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Introduction
According to the National Security Agency, the Internet processes 1826 petabytes (PB) 
of data per day [1]. In 2018, the amount of data produced every day was 2.5 quintil-
lion bytes [2]. Previously, the International Data Corporation (IDC) estimated that the 
amount of generated data will double every 2 years [3], however 90% of all data in the 
world was generated over the last 2 years, and moreover Google now processes more 
than 40,000 searches every second or 3.5 billion searches per day [2]. Facebook users 
upload 300 million photos, 510,000 comments, and 293,000 status updates per day [2, 4]. 
Needless to say, the amount of data generated on a daily basis is staggering. As a result, 
techniques are required to analyze and understand this massive amount of data, as it is a 
great source from which to derive useful information.
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Advanced data analysis techniques can be used to transform big data into smart data 
for the purposes of obtaining critical information regarding large datasets [5, 6]. As such, 
smart data provides actionable information and improves decision-making capabilities 
for organizations and companies. For example, in the field of health care, analytics per-
formed upon big datasets (provided by applications such as Electronic Health Records 
and Clinical Decision Systems) may enable health care practitioners to deliver effective 
and affordable solutions for patients by examining trends in the overall history of the 
patient, in comparison to relying on evidence provided with strictly localized or current 
data. Big data analysis is difficult to perform using traditional data analytics [7] as they 
can lose effectiveness due to the five V’s characteristics of big data: high volume, low 
veracity, high velocity, high variety, and high value [7–9]. Moreover, many other charac-
teristics exist for big data, such as variability, viscosity, validity, and viability [10]. Several 
artificial intelligence (AI) techniques, such as machine learning (ML), natural language 
processing (NLP), computational intelligence (CI), and data mining were designed to 
provide big data analytic solutions as they can be faster, more accurate, and more pre-
cise for massive volumes of data [8]. The aim of these advanced analytic techniques is 
to discover information, hidden patterns, and unknown correlations in massive datasets 
[7]. For instance, a detailed analysis of historical patient data could lead to the detection 
of destructive disease at an early stage, thereby enabling either a cure or more optimal 
treatment plan [11, 12]. Additionally, risky business decisions (e.g., entering a new mar-
ket or launching a new product) can profit from simulations that have better decision-
making skills [13].

While big data analytics using AI holds a lot of promise, a wide range of challenges 
are introduced when such techniques are subjected to uncertainty. For instance, each of 
the V characteristics introduce numerous sources of uncertainty, such as unstructured, 
incomplete, or noisy data. Furthermore, uncertainty can be embedded in the entire ana-
lytics process (e.g., collecting, organizing, and analyzing big data). For example, dealing 
with incomplete and imprecise information is a critical challenge for most data mining 
and ML techniques. In addition, an ML algorithm may not obtain the optimal result if 
the training data is biased in any way [14, 15]. Wang et al. [16] introduced six main chal-
lenges in big data analytics, including uncertainty. They focus mainly on how uncertainty 
impacts the performance of learning from big data, whereas a separate concern lies in 
mitigating uncertainty inherent within a massive dataset. These challenges normally pre-
sent in data mining and ML techniques. Scaling these concerns up to the big data level 
will effectively compound any errors or shortcomings of the entire analytics process. 
Therefore, mitigating uncertainty in big data analytics must be at the forefront of any 
automated technique, as uncertainty can have a significant influence on the accuracy of 
its results.

Based on our examination of existing research, little work has been done in terms of 
how uncertainty significantly impacts the confluence of big data and the analytics tech-
niques in use. To address this shortcoming, this article presents an overview of the 
existing AI techniques for big data analytics, including ML, NLP, and CI from the per-
spective of uncertainty challenges, as well as suitable directions for future research in 
these domains. The contributions of this work are as follows. First, we consider uncer-
tainty challenges in each of the 5 V’s big data characteristics. Second, we review several 
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techniques on big data analytics with impact of uncertainty for each technique, and also 
review the impact of uncertainty on several big data analytic techniques. Third, we dis-
cuss available strategies to handle each challenge presented by uncertainty.

