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Introduction
Vision-based intelligent systems and applications have been increasing rapidly. The con-
tinuous growth of dependence on automated systems is a double-edge sword. On the 
positive side, intelligent systems make human daily life easier and more comfortable. On 
the other negative side, these systems are vulnerable to manipulation by attackers, either 
humans or software robot agents. The consequences of successful attacks have diverse 
degrees of criticality depending on the nature of the underlying application. The conse-
quent troubles may vary from just unpleasant inconvenience in applications like enter-
tainment image and video annotation, passing by security-critical problems like false 
person identifications, and can turn out to be life-threatening in autonomous navigation 
and driver support systems.

The widespread and success of convolutional neural networks applications in the 
fields of object recognition and concept classification attracted more attackers’ atten-
tion. Adversarial attackers, and deep learning researchers as well, have been attempting 
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to fool convolutional neural networks in order for hallucinating the networks and forc-
ing them to produce false results [3]. Such attempts are conducted for different reasons. 
While the main goal of adversarial attackers is destruction by causing intelligent systems 
malfunction, or even for boast purposes, the machine learning researchers are interested 
in comprehensive investigation of deep network behavior and strength/weak points.

There is a non-stopping race between deep learning systems attackers and defenders. 
Attackers seek to fool the network such that false outputs are generated with invisible 
or minimal perceptible changes in the input images [9, 23]. On the other side, defenders 
continuously rebuild the deep models to fill the gaps through which attackers can sneak 
into the systems.

Adversarial attacks can be categorized according to their operation on the input side 
or according to their malicious effect on the network outputs. From the input side, the 
adversarial methodologies are mainly oriented to find the least observable way for input 
perturbation. One paradigm is to make imperceptible modifications in some pixels or 
regions of the input images. DeepFool [16], Projected Gradient Ascent [4], Fast Gradi-
ent Sign Method [9], Projected Gradient Descent [13], and L-BFGS [23] are examples 
of attacking methodologies that attempt to make unremarkable small variations to the 
input image pixels. These variations are carefully created to lead the network to mis-
classification. Other approaches perform adversarial modifications on some of the image 
pixels, either scattered [17] or on the form of a small fixed-location patch in the image, 
e.g. [21]. Jacobian-Based Saliency Map [17] uses a forward derivative-based approach to 
change the intensity of some pixels in the image. The classification output of the network 
is perturbed due to these small changes of only subsets of input pixels. Although pixel-
altering-based approaches perform well toward their end goal of DNN’s hallucination, 
most of them suffer from impracticability in real-life applications. In other words, in 
most of real-time cases, e.g. surveillance and autonomous navigation systems, the direct 
inputs, right before the network’s input layer, are not accessible  to the attacking algo-
rithm to perform whatever pixel changes it wants. While this kind of algorithms may be 
feasible to be applied in such real-time applications for research purposes, it is almost 
infeasible for practical adversarial purposes.

Therefore, other algorithms were developed to be more realistic for applications with 
which the digital input is inaccessible to the attacking algorithms. A common strategy of 
such algorithms is to place a perturbing object in the scene during image capturing. The 
perturbing objects may be conspicuous like posting a large poster of some traffic sign, 
e.g. stop sign, or placing some perturbing stickers on the sign itself [8]. In other cases, 
the perturbing object may not be such explicit. For example, an impersonate attacker 
may wear an innocent colorful glasses frame to deceive a facial recognition system [21]. 
Other examples of such attacks are to place printed 2D [3, 12] or 3D objects to cause 
network misclassification [1].

