
Diftong: a tool for validating big data 
workflows
Raya Rizk1*  , Steve McKeever1, Johan Petrini2 and Erik Zeitler2

Introduction
Due to the rapid development of data there has been an exponential growth in the num-
ber of applications that use big data techniques [1]. Many applications and workflows 
that process data in diverse domains and transform them into business value have been 
developed. In order for those transformations to provide solutions for business problems 
in organisations, it is necessary to perform data analysis based on valid inputs and then 
ensure the correctness and accuracy of the outputs produced at later stages [2]. Thus, 
process validation is necessary to check the results with the expected behaviour [3].

The demand for implementing effective and efficient validation methods has 
increased in order to ensure data quality in all processing phases [4]. Data quality 
can be defined as the degree to which the state of data serves its purpose in a given 
context [5]. According to Experian Data Quality [6], 75% of businesses are wasting an 
average of 14% of their revenue due to poor data quality. In addition, Gartner research 
indicates that the average annual impact of such low data quality on organisations is 
as high as $9.7 million [7]. This can also be linked to IBM’s estimation in 2016 [8], 
where they stated that the yearly cost of poor quality data in the US alone was $3.1 
trillion. This is likely to worsen with the increased amount and complexity of data. It 
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is critical to maintain the quality as it is essential to derive value from data that can 
have a profound impact on companies decision-making processes [9].

However, the large volume and fast velocity in which heterogeneous data is being 
generated and processed makes measuring data quality difficult [2]. Most big data sets 
lack clear structure since the data are extracted from a diversity of data sources. This 
poses challenges on big data testing processes [10]. Furthermore, manual data valida-
tion is difficult and inefficient [3] as mentioned in the Harvard Business Review [11] 
where about 50% of knowledge workers’ time is wasted trying to identify and correct 
errors. Thus, automated validation is required to detect the effect of every data trans-
formation that has occurred. Numerous papers have been published concerning big 
data and their applications, but they seldom address the validation process [3] and 
how to assure data quality during different stages of a big data application [5]. Most 
of the current tools only provide the common basic data validation functions, such as 
checking null values and data types, ranges, and constraints [5]. Thus, a more detailed 
data validation process that examines all values in a data set and detects potential 
errors is still lacking.

Companies develop workflows (data transformations) to process data continuously. 
Such workflows define and manage a series of steps that process and transform data [12]. 
They then store the new results in databases to be used for planning and decision-mak-
ing, or as inputs to other workflows. This process can be protracted and complex as it 
deals with a large amount of data with many integrations. Consequently, managing such 
workflows can be difficult [13] and deploying them without validation can lead to unde-
sirable outputs [3].

Driven by evolving business needs and due to the rapid increase in the volume and 
variety of data, these workflows often need to be improved and updated. A workflow can 
be improved through the implementation of more efficient and optimised transforma-
tions. The updates can be related to the inclusion of new data models or meeting chang-
ing business requirements. In addition, any infrastructure upgrade can affect the results 
of a transformation even if no changes to the workflow were conducted.

It is imperative to implement a data validation tool that automatically compares the 
outputs of a pre-updated workflow and its post-update counterpart. This is accom-
plished by taking the same inputs and indicating whether the results of the new work-
flow match the previous one, or whether it produces incorrect results, as illustrated in 
Fig. 1. Laranjeiro et al. [14] present an approach to test data-centric services with poor 
quality data and no validation. Their study highlighted vulnerabilities arising from poor 
data at both the application level but also at the middleware level too.

Starting from the needs of Klarna Bank AB, a fintech company, which offers online 
consumer credit and payment solutions [15], this study provides a new solution that 
attempts to tackle some of the big data validation problems. Klarna extends soft credit 
to consumers mainly by providing payment products and flexible credit lines in their 
Checkout product, which is integrated with numerous on-line merchants. To make 
credit and fraud assessments for each request in real-time, it is mission critical to have 
adequate data continuously available. Numerous heavyweight transformations are exe-
cuted on a regular basis to provide data for these risk and fraud assessments. It is impor-
tant that these transformations are accurate, quick, and scalable.
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The following two examples illustrate how Klarna leverages automatic comparison of 
databases in order to improve their company workflows: 

Credit risk assessment capabilities	� A workflow (w1) produces data for real-time credit 
risk assessment and decision making. To enhance 
data freshness w1 was ported to a faster execution 
engine resulting in a new version of the workflow 
(w2). After running w1 and w2 side by side on the 
same input and doing automatic comparison of 
their respective result databases, some differences 
were identified. A root cause analysis was initiated 
with an effort to discard any potential non-deter-
ministic behaviour within the workflow. This was 
accomplished by running w1 in parallel with itself 
(w1baseline ). The same differences were noticed 
for w1 and w1baseline . Since the non-determinism 
was benign, it was concluded that enhancing data 
freshness, by moving to a faster execution engine, 
did not introduce any errors and the workflow was 
deployed in production.

