,000 instances. The blue line represents Hoef-
fding bound, and the red line represents Chernoff bound. In Fig. 1a, the maximum value 
of the Hoeffding bound MAE is 77.13 at instance 7,400,000, whereas the maximum value 
of the Chernoff bound MAE is 53.41.

The Chernoff bound produces a lower maximum value of MAE than the Hoeffding 
bound approach in every stream evaluation. In Fig. 2c, we can see that the MAE meas-
urement value of the Chernoff bound approach (ch-made) give lower value compared to 
Hoeffding bound approach (std-mae) for road weather data (RD). Also, in Fig. 2b, we can 
observe that the MAE measurement value of the Chernoff bound approach (ch-mae) 
give lower value compared to Hoeffding bound (std-mae) for airline data (AD). Overall, 
in Fig. 2a–c, we can observe globally that the MAE values of the Hoeffding bound (std-
mae) and Chernoff (ch-mae) bound showed a significant difference.

Figure 2 shows the results of MAE measurements in each evaluation instance. It can 
be seen in Fig. 2, from the beginning of the evaluation, ch-mae has a lower MAE value 
compared to std-mae. It measured on TD, AD, and RD datasets. By using the standard 
deviation and Chernoff bound approach at the split criteria process, the r value becomes 
small, so the number of tree sizes has become significant during the initial training.

The tree size difference in TD data has a stable difference from the beginning to the 
end of the learning process evaluation stage. However, for RD and ID data, the tree size 
has differences for each stage of the learning process. The results of MAE measurements 
on RD and ID at Fig. 2b, c, has shown that our approach has MAE value that is lower 
than the existing approach. Lower MAE value is obtained at the beginning of the learn-
ing process stage, even in ID dataset at Fig. 2c, there is a big difference between std-mae 
and ch-mae at instance 2,000,000. It should be acknowledged that the trend of MAE on 
RD and ID data slowly increase. The MAE value is consistently increasing for RD and ID 
datasets because those datasets are not large enough and represent each measurement 
result of the sensor being measured.

By using TD and AD data, we can see the characteristics of our algorithmic approach. 
Our algorithm will keep splitting the tree, depending on the value of r. The value r in 
our approach is obtained from the standard deviation, and the value of Chernoff bound. 
The value of r will continue to trigger the tree to do a continuous split until the resulting 
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error value decreases. This can be seen in Fig. 6a, b where the tree size for TD and ID 
increases fast compared to Fig. 6c.

The global view of the RMSE evaluation is illustrated in Fig.  3. Figure  3a shows the 
RMSE measurement of 100,000,000 instances. In Fig. 3a, consistently with MAE value, 
at instance 7,400,000, it shows the maximum value of the Hoeffding bound (std-rmse) 
RMSE, which is 139.03, whereas the maximum value of the Chernoff bound (ch-rmse), 
RMSE is 100.13. The Chernoff bound produces a lower value of RMSE than the Hoef-
fding bound approach.

Based on Fig. 3b, the RMSE measurement value of the Chernoff bound approach (ch-
rmse) results in lower value compared to Hoeffding bound approach (std-rmse) for AD. 

Fig. 2  MAE value measurement of Hoeffding bound (std-mae) and Chernoff bound (ch-mae)
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Furthermore, in Fig. 3c, the RMSE measurement value of the Chernoff bound approach 
(ch-mae) has lower value compared to Hoeffding bound (std-rmse) for RD in every 
stream evaluation. We can see all over Fig. 3a–c, the value of RMSE of the Hoeffding 
bound (std-rmse), and Chernoff bound (ch-rmse) show significant differences. Based on 
Fig. 3, the Chernoff bound has a lower RMSE in every stream evaluation process.

The RMSE measurement results show a trend that is consistent with MAE. In TD 
and AD data, the trend of RMSE value shows a decreasing trend, while in the RD 
data there is a rising trend of RMSE error values. For the RMSE value in each evalua-
tion, the RMSE value for the proposed algorithm (ch-rmse) has a much smaller value 

Fig. 3  RMSE value measurement of Hoeffding bound (std-rmse) and Chernoff bound (ch-rmse)
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compared to the std-rmse. Consistently, the ch-rmse value is smaller than the std-
rmse value in TD, AD, and RD datasets.

Consistent with the results obtained in the MAE measurement, the results of the 
Chernoff bound approach and standard deviation can reduce the RMSE value com-
pared to the standard method. However, it needs to be realized, for RD data, the trend 
of RMSE value is not decreasing.

