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Introduction
Evolutionary graph analytics have attracted attention from many research communities 
with the main purpose of understanding the changing pattern of real-world networks 
through evolutionary analysis of graph metrics and dynamic interactions between enti-
ties. Graphs of real-world networks evolve as new nodes and edges continually appear 
and disappear in the structure but, more importantly, their metrics such as density, aver-
age path length and network diameter also evolve. Uncovering and understanding hid-
den patterns in an evolving network requires evolutionary analysis of the network over 
different temporal resolutions. Evolutionary graph analytics have been explored for use 
in different types of networks including web citation and co-authorship networks [1–
4], online social networks [5–10], biology and disease networks [11–14], as well as in 
communication networks [15–20]. All networks do not evolve at the same rate; some 
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evolve swiftly while others evolve slowly [21]. For example, in transit and mobility net-
works, nodes and edges are added to their graph on the temporal resolution of seconds, 
whereas in co-authorship networks, nodes and edges are added to their graph on the 
temporal resolution of months or years. Correspondingly, these cases require different 
approaches for the evolutionary analysis.

Networks whose graphs evolve slowly over time and space can be effectively analyzed 
through a sequence of graph snapshots where snapshots of the graph at two distinct 
timestamps t1, and t2, can be the basis for change extraction. The entire graph can be 
replicated from one snapshot to another with few computational and storage limitations 
because of the coarse temporal resolution. The challenge is that for fast-evolving net-
works, where the evolutionary analysis relies on the explanatory power of representing 
the changes in the network across smaller temporal resolutions, the snapshot method 
can become ineffective due to high computation and storage demands. An approach that 
reduces replication of the entire graph from one time-window to another to avoid high 
storage overhead even as the graphs grow at different temporal resolutions. The Whole-
graph approach presents a method where the entire evolution of a graph through time 
is captured in an unabridged, but complete, graph that evolves compactly as nodes and 
edges appear and disappear in the graph. Each node or edge has a timestamp depicting 
its valid time in the graph. The valid time captures when the insertion of new nodes, 
edges and attributes or deletion of nodes, edges and their attributes are made in the 
graph.

Longer processing time involved in extracting time-dependent subgraphs from the 
Whole-graph can be a disadvantage unlike the convenience that snapshot method pro-
vides through versioning of smaller graph volume at each time-window. This occurs 
majorly when the time dimension of a Whole-graph is represented by timestamps that 
are stored as attributes of the nodes or edges. Updates and query processing take longer 
processing time because there is a massive number of node and edge attributes to be 
scanned. This bottleneck can be reduced by representing the time dimension as a graph 
such as using a time-graph [22]. The advantages of the Whole-graph approach over the 
snapshot method include no replication of static nodes and edges across time which 
leads to less storage overhead. Also, longitudinal queries across time are less complex 
than in the snapshot approach because a simple time-dependent query can run through 
the entire graph, retrieve and compare the state of the graph across different temporal 
resolutions.

In this paper, we present the space-time varying graph (STVG) framework for evolu-
tionary graph analytics of fast-evolving real-world networks. The underlying graph G in 
our STVG is modeled based on the Whole-graph approach where the network structure 
evolves in space and time in such a way that evolutionary patterns are due to the changes 
in the connectivity and adjacency relationships among nodes in the network. The graph 
grows continuously as new nodes and edges emerge through time. The Whole-graph is 
composed of subgraphs including the time-graph. Subgraphs are used to facilitate the 
conceptual modelling of connectivity between entities in distinct spaces of the real-
word network. The subgraphs are connected to the time-graph to keep track of the evo-
lution of the Whole-graph. Projected graphs retrieve the state of the Whole-graph at 
any given temporal resolution. The evolution of the Whole-graph becomes visible in the 
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space–time varying changes of the Projected Graphs. Relevant graph metrics are used to 
retrieve Whole-graph evolution from its Projected Graphs. The STVG therefore, is actu-
alized from the Whole-graph, Subgraphs and Projected graph formalism.

We applied the STVG framework for evolutionary graph analytics of dynamic transit 
network to uncover the evolving behavior of the network at various temporal resolu-
tions. The dynamic interactions between places and mobility characteristics of moving 
vehicles in a transit network presents an evolving graph that changes swiftly in structure 
and size [23]. The analytical results show the potential of using the framework for transit 
and mobility trend analysis with possible application to time-dependent transit recom-
mendation systems.

Our research challenge consists of processing a vast volume of transit feeds continu-
ously coming at high velocity from a large fleet of buses, but also making sure that our 
STVG framework captures the evolving behavior of subgraphs belonging to a Whole-
graph at different time resolutions. Towards this challenge, our scientific contributions 
are as follows:

–	 Previous research on evolving graphs has focussed on small complex networks. This 
paper contributes to the emerging research work on massive and fast-evolving net-
works.

–	 Real-world networks such as transit networks change at shorter temporal and spatial 
resolutions, and the proposed STVG framework explores how to capture and analyse 
the evolution of fast-evolving graphs at different time resolutions.

–	 This paper also contributes to the use of graph databases and graph queries to store 
and capture the evolutionary behavior of fast-evolving networks at different spatial 
and temporal resolutions with less storage overhead and complex query processing.

The remaining of this paper is organized as follows: “Related work” section summa-
rizes the previous research work on graph data analytics. “Modelling methods” describes 
the modeling process of our approach, including the overall framework and the details. 
“Experimental study” section presents the experimental study and the discussion of 
results. Finally, conclusions are presented in “Conclusion” section.

Related work
Previous research work has applied the snapshot approach to real-world networks such 
as the social, web-citation and co-authorship networks. In [24], a survey was carried 
out on time-evolving graphs of a social network with emphasis on the temporal met-
rics. They propose a general formalism to study the evolution of the temporal metrics 
based on a sequence of snapshots across time-windows. Graph temporal metrics such as 
density, average path, proximity, reachability time, centralities, clustering coefficient and 
conductance were discussed in this study.