Fraud risk assessment capabilities	� A workflow (w1) produces data for real-time fraud 
risk assessment and decision making. To enhance 
data freshness w1 was ported to a faster execution 
engine (w2). An automatic comparison of w1 and 
w2’s result databases showed some differences. 
Running w1 against w1baseline resulted in the same 
differences and identified non-determinism in the 
workflow. However, this time the differences were 
not benign but a consequence of semantic incon-
sistencies in the data. After updating the workflow 
to eliminate those inconsistencies, w1 and w2 were 
once again run in parallel. Their respective result 
databases were compared, found to be identical 

Fig. 1  Validating the outputs of two different versions of a workflow
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and the workflow was deployed in production. In 
this case, not only did the comparison give at hand 
that moving to a faster execution engine did not 
introduce any errors in the data, it also resulted in 
improved data quality.

In Klarna, automatic comparison of databases enables a more agile approach to work-
flow improvements and updates. More specifically, such comparisons:

1.	 Reduce the delay in improving workflow performance. This occurs through the rapid 
identification of any differences (rows and columns) in the result data produced by 
two versions of a workflow. This in turn makes it easier for the workflow owner to 
trust and verify the correctness of the improvement.

2.	 Improve the quality of the data due to easier identification of issues such as corrupt 
information and inconsistent semantics.

This paper presents a general solution for comparing any two databases that have the 
same schema. We will only focus on parts of the process validation stage of the over-
all big data testing process and not on the data staging or output validation that are 
explained later in the "Background" section.

The paper is structured as follows. The remainder of this section presents some related 
work in the field. In addition, it describes the background and covers the concept of big 
data, its testing and validation, in addition to the development frameworks that are used 
in this project. A detailed explanation of the proposed validation process and its imple-
mentation is listed in Section two. Section three introduces Diftong, our validation tool, 
and shows two test cases then analyses and discusses the results. Conclusions are pre-
sented in Section four.

Related work

Validation techniques have struggled to cope with the exploding size of data. Current 
research in big data quality considers the issue in broad terms, but there is little focus on 
how to effectively validate big data applications. Gao et al. [5] discuss big data validation 
and quality assurance by focusing on validation processes which includes data collec-
tion, cleaning, transformation, loading, analysis, and reporting. Their study presents a 
comparison of eight existing data validation tools concluding that all of them provide the 
basic validation criteria that are set in the paper such as checking data types, formats, 
ranges, logic, and null values, even if this comes with some limitations.

More detailed analysis was undertaken by the same authors a year later [9] where 
they conducted a case study and displayed the differences between the results that vari-
ous data validation tools generate when validating the same set of data. It is worth not-
ing that there is a lack of tools that generate descriptive statistics. Moreover, the study 
defines a quality checklist for big data including non-basic data validation types such as 
checking for duplication in data, inconsistency, and incompleteness. The authors reflect 
on the current data validation solutions and discuss the primary challenges and needs. 
In general, they stress that there is a gap in the available research in the area and that 
data quality issues are still open. Hence, it follows that further research and studies in 
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this field should be conducted as only few published papers addresses big data validation 
methods.

Other studies focused on the general concept of data quality applied to big data. 
Firmani et  al. [16] highlight that it could be challenging to define a unique concept 
of big data quality due to the fact that data quality is multidimensional and difficult 
to characterise even in the case of structured data. The authors attempt to define a 
method to apply the various notions of quality to specific types of big data. Accord-
ing to a classification proposed by the United Nations Economic Commission for 
Europe (UNECE), there are three main types of data sources in relation to big data: 
human-sourced information, process-mediated, and machine-generated sources. The 
paper describes a data model for each data source by quantifying data quality and its 
dimensions (accuracy, correctness, redundancy, readability, accessibility, consistency, 
usefulness, and trust) using metrics specific to the context and based on the charac-
teristics of big data.

The overall aim of the study is to identify further research directions in the area of 
big data quality, and which was the base of another study conducted by Arolfo et al. 
[17] later on. In their paper [17], the authors also argue that data quality is depend-
ent on the context and relative to the problem to be solved. In other words, different 
data quality dimensions and metrics can be considered for various applications areas. 
The paper defines how data quality dimensions can be used in a real-time scenario to 
address the quality of Twitter feeds. Thus, the study focuses on the human-sourced 
information type in reference to Firmani et  al. [16], and only considers metrics for 
four dimensions related to this data source (readability, completeness, usefulness, and 
trust). On the other hand, our study can be considered as a part of the process-medi-
ated type since it concerns banking, transactions, and e-commerce. Hence, the data is 
more structured than in the human-sourced generated type. As a result, the accuracy 
dimension (that is explained in "Background" section later) provides a valuable tool 
for improving the overall data quality in this type of applications as it deals with the 
closeness of values to a what is considered as the correct representation.

Both studies [16, 17] have emphasised that more research in the area is needed, 
as there has not been much work regarding data quality in the context of big data 
despite of the relevance of the topic.