On the output side, or the impact on the perturbed network, an attacking algo-
rithm aims at destruction of the network integrity. In this context, attacking algo-
rithms can be categorized according to their goals into four categories [17]: 
confidence reduction, misclassification, targeted misclassification, and source/
target misclassification. Furthermore, we re-categorize these kinds of threats into 
three levels of severity: low, medium, and high. The first level, the low severity level, 
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includes attacks that aim at reducing classification confidence. This kind of attacks 
force the victim network to look more “hesitant” in terms of the classification out-
put. Although this kind of threat affects the robustness of the network, it can be 
overcome as long as the top classification orders are not disturbed. The second 
severity level is the medium level. This level is assigned to algorithms that attempt to 
cause non-targeted misclassification. The reliability of networks that are subjected 
to this kind of threats is ruined. However, it is hard to exploit such attacks for system 
hacking in applications like surveillance, since the goal of these attacks is to cause 
malfunctions only not to drive the network to a specific targeted output. The last 
severity level is the high severity one. Targeted and source/targeted misclassifica-
tion go under this level. In targeted misclassification, a specific object is detected 
regardless the contents of the input image [3, 21]. In source/target misclassifica-
tion, a specific target is paired with a specific input. These kinds of threats could be 
catastrophic to many systems. For example, in surveillance systems, unauthorized 
person may be allowed in restricted areas. In security applications, terrorists can 
pass weapons, bombs, and restricted materials in front of automated surveillance 
cameras. In driver support systems, stop signs, red lights, or emergency lanes can be 
positively or negatively misclassified causing severe accidents.

So, the latter kind of techniques is the most dangerous, especially if a simple con-
venient attacking approaches of placing perturbing 2D or 3D objects is adopted. 
This is because of its ease-to-use by the attackers and the difficulty to suspect or 
accuse the attacker with attempts of adversarial actions.

So far, the research studies that present defenses against adversarial examples are 
limited [2, 11, 14, 15, 17, 24]. Carlini and Wagner [5–7] have pointed out that these 
algorithms suffer from vulnerability to optimization-based attacks. Obfuscated gra-
dients have been used to develop robust defenses against optimization-based attacks 
[2]. However, Athalye et al. [2] have shown that even these defenses provide illusive 
sense of security against adversarial examples.

In this paper, we propose ally patches in order to limit the effect of threats of the 
third severity level. Ally patches are generated intrinsically from the input image in 
a blind manner. In other words, regardless attacked or not, the contents of the input 
image are used to generate a set of ally patches. These patches form an alliance to 
face an unknown possible adversarial patch. The image entropy is used to assess the 
information contents of the candidate image region for joining the ally patch col-
lection. The nature of ally patch extraction guarantees its robustness against known 
optimization attacks, since it intrinsically uses the image contents in prior to exposi-
tion to the input layer of the neural network. A glimpse of the effect of the proposed 
ally patch in ravage of adversarial patches is shown in Fig. 1.

The rest of this paper is organized as follows: in  "Adversarial patches" section, 
adversarial techniques are presented. "Ally patches" section details the proposed 
ally patch algorithm. The details of conducted experiments setup are illustrated 
in  "Experimental setup" section. Evaluation results are discussed in  "Results and 
discussions" section. Finally, in  "Conclusions" section, the paper is concluded and 
directions for future work are highlighted.
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(a) Attack-free input image (b) Attacked image

(c) Ally patching and classification
Fig. 1 An exemplar image to illustrate the effect of the proposed method. a An attack‑free input image. The 
convolutional neural network succeeded in classifying the image in compliance to the ground truth with 
confidence close to 100%. b The input image after having been attacked by a toaster‑targeted adversarial 
patch generated by [3]. The adversarial patch succeeded in driving the network to hallucination and to 
classify the input image to the adversarial target with a confidence value of almost 100%. c Classification 
using the proposed ally patches. The generated patch alliance could ravage the operation of the adversarial 
patch and flee from the fake saliency caused by it. For illustration clarity purposes, the confidence values of 
the top‑3 labels only are shown. The used CNN model for this example is VGG19 [22]
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Adversarial patches
The general supervised classification problem in neural networks can be summarized as 
finding a set of weight values, Ŵ ∈ R

m×n , that achieves the following constraint:

where x ∈ R
n is the input vector and ygt ∈ R

m is the ground truth output vector. Once 
trained, neural network weights are fixed; hence, practically, the only fully-accessible 
values to user are those of the input vector, x. The output vector y ∈ R

m is a read-only 
vector that cannot be modified directly by the user.

The main goal of an adversarial attack is to change the output vector y according to the 
kind of attack as follows:

where yt is a specific target label and xv is a victim input. The first label value in Eq. (2) is 
used in the case of a non-targeted attack. The second assignment is used for a blind tar-
geted attack, where a specific target label yt is desired to be assigned to the output vector 
regardless what the input vector is. The last assignment goes to the case when a source/
target attack is considered. In this case, a specific target label yit is set to a desired value 
ŷ for the ith item in the input space. Since the output is not changeable directly, the gen-
eral adversarial strategy is to find a perturbed input, x̂ , that lead to maximum likelihood 
P(ŷ|x̂) subject to the constraint that the perturbation does not exceed a certain thresh-
old, ǫ [3]. Formally, this procedure can be formulated by the following equation:

While the attacks produced by this approach are sufficiently camouflaged, the required 
comprehensive modification of the input image is not always feasible [3].