In contrast, Huo and Tsotras [25] focused on the problem of efficient temporal short-
est path queries on graph snapshots of a social network. The study utilized fixed time-
window partitioning on a slowly evolving graph to generate a sequence of snapshots on 
which the queries are applied, one at a time. They had a total of 165 daily graph snap-
shots of a social network graph and adjusted the query time-windows to 5-day and 
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25-day intervals. The concept of temporal shortest path in this study is noted to be useful 
for user’s historical trend analysis, for example, to discover how close two users were in 
the past and how their closeness has evolved over time. This work utilizes ad-hoc query 
over a sequence of graph snapshots, but the major drawback is high storage overhead.

Some strategies have been proposed to address the storage overhead issue by using 
a set of deltas that store only the changes that are needed to construct a snapshot. The 
most efficient compression approach is known as SM-FVF which creates clusters of k 
snapshots, where a compressed graph has no redundancy among delta files of the same 
cluster, but it still has redundancy between delta files of different clusters [26]. Mean-
while, Gottumukkala et al. [24] proposes the possibility of integrating Neo4J and Spark’s 
GraphX in a workflow to optimize the storage, processing and visualization of big 
graphs. They utilized this method to carry out visual analytics of evolving social network 
in graph snapshots to track the evolutionary state of the graph including the structure 
and topology.

Lerman et  al. [27] worked on a different formulation of centrality metric for evolv-
ing graph analysis that measures the number of paths that exist between source and 
destination nodes over time in a graph. Their model was based on sequence of graph 
snapshots and it was evaluated on a scientific papers’ citation graphs whose dynamics 
occurs slowly. It was concluded in this paper that centrality measures of some articles 
were under or over estimated by previous studies that did not take into account the 
evolutionary nature of the graph. The evolution of essential genes (central nodes) and 
their roles in a cell survival and development were studied in the work of Jalili et al. [14], 
utilizing node centrality evolution in a sequence of graph snapshots of a biological net-
work. Quattociocchi et al. [28] utilized the time-varying graph framework proposed by 
Casteigts et al. [23] based on a sequence of graph snapshots to study the dynamics in 
coexistence of co-authorship and citation network. The graph snapshots reveal the evo-
lution in a scientific network extracted from a portion of the arXiv repository cover-
ing a period of 10 years of publications in Physics. It shows that scientific networks are 
dynamic as nodes (the scientist) join, participate, attract, compete, cooperate and dis-
appear in the network which affects the shape and strength of the graph’s connectivity. 
They discovered how the selection process of citations may affect the shape of the co-
authorship network from a sparser and disconnected structure to a dense and homog-
enous one.

While the sequence of graph snapshot method is associated with disadvantages of high 
storage overhead and computational complexity, the Whole-graph approach provides an 
alternative. The Whole-graph approach represents graph evolution not in sequence of 
static snapshots but as an unabridged graph that evolves compactly as nodes and edges 
appear and disappear in the graph. This approach was utilized in Pereira et al. [8] to ana-
lyze evolving centrality metrics in a dynamic twitter graph. The study reveals how close-
ness and betweenness centrality measures evolve in the follower/followed relationship. 
They found that the twitter network is dynamic, users can assume or leave central roles 
in the graph through time. However, the time-dimension of the graph is based on times-
tamp attributes of the nodes and edges of the graph. Each node and edge in the graph 
have a valid time at which they existed in the graph. Varying-time windows of weekly, 
fortnightly and monthly windows were used in the analysis of the graph’s evolution. As 
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earlier mentioned, having timestamps as attributes of the nodes and edges is inefficient 
in cases where there are billions of nodes and edges to scan through. Meanwhile, Kumar 
et al. [29] similarly examined the evolution of Flickr and Yahoo 360 social graph in paral-
lel. They found out similarities in the evolution pattern and properties of the two differ-
ent graphs. The whole-graph approach was also utilized in burst area discovery based 
on evolving top-k changes in a stream of fast bipartite graph evolutions of users and sto-
ries on the Digg.com website [30]. The authors, however, utilized the Haar wavelet tree 
to reduce high computation complexity associated with a fast-evolving graph stream. 
Top-k burst areas are computed incrementally from small hop size to large hop size of 
time windows.

Recently, Qiangjuan et al. [1] proposed the supra-adjacency matrix approach to define 
a temporal network used to analyze the evolution of important nodes in Enron email 
communication network and DBLP co-authorship network. They treated temporal net-
works as a special case of multi-layer network where the emerging graph G is defined as 
a graph of N nodes divided into T time-windows which therefore, creates a supra-adja-
cency matrix of NT x NT dimensions. This approach could be suitable for a slow evolv-
ing graph whose properties changes at longer time intervals, such as in co-authorship 
networks but will face massive computational changes in a mobility graph that evolves, 
for example every 5  s. Supra-adjacency matrix created at seconds, minutes and even 
hourly time-windows for a period of 18 months or more will face huge computational 
overhead.

Overall, these studies represent a growing interest in evolutionary analytics of dynamic 
networks. However, the focus has been on slow evolving social graphs, dealing majorly 
with small snapshots of graphs. Real-world networks such the transit network and com-
munication network however present fast-evolving graphs that change at shorter tem-
poral and spatial resolutions. We therefore, present an evolutionary graph analytics 
framework that is based on the Whole-graph approach to capture evolutionary patterns 
at various temporal resolutions. The STVG framework provides an approach to reduce 
high storage overhead and affords us the ability to extract Projected graphs at different 
time-windows and analyze their metrics across varying temporal resolutions.

Modelling methods
This section describes the main components of the STVG framework and the methodol-
ogy for modeling and capturing the evolution of the graphs.

The main components of our STVG framework

In this section, we present our STVG framework which consists of three main compo-
nents as illustrated in Fig. 1:

–	 Whole-graph represents the entire content of a STVG in a given lifetime. The main 
purpose is to store all data based on an unabridged graph that grows and evolves 
through time rather than graph snapshots.

–	 Subgraphs represent entities and their relationships in distinct non-metric spaces 
(e.g. place, event, mobility, and social spaces) of the Whole-graph. The main purpose 
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is to facilitate the conceptual modelling of the connectivity between entities in dis-
tinct spaces that generate the Whole-graph.

–	 Projected graphs represent nodes and edges that are retrieved at varying time-win-
dows and temporal resolution as well as based on subgraph of interest that will be 
used in the evolutionary analytics of the Whole-graph.