There are some tools that attempt to validate big data. QuerySurge [18] is a tool that 
compares data that reside in two data stores (source and target). The input of this tool 
is two queries (QueryPairs) to be run against both source and target data stores, and 
the output is reflected in showing the difference in row numbers along with listing 
the values that differ in both stores. The tool comes with some limitations regarding a 
maximum row size of a result set and a maximum number of QueryPairs to compare 
in one run. QuerySurge is a closed source software that can be distributed under a 
licensing agreement.

Another example of a tool that attempts to calculate the delta between two values 
of large data sets is BigDiffy [19], an open source library for pairwise field-level sta-
tistical differences of data sets developed by Spotify. Delta is defined by Spotify as “a 
change of any changeable quantity" and the tool provides a record-oriented compari-
son that is undertaken on a columnar level based on unique keys. BigDiffy generates 
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statistics and corresponds to the column validation step in Diftong, and which is a 
part of the whole validation process that is proposed in this paper.

Background

Relational Database Management Systems (RDBMS) have been the dominant model 
for more than 40 years. The relational model has a rigid schema with a clear struc-
ture [20]. Despite the robustness of RDBMS, it has limitations. It cannot handle the 
increasing size of data or process unstructured information [20].

Big data is more than just size, it is also varied and fast-growing. Hence it poses 
challenges to data management [21]. Non-relational databases do not use the RDBMS 
principles and do not store the data in tables [20]. The main characteristic of these 
databases is having a schema-free [22] format that results in unstructured data that 
the user has to interpret when retrieving it. The absence of structure, rules, and con-
straints makes it difficult to maintain clean and correct data without duplicates. It 
also affects the overall quality of information and introduces complexity in the testing 
and validation processes.

Testing software that uses big data techniques is significantly more complex than 
testing other more traditional data management applications. Simple test cases can-
not be used for big data applications as processing the data requires that it be trans-
ferred and transformed at different points during each process of the application, 
costing time [1]. In order to test big data applications effectively, continuous valida-
tion throughout the transformation stages is advocated [23].

There are different types of tests that can be conducted to maintain the standard of 
data. Data quality includes various dimensions that should be measured such as data 
accuracy, correctness, redundancy, readability, accessibility, consistency, usefulness, 
and trust [24]. Data accuracy is usually measured by comparing the data in multiple 
data sources, as this quality factor refers to how close the results are to the values that 
are accepted as being true [5]. We mainly focus on this factor in the validation of data 
in our work.

The processing of big data, and thus its validation, can be divided into three differ-
ent stages [25] as shown in Fig. 2:

1	 Data staging: Loading data from various external sources. Validation includes verify-
ing that the needed data were extracted and retrieved correctly, then uploaded into 
the system without any corruption.

2	 Processing: In this step, it is required to validate the results of a parallelized job appli-
cation and other similar big data application processes, while ensuring the accuracy 
and correctness of the data.

3	 Output: Extracting the output results, and where validation includes checking 
whether the data have been loaded correctly into the target system for any further 
processing.

We used the Hadoop framework that supports parallel processing. It was designed 
to scale up to thousands of machines that offer local storage and computation. Hadoop 
achieves scalability and fault tolerance by distributing and replicating the data and 
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parallelizing the work across multiple nodes, effectively moving the computations closer 
to the data [27]. This helps with solving problems on large and complex data sets in a 
reliable manner, as it also provides automatic fault tolerance and recovery.

Apache Hive is a data warehouse built on top of Hadoop [28] to reduce the complexity 
of big data frameworks to gain easier access to the desired data. Due to the limited query 
capabilities of Hadoop and the complexity of the MapReduce framework, developers 
were required to write complex programs that might be hard to maintain and reuse even 
for simple analysis [29]. In contrast, Hive supports queries expressed in a declarative 
language similar to SQL—called HiveQL—and has its own Data Definition Language 
(DDL) and Data Manipulation Language (DML) commands. Those queries are compiled 
into MapReduce jobs that use the parallel processing in Hadoop [30]. Hive also provides 
a mechanism to project structure onto the large volume of data that reside in distributed 
storage. It facilitates the management of these data sets by executing queries using an 
SQL-like query language as it makes the data in Hadoop look like it is stored in tables 
that consist of a number of rows, and each row has a specified number of columns [29].

In order to make sense of the unstructured nature of big data, a certain level of meta-
data is to be expected. In Hive, this is commonly achieved through a meta-store service; 
it is a system catalog, created in a RDBMS, that contains within itself information and 
details about the objects definitions (schemas, tables, partitions, columns, etc.) [30]. By 
separating parsing instructions from the actual data, the meta-store acts as a form of 
index for otherwise impenetrable data files. In addition, meta-store deals with supple-
mentary statistics concerning the data, providing utility in data exploration, query opti-
misation, and query compilation [29].