To the best of our knowledge, this is the first article surveying uncertainty in big data 
analytics. The remainder of the paper is organized as follows. “Background” section pre-
sents background information on big data, uncertainty, and big data analytics. “Uncer-
tainty perspective of big data analytics” section considers challenges and opportunities 
regarding uncertainty in different AI techniques for big data analytics. “Summary of mit-
igation strategies” section correlates the surveyed works with their respective uncertain-
ties. Lastly, “Discussion” section summarizes this paper and presents future directions of 
research.

Background
This section reviews background information on the main characteristics of big data, 
uncertainty, and the analytics processes that address the uncertainty inherent in big data.

Big data

In May 2011, big data was announced as the next frontier for productivity, innovation, 
and competition [11]. In 2018, the number of Internet users grew 7.5% from 2016 to over 
3.7 billion people [2]. In 2010, over 1 zettabyte (ZB) of data was generated worldwide 
and rose to 7 ZB by 2014 [17]. In 2001, the emerging characteristics of big data were 
defined with three V’s (Volume, Velocity, and Variety) [18]. Similarly, IDC defined big 
data using four V’s (Volume, Variety, Velocity, and Value) in 2011 [19]. In 2012, Veracity 
was introduced as a fifth characteristic of big data [20–22]. While many other V’s exist 
[10], we focus on the five most common characteristics of big data, as next illustrated in 
Fig. 1.

Volume refers to the massive amount of data generated every second and applies to the 
size and scale of a dataset. It is impractical to define a universal threshold for big data 
volume (i.e., what constitutes a ‘big dataset’) because the time and type of data can influ-
ence its definition [23]. Currently, datasets that reside in the exabyte (EB) or ZB ranges 
are generally considered as big data [8, 24], however challenges still exist for datasets in 
smaller size ranges. For example, Walmart collects 2.5 PB from over a million custom-
ers every hour [25]. Such huge volumes of data can introduce scalability and uncertainty 
problems (e.g., a database tool may not be able to accommodate infinitely large datasets). 
Many existing data analysis techniques are not designed for large-scale databases and 
can fall short when trying to scan and understand the data at scale [8, 15].

Variety refers to the different forms of data in a dataset including structured data, 
semi-structured data, and unstructured data. Structured data (e.g., stored in a rela-
tional database) is mostly well-organized and easily sorted, but unstructured data 
(e.g., text and multimedia content) is random and difficult to analyze. Semi-structured 
data (e.g., NoSQL databases) contains tags to separate data elements [23, 26], but 
enforcing this structure is left to the database user. Uncertainty can manifest when 
converting between different data types (e.g., from unstructured to structured data), 
in representing data of mixed data types, and in changes to the underlying struc-
ture of the dataset at run time. From the point of view of variety, traditional big data 
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analytics algorithms face challenges for handling multi-modal, incomplete and noisy 
data. Because such techniques (e.g., data mining algorithms) are designed to consider 
well-formatted input data, they may not be able to deal with incomplete and/or dif-
ferent formats of input data [7]. This paper focuses on uncertainty with regard to big 
data analytics, however uncertainty can impact the dataset itself as well.

Efficiently analysing unstructured and semi-structured data can be challenging, 
as the data under observation comes from heterogeneous sources with a variety of 
data types and representations. For example, real-world databases are negatively 
influenced by inconsistent, incomplete, and noisy data. Therefore, a number of data 
preprocessing techniques, including data cleaning, data integrating, and data trans-
forming used to remove noise from data [27]. Data cleaning techniques address data 
quality and uncertainty problems resulting from variety in big data (e.g., noise and 
inconsistent data). Such techniques for removing noisy objects during the analysis 
process can significantly enhance the performance of data analysis. For example, data 
cleaning for error detection and correction is facilitated by identifying and eliminat-
ing mislabeled training samples, ideally resulting in an improvement in classification 
accuracy in ML [28].