Figure 1 illustrates the main components of our STVG framework: Whole-graph, Sub-
graphs and Projected graphs. The whole-graph, G consists of all nodes and edges belong-
ing to multiple subgraphs, 

(

S′i , S
′
j , . . . S

′
n

)

 . In this case, S′i represents the nodes and edges 

of a mobility space, meanwhile S′j represents the nodes and edges of a geographical 
space. The Projected graphs at any timestamp can consist of one subgraph of interest as 
illustrated in timestamps ti and tj, as well as multiple subgraphs at the same timestamp 
such as shown in tn in Fig. 1.

There are conceptual challenges in representing the dynamic behavior of a real-world 
network, especially where the evolutionary analysis relies on the explanatory power of 

Whole-Graph, G 

Subgraphs 

Projected Graphs 

S’
i G S’

j

S’
i, ti S’

j, tj S’
i, S’

j, tn

Fig. 1  Proposed STVG evolutionary framework
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representing interactions in the network across different spatial and temporal resolutions. 
An efficient modelling and analytical approach should be such that reduces replication of 
the entire graph from one time-window to another to reduce high storage overhead. Our 
approach is such that combines the Whole-graph, subgraphs and Projected Graphs in a 
framework to model and analyze evolutions of fast-evolving networks. Essential evolution-
ary assumptions of the Whole-graph, Subgraphs and the Projected graphs must be put into 
account to uncover the dynamic properties of the STVG using classical graph metrics. We 
therefore, present in “The main components of our STVG framework”, “Whole-graph” and 
“Subgraphs” sections the modeling concepts of the three components of the STVG frame-
work and their corresponding evolutionary assumption as formulated in [23].

Whole‑graph

The Whole-Graph G represents the entire content in a given lifetime T (t1 − tn) of the 
STVG, whose nodes and edges grow through time. G consists of all the nodes and edges 
through time, t1 − tn , [ N[t1−tn],E[t1−tn] ], where N[t1−tn] and E[t1−tn] are sets of all node and 
edge instances of the Whole-graph stored in a database. Conceptually, the Whole-graph 
G has two dimensions namely, the Space dimension and the Time dimension which are 
represented as (S, T) where S is a digraph and T is a tree graph. S is composed of subgraphs 
(

S′1, S
′
2, . . . S

′
n

)

 , and each subgraph is a subset of the whole-graph G in the STVG. Each 
node or edge in S has a timestamp depicting its valid time in the graph. This is used to cap-
ture the insertion of new nodes, edges and attributes or deletion of nodes, edges and their 
attributes and to track the evolution of the graph G.

The evolutionary assumptions underlying the Whole-graph G are described based on the 
following:

–	 Vertex-centric evolution The evolution of the Whole-graph materializes in the dynamic 
changes within a node’s neighborhood. This is an important assumption to enable the 
capability to extract both global and local evolution of the graph’s properties.

–	 Complete graph connectivity At any point in time, a node in G must have an edge con-
nection with an existing node. This assumption is essential to support global reachabil-
ity across the entire graph which is important in querying the global evolution of a real-
world network at any point in time. This is one of the advantages of capturing evolution 
in a dynamic graph based on the Whole-graph formalism instead of as snapshots.

–	 Periodicity of nodes The assumption holds in practice in many real-world networks. 
More specifically, it provides the ability to exploit STVG properties using nodal graph 
metrics that are generated by the dynamics of a network (e.g. recurrent existence of 
nodes). This assumption is also important in defining temporal resolutions at which the 
dynamics of graph can be discovered.

Subgraphs

Subgraphs 
(

S′1, S
′
2, . . . S

′
n

)

 are used to facilitate conceptual modelling of connectivity 
within and between entities in distinct spaces of a real-world network. However, in 
the database, the graph G is not stored in subgraphs but as a Whole-graph with com-
plete connectivity between entities. It is also important to point out that subgraphs 
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are not graph snapshots since they require constant and complementary connectivity 
(at any point in time, the nodes belonging to one subgraph are linked to the nodes 
belonging to another subgraph) as well as eventual adjacency (at any point in time, a 
target node will be sequentially linked to a source node in the same subgraph).

Multiple subgraphs S′ can be defined such that S =
(

S′1, S
′
2, . . . S

′
n

)

 consisting of 
nodes and edges that belong to a specific type entity in a real-world network such 
as places, people, events and so on. Nodes belonging to different subgraphs S′i ⊂ S 
and S′j ⊂ S are linked by complementary connectivity edges since for every node in 
a subgraph there is always a corresponding node in another subgraph it is related 
to. However, only one subgraph S′i is connected to T which is another subgraph of G 
(time-graph) that represents the natural levels of temporal resolutions. Nodes belong-
ing to the same subgraph S′i ⊂ S are linked by eventual adjacency edges (“NEXT”) 
between an existing node (source node) and a future node (target node) as described 
in Fig. 2.

Essentially, T is a hierarchical (tree) structure where a root node is followed by year 
nodes, month nodes, day nodes, and further temporal resolutions. Such that each 
node of a subgraph S′i links to a leaf-node of T. This is an important constraint to sup-
port the capturing of vertex-centric evolution of the graph G at any defined temporal 
resolution. Similarly, every node in the subgraphs has a label and properties which are 
essential for label-based projections. Labels assign roles (e.g. “Moving” representing 
the state of a moving entity) and objects (e.g. “Street” and “Intersection”). Multiple 
properties can also be attached to the nodes and edges of a subgraph S′i which are 
attributes ( a1 . . . an ) containing semantic information about the entity.

The evolutionary assumptions underlying the Subgraphs S′i are described based on 
the following:

–	 Node connectivity over time At any point in time, at least one node belonging to a 
subgraph S′i can be reached by all the other nodes in S. This assumption is essential to 

Fig. 2  Connectivity between the subgraphs and the time-graph
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support any graph query/algorithm whose input is spread over all nodes generated at 
different time instances, with at least one node capable of generating the output.

–	 No recurrence of edges over time An edge is created only once at any point in time. 
This assumption is critical to maintain the eventual adjacency relationships thus to 
perform any computation of a graph metric such as shortest path and centrality.