Conventionally, MapReduce has been the engine used to run Hive jobs in Hadoop. 
MapReduce has gradually been replaced by other more efficient execution engines, such 
as Tez and Spark. These execution engines are capable of executing more efficient Hive 

Fig. 2  Big data validation stages [26]
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query execution plans, and are overall more resource efficient [30]. In particular, we have 
seen how one single Tez job can replace multiple MapReduce jobs in the applications.

A number of configuration variables in Hive are available to change the behaviour of 
the default installation settings. For instance, in order to get the number of rows in a 
table faster, Hive provides configurations to store the results of some queries—such as 
the COUNT statistics—in the meta-store [31]. This optimises the statistics collection 
as the values will be read from the meta-store directly instead of being calculated each 
time. Those variables can be configured using the SET command that works on a session 
level [32]. In addition, setting the “hive.stats.autogather" configuration to “true" enables 
automatic gathering and updating of statistics during operations, and “hive.compute.
query.using.stats" answers queries like MIN, MAX, and COUNT solely using statistics 
stored in the meta-store.

Methods and implementation
This section describes the implementation of Diftong, which enables large scale valida-
tion of heavyweight data transformations. A small running example is used to illustrate 
the steps of the process.

To provide an overview of the changes, Diftong generates a statistical summary on 
both row and column levels for all tables. Furthermore, to help analysts and engineers 
perform root cause analysis of changes, Diftong also provides a detailed description of 
each difference in the form of a change capture. The validation is performed in three 
stages: Deduplication, Row validation, and Column Validation. Figure 3 displays a high-
level illustration of the validation process with a summary of the generated statistics.

Our running example consists of two databases “DB1" and “DB2" with identical sche-
mas that are to be validated. Each database contains a table named “Users" with four col-
umns (id, name, salary, and birthday) as displayed in Table 1, while Fig. 4 shows the data 
in the “Users" table present in both databases.

Fig. 3  High-level illustration of the validation process
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The validation stages are further detailed in the following sections.

Deduplication

As key constraints are not necessarily enforced in Hive, duplicate rows may be pre-
sent. A duplication in data is where all values in one row match exactly all the values 
in another row. Each row in both databases is counted and the results are stored for 
use in subsequent stages of the validation process. Figure 5 illustrates the deduplica-
tion step.

Based on the data in the “Users" table that is shown in Fig. 4, all records appear once 
in each table except for the record with the id = 2 in “DB2". This record has two iden-
tical rows where the values of all columns are equal. Hence, the COUNT for all the 
rows is 1 except for the record with the id = 2 in “DB2", which is 2 instead.

Table 1  Original databases schema—“Users” table

Column name Data type

id int

name string

salary int

birthday timestamp

Fig. 4  Data in “Users" table—“DB1" and “DB2"

Fig. 5  The deduplication step
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After the deduplication step, two new databases are created. Each database contains 
the same tables and data as the original databases before deduplication, but with one 
additional column “row_count" that shows the number of times each row appears in 
a table. Table 2 displays the schema of the databases “DDB1" and “DDB2"—dedupli-
cated copies of “DB1" and “DB2" respectively—while Fig. 6 shows their data.

The results show that the different number of records for the user with id = 2 is 
detected. With this count in place, it is easy to spot this discrepancy in the row valida-
tion stage described next.

The implementation steps for the deduplication stage are as follows. First, a dedupli-
cated database instance is created by extracting all “CREATE TABLE" statements from 
DB1 and DB2. Each table is extended with an additional column called “row_count" as 
displayed in Script 1. By using COUNT and GROUP BY in this script, all duplicates in 
the original database are represented in the new deduplicated database using only one 
row with the extra column “row_count".

CREATE TABLE IF NOT EXISTS {deduplicated database name}.{table name} AS
SELECT {columns names}, COUNT(∗) AS row count
FROM {original database name}.{table name}
GROUP BY {columns names};

Script 1 Template for creating a table in the deduplicated database

Row validation

In order to get an overview of the total number of changes in each table, the differences 
between the rows of all tables in the two deduplicated databases are calculated. Consider 
the case of two databases “DB1" and “DB2", deduplicated respectively into “DDB1" and 

Table 2  Deduplicated databases schema—“Users" table

Column name Data type

Id int

Name string

Salary int

Birthday timestamp

Row_count int

Fig. 6  Data in “Users" table—“DDB1" and “DDB2"
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“DDB2". Figure 7 shows a simple representation of this step where the following statis-
tics are generated:

To calculate the number of differences in the data values of each row (7) as a per 
cent (8), there is a need to detect which records in each table from “DDB1" have been 
changed in “DDB2" and what those changes are.

Figure 8 illustrates the differences in the values of all rows and columns in the “Users" 
table. It can be seen that five rows out of seven are different between “DDB1" and 
“DDB2", thus the difference is 71.4%.

As a result, Table  3 displays the calculated row statistics for the “Users" table and 
depicts the number of changes on a row-based level with the difference as a per cent.