Velocity comprises the speed (represented in terms of batch, near-real time, real time, 
and streaming) of data processing, emphasizing that the speed with which the data is 
processed must meet the speed with which the data is produced [8]. For example, Inter-
net of Things (IoT) devices continuously produce large amounts of sensor data. If the 
device monitors medical information, any delays in processing the data and sending the 
results to clinicians may result in patient injury or death (e.g., a pacemaker that reports 
emergencies to a doctor or facility) [20]. Similarly, devices in the cyber-physical domain 
often rely on real-time operating systems enforcing strict timing standards on execution, 

Fig. 1  Common big data characteristics
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and as such, may encounter problems when data provided from a big data application 
fails to be delivered on time.

Veracity represents the quality of the data (e.g., uncertain or imprecise data). For 
example, IBM estimates that poor data quality costs the US economy $3.1 trillion per 
year [21]. Because data can be inconsistent, noisy, ambiguous, or incomplete, data verac-
ity is categorized as good, bad, and undefined. Due to the increasingly diverse sources 
and variety of data, accuracy and trust become more difficult to establish in big data 
analytics. For example, an employee may use Twitter to share official corporate informa-
tion but at other times use the same account to express personal opinions, causing prob-
lems with any techniques designed to work on the Twitter dataset. As another example, 
when analyzing millions of health care records to determine or detect disease trends, 
for instance to mitigate an outbreak that could impact many people, any ambiguities or 
inconsistencies in the dataset can interfere or decrease the precision of the analytics pro-
cess [21].

Value represents the context and usefulness of data for decision making, whereas the 
prior V’s focus more on representing challenges in big data. For example, Facebook, 
Google, and Amazon have leveraged the value of big data via analytics in their respective 
products. Amazon analyzes large datasets of users and their purchases to provide prod-
uct recommendations, thereby increasing sales and user participation. Google collects 
location data from Android users to improve location services in Google Maps. Face-
book monitors users’ activities to provide targeted advertising and friend recommenda-
tions. These three companies have each become massive by examining large sets of raw 
data and drawing and retrieving useful insight to make better business decisions [29].

Uncertainty

Generally, “uncertainty is a situation which involves unknown or imperfect information” 
[30]. Uncertainty exists in every phase of big data learning [7] and comes from many dif-
ferent sources, such as data collection (e.g., variance in environmental conditions and 
issues related to sampling), concept variance (e.g., the aims of analytics do not present 
similarly) and multimodality (e.g., the complexity and noise introduced with patient 
health records from multiple sensors include numerical, textual, and image data). For 
instance, most of the attribute values relating to the timing of big data (e.g., when events 
occur/have occurred) are missing due to noise and incompleteness. Furthermore, the 
number of missing links between data points in social networks is approximately 80% to 
90% and the number of missing attribute values within patient reports transcribed from 
doctor diagnoses are more than 90% [31]. Based on IBM research in 2014, industry ana-
lysts believe that, by 2015, 80% of the world’s data will be uncertain [32].

Various forms of uncertainty exist in big data and big data analytics that may nega-
tively impact the effectiveness and accuracy of the results. For example, if training 
data is biased in any way, incomplete, or obtained through inaccurate sampling, the 
learning algorithm using corrupted training data will likely output inaccurate results. 
Therefore, it is critical to augment big data analytic techniques to handle uncertainty. 
Recently, meta-analysis studies that integrate uncertainty and learning from data 
have seen a sharp increase [33–35]. The handling of the uncertainty embedded in the 
entire process of data analytics has a significant effect on the performance of learning 
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from big data [16]. Other research also indicates that two more features for big data, 
such as multimodality (very complex types of data) and changed-uncertainty (the 
modeling and measure of uncertainty for big data) is remarkably different from that of 
small-size data. There is also a positive correlation in increasing the size of a dataset 
to the uncertainty of data itself and data processing [34]. For example, fuzzy sets may 
be applied to model uncertainty in big data to combat vague or incorrect information 
[36]. Moreover, and because the data may contain hidden relationships, the uncer-
tainty is further increased.