It shows an increasing trend for both methods, due to the fact that the new stream 
which come at instance 25,000,000 hasn’t been observed before by both methods. 
Our approach, forcing the r value to be small and making the tree to do a split. This 
is showed by the increase in the number of trees in Fig. 6b for RD tree size, Fig. 6c for 
ID tree size, and Fig. 6a for TD tree size.

Fig. 4  MAPE value measurement of Hoeffding bound (std-mape) and Chernoff bound (ch-mape)
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Based on Fig. 4, we can see a global view of the MAPE evaluation performance for 
the Hoeffding bound (ch-mape), and Chernoff bound (std-mape). We use MAPE to 
observe the error performance in the form of percentage error. In Fig. 4a, at instance 
4,400,000, the MAPE of the Chernoff bound is lower than that of the Hoeffding 
bound. MAPE for the Hoeffding bound is 59.20%, and that for the Chernoff bound is 
38.2%, with the Chernoff bound MAPE lower by 21%.

In Fig.  4b, we can see that the MAPE measurement value of the Chernoff bound 
approach (ch-mae) gives lower value compared to Hoeffding bound approach (std-
mape) for AD. Also, in Fig. 4c, we can observe that the MAPE measurement value of 
the Chernoff bound approach (ch-mae) gives lower value compared to Hoeffding bound 
(std-mape) for RD in the stream evaluation process. The results of MAPE demonstrate 
that the Chernoff bound approach has smaller error percentage value in the evaluation 
process.

Based on the experimental results, the measurements of MAE, RMSE, and MAPE 
show an interesting trend. Error measurement continues to decrease with the addition 
of the number of streams being trained and evaluated on TD and AD. Conversely, there 
is an increase in error values MAE, RMSE, and MAPE in RD dataset. This is because the 
amount of data is small and varied.

In RD and AD dataset, the number of data points evaluated is 30,000,000 and 
69,000,000 instances, respectively. The thing that distinguishes the AD data from the 
other two datasets is that, in the AD data, the prediction value of delay is not only posi-
tive (late arrival of a plane) but also negative (early arrival of a plane). There are several 
instances from the dataset where the plane arrives earlier than scheduled. A negative 
value identifies this on the target value. Moreover, the features of this dataset could not 
give a strong correlation to the predicted value. Feature engineering process has been 
conducted to select features that have a strong correlation with the predicted value. 
However, none of the features give strong correlation above 0.5 except Departure delay, 
which gives 0.9 correlation score.

This condition makes the existing method and the proposed method have a value of r 
that has been very small since the beginning, so the tree has done many splits since the 
start of the stream. So, there is no difference in the number of trees between std-tree-
size and ch-tree-size, which can be seen in Fig. 6b.

In TD, the amount of the instances are 100,000,000, taken from 100 sensors which 
are mounted on highway during the measurement period of 3  years. It stores  the 
whole complete data, i.e. the sensor values in every interval measurement within 1-day 
observation. With a large amount of data and a complete measurement; the existing and 
proposed algorithms can minimize errors.

However, there is a limitation if the instances that are evaluated entirely different and 
have not been learned before, it coutld result in an increasing error performance. It is 
well depicted in Figs. 3c and 4c, where the RMSE values are increasing significantly at 
the amount of instances about 25,000,000. At this point, the increasing values are appar-
ently due to the new sensors whose data has not been learnt accommodated in the 
experiment. We believe if the number of instances is contantly increasing but the sen-
sors remains the same, the tendency of RMSE values is gradually stabilizing.



Page 14 of 21Wibisono et al. J Big Data            (2019) 6:58 

The effect of our proposed method makes the value of r becom small and trigger 
the tree to do more splits compared to the standard method. The split criteria process 
which previously only originated from the Hoeffding bound is now influenced by Cher-
noff bound and the standard deviation value of the instance arrival. So the tree will split 
based on the value of the standard deviation and Chernoff bound. The results of the 
experiment on the RD dataset show the trend of MAE, RMSE, and MAPE error values ​​
which increase compared to TD data whose errors tend to decrease.

It can be seen in Fig. 6a, the standard algorithm has several trees that rise gradually. 
While for the proposed algorithm, the number of tree size is more than the standard 
algorithm in every stream evaluation. For the indicated tree size in Fig. 6c, the proposed 

Fig. 5  Simulation time (s) of Hoeffding bound (std-time) and Chernoff bound (ch-time)
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algorithm has several tree increases that are rapidly compared to the standard algorithm. 
An increasing trend in the tree size for RD dataset happens because of the effect of the 
Chernoff bound approach and the standard deviation. It makes the tree to split more 
because the RD and ID have a varied data and a smaller number of instances compared 
to TD.