–	 Constant connectivity over time Subgraphs are in constant connectivity between 
themselves, however, only one subgraph S′i and T are always linked at any point in 
time. There must exist an edge between a node belonging to a subgraph S′i ⊂ S and a 
leaf-node of T.

–	 Eventual adjacency There is always a future target node in subgraph S′i ⊂ S that a 
source node will be linked to.

Conceptually, the subgraphs are essential for convenient definition nodes and edges 
that are being projected for evolutionary analysis. The Projected Graphs can be locally 
extracted from a single subgraph or globally from all the subgraphs.

Projected graphs

Projected graphs are vital for retrieving nodes and edges that define the state of the 
Whole-graph at varying temporal resolutions, time-windows and based on subgraphs of 
interest. Projected graphs present the key graphs on which graph metrics are computed 
for evolutionary analytics of the Whole-graph G. From the vertex-centric standpoint, 
the evolution of the Whole-graph G materializes in the time-varying changes of its Pro-
jected graphs, PG(Ʈ). Depending on the network and application, varying resolutions of 
time can be defined to appropriately capture the evolutionary behavior of the graph. At 
the extreme, each interval could correspond to the smallest time unit in the dataset or 
to the time between any two consecutive modifications of the graph [31]. In some cases, 
every Projected graph of the whole-graph G becomes equivalent to an evolving graph 
model [32].

Time, Ʈ of the Projected graph can represent temporal resolutions of the graph such 
as in seconds, minutes, hours, days, weeks, months and years. It can also represent time-
windows such as a 2-week window, one-month window, and 2-year window. Time-win-
dows can be defined as event-based such as to capture changes in the network through 
the period of a snow storm or other event.

The time-window can be a sliding window or a tumbling window depending on the 
application. A sliding window defines a time period that goes back in time from the pre-
sent. For instance, a sliding window of 1 h includes nodes and edges that have appeared 
in the last 1 h. In a tumbling window, nodes and edges are grouped in a single window 
based on time. For example, in a tumbling window with a length of 2 h, the first win-
dow (w1) contains nodes and edges that appeared between the zeroth and second hours. 
The second window (w2) contains nodes and edges that appeared between the second 
and fourth hours and the third window (w3) contains nodes and edges that appeared 
between the fourth and sixth hours. In this case, the Whole-graph G is projected every 
2 h, and none of the windows overlap; each Projected graph represents a distinct and 
unique state of the Whole-graph.
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The evolutionary assumptions underlying the Projected graphs can be described based 
on the following:

–	 Recurrence of nodes a node of a Projected Graph PG(Ʈ) can reoccur in different Pro-
jected Graphs at different time windows, wi,wj . . .wk , even in the case of tumbling 
time-windows. This assumption is important because some entities (nodes) in a real-
world network (e.g. places) do not change but other entities and connectivity around 
them do change. The nodes will appear in more than one time-window because its 
neighborhood changes across time.

–	 No recurrence of edges in tumbling time-windows, an edge in a Projected graph PG(ti) 
cannot reoccur in another Projected Graph because connectivity in each Projected 
graph is distinct and unique.

Capturing the evolution of STVG

Graph metrics are generally used to uncover the dynamics of the Whole-graph globally 
or dynamics in the graph locally over the Projected graphs. The process of capturing the 
STVG evolution involves a pipeline of steps that can be described as follows:

–	 Step 1: Define a time-window, Ʈ ⊂ T for analysis, where Ʈ is the selected time-win-
dow and T is the entire lifetime of the Whole-graph.

–	 Step 2: Define subgraph(s) of interest, S′ ⊂ S where, S′ is the selected subgraph (s) and 
S is the entire space-dimension of the whole-graph.

–	 Step 3: Define the temporal resolution ti ⊂ Ʈ for iterative projections and for each ti 
in Ʈ.

–	 Step 4: Project Graph, PG(ti) where PG(ti) is a project graph at temporal resolution, ti 
and for each Projected graph PG(ti).

–	 Step 5: Compute graph metrics, Mi , where Mi is a graph metric (e.g. graph Density, 
Volume and Avg. path length) between consecutive Mi s.

–	 Step 6: Compare and correlate consecutive Mi values and compute delta ∆.
–	 Step 7: Identify and analyse evolutionary patterns in ∆ values.

These steps allow a user to define y time-window within the life-time of the Whole-
graph where the evolutionary analysis is required. Subgraphs of interest can also be 
defined such that the evolutionary analysis involves only one or more subgraphs in 
the space dimension of the network. After defining the time-windows and subgraphs 
of interest, the temporal resolution (such as seconds, minutes, hours, days, months and 
years) is defined. This is temporal resolution at which the Whole-graph is projected, and 
the evolution is captured using selected graph metrics. These steps are captured in an 
algorithm described in Table 1.

The algorithmic workflow can be implemented in a graph query to project the state of 
the Whole-graph and compute the graph metrics at varying temporal resolutions within 
any given time-window. Time-series analysis methods can be used thereafter to analyze 
the computed graph metrics values across time for evolutionary behavior of the graph 
[33]. For example, if we have the graph Density at time ti as Dti , at tj time Dtj and it 
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continually evolves throughout the entire graph life-time, ( Dti, . . . , Dtn) , we can use time 
series analysis method to depict the evolution of the graph’s density at different temporal 
resolutions.

Graph metrics

Graph metrics such as network density, network diameter and average path length have 
been utilized in this case study to retrieve the evolutionary pattern of the transit network 
structure at different temporal resolutions over monthly and yearly time-windows.

Graph density

One of the most commonly used metrics for observing evolution in network structure 
is the graph density. In this experimental study, graph density of each Projected graph 
PG(ti) in the STVG measures how close a given PG(ti) is to a complete graph. That is, the 
ratio between the number of its edges and the number of all possible edges between n 
nodes.

However, in real practical sense, true graph density ρ(G) = Mass(G)/Volume (G), where 
the Mass of the graph G is a total mass of its edges and nodes, and Volume (G) is a size-
like graph characteristic of the graph [34].