Therefore, it is not an easy task to evaluate uncertainty in big data, especially when 
the data may have been collected in a manner that creates bias. To combat the many 
types of uncertainty that exist, many theories and techniques have been developed to 
model its various forms. We next describe several common techniques.

Bayesian theory assumes a subjective interpretation of the probability based on past 
event/prior knowledge. In this interpretation the probability is defined as an expres-
sion of a rational agent’s degrees of belief about uncertain propositions [37]. Belief 
function theory is a framework for aggregating imperfect data through an informa-
tion fusion process when under uncertainty [38]. Probability theory incorporates 
randomness and generally deals with the statistical characteristics of the input data 
[34]. Classification entropy measures ambiguity between classes to provide an index 
of confidence when classifying. Entropy varies on a scale from zero to one, where val-
ues closer to zero indicate more complete classification in a single class, while values 
closer to one indicate membership among several different classes [39]. Fuzziness is 
used to measure uncertainty in classes, notably in human language (e.g., good and 
bad) [16, 33, 40]. Fuzzy logic then handles the uncertainty associated with human 
perception by creating an approximate reasoning mechanism [41, 42]. The method-
ology was intended to imitate human reasoning to better handle uncertainty in the 
real world [43]. Shannon’s entropy quantifies the amount of information in a variable 
to determine the amount of missing information on average in a random source [44, 
45]. The concept of entropy in statistics was introduced into the theory of communi-
cation and transmission of information by Shannon [46]. Shannon entropy provides 
a method of information quantification when it is not possible to measure crite-
ria weights using a decision–maker. Rough set theory provides a mathematical tool 
for reasoning on vague, uncertain or incomplete information. With the rough set 
approach, concepts are described by two approximations (upper and lower) instead of 
one precise concept [47], making such methods invaluable to dealing with uncertain 
information systems [48]. Probabilistic theory and Shannon’s entropy are often used 
to model imprecise, incomplete, and inaccurate data. Moreover, fuzzy set and rough 
theory are used for modeling vague or ambiguous data [49], as shown in Fig. 2.

Evaluating the level of uncertainty is a critical step in big data analytics. Although 
a variety of techniques exist to analyze big data, the accuracy of the analysis may be 
negatively affected if uncertainty in the data or the technique itself is ignored. Uncer-
tainty models such as probability theory, fuzziness, rough set theory, etc. can be used 
to augment big data analytic techniques to provide more accurate and more mean-
ingful results. Based on the previous research, Bayesian model and fuzzy set theory 
are common for modeling uncertainty and decision-making. Table  1 compares and 
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summarizes the techniques we have identified as relevant, including a comparison 
between different uncertainty strategies, focusing on probabilistic theory, Shannon’s 
entropy, fuzzy set theory, and rough set theory.

Big data analytics

Big data analytics describe the process of analyzing massive datasets to discover pat-
terns, unknown correlations, market trends, user preferences, and other valuable 
information that previously could not be analyzed with traditional tools [52]. With 
the formalization of the big data’s five V characteristics, analysis techniques needed 
to be reevaluated to overcome their limitations on processing in terms of time and 
space [29]. Opportunities for utilizing big data are growing in the modern world of 
digital data. The global annual growth rate of big data technologies and services is 

Measuring uncertainty in  
big data

Imprecise, inaccurate, and  
incomplete data

Probability 
Theory

Shannon's 
Entropy

Vague or ambiguous data

Fuzzy Set
Theory

Rough Set 
Theory

Fig. 2  Measuring uncertainty in big data

Table 1  Comparison of uncertainty strategies

Uncertainty models Features

Probability theory
Bayesian theory
Shannon’s entropy

Powerful for handling randomness and subjective uncertainty where precision is required
Capable of handling complex data [50]

Fuzziness Handles vague and imprecise information in systems that are difficult to model
Precision not guaranteed
Easy to implement and interpret [50]

Belief function Handle situations with some degree of ignorance
Combines distinct evidence from several sources to compute the probability of specific 

hypotheses
Considers all evidence available for the hypothesis
Ideal for incomplete and high complex data
Mathematically complex but improves uncertainty reduction [50]

Rough set theory Provides an objective form of analysis [47]
Deals with vagueness in data
Minimal information necessary to determine set membership
Only uses the information presented within the given data  [51]

Classification entropy Handles ambiguity between the classes [39]
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predicted to increase about 36% between 2014 and 2019, with the global income for 
big data and business analytics anticipated to increase more than 60% [53].