Figure  5a describes the simulation time of Chernoff bound approach and Hoeffding 
bound approach for traffic data. It simulated for 100,000,000 instances. It simulates 
about 35,000 s (ch-time) for Chernoff bound and 20,000 s (std-time) Hoeffding bound. 
In Fig. 5b, both Chernoff bound (ch-time) and Hoeffding bound (std-time) give the same 

Fig. 6  Tree size of Hoeffding bound (std-time) and Chernoff bound (ch-time)
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simulation time for airline data. It simulated for 69,000,000 instances. It resulted 1600 
(ch-time) seconds and 1000  s (std-time) respectively. Although the Chernoff bound 
takes a longer simulation time. Based on Fig. 5c, Chernoff bound (ch-time) gives more 
simulation time compared to Hoeffding bound (std-time) for road weather data. It simu-
lated for 30,000,000 instances. It resulted in 1200 s.

Based on the time measurement evaluation in Fig.  5, indeed the proposed algo-
rithm has a more extended time consumption compared to the standard algorithm. 
The extended time consumption of our proposed algorithm is caused by the amount of 
memory consumed to build the model. The memory is utilized to store the tree model. 
As we know, the number of tree size of our proposed algorithm is more than the stand-
ard approach. However, it should also be realized that the results of error measurements, 
both in MAE, RMSE, and MAPE, show a consistent trend, that the error values obtained 
by the proposed algorithm is less than the standard method since the initial stages of 
training. So, the proposed algorithm achieved to get a smaller error much faster than the 
standard algorithm.

In Fig. 4a, at the instance of 40,000,000, the MAPE resulted by the standard algorithm 
is around 40% of error, with the time consumption for 4140 s.

However, the proposed algorithm has obtained a MAPE error of 30% at the instance of 
20,000,000, with the time required for 1611s. This time is faster compared to the stand-
ard algorithm. Based on overall time consumption, indeed the proposed algorithm has 
a longer time compared to the standard algorithm. However, the proposed algorithm is 
much faster to get a smaller error compared to the standard algorithm.

We have also counted the number of tree size of both approaches. As can be seen in 
Fig. 6a, c, the tree size for both methods increased slowly with the increasing number 
of learning and evaluation process instances. Consistently, the tree size produced by 
the Chernoff bound (ch-tree) is higher than that by the Hoeffding bound for TD and 
RD datasets (traffic data and road weather data). The Chernoff bound causes the FIMT-
DD algorithm to split more compared to the Hoeffding bound. This condition occurs 
because the Chernoff bound in Appendix 2  resulted in a smaller ε value compared to 
the Hoeffding bound in Eq. (4). The Chernoff bound has bigger denominator μn, where 
as the Hoeffding bound only has 2n . Moreover, in Eq. (7), the addition of the variable k 
in combination with the Chernoff bound value, causes the tree to split more often com-
pared to the Hoeffding bound.

Our experiments clarify that the Chernoff bound approach causes the FIMT-DD 
algorithm to split more often than the Hoeffding bound approach. The Chernoff 
bound also requires more simulation time compared to the Hoeffding bound, as illus-
trated in Fig. 5a, c. The Chernoff bound method requires more computer resources, 
including available space in memory for its tree structure, which has more nodes than 
the Hoeffding bound approach. In AD dataset, our approach resulted in smaller error 
performance compared to the standard method. However, the tree split and simula-
tion time give almost the same result. This condition happened because the AD data-
set makes both approaches to have many tree split since the initial stage of learning. It 
is caused by its low correlation score between features and the target variable which 
has a positive and negative value.
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Furthermore, in Figs. 2, 3 and 4 the global view of MAE, RMSE, and MAPE for traf-
fic and airline data shows a decreasing trend. While in RD shows an increasing trend. 
These conditions happen because TD and dataset size is about 6.4 GB and 3.4 GB. In 
TD and RD, there are 100,000,000 and 69,000,000 instances that can be evaluated by 
the algorithm. Thus, the algorithm has massive instances to learn and create a knowl-
edge model for traffic dataset. Additionally, the algorithm with both approaches can 
learn from recurring instances for every stream.

In contrast, the amount of dataset in RD is 1.2 GB. The number of instances of this 
dataset is 30,000,000 instances. Both approaches (Chernoff bound, and Hoeffding 
bound) still be able to predict and identify the target variable, but it did not show a 
decreasing trend in terms of error evaluation. This condition occurs because road 
weather data cannot provide more data for the algorithm to adapt. Those datasets can-
not make the algorithm to learn from recurrent instance for every stream. Hence, it did 
not show a decreasing error in the final stream evaluation.