To overcome this crucial practical limitation, the attack strategies have been modified 
to change small regions of the image, or even to generate small adversarial patches from 
scratch [3]. The most dangerous threat caused by such strategy is resulted from the usage 
convenience to attackers. Particularly, an attacker can generate or download digital ver-
sions of these adversarial patches. Then, he/she prints colored stickers of these patches. 
Finally, he/she shows it up in the field of view of operating cameras in an innocent way 
varying according to the attacked system. For example, the attacker can through doz-
ens of these patches from the window of his/her car while traveling on a high way to 
cause autonomous driver support systems, (DSSs), malfunction by detecting stop-signs 
or red-light in the middle of the highway. The damage caused by a sudden stop or slow-
ing down of a vehicle on a highway is obvious. Accordingly, Brown et al. [3] have recently 
developed their adversarial patches. They used a learning approach to learn the shape, 
location, and 2D transformation of their generated adversarial patches. The training 
is performed for adversarial patches to produce a specific target label regardless the 
existing background in the original image. In other words, the adversarial patch con-
tents force the network to perceive it as the most salient component of any input image. 

(1)Ŵ = arg min
W

(|Wx − ygt |)

(2)ŷ =







y′, s.t. y′ �= ygt ,
yt , ∀x ∈ R

n,

yit , for xi = xiv , i = {1, 2, .., n}.

(3)x̂ = arg max
x̂

log([P(ŷ|x̂)]) s.t. ||x − x̂||∞ ≤ ǫ
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Figure 2 shows exemplar adversarial patches which are learned to produce a number of 
misclassified labels.

An additional feature in that approach is its capability to produce camouflaged 
patches with minimum changes from a starting patch image. The patch ability to be cov-
ert is implemented by adding the following constraint to the used objective function: 
||p− porig ||∞ < ǫ.

Ally patches
As discussed in  "Adversarial patches" section, the main working strategy of an adver-
sarial patch is to cause network “distraction” by changing saliency characteristics of the 
input image. While doing this, the adversarial attacker is keen to minimize the perceived 
changes of the input image by a human observer. Fortunately, attackers utilize a major 
distinguishing feature between DNN and human perception, which is the saliency per-
ceived by humans versus that perceived by networks. We make use of this specific weak 
point to generate our proposed ally patches. Our main hypothesis is: if we could break 
or ravage the adversarial saliency perceived by the network, while preserving the origi-
nal characterizing features of the input image, we will succeed in stopping the harm-
ful effect of the attacking adversarial patch. Our approach intrinsically utilizes the input 
image contents without any prior knowledge about the nature of the possible adversarial 
patches, or even knowledge about probability of existence of any adversarial patch in the 
input image.

Figure 3 shows a block diagram that outlines the extraction and the operation of the 
proposed ally patches. The following subsections explain the details of each stage in this 
process.

Ally patch extraction

The first step is to extract a comprehensive set of ally patch candidates from the input 
image. Assume the size of the input image is h× w pixels. The input image is cropped 
using a sliding window whose fixed size of hp × wp . The original image is scanned by 
this sliding window with a stride, ST. This step generates a total number of (h−hp).(w−wp)

ST 2  
candidate ally patches.

Fig. 2 The used adversarial patches for evaluation, as generated by [3]. Whereas the patches are 
imperceptible by humans, they are perceptible and salient to the CNN models
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The main criterion of selecting the final set of ally patches is their information contents. 
We use Shannon’s entropy [20] to measure the information contents of each candidate ally 
patch, AP, as shown in Eq. (4).

where pk is the probability of an intensity value, k, to appear in any of the three RGB 
channels of the candidate patch APi, 1 ≤ i ≤

(h−hp).(w−wp)

ST 2 .
Using entropy as a measure of the information contents may suffer from a limitation, 

which can be considered minor in most of underlying applications. Particularly, object 
localization is missing when considering patch entropy. However, it is obvious that 
object localization is not critical in most of classification tasks.