Mass(G) = |E| which approximately estimates the Mass of the graph while;
Volume (G), = |N | ∗ (|N | − 1) which approximately estimates the Volume (Size) of the 

graph which is dependent on the number of nodes. The evolution of the density of the 
whole-graph can be observed by computing and observing the trend over the Projected 
graph PG(ti−tn) through time, that is

Graph density D =
|E|

|N | ∗ (|N | − 1)

Density =
E(ti−tn)

∣

∣N(ti−tn)

∣

∣ ∗
(∣

∣N(ti−tn)

∣

∣− 1
) .

Table 1  Capturing the Whole graph evolution algorithm

1. Define a time-window, Ʈ ⊂ T for analysis

2. (where Ʈ is the selected time-window

3. and T is the entire lifetime of the whole graph)

4. Define subgraph(s) of interest, S’ ⊂ S

5. (where S’ is the selected subgraph (s)

6.  and S is the entire space-dimension of the whole graph)

7. Define the temporal resolution ti ⊂ Ʈ for iterative projections

8.    FOREACH ti in Ʈ
9. Project Graph, PG(ti )
10. (where PG(ti ) is a project graph at temporal resolution,ti)

11.    FOREACH Graph PG(ti )
12. Compute Graph Metrics, Mi

13. (where Mi is a graph metric (e.g. graph Density, Volume and Avg. path length)

14.    FOREACH Consecutive Mi

15. Compare Mi values, delta ∆

16. Identify patterns in ∆ values
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Average path length

Average path length otherwise known as characteristic path length is also one of most 
robust measures of network topology [34]. It is denoted by 〈d〉 and can be used as a 
measure of the efficiency of travel or mass transit efficiency in the network. For each 
PGi , Average Path Length can be measured as:

where dij is the number of edges for the shortest path from node i to node j. And the evo-
lution of 〈d〉 can be observed through PGi over time (ti − tn) ; where the 〈d〉 of PG(ti−tn) 
can be defined as

Experimental study
In this section, we describe an experimental study and implementation, utilizing the 
STVG framework to carry out evolutionary graph analytics of a bus transit network.

Data description

The datasets used for the implementation are the Automatic Vehicle locations (AVL) 
feeds from the CODIAC bus transit network in Greater Moncton, New Brunswick, 
Canada and GIS shapefile dataset containing information about the bus routes, bus 
stops, street segments, street intersections, civic addresses obtained from GeoNB 
online service (http://www.snb.ca/geonb​1/e/index​-E.asp). We extracted a total of 
59,617 completed bus trips from the AVL feeds pulled from the buses every 5 s into a 
PostgreSQL/Post GIS database for a period of 18 months (from June 2016 -December 
2017). The raw data set from the AVL feeds consist of the following attributes:

–	 vlr id: The ID of the data point in the vehicle location reports table.
–	 route id vlr: The route ID in the vehicle location reports table.
–	 route name: The route name.
–	 route id rta: The route ID in the route transit authority table.
–	 route nickname: The abbreviate of the route.
–	 trip id br: The trip ID in the bid route table.
–	 transit authority service time id: Transit authority service time ID.
–	 trip id tta: Transit authority trip ID.
–	 trip start: Start time of the trip.
–	 trip finish: Finish time of the trip.
–	 lat: Latitude.
–	 lng: Longitude.
–	 timestamp.

〈

d
〉

=
1

N (N − 1)

∑

i<>j,N

di,j ,

1
∣

∣N(ti−tn)

∣

∣ ∗
(∣

∣N(ti−tn)

∣

∣− 1
)

∑

i<>j,N

di,j(ti − tn)

http://www.snb.ca/geonb1/e/index-E.asp
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Automated pre‑processing tasks

The data pre-processing tasks involve the steps that have been used to transform the 
raw datasets into a suitable format for building the STVG. These tasks were imple-
mented by an automated data pre-processing algorithm developed by [35] which 
includes the following steps:

Step 1: Transformation of GPS points into moves/stops The algorithm utilizes a 
fixed distance value between two consecutive points to determine if the bus was 
moving, “Moves” or stopped, “Stops”. This fixed distance was empirically determined 
as being 15 m for a transit network. If the distance between the previous point and 
the current point is more than 15 m, the current point is annotated as a “Move”. In 
contrast, if the distance is less than 15 m, the current point is annotated as a “Stop”. 
These distances are Euclidian distances; network distance could be considered 
but for a short distance of 15 m, Euclidian distance can be used efficiently for this 
purpose.

Step 2: Street name annotation The algorithm annotates the “Moves” and “Stops” 
computed from the previous step with the street names if the event was performed 
on a street. For this task, a query on a PostgreSQL database is run to retrieve the 
names of the streets where a “Move” or “Stop” is located. This is a non-trivial step 
because the GPS coordinates usually have 10 m of accuracy in urban areas [36].

Step 3: Bus stop identification This step annotates the “Moves” and “Stops” with 
the “Bus Stop” names if the event took place within a bus stop in a 30 m buffer zone. 
It is important to point out that the algorithm also needs to verify the direction of a 
moving bus (e.g. eastbound and westbound) to identify the “Bus Stop” that a “Stop” 
or “Move” is located at.

Step 4: Street intersection identification This step also annotates the “Moves” and 
“Stops” with the “Street intersection” names if this event took place within a street 
intersection. To determine if the mobility action is within a street intersection, the 
algorithm creates a buffer zone of a 30 m radius (determined empirically) for each 
street intersection. The “Stops” and Moves” that are located inside a given buffer 
zone are annotated with the intersection identifier.

Step 5: Origin/destination trip identification The algorithm in this step identifies 
the origin and destination of each trip. The first GPS point of a bus trip located at 
a bus stop or station is tagged as the origin, and the last point of that same trip ID 
located at a bus stop or station is tagged as the destination. The GPS points between 
the origin and destinations points are sequentially indexed in order of occurrence.

Step 6: Bus trip labeling The algorithm labels the trips in terms of (Route Num-
ber-Run Number-Run-day-Run Month-Run Year), where (50-10-23-12-2016) would 
represent Route #50 during the 10th run of the 23rd day of 12th month of 2016. 
The date had to be concatenated to the trip IDs, so they could have unique IDs in 
the database. A “Trip” here is a completed journey of a bus from an origin to a final 
destination.