We describe how these statistics, from (1) to (8), are calculated as follows:
Row statistics (1), (2), (4), and (5): COUNT(*) in Hive is used to calculate the total 

number of rows in all tables of the databases “DB1", “DB2", “DDB1", and “DDB2".

(1)Number of rows in DB1

(2)Number of rows in DB2

(3)Absolute difference of DB1 and DB2

(4)Number of rows in DDB1

(5)Number of rows in DDB2

(6)Absolute difference of DDB1 and DDB2

(7)Total number of differences between DDB1 and DDB2

(8)Per cent of differences between DDB1 and DDB2

Fig. 7  The row validation step
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Row statistics (3) and (6): The absolute difference of the number of rows between 
(“DB1", “DB2") and (“DDB1", “DDB2") is calculated using the function ABS in Hive.

Row statistics (7): To calculate the total number of differences in the data of each table 
in “DDB1" and “DDB2", there is a need to compare the values in each row and detect any 
potential changes. Those differences and changes are referred to as the “delta" values. 
The differences are stored in row delta tables that help in generating the related statistics 
at a later step in this validation stage. The chosen method to store the delta tables is to 
create a new database that is used for both row and column validation stages.

One way to reflect changes in data is to represent each change as a record in the delta 
table. Each record contains the affected values with a validation status. The validation 
status can be either INSERT (when there is a new record in “DDB2" that does not exist 
in “DDB1") or DELETE (when a record exists in “DDB1" but not in “DDB2"). Note that 
the UPDATE status is actually a DELETE operation followed by an INSERT of the new 
values.

Table  4 displays an example of a possible representation of the differences that are 
shown in Fig. 8 for “Users" tables in both deduplicated databases, along with the related 
delta validation status. In other words, and based on the validation status of each record 
of the row delta calculation, applying the changes in sequence on the related table in the 
first deduplicated database will result in the data of the same table in the second one.

In order to implement the previous representation using Hive, delta values are calcu-
lated and stored in the newly created delta tables based on Script 2. The row delta table 
contains all columns from both tables that are being compared along with the validation 
status that indicates what kind of change (INSERT or DELETE) has occurred on the data 

Fig. 8  Row differences between “Users" table in “DDB1" and “DDB2"

Table 3  Row validation statistics—“Users" table

DB1 count 3 DDB1 count 3

DB2 count 5 DDB2 count 4

Absolute difference of DB1 and DB2 2 Absolute difference of DDB1 and DDB2 1

Difference count 5 Difference in per cent 71.4%



Page 13 of 27Rizk et al. J Big Data            (2019) 6:41 

in those tables. Table 5 shows the schema of the newly created validation database “Vali-
dationDB" with the “Users_row_delta" table.

In Script 2, a full join between the tables in “DDB1" and “DDB2" is applied based on 
a unique value that identify each record, and the related validation status is then calcu-
lated. Lastly, the result is filtered to get the rows that are only represented in either table.

Note that since there are no primary keys to identify the rows in a big data set, a new 
user defined hash function, “multi_hash", was implemented to generate a unique identi-
fier for each row based on the values in all its columns. The function “multi_hash" takes 
one input argument as an array of strings and concatenates its values taking into account 
the length of each string, then returns the SHA-512 hash for the concatenation of all 
string values in the input array. This is done to prevent any collision that might appear 
from moving text from one string to the next. Thus, moving any text will not produce 
collisions since the lengths would change. As an example, applying “multi_hash" func-
tion on the array of strings [‘hello’, ‘world!’] (the concatenation is ‘hello5world!6’) results 
in a hex string that is different than the generated hash from the same function for the 
array [‘hellow’, ‘orld!’], (the concatenation is ‘hellow6orld!5’) as the length of each word is 
taken into account. The hash value that was obtained from “multi_hash" is then used to 
compare and join similar records in those tables.

Table 4  Validation status for row delta table—“Users" table

Id Name Salary Birthday Row_count Validation_status

2 Mark 31,000 1987-06-23 02:00:00 1 DELETE

2 Mark 31,000 1987-06-23 02:00:00 2 INSERT

3 Sofie 25,000 1990-08-07 08:00:00 1 DELETE

3 Sofia 25,500 1990-08-07 08:30:00 1 INSERT

4 Anna 29,000 1992-09-22 10:15:00 1 INSERT

Table 5  Validation database schema—“Users_row_delta" table

Column name Data type

Id1 int

Name1 string

Salary1 int

Birthday1 timestamp

Row_count1 int

Id2 int

Name2 string

Salary2 int

Birthday2 timestamp

Row_count2 int

Validation_status string
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CREATE TABLE {validation database name}.{row delta table name}AS
SELECT ddb1.{columns names}, ddb2.{columns names},
CASE WHEN ddb1.hash IS NULL THEN ’INSERT’ ELSE ’DELETE’ END
AS validation status
FROM

(SELECT multi hash(ARRAY({columns names})) AS hash, ∗
FROM {deduplicated database1 name}.{table name}) ddb1

FULL JOIN
(SELECT multi hash(ARRAY({columns names})) AS hash, ∗
FROM {deduplicated database2 name}.{table name}) ddb2

ON (ddb1.hash = ddb2.hash)
−− Look for all the rows that are only represented in either table
WHERE ddb2.hash IS NULL OR ddb1.hash IS NULL;

Script 2 Template for creating a row delta table in the validation database

As a result, Table 6 displays the items of data that have been changed with the related 
validation status column as the result of applying Script 2 on the “Users" table. A bet-
ter representation of the data in “Users_row_delta" table is shown earlier in this section 
using Table 4.