The patches in the initially-generated dense set are filtered to preserve the most 
non-redundant informative ones. A patch APi is included in the final ally patch set, if 
two constraints are achieved. The first is the information contents constraint, Eq. (5). 
It makes sure that the selected patch has a minimum amount of information contents 
compared to the parent image.

where H(APi) is the entropy of the selected patch, H(I) is the entropy of the entire input 
image, Thent is a threshold value for the minimum patch entropy relative to the image’s 

(4)H(APi) =

255
∑

k=0

pk . log

(

1

pk

)

(5)H(APi) ≥ Thent .H(I)

Fig. 3 The block diagram of the entire process of generating ally patches and readjustment of the 
classification output. The ally patch extractor intrinsically extracts ’promising’ ally patches from the input 
image. Then identical, yet independent, copies of a pre‑trained convolutional deep network are used to 
evaluate the classification of each of the ally patches. Finally, the fusion stage decides the most appropriate 
final label of the entire image. Any possible adversarial patch is counter‑attacked during the ally patch 
extraction stage. Fled adversarial patches from the evaluator are taken care of in the final stage
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total entropy. In monotonous background images, e.g. sky, sea, and desert scenes, the 
adversarial patch will be dominant. This means that most of non-adversarial patches will 
fail to fulfill this constraint. Fortunately, scenes in most sensitive applications usually do 
not have such backgrounds.

The second constraint is a similarity constraint. Under this constraint the extracted 
patches are guaranteed to be sufficiently dissimilar to assure diversity of the training set. 
The constraint can be achieved by limiting the maximum allowed overlap area between 
extracted patches, Eq. (6), or by limiting the allowed mutual information [18] of each of 
the extracted patch-pairs, Eq. (7).

where Ths is the threshold of the maximum allowed similarity.
All patches, which achieve these two constraints, collectively build up the fine-tuned 

final ally patch set, AP.
Figure 1 illustrates the effect of application of these stages on an exemplar image. In 

this figure, the effect of these two constraints can be easily noticed. The cardinality of AP 
equals eight. The elements of AP are ordered from AP1 to AP8 . They are sorted accord-
ing to the order of achieving the constraints of Eqs. (5) and (6), respectively. AP1 is the 
richest in terms of information contents. Naturally, as the adversarial patches are usually 
highly-textured, they start to show up among the top ally patches. Fortunately, classifica-
tions obtained by the extracted patches have equal weights regardless the order in the 
entropy-sorted list.

CNN evaluation

In this stage, each element of the final fine-tuned ally patch set, AP , is exposed to an 
instance of a specific pre-trained convolutional neural network model. Each patch is 
treated as a completely independent input image and is assigned to an independent 
label, Li, 1 ≤ i ≤ |AP| . In this work, the used CNN models are identical. However, dif-
ferent models might be used for a diverse classification. Moreover, the conceptual opera-
tion of ally patches guarantees its validity with any whole-image-based classifier.

The attacking adversarial patch may face one of three scenarios. The first occurs with 
highly-textured input images. In this case, the adversarial patch will fail to achieve the 
information content constraint, Eq. (5). Thus, it will not be included in AP , i.e. the risk is 
eliminated completely. Practically, the probability of complete exclusion of the attacking 
adversarial patch from AP is not high. This is because the created attacking adversarial 
patches are usually rich in texture, which means that their entropy values are usually 
high. So, they often fulfill the information content constraint.

The second scenario, whose the highest probability, is to have the adversarial patch 
partially appears in one or more of the elements of AP . In this case, like the case of Fig. 1, 
and depending on the used CNN model, there is a high chance that the model will not 
classify the input patch as desired by the adversarial patch, since the adversarial patch is 
a “broken” one.

In the last scenario, the adversarial patch intended attack succeeds. In other words, the 
desired misclassification label is assigned to the patch. This happens in two cases. The 

(6)area(APi ∩ APj) ≤ Ths.hp.wp ∀H(APj) > H(APi)

(7)
[

H(APi)+H(APj)−H(APi,APj)
]

≤ Ths ∀H(APj) > H(APi)
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first is with the patches that passed through the second scenario, but the damage to the 
adversarial patch was not sufficient to cause attacking failure. The second case occurs 
when an ally patch in AP contains the entire adversarial patch. This scenario is taken 
care of in the final stage, which is explained in the following subsection.