At the end of this preprocessing pipeline, a CSV file is automatically generated 
containing all the data needed to build the STVG of the bus transit network in Neo4j 
graph database.



Page 14 of 24Maduako et al. J Big Data            (2019) 6:55 

Building the subgraphs

We define the Platial and Mobility subgraphs for generating the Whole-graph of the 
bus transit network which represents the connectivity between mobility events and 
places over time. The pre-processed data sets in the CSV file are used to build the 
subgraphs of the bus transit network which generates a Whole-graph. The smallest 
temporal resolution at which nodes and edges were inserted into the subgraphs was 
5 s, corresponding to the time-interval of the AVL feeds. This means changes in the 
subgraphs can be tracked to the detail of every 5 s. We utilized the Neo4j graph data-
base for the implementation. Neo4j is currently the most popular native graph data-
base widely used for graph data management and analytics. The language in building 
and processing the graph in Neo4j is called Cypher, which we have used to write the 
nodes and edges continuously into the graph and used for encoding graph metrics for 
evolutionary graph analytics.

Platial subgraph

The Platial subgraph consists of a sequence of physical geographical places that repre-
sent a “Trip” of the bus within the transit network. In this case, a “Trip” is represented 
as a bus route that consists of a static “Bus Stop” (i.e. a designated place for passen-
gers to board or alight from a bus), “Street Segment” (i.e. the transit segment between 
two bus stops belonging to a bus route), and “Street Intersection” (e.g. existing 3-way 
intersections or 4-way intersections of a bus route). More geographical places can be 
defined depending on the availability of dataset and application. In this case study, 
nodes are created in the Platial subgraph according to the actual locations of the bus 
trips at any given time. The “NEXT” edges represent adjacency relationships between 
two consecutive geographical places in a trip. Figure 3 illustrates the network struc-
ture of the Platial subgraph in the STVG of the bus transit network. A node in the 
platial subgraph can reoccur in more than one Projected graph even in tumbling 
time-windows.

The Cypher query as shown in Table 2 was used to import the bus stop, intersection 
street segments points as Bus stop nodes, Intersection nodes and Street segment nodes 

Fig. 3  Platial subgraph
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respectively to the graph database. This step also includes the nodes properties such as 
intersection ID, intersection name and street segment ID, and street segment name.

Mobility subgraph

The Mobility subgraph represents the discrete sequence of mobility events (moves and 
stops) of a moving bus in space and time. In this subgraph, as shown in Fig. 4, the pri-
mary entity is the “Trip” that represents the trajectory of a moving bus within a bus route 
of a transit network. A “Trip” node is a composite node which is created by the sequence 
of “Move” (i.e. a node representing the location where a bus is in motion), and “Stop” (i.e. 
a node representing the location where the bus is not in motion), nodes from an “Origin” 
(i.e. a node representing the first location of a trip) to a “Destination” (i.e. a node repre-
senting the last location of a trip). The connectivity between these nodes is represented 
by the “NEXT” adjacency relationship which is a space–time relation such as Origin-
Move, Stop–Stop, Stop-Move, Stop-Destination, Move-Destination, and Move-Stop.

Each node in the Mobility subgraph occurs at a specific point in time and adds a 
new node and their respective NEXT relation to the graph. These nodes are con-
nected to the time-tree’s leaf nodes using their date and timestamps, starting from 
the year to the second leaf nodes. This is important for tracking the evolution of the 
subgraph. The “Origin” and “Destination” nodes of a trip have relationships to the 
“Trip” node labelled as “START_AT” and “ENDS_AT” respectively which gives mean-
ing to the edges and useful for the evolutionary analysis of the trips. This subgraph is 
majorly responsible for the dynamics of the graph. In this case study, every 5 s, a node 
or more from the mobility subgraph is added to the whole-graph.

Table 2  Cypher query used to create Bus Stop nodes in the Platial Subgraph

1. Load csv with headers from

2. ‘file:///busstops.csv’ as csv

3. Create (bs:BusStop {BusStopID: csv.stop_id, sName: csv.stop_name, sLat:

4. toFloat(csv.stop_lat), sLon: toFloat(csv.stop_lon),

5. sParentStation: csv.parent_station, locType: csv.location_type});

Fig. 4  Mobility subgraph
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The Mobility subgraph nodes were continuously loaded while concurrently establish-
ing the connectivity with the Platial subgraph nodes. The cypher statements for import-
ing the “Moves” and “Stops” nodes in the whole-graph are shown in Table 3.

Connectivity between mobility and platial subgraphs

Ideally, each node in the Mobility subgraph has a corresponding node in the Platial 
subgraph where it is located at in a given time instance. Platial and Mobility subgraph 
nodes are complementary in space and time (Fig. 5). They are complementary because 
for each node in the Mobility subgraph there is always a corresponding node in the Pla-
tial subgraph on which a connection is established using a cypher statement as shown in 
Table 4.

The connectivity between the two subgraphs is semantically represented as the 
“LOCATED_AT” edges that exists between the corresponding nodes. Independent of 
the number of subgraphs being represented in the graph model, all nodes are connected 
to a time-graph based on the temporal relationship between the nodes in only one of the 
subgraphs and the leaf nodes of the time-graph. The Mobility subgraph nodes are con-
nected to the time-graph from top to the lowest level of temporal resolutions using, for 
example the Cypher statement in Table 5 to create the sequential “HAPPEN_AT” edges 
between the “Move” nodes and their corresponding time-graph leaf nodes.

The time-graph is the time-dimension of the Whole-graph which contains all possible 
time instances of every node in the subgraphs throughout the graph lifetime. We built a 
time-graph of a 2-year lifetime (2016–2017) in hierarchical and sequential order of tem-
poral resolutions as described in the Cypher statements in Table 6.