Several advanced data analysis techniques (i.e., ML, data mining, NLP, and CI) and 
potential strategies such as parallelization, divide-and-conquer, incremental learn-
ing, sampling, granular computing, feature selection [16], and instance selection [34] 
can convert big problems to small problems and can be used to make better deci-
sions, reduce costs, and enable more efficient processing.

With respect to big data analytics, parallelization reduces computation time by 
splitting large problems into smaller instances of itself and performing the smaller 
tasks simultaneously (e.g., distributing the smaller tasks across multiple threads, 
cores, or processors). Parallelization does not decrease the amount of work per-
formed but rather reduces computation time as the small tasks are completed at the 
same point in time instead of one after another sequentially [16].

The divide-and-conquer strategy plays an important role in processing big data. 
Divide-and-conquer consists of three phases: (1) reduce one large problem into sev-
eral smaller problems, (2) complete the smaller problems, where the solving of each 
small problem contributes to the solving of the large problem, and (3) incorporate 
the solutions of the smaller problems into one large solution such that the large 
problem is considered solved. For many years the divide-and-conquer strategy has 
been used in very massive databases to manipulate records in groups rather than all 
the data at once [54].

Incremental learning is a learning algorithm popularly used with streaming data 
that is trained only with new data rather than only training with existing data. Incre-
mental learning adjusts the parameters in the learning algorithm over time accord-
ing to each new input data and each input is used for training only once [16].

Sampling can be used as a data reduction method for big data analytics for deriv-
ing patterns in large data sets by choosing, manipulating, and analyzing a subset of 
the data [16, 55]. Some research indicates that obtaining effective results using sam-
pling depends on the data sampling criteria used [56].

Granular computing groups elements from a large space to simplify the elements 
into subsets, or granules [57, 58]. Granular computing is an effective approach to 
define uncertainty of objects in the search space as it reduces large objects to a 
smaller search space [59].

Feature selection is a conventional approach to handle big data with the purpose of 
choosing a subset of relative features for an aggregate but more precise data repre-
sentation [60, 61]. Feature selection is a very useful strategy in data mining for pre-
paring high-scale data [60].

Instance selection is practical in many ML or data mining tasks as a major feature 
in data pre-processing. By utilizing instance selection, it is possible to reduce train-
ing sets and runtime in the classification or training phases [62].

The costs of uncertainty (both monetarily and computationally) and challenges 
in generating effective models for uncertainties in big data analytics have become 
key to obtaining robust and performant systems. As such, we examine several open 
issues of the impacts of uncertainty on big data analytics in the next section.
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Uncertainty perspective of big data analytics
This section examines the impact of uncertainty on three AI techniques for big data ana-
lytics. Specifically, we focus on ML, NLP, and CI, although many other analytics tech-
niques exist. For each presented technique, we examine the inherent uncertainties and 
discuss methods and strategies for their mitigation.