After extracting the results from the row validation delta tables, the total number of 
differences in values of rows between “DDB1" and “DDB2" can be calculated based on 
counting the number of rows in those row delta tables in the validation database using 
COUNT(*).

Row statistics (8): The per cent difference in each table is calculated by dividing the 
total number of differences that are calculated in (7) by the sum of the number of rows in 
both deduplicated databases tables, then multiplying the result by 100 and rounding it to 
one decimal place.

Running the “ANALYZE TABLE .. COMPUTE STATISTICS" query on all tables in 
“DDB1" and “DDB2" and on all row delta tables in the validation database helps in opti-
mising the calculation of row statistics [31]. Note that tables in “DB1" and “DB2" were 
already analysed during the deduplication phase.

Column validation

Starting from the results of the row validation step, column based statistics are calculated 
for the tables that contain differences in order to get a deeper insight of the changes. It 
is important to first know how many changes have occurred and in what range. This 
can be achieved by calculating the total number of differences along with the minimum 
and maximum difference in the data. Calculating the average was also considered at the 
beginning but it did not give much added value to the results, so it was excluded from 
the generated statistics at a later stage.

Moreover, it is significant to measure the spread of the differences and get a deeper 
understanding of the data distribution. This can be obtained using the quartile statistics. 
By dividing the differences into four equal parts, the estimated quartiles and the median 
of the distribution can be calculated using 25th, 50th, and 75th percentiles of the data. 
Those percentiles reflect the first quartile (Q1—the middle number between the small-
est number and the median), the second quartile (Q2—the median of the data), and the 
third quartile (Q3—the middle value between the median and the highest number in 
the data set) respectively [33]. Those measurements provide a better gauge of the overall 
data distribution as they ignore the values that are outside of the expected range, i.e. our 
measurements are not affected by outliers.
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Consequently, the following statistics are generated for each column in the tables that 
are being validated:

Consider the case of two databases “DDB1" and “DDB2", deduplicated copies of “DB1" 
and “DB2", in addition to a validation database “ValidationDB" that contains the row 
delta tables from the previous step. In order to generate the previous statistics, there is a 
need to compare and calculate the delta between each value inside the tables of “DDB1" 
and the related one in “DDB2". Figure 9 illustrates how each value is being compared in 
order to generate the needed statistics.

Figure 10 shows the differences in values of the columns in the “Users" table between 
“DDB1" and “DDB2". It can be seen that there is one difference in each of the columns. 
Note that any identical rows in both databases (such as the record with id = 1 ), or rows 
that only exist in one of the databases (like the record with id = 4 ) will not be a part of 
this validation stage.

As a result, Table 7 displays the calculated column statistics for the “Users" table. It 
shows the total number of differences in the data along with the related maximum and 
minimum delta values. In addition, it displays the three quartile values of each column. 
Notice that the numbers in all statistics match in this example due to having a single dif-
ference in each column.

The implementation of the column validation step starts with comparing the values 
in each column and calculating the delta between them. The differences are stored in 
new delta tables that help in generating the related statistics at a later step in this vali-
dation stage. Similar to the row validation stage, the column delta tables are stored in 
“ValidationDB".

For each record, the differences between all columns are calculated and stored in col-
umn delta tables that have the schema shown in Table 8.

CREATE TABLE {validation database name}.{col delta table name} AS
SELECT delta1.{column id}, calc diff(delta1.{columns names}, delta2.{columns names})
AS {columns names} diff
FROM {validation database name}.{row delta table name} delta1
JOIN {validation database name}.{row delta table name} delta2
ON (delta1.{column id} = delta2.{column id});

Script 3 Template for creating a column delta table in the validation database

Based on the data of row delta tables in “ValidationDB" (Table 6 is given as an exam-
ple), column delta tables are generated using Script 3. First, a self join is applied on the 
row delta tables based on the id column of both “DDB1" and “DDB2" tables. Note that 
the id column should be provided by the user due to the lack of primary keys when 

(9)Total number of differences in data

(10)Maximum difference in data

(11)Minimum difference in data

(12)First quartile (25th percentile)

(13)Second quartile (50th percentile)−median

(14)Third quartile (75th percentile)



Page 17 of 27Rizk et al. J Big Data            (2019) 6:41 

Fig. 9  The column validation step

Fig. 10  Column differences between two tables in “DDB1" and “DDB2"

working with big data. Then, and for each column, the difference between all values of 
the tables in both deduplicated databases is calculated with the help of a user defined 
function, “calc_diff", that takes two values of the same type (integer, double, string, date, 
timestamp, or boolean) as parameters then calculates and returns the delta between 
them.