In the AD dataset, it can be seen that the error comparison between existing method 
and proposed approach are not significant as TD and RD dataset. This is the limitation 
of our proposed approach which cannot deliver significant improvement when the fea-
tures of the dataset do not have a strong correlation with thepredicted value. Moreover, 
the predicted value of AD dataset has a positive and negative direction. Negative is for 
the early arrival of an aircraft while positive is for delay arrival of an aircraft. However, 
our approach (Chernoff bound) still can gives a lower measurement of those metrics 
compared to the standard approach (Hoeffding bound).

Based on the experiment with three real-world datasets, the result has shown that our 
approach has an improved accuracy performance compared to the standard method. 
Those three datasets have the same characteristic; each dataset has a time variable in its 
attributes. The limitation of our approach is, it could give an accuracy improvement for 
datasets that has time attribute. For example; time-series datasets which typically arrives 
in time order such as sensor dataset and stock price dataset. In term of simulation time, 
our proposed approach gives more simulation time compared to the standard method. 
In terms of memory utilization, Chernoff bound utilize more memory compared to 
Hoeffding bound because it makes the tree to split more often. The increasing overall 
simulation time and memory utilization in the proposed approach is more extended and 
more prominent compared to the standard approach. However, the proposed algorithm 
is much faster to get a smaller error compared to the standard algorithm. It can decrease 
the error (MAPE) until 21% in traffic dataset.

Conclusion
The FIMT-DD algorithm involves a data mining method that enables us to perform data 
stream evaluation. The standard FIMT-DD algorithm uses the Hoeffding bound method 
for its split criterion process. In this study, we evaluate and analyze the Chernoff bound 
approach for the FIMT-DD algorithm. Also, we use three real-world datasets (traffic data, 
road weather data, and infrastructure monitoring data) for evaluation. Based on the experi-
ment result, the Chernoff bound approach in the FIMT-DD algorithm can significantly 
increase the accuracy in every step of the learning process, compared to the Hoeffding 
bound. All error measurements (MAE, RMSE, and MAPE) showed that the Chernoff bound 
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approach has delivered significant lower error value measurements compared to the Hoef-
fding bound for three real-world datasets. Based on overall time consumption, indeed the 
proposed algorithm has a longer time compared to the standard algorithm. However, the 
proposed algorithm is much faster to get a smaller error compared to the standard algo-
rithm. Overall, the measurement of the error instruments showed that the Chernoff bound 
approach gives lower error values and increases the accuracy of the FIMT-DD algorithm. 
In the future, we plan to optimize bound in splitting criteria by utilizing the evolutionary 
algorithm to be used in a specific data stream algorithm. It can be implemented in the field of 
extracted image processing and time series datasets.
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Appendices
Appendix 1: Theorem for Hoeffding bound’s inequality

Theorem  Let Xi for i = 1, 2, 3, . . . , n be an independent random variable such that 
Pr (Xi ∈ [ai, bi]) = 1. Then, for X =

∑n
i=1 Xi for all ε > 0, we have the inequality.

https://drive.google.com/drive/folders/0B6arI8oRbapXZl82bDNfazNNOUE?usp=sharing
https://github.com/arizbw/tree-ch
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Proof  Assume 
∑n

i=1 (bi − ai)
2 = R2 , and we get

because Pr (X − E[X] ≥ nε) ≤ δ , thus we can simplify above equation into

Solving for ε by taking the logarithm of both sides, we obtain

Appendix 2: Theorem for Chernoff bound’s inequality

Theorem  Let Xi for i = 1, 2, 3, . . . , n be an independent random variable such that 
Pr(Xi ∈ [ai, bi]) = 1. Then, for X =

∑n
i=1 Xi and set µ = E[X] as the mean value of an 

instance in the tree for all ε > 0, we have the inequality

Proof  Consider 
∑n

i=1 (bi − ai) = R ; and exp(n) from the theorem can be written at the 
left side of equation, then we obtain

Pr (X − E[X] ≥ nε) ≤ exp

(

−2n2ε2
∑n

i=1 (bi − ai)
2

)

≤ exp

(

−2n2ε2
∑n

i=1 R
2

)

Pr (X − E[X] ≥ nε) ≤ exp

(

−2nε2

R2

)

δ = exp

(

−2nε2

R2

)
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(
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(

2nε2

R2

)

= ln
1

δ

(
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
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where Pr (X − µ ≥ εµ) ≤ δ . Then, simplifying the denominator in above equation and 
equating the right side to δ , we obtain

because exp(−x) = 1
exp(x) . Then,

Solving for ε by taking the logarithm of both sides, we obtain
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