These scenarios are represented, to some extent, in the example of Fig. 1. In this exem-
plar image, the third scenario, which is the most dangerous, is represented in patch AP1 . 
Most of the adversarial patch is isolated in this ally patch. Therefore, the targeted adver-
sarial classification succeeded for this patch. Patch AP7 gives an exemplar case for the 
second scenario. It contains about 20–25% of the adversarial patch. This partial exist-
ence of the adversarial patch causes misclassification. Nonetheless, the network was 
not deceived by the adversarial target label, ’Toaster’’. In this case, although the harmful 
effect of the adversarial attack could not be eliminated completely, its severity degree 
was reduced. Patching caused AP4 to isolate an image portion that is more relevant to 
another class, “Knee Pad”, which is different from the ground truth label, “Hockey Puck”. 
Although AP4 is misclassified, the confidence levels of the ground truth label and the 
false label are close.

However, as shown in the next subsection, the fusion stage shall take care of such mis-
classifications, which are caused either by patching significant portions of the attacking 
adversarial patch or by patching an irrelevant portion of the input image. So, we can 
say that the adversarial patch was successfully broken and isolated in few patches whose 
corrupted classifications have to face correct classifications come from the alliance of 
the other patches.

Fusion and final classification decision

The inputs to this stage are N labels: Li, 1 ≤ i ≤ N  , where N = |AP| . Each label is asso-
ciated with a confidence value, ci , which represents the confidence score of the output 
from the CNN model. This label set represents the candidate labels to the final image 
classification. The function of this stage is to fuse these labels together and reach a final 
decision of the input image class.

The main advantage of ally patch extraction appears in this stage. Specifically, even if 
the attacking adversarial patch succeeded in deceiving the network, as discussed in the 
third scenario of the previous subsection, its influence to the final labeling decision will 
be equal to other “clean” patches. Usually, the number of these clean ally patches is larger 
than the number of adversarial patches that succeeded to flee in the first stage. This gives 
an advantage to ally patches.

The fusion process is performed according to one of the following four strategies:

Majority voting

The input patches contribute in a fair voting pool. If a tie occurs between the top labels, 
the label whose larger average confidence score wins.

Total confidence

The confidence scores of the input patches whose same labels are added to vote for their 
corresponding label. This gives an advantage to the confident patches, even if they are 
few when compared to other patches. This is a risky strategy because confidence values 
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of the fled adversarial patches in the third evaluation scenario of "CNN evaluation" sec-
tion are often high.

Average confidence‑weighted

This metric is calculated in a similar way of the total confidence metric. The only dif-
ference is taking the average values of the confidence scores of the same-label patches 
rather than taking the summation of these scores.

Spanning measure

This measure is designed to give advantage to ally patches extracted at attack-clear 
regions over the patches extracted on or around the adversarial patch. The metric is 
inspired by the fact that suspicious patches tend to gather within a connected com-
pact zone. Therefore, this measure weights the average confidence values by the ratio 
between the area of the inclusive square that encapsulates all the same-label patches and 
the patch area. So, the patches that are spread over a larger area in the image will have 
more weight than those which are condensed around small area and more probable to 
include parts of the adversarial patch.

Experimental setup
The main goal of the proposed ally patches is to stop threats created by targeted and 
source/target adversarial patches. Therefore, the main objective of experimentation in 
this work is to prove the effectiveness of the proposed ally patches in repelling the tar-
geted attacks. Adversarial patches used to be evaluated using the success rate metric [3]. 
This metric evaluates the percentage of times in which an adversarial patch succeeded 
in forcing the network output to have a desired target attack label. We adopt the same 
metric to evaluate our approach by showing that using ally patches could significantly 
decrease the success rate of adversarial patches.

We use ILSVRC benchmark dataset [19] for input images. The dataset contains more 
than 1.2M images for training, 50K images for validation, and 150K images for testing. 
The images are collected from 1000 different distinct classes. We exposed the input 
images to three different adversarial patches generated in [3], as shown in Fig. 2. Each of 
these adversarial patches targets a specific false label. Specifically, they aim at “Toaster” 
and “Crab” labels. Three different pre-trained CNN’s are used for white-box evaluation: 
VGG16 [22], VGG19 [22], and ResNet50 [10]. Comprehensive evaluation using ILSVRC 
benchmark was carried out on a single Nvidia GTX 1080-ti GPU. The host machine pro-
cessor is Intel i7 with 32GB RAM. Tesnsorflow was used for CNN models evaluation. 
Cuda and C++ were used for dataset patching. A Matlab code for image ally patching is 
available on GitHub1.