As a result, Table 9 displays the result of running Script 3 on “Users_row_delta" table. 
Note that NULL is stored if both values that are being compared are identical, i.e. the 
delta is equal to zero, or if both inputs are NULL.

Starting from the values in the column delta table, column statistics, from (9) to (14), 
are generated. A description of how they were generated is provided as follows:

Column statistics (9), (10), and (11): Calculating the count of changes along with the 
minimum and maximum differences for all columns can be costly. In order to opti-
mise generating those statistics, and similar to the approach that is used in the previous 
validation stages, Hive configurations are set to obtain the values of MIN, MAX, and 
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COUNT using the statistics that are stored in the meta-store instead of calculating them 
each time.

Consequently, and in addition to analyzing the tables as in the row validation step, 
another script “ANALYZE TABLE .. COMPUTE STATISTICS FOR COLUMNS" [34] is 
executed to analyse column delta tables in “ValidationDB" and compute column-level 
statistics for all existing columns.

As for the next step, executing “DESCRIBE FORMATTED" script in HiveQL [34] on 
all the columns that hold information regarding the existing differences will generate the 
needed numbers to be used in the column statistics. The minimum and maximum values 
of differences are obtained along with the number of null values in each column, which 
reflect that no changes have been made to the data in the related fields of that column. 
As for the total number of changes, it is calculated by the subtraction of the number of 
null values from the total number of rows in the delta table. The latter is generated using 
COUNT(*).

Column statistics (12), (13), and (14): Hive provides a function called percentile that 
can be used to calculate the lowest and highest quartile of a data set along with the 
median value “percentile (BIGINT col, array (p1 [, p2] ... ))" [34]. This function cal-
culates the specified percentiles for a data set, which is the list of differences for each 
column in this case. The provided percentile values are (0.25, 0.5, 0.75) as 25%, 50%, and 
75% reflect the values of Q1, Q2, and Q3.

Table 7  Column validation statistics—“Users" table

Column Difference 
count

Max Min Q1 Q2 Q3

Name 1 2 2 2 2 2

Salary 1 500 500 500 500 500

Birthday 1 1,800,000 1,800,000 1,800,000 1,800,000 1,800,000

Row count 1 1 1 1 1 1

Table 8  Validation database schema—“Users_col_delta" table

Column name Data type

id int

name_diff int

salary_diff int

birthday_diff int

count_diff int

Table 9  Data in “Users_col_delta" table—“ValidationDB"

id name_diff salary_diff birthday_diff count_diff

2 NULL NULL NULL 1

3 2 500 1,800,000 NULL
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In this section we have shown how row-based and column-based statistics are gen-
erated by applying the aforementioned validation process. Row validation gives an 
overview of the total number of differences in each table with the per cent difference. 
Column validation, on the other hand, generates more detailed statistics such as the 
number of differences and the minimum and maximum difference in the data in each 
column. It also calculates the first quartile, the median, and the third quartile of the data. 
The analysis of those statistics is discussed in the next section.

Results and discussion
Diftong is our big data validation tool based on the validation process described previ-
ously. The tool has many features that create a solution for the validation of big data. It 
helps organisations to ensure the correctness of their transformations by detecting any 
changes in the generated data of different versions of the same workflow. In a more gen-
eral context, the tool compares any two databases that have the same schemas and high-
lights the differences and similarities between them. Diftong could be included in a more 
robust information life cycle management framework as described in [35]. Similarly by 
ensuring data quality, big data analytics [36] can be applied with more trust [37].

Even though the tool was implemented using Hive and the Hadoop framework for the 
validation in a big data environment, the proposed validation process is generic and can 
easily be tailored to other table-based database management systems. Any key/value 
data set represented in the form of columns in a Hive table and queryable in HiveQL can 
be validated using the tool.

Diftong is easy-to-use and provides the ability to customise the validation process. This 
is achieved by giving the user the option to choose which steps to execute and which 
tables and/or columns to include or exclude from the validation.

Test cases and analysis

For the purpose of the analysis, two test cases were conducted on a test database with 
the size of 1TB. TPC-H is a decision support benchmark [38] that was used in the vali-
dation of the results of this study. A Hive testbench [39] that provides experiments with 
Apache Hive at any data scale was used to generate and populate a test database based 
on the TPC-H benchmark with a scale factor equal to 1000 (1TB). The TPC-H database 
consists of eight tables (Customer, LineItem, Nation, Orders, Part, PartSupp, Region, 
and Supplier) that contain several billions of records [38].

First test case

The Diftong tool was used to compare the previously stated test database—named 
“TPCH"—with an identical copy of it named “TPCH_copy". The data in both databases 
were first deduplicated, then the row validation stage was executed. As expected, no dif-
ferences were found in any of the tables.