Machine learning and big data

When dealing with data analytics, ML is generally used to create models for predic-
tion and knowledge discovery to enable data-driven decision-making. Traditional ML 
methods are not computationally efficient or scalable enough to handle both the char-
acteristics of big data (e.g., large volumes, high speeds, varying types, low value density, 
incompleteness) and uncertainty (e.g., biased training data, unexpected data types, etc.). 
Several commonly used advanced ML techniques proposed for big data analysis include 
feature learning, deep learning, transfer learning, distributed learning, and active learn-
ing. Feature learning includes a set of techniques that enables a system to automatically 
discover the representations needed for feature detection or classification from raw data. 
The performances of the ML algorithms are strongly influenced by the selection of data 
representation. Deep learning algorithms are designed for analyzing and extracting valu-
able knowledge from massive amounts of data and data collected from various sources 
(e.g., separate variations within an image, such as a light, various materials, and shapes) 
[56], however current deep learning models incur a high computational cost. Distrib-
uted learning can be used to mitigate the scalability problem of traditional ML by carry-
ing out calculations on data sets distributed among several workstations to scale up the 
learning process [63]. Transfer learning is the ability to apply knowledge learned in one 
context to new contexts, effectively improving a learner from one domain by transfer-
ring information from a related domain [64]. Active learning refers to algorithms that 
employ adaptive data collection [65] (i.e., processes that automatically adjust param-
eters to collect the most useful data as quickly as possible) in order to accelerate ML 
activities and overcome labeling problems. The uncertainty challenges of ML techniques 
can be mainly attributed to learning from data with low veracity (i.e., uncertain and 
incomplete data) and data with low value (i.e., unrelated to the current problem). We 
found that, among the ML techniques, active learning, deep learning, and fuzzy logic 
theory are uniquely suited to support the challenge of reducing uncertainty, as shown 
in Fig. 3. Uncertainty can impact ML in terms of incomplete or imprecise training sam-
ples, unclear classification boundaries, and rough knowledge of the target data. In some 
cases, the data is represented without labels, which can become a challenge. Manually 
labeling large data collections can be an expensive and strenuous task, yet learning from 
unlabeled data is very difficult as classifying data with unclear guidelines yields unclear 
results. Active learning has solved this issue by selecting a subset of the most important 
instances for labeling [65, 66]. Deep learning is another learning method that can han-
dle incompleteness and inconsistency issues in the classification procedure [15]. Fuzzy 
logic theory has been also shown to model uncertainty efficiently. For example, in fuzzy 
support vector machines (FSVMs), a fuzzy membership is applied to each input point 
of the support vector machines (SVM). The learning procedure then has the benefits of 
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flexibility provided by fuzzy logic, enabling an improvement in the SVM by decreasing 
the result of noises in data points [67]. Hence, while uncertainty is a notable problem for 
ML algorithms, incorporating effective techniques for measuring and modeling uncer-
tainty can lead towards systems that are more flexible and efficient, respective.

Natural language processing and big data

NLP is a technique grounded in ML that enables devices to analyze, interpret, and even 
generate text [8]. NLP and big data analytics tackle huge amounts of text data and can 
derive value from such a dataset in real-time [68]. Some common NLP methods include 
lexical acquisition (i.e., obtains information about the lexical units of a language), word 
sense disambiguation (i.e., determining which sense of the word is used in a sentence 
when a word has multiple meanings), and part-of-speech (POS) tagging (i.e., deter-
mining the function of the words through labeling categories such as verb, noun, etc.). 
Several NLP-based techniques have been applied to text mining including informa-
tion extraction, topic modeling, text summarization, classification, clustering, question 
answering, and opinion mining [8]. For example, financial and fraud investigations may 
involve finding evidence of a crime in massive datasets. NLP techniques (particularly 
named entity extraction and information retrieval) can help manage and sift through 
huge amounts of textual information, such as criminal names and bank records, to sup-
port fraud investigations. Moreover, NLP techniques can help to create new traceability 
links and recover traceability links (i.e., missing or broken links at run-time) by find-
ing semantic similarity among available textual artifacts [69]. Furthermore, NLP and big 
data can be used to analyze news articles and predict rises and falls on the composite 
stock price index [68].