The Whole‑graph

The whole-graph is composed of the subgraphs and the time-graph. It presents the com-
plete connectivity between the space and time dimensions of the network. Figure 6 rep-
resents the overview of two dimensions of the graph model, the space dimension, which 
consists of the subgraphs, and the time dimensions that consists of the time-graph. The 
connectivity between these dimensions enables the evolutionary analytics of the transit 

Table 3  Cypher query used to create “Moves” and “Stops” nodes

“Moves” nodes “Stops” nodes

Load csv with headers from Load csv with headers from

‘file:///data/Moves.csv’ as csv ‘file:///data/Stops.csv’ as csv

MERGE(r:Moves{MoveID: csv.moveid}) MERGE (r:Stops {StopID: csv.stopid}) ON CREATE SET

ON CREATE SET r.TripID = csv.Tripid, r.Street = csv.streetname,

r.TripID = csv.Tripid, r.Street = csv.streetname, r.BusStop = csv.BusStop,r.latitude = toFloat(csv.lat),

r.BusStop = csv.Busstop, r.longitude = toFloat(csv.long),

r.latitude = toFloat(csv.lat), r.longitude = toFloat(csv.long), r.Date = csv.Date, r.Time = csv.Time,

r.Date = csv.Date,r.Time = csv.Time, 
r.Sequence = toInteger(csv.sequence),r.State = csv.state,

r.Sequence = toInteger(csv.sequence),r.State = csv.state,
r.year = toInteger(substring(csv.Date,6,4)),

r.year = toInteger(substring(csv.Date,6,4)), r.month = toInteger(substring(csv.Date,3,2)),

r.month = toInteger(substring(csv.Date,3,2)),r.
day = toInteger(substring(csv.Date,0,2)),

r.day = toInteger(substring(csv. Date,0,2)),

r.hour = toInteger(substring(csv.Time,0,2)); r.hour = toInteger(substring(csv.Time,0,2));
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Fig. 5  The connectivity between the subgraphs

Table 4  Cypher query used to create the edges between mobility and platial subgraphs

MATCH (bs:BusStop), (st:Stops) WHERE bs.BusStopID = st.Busstop

MERGE (st)-[:LOCATED_AT]->(bs);

MATCH (ss:Streets), (st:Stops) WHERE ss.STNoSpace = st.Street

MERGE (st)-[: LOCATED_AT]->(ss);

MATCH (ss:Streets), (st:Moves) WHERE ss.STNoSpace = st.Street

MERGE (st)-[: LOCATED_AT]->(ss);

MATCH (bs:BusStop), (st:Moves) WHERE bs.BusStopID = st.Busstop

MERGE (st)-[: LOCATED_AT]->(bs);

Table 5  Sequential connection of the moves nodes to the time-graph

MATCH (t:Moves) WITH t

MATCH (yy:Year {yearid:t.year}) WITH t,yy

MATCH (yy)-[r1]- > (mm:Month {monthid:t.month}) WITH t,yy,mm

MATCH (mm)-[r2]- > (dd:Day {dayid:t.day}) WITH t,yy,mm,dd

MATCH (dd)-[r3]- > (hh:Hour {hourid:t.hour}) WITH t,yy,mm,dd, hh

MATCH (hh)-[r4]- > (mm1:Minute {minuteid:t.minute})WITHt,yy,mm,dd,hh, mm1

MATCH(mm1)-[r5]- > (ss:Second{secondid:t.second})WITH t,yy,mm,dd,hh,mm1,ss

CREATE (t)-[:HAPPENS_AT]- > (ss);
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network graph. The time-graph does not only track the evolution of the space dimen-
sion, but it also facilitates efficient retrieval of time-dependent Projected graphs. Table 7 
describes the statistics of the Whole-graph in the graph database.

Table 6  Cypher query for creating the time-graph
1. WITH range(2016, 2017) AS YEARS, range(1-12) as MONTHS, range() as Days, range(1,24) as Hours, range(1,60) as Minutes, 
2. range(1,60) as Seconds 
3. FOREACH(year IN YEARS | MERGE (y:Year {yearid: year}) 
4.      FOREACH( month IN MONTHS | CREATE (m:Month {monthid: month}) 
5.             MERGE (y)-[:CONTAINS]->(m)
6.             FOREACH(day IN (CASE 
7.                                            WHEN month IN [1,3,5,7,8,10,12] THEN range(1,31) 
8.                                             WHEN month = 2 THEN 
9.                                                     CASE 
10.                                                         WHEN year % 4 <> 0 THEN range(1,28) 

       11.                                                          WHEN year % 100 = 0 AND year % 400 = 0 THEN range(1,29) 
12.                                                           ELSE range(1,28) 
13.                                              END 
14.                                        ELSE range(1,30) 
15.                                    END) | 

       16. CREATE (d:Day {value: day}                    
       17. MERGE (m)-[:CONTAINS]->(d) 

18. FOREACH( hour IN Hours | CREATE (h:Hour {hourid:hour}) 
 19. MERGE (d)-[:CONTAINS]->(h) 
 20.       FOREACH ( minute in Minutes | CREATE (mm:Minute {minuteid:minute}) 

        21.              MERGE (mm)<-[:CONTAINS]-(h)  
 22.                     FOREACH ( seconds in Seconds | CREATE (ss:Second{secondid:second}) 

        23.                           MERGE (mm)<-[:CONTAINS]-(mm)) ))) ); 

Fig. 6  The overview of the Whole-graph

Table 7  Statistics of the Whole-graph

Nodes 153,127,231

Edges 453,713,224

Average clustering coefficient 0.1541

Number of triangles 731,205,512

Diameter (longest shortest path) 659

Time span 548 days
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Results and discussion

From a global perspective, the trend in the graph density and volume as shown in Fig. 7a, 
b reflect the bus transit network’s topology variations within a 2-year time window at 
hourly temporal resolution. This trend could be useful in observing increase or decrease 
in bus transit mobility activities over time, as well as trip density within the entire net-
work through time. We could also observe if there is a significant correlation between 
global network density and congestion density in the network through time. Conges-
tions in our graph model represents where there are many of “Stops” on a street with a 
“Move”.