As a result, there is no need to run the column validation stage in this case. However, 
and in order to fulfil the purposes of this test case, the column validation step was exe-
cuted anyway based on the results of the previous stages. Once again the tool behaved 
as expected by detecting that no differences were found and aborting the execution after 
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displaying an information message to the user stating the reason behind not continuing 
with the execution of this stage.

Second test case

The following modifications were made to the data in the “TPCH_copy" database before 
executing the tool again:

•	 Table “LineItem":
	 New rows: One new row was added.
	 Duplication: Four rows were duplicated, the first was duplicated once, the second 

twice, the third three times, and the fourth ten times.
	 Column “L_returnflag": According to the specification of the TPC-H database [38], 

this column can contain one of the following values: “R", “A", or “N". All “R" values 
were uncapitalised and replaced by “r". The number of rows that contain this value is 
1,480,675,200.

•	 Table “Orders":
	 Column “O_orderdate": All dates in this column were shifted 1 day forwards.

Row statistics Table 10 displays the new generated row statistics for the tables that contain 
differences. There is a 17-row difference (1 new row + (1+ 2+ 3+ 10) duplicated rows) 
in the “LineItem" table between the two databases before the deduplication step is 
applied. This number decreases to 1 (only the new row) where it reflects the delta 
between row numbers in both deduplicated databases.

As was explained in the previous section, the total number of differences can be cal-
culated based on the number of changes that have occurred. In addition to the new row 
and the four duplications in rows, 1,480,675,200 values from the “TPCH" database were 
changed in “TPCH_copy" because of the modification that was undertaken in the col-
umn “L_returnflag". Thus, the total number of rows that are different in both databases 
and the per cent difference can be calculated as follows:

Similarly, it can be seen that there is 100% difference regarding the table “Orders" while 
no new rows were added and no rows were duplicated. In other words, all existing rows 
in the “TPCH" database table are different from the related ones in the “TPCH_copy" 
database, and this is due to the change that was made on all dates in the “O_orderdate" 
column. As the results indicate, there is clearly a need to execute the column validation 
step in both tables “LineItem" and “Orders" in order to get more detailed insights regard-
ing the changes that have occurred.

Figures 11 and 12 display the results of the row validation step in graphical interfaces 
as a part of the outputs of the Diftong tool.

(1480675200 changed values + 4 rows without deduplication) in TPCH

+ (1480675200 changed values + 4 deduplicated rows + 1 new row)

in TPCH_copy = 2961350409

(2961350409/(5999989709+ 5999989710)) ∗ 100 = 24.7%
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Column statistics The result of the row validation stage indicates which columns 
should be further investigated. In Table  11, the total number of differences that were 
caused by uncapitalising a letter in the “LineItem" table is reflected, with a minimum 
and maximum of 1, which means that only one letter has changed. In addition, the four 
duplication operations are also listed with a range from 1 to 10. The quartile values here 
give a good measure of the distribution of data, as it shows that smaller number of row 
duplications have occurred in general even if the maximum value is 10, which is correct 
considering how the data was spread in this example (1, 2, 3, and 10).

In some cases, the change is not necessarily unwanted. For example, the systematic 
change in the “O_orderdate" column in the “Orders" table shown in Table 11, may be a 
desired change. Desired changes may be excluded from the validation process by apply-
ing an exclude flag in Diftong. If this is the case, considering the differences in such col-
umns might not give any added value, and thus they can be excluded from the validation 
process. Excluding the “O_orderdate" column in this example will make the per cent dif-
ference disappear.

Figures 13, 14, and 15 show the results of the column validation stage of the Diftong 
tool for both tables “LineItem" and “Orders".

Performance measurements

In order to estimate the effort for a validation using Diftong, execution time and CPU-
time were measured for all queries in each test case (where databases of 1TB size were 
compared). Each experiment was repeated three times. Table 12 shows the average run-
time and CPU-time for each test case, and Fig. 16 displays the chart related to the run-
time measurements.

To put these 400 CPU-hours for a validation experiment in context, it is worth noting 
that counting all rows in both databases takes ∼ 3.5 CPU-hours. Thus, the computational 
cost of a validation using Diftong is comparable to the cost of running ∼ 100 passes over 
the data.

It is notable that the measurement of the deduplication stage is similar in both test 
cases as the same database structures were used and only a few more rows were added 
to the data in the second case. However, the row validation step took longer compared 
to the first case since differences were detected and row statistics were calculated and 
generated. As for the column validation step, there was no time added for the first test 
case since no differences were found, while statistics were generated for both “LineItem" 
and “Orders" tables in the second case resulting in more time being added to the total 
number of milliseconds.

Moreover, by analysing and comparing the numbers in the two columns “First test 
case" and “Second test case", it can be noted that up to 80% of the time is devoted to the 

Table 10  Row validation statistics—“LineItem" and