Uncertainty impacts NLP in big data in a variety of ways. For example, keyword search 
is a classic approach in text mining that is used to handle large amounts of textual data. 
Keyword search accepts as input a list of relevant words or phrases and searches the 
desired set of data (e.g., a document or database) for occurrences of the relevant words 
(i.e., search terms). Uncertainty can impact keyword search, as a document that contains 
a keyword is not an assurance of a document’s relevance. For example, a keyword search 
usually matches exact strings and ignores words with spelling errors that may still be 
relevant. Boolean operators and fuzzy search technologies permit greater flexibility in 
that they can be used to search for words similar to the desired spelling [70]. Although 
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Fig. 3  How ML techniques handle uncertainty in big data
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keyword or key phrase search is useful, limited sets of search terms can miss key infor-
mation. In comparison, using a wider set of search terms can result in a large set of ‘hits’ 
that can contain large numbers of irrelevant false positives [71]. Another example of 
uncertainty impacting NLP involves automatic POS taggers that must handle the ambi-
guity of certain words (Fig. 4) (e.g., the word “bimonthly” can mean twice a month or 
every two months depending on the context, the word “quite” having different mean-
ing to American and British audiences, etc.), as well as classification problems due to 
the ambiguity of periods (‘.’) that can be interpreted as part of a token (e.g., abbrevia-
tion), punctuation (e.g., full stop), or both [72, 73]. Although recent research indicates 
that using IBM Content Analytics (ICA) can mitigate these problems, there remains 
the open issue in this topic regarding large-scale data [73]. Also, uncertainty and ambi-
guity impact the POS tagging especially when using biomedical language, which quite 
different from general English. It has been reported uncertainty and not sufficient tag-
ging accuracy when trained taggers from Treebank corpus and applied to biomedical 
data [74]. To this end, stream processing systems deal with high data throughput while 
achieving low response latencies. The integration of NLP techniques with the help of 
uncertainty modeling such as fuzzy and probabilistic sets with big data analytics may 
offer the ability to support handling big textual data in real time, however additional 
work is necessary in this area.

Computational intelligence and big data

CI includes a set of nature-inspired computational techniques that play an important 
role in big data analysis [75]. CIs have been used to tackle complicated data processes 
and analytics challenges such as high complexity, uncertainty, and any processes where 
traditional techniques are not sufficient. Common techniques that are currently availa-
ble in CI are evolutionary algorithms (EAs), artificial neural networks (ANN), and fuzzy 
logic [76], with examples spanning search-based problems such as parameter optimiza-
tion to optimizing a robot controller.

CI techniques are suitable for dealing with the real-world challenges of big data as 
they are fundamentally capable of handling numerous amounts of uncertainty. For 
example, generating models for predicting emotions of users is one problem with 
many potential pitfalls for uncertainty. Such models deal with large databases of infor-
mation relating to human emotion and its inherent fuzziness [77]. Many challenges 

Fig. 4  Words with more than one POS tag (ambiguity)
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still exist in current CI techniques, especially when dealing with the value and verac-
ity characteristics of big data. Accordingly, there is great interest in developing new 
CI techniques that can efficiently address massive amounts of data and to have the 
ability to quickly respond to modifications in the dataset [78]. As reported by [78], big 
data analysis can be optimized by employing algorithms such as swarm intelligence, 
AI, and ML. These techniques are used for training machines in performing predic-
tive analysis tasks, collaborative filtering, and building empirical statistical predictive 
models. It is possible to minimize the complexity and uncertainty on processing mas-
sive volumes of data and improve analysis results by using CI-based big data analytics 
solutions.