Figure 7a also reveals an evolutionary trend in the Whole-graph of the transit net-
work such that the hourly network density, graph density with respect to traffic con-
gestion and bus movement have the lowest values at peak transit hours (8 a.m. and 
4 p.m.). In a practical sense, the trend reveals the highest volume of transit mobility 
activities (“Moves” and “Stops”), trips and traffic congestion at these peak hours. In 
other words, between 8 am and 9 am in the mornings as well as 4 p.m. and 5 p.m. in 
the evenings, more nodes and edges are added to the Whole-graph of the transit net-
work signifying a lot of mobility activities within the network during these times. The 
inverse relationship between graph density and graph volume is clearly depicted in 
Fig. 8a, b where an increase in volume means decrease in density and vice versa. The 
evolutionary trend shows a strong correlation between the global network density of 
the graph, graph density with respect to traffic congestion and density with respect to 
the bus movement. Similar behavior is seen in the network volume, congestion and 
movement volume, as one increases, others increase as well.
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b Evolution of graph volume at hourly temporal resolution. 

Fig. 7  Evolution of Graph density and volume at hourly temporal resolutions
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In monthly temporal resolution, Fig. 8a, b reveal an evolutionary behavior with peaks 
in August 2016, December 2016 and May 2017 in terms of movement, traffic congestion 
and network volume as well as density of the graph.

From June to December 2016, graph density with respect to the entire network, move-
ment and congestion reveal a zig-zag (up and down) alternate behavior different from 
what is observed in the same months in 2017. The graph volume with respect to conges-
tion, movement as well as that of the entire network from June to December 2017, did 
not experience significant changes. The peaks observed in August 2016 and December 
2016 did not reoccur in the following year, 2017. Figure 9a, b provides a closer look at 
the behavior of the transit network in a monthly time-window (December 2016 peak) 
on a daily temporal resolution. The daily behavior of transit activity in December 2016 
is compared to that of the previous month, November 2016 to depict the differences in 
daily transit pattern and the reason for such a peak in December.

The daily graph volume and density behavior for the December 2016 bus transit net-
work activity peak depicts high volume of bus transit activity in many days of the month 
except the lows observed between Tuesday 6th to Friday 9th as well as on Monday 
12th. There is also the weekend low such as on Sunday 18th, Saturday 24th and 31st of 
December 2016. Comparing December 2016 daily network volume with that of the pre-
vious month, November 2016, as shown in Fig. 10, we could deduce the reason for the 
December peak. There is more transit network low volume in November with respect to 
that of December. From 12th of December to 30th, there are more mobility events in the 
network when compared to those of November. In graph topological sense, more nodes 
and edges are added to the whole-graph in December than in November 2016.
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b Evolution of graph volume at monthly temporal resolution.

Fig. 8  Evolution of graph density and volume at monthly temporal resolutions
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The evolutionary trend in the Average path length of the network would reflect the 
average trip length (travel time) over time. One analysis of interest would be to observe 
how evolving average path length correlates with evolving trip density/volume over time 
in the network.

It can be observed in Fig. 11a, b, that Average path length has a very strong correlation 
with graph density and volume. It increases with increase in graph volume and decreases 
with an increase in graph density. In a practical sense, average path length in this case 
study is the average trip length (travel time) from an origin to destination within the 
network. It is as expected that travel time (trip length) would increase when volume of 
congestion and mobility activity in the network increase, as observed in Fig. 11a. We can 
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Fig. 9  Evolution of graph density and volume at daily temporal resolutions for December 2016
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also observe in Fig. 11b that the highest average trip lengths are seen at peak hours of the 
day (8am and 4 pm) when it shows the highest traffic congestion and network volume.

Conclusions
Evolutionary graph analytics based on sequence of graph snapshots have been com-
monly utilized in literature mainly because of the convenience it affords the users to 
manage small-size graph in discrete versions and compare differences between snap-
shots across consecutive time windows as this approach may be suitable for small graphs 
and for cases where changes do not occur at shorter temporal resolutions. It is associ-
ated with high storage overhead in proportion to the size of the evolving graph and the 
time intervals between snapshots because the entire graph is usually replicated from one 
snapshot to another. Also, computing evolving queries across the snapshots is compu-
tationally intensive and complicated. These are major disadvantages especially, in cases 
where the graph is massive and changes frequently at shorter temporal resolutions and 
where the evolutionary analysis relies on the explanatory power of representing the 
dynamics across different temporal resolutions.

We therefore, propose a framework based on our Space–Time-varying graph (STVG) 
formalism which utilizes the Whole-graph approach to model the dynamics of the graph 
whose evolutions materialize in the time-varying changes in its Projected graphs. The 
STVG framework provides an approach to reduce high storage overhead of massively 
changing graphs where new nodes and edges arrive every second. It affords the capa-
bility to extract Projected graphs at different time-windows and analyze their metrics 
across varying temporal resolutions.
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Fig. 11  Evolution of avg. path length vis-a-vis graph density and volume at hourly time-windows
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The framework was implemented for a transit case study using the AVL feeds of the 
bus transit network of Greater Moncton, New Brunswick, Canada which generated a 
Whole-graph of 44.2 GB in the database. In contrast, using the Snapshot method created 
7280 hourly snapshots, 732 daily snapshots, 18 monthly snapshots and 2 yearly snap-
shots in the graph database where the smallest snapshot amounted to 1.3 GB of graph. 
The total storage cost for over 18,000 snapshots of graph needed for our evolution-
ary graph analytics amounted to 23.4 TB, because the total storage and computational 
cost increase linearly with the number of snapshots, that is, total cost is equal to, cost 
per snapshot multiplied by the number of snapshots. Using the Snapshot method pre-
sents over 500 times increase in storage overhead when compared to our Whole-graph 
approach.

Our evolutionary analysis was based on graph density, volume and average path length 
on the Projected graphs at varying temporal resolution across different time windows. 
The analysis reveals evolutionary patterns in the overall network density of the graph, 
traffic congestion density as well as graph density with respect to bus movement at 
hourly, daily and monthly temporal resolutions. Similar patterns are observed in the 
evolutionary pattern of network volume, congestion and movement volumes. This type 
of analytics for any transit networks potentially provides an efficient way to uncover 
dynamics of the network as well as the dynamics in the network over space and time. 
The evolutionary pattern of the transit network properties such as average paths, net-
work density and volume as a result of the dynamics in human mobility pattern may 
become vital for transit network optimization. Potential applications can be found in 
transit trend analysis as well as in time-dependent transit recommendation systems.
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