Input images are overlaid by each of the adversarial patches with different scales rang-
ing from 10 to 50% of the input image areas and placed at random locations. The attack-
ing algorithms which adopt adversarial patches attempt to make these patches visually 
unnoticeable as much as possible. This means that using patches larger than 50% of the 

1 https ://githu b.com/aaaly /Ally-Patch es.

https://github.com/aaaly/Ally-Patches
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input image is highly improbable. Therefore, we limited our conducted experiments to 
adversarial patch scales up to 50%. Ally patches are extracted, as explained in "Ally patch 
extraction" section. The extracted patches are classified using the considered three CNN 
models. Finally, the late fusion stage, using the aforementioned four strategies, is applied 
to decide a final image label.

Results and discussions
For evaluation purposes, we investigated the effect of ally patches on the main per-
formance metric of adversarial patches, which is the success rate. Figure  4 shows the 
success rates obtained using the aforementioned setup. Ally patches have a close perfor-
mance pattern for the used three models. Generally, ally patches succeeded in decreas-
ing the success rates of adversarial patches to lie within the middle third of the scale 
instead of the top one. With small-scaled adversarial patches, the performance of adver-
sarial patches is obviously low. So, the success rate reduction achieved by ally patches 
is not explicitly exhibited in such scales. Another factor that supports such behavior in 
small scales is that during the extraction stage of ally patches, small adversarial patches 
are most likely contained completely in one or more ally patch. So, a collection of ally 
patches will vote for the adversarial targeted label. Thus, the final decision taken by the 
fusion stage is affected. Fortunately, as the performance of the adversarial patches is low 
in such scales, they are not preferred by the attackers.

For fusion strategies, the performance of the used four fusion methods is close. The 
average confidence metric slightly shows better performance in large scales. In small 
scales, the majority voting metric preforms the best. This behavior is expected since in 
large scales the probability of partial appearance of the adversarial patch within fine-
tuned patch set is higher. Consequently, the confidence of misclassifications will be 
decreased. Therefore, the average confidence gives an advantage to the patches that con-
tain adversarial-clear areas from the original image. On the other side, in small scales, 
the probability of complete appearance of the adversarial patch in some of the fine-
tuned ally patches set is higher. Hence, adversarial labels will dominate some patches 
with high confidence, which gives less preference to the average confidence metric in 
favor to other metrics like majority voting.

Conclusions
We presented ally patches as a defense approach against attacks to deep neural networks, 
which are caused by adversarial patches. Ally patches are extracted from the input image 
intrinsically based on the information contents of candidate patches. Entropy is utilized 
as a measure of the patch information contents. It is highly probable that the adversar-
ial patch gets damaged during ally patch extraction causing either failure to deceive the 
network or at least missing its adversarial target label. Even if it was not damaged, the 
other extracted ally patches form an alliance which withstand the adversarial patch. Late 
fusion is performed to take a final classification decision according to the independent 
classifications of the ally patches. The evaluation results proved the ability of the pro-
posed ally patches in bringing down the success rates of the adversarial patches by about 
one-third.
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Fig. 4 The success rates before and after using the proposed ally patches with three different pre‑trained 
CNN models: a ResNet50 [10], b VGG16 [22], and c VGG19 [22]
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As a future direction of research, the number of degrees of freedom of ally patches can 
be increased for better inclusion of informative image parts. In this work, we used two 
degrees of freedom, which are the horizontal and vertical displacements of the candidate 
patches. This number can be increased to five by including up to three more degrees of 
freedom: horizontal scale, vertical scale, and 2D patch rotation angle. We expect better 
performance with more degrees of freedom, since the encapsulation of relevant image 
parts will be more precise.

Abbreviations
AP: ally patch; AP: ally patch set; CNN: convolutional neural network; DNN: deep neural network; DSS: driver support 
system; ILSVRC: ImageNet Large Scale Visual Recognition Competition.
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