To support CI, fuzzy logic provides an approach for approximate reasoning and mod-
eling of qualitative data for uncertainty challenges in big data analytics [76, 79, 80] using 
linguistic quantifiers (i.e., fuzzy sets). It represents uncertain real-word and user-defined 
concepts and interpretable fuzzy rules that can be used for inference and decision-mak-
ing. Big data analytics also bear challenges due to the existence of noise in data where 
the data consists of high degrees of uncertainty and outlier artifacts. Iqbal et  al. [76] 
have demonstrated that fuzzy logic systems can efficiently handle inherent uncertainties 
related to the data. In another study, fuzzy logic-based matching algorithms and MapRe-
duce were used to perform big data analytics for clinical decision support. The devel-
oped system demonstrated great flexibility and could handle data from various sources 
[81]. Another useful CI technique for tackling the challenges of big data analytics are 
EAs that discover the optimal solution(s) to a complex problem by mimicking the evolu-
tion process by gradually developing a population of candidate solutions [73]. Since big 
data includes high volume, variety, and low veracity, EAs are excellent tools for analyzing 
such datasets [82]. For example, applying parallel genetic algorithms to medical image 
processing yields an effective result in a system using Hadoop [83]. However, the results 
of CI-based algorithms may be impacted by motion, noise, and unexpected environ-
ments. Moreover, an algorithm that can deal with one of these problems may function 
poorly when impacted by multiple factors [79].

Summary of mitigation strategies
This paper has reviewed numerous techniques on big data analytics and the impact 
of uncertainty of each technique. Table  2 summarizes these findings. First, each AI 
technique is categorized as either ML, NLP, or CI. The second column illustrates how 
uncertainty impacts each technique, both in terms of uncertainty in the data and the 
technique itself. Finally, the third column summarizes proposed mitigation strategies 
for each uncertainty challenge. For example, the first row of Table  2 illustrates one 
possibility for uncertainty to be introduced in ML via incomplete training data. One 
approach to overcome this specific form of uncertainty is to use an active learning 
technique that uses a subset of the data chosen to be the most significant, thereby 
countering the problem of limited available training data.

Note that we explained each big data characteristic separately. However, combining 
one or more big data characteristics will incur exponentially more uncertainty, thus 
requiring even further study.
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Discussion
This paper has discussed how uncertainty can impact big data, both in terms of analytics 
and the dataset itself. Our aim was to discuss the state of the art with respect to big data 
analytics techniques, how uncertainty can negatively impact such techniques, and exam-
ine the open issues that remain. For each common technique, we have summarized rel-
evant research to aid others in this community when developing their own techniques. 
We have discussed the issues surrounding the five V’s of big data, however many other 
V’s exist. In terms of existing research, much focus has been provided on volume, vari-
ety, velocity, and veracity of data, with less available work in value (e.g., data related to 
corporate interests and decision making in specific domains).

Future research directions

This paper has uncovered many avenues for future work in this field. First, additional 
study must be performed on the interactions between each big data characteristic, as 
they do not exist separately but naturally interact in the real world. Second, the scal-
ability and efficacy of existing analytics techniques being applied to big data must be 
empirically examined. Third, new techniques and algorithms must be developed in ML 
and NLP to handle the real-time needs for decisions made based on enormous amounts 
of data. Fourth, more work is necessary on how to efficiently model uncertainty in ML 
and NLP, as well as how to represent uncertainty resulting from big data analytics. Fifth, 
since the CI algorithms are able to find an approximate solution within a reasonable 
time, they have been used to tackle ML problems and uncertainty challenges in data 
analytics and process in recent years. However, there is a lack of CI metaheuristics algo-
rithms to apply to big data analytics for mitigating uncertainty.
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Table 2  Uncertainty mitigation strategies

Artificial intelligence Uncertainty Mitigation

Machine learning Incomplete training samples
Inconsistent classification
Learning from low veracity and noisy 

data

Active learning [65, 66], Deep learning 
[15, 63], Fuzzy sets [67], Feature selec-
tion [9, 60, 61]

Learning from unlabeled data Active learning [65, 66]

Scalability Distributed learning [12, 63]
Deep learning [56]

Natural language processing Keyword search Fuzzy, Bayesian [68, 70, 71]

Ambiguity of words in POS ICA [73], LIBLINEAR and MNB algorithm 
[68]

Classification (simplifying language 
assumption)

ICA [73], Open issue [68]

Computational intelligence Low veracity, complex and noisy data Fuzzy logic, EA [76, 79, 80, 82]

High volume, variety Swarm intelligence, EA [78, 81, 82], 
Fuzzy-logic based matching algo-
rithm, EA [81, 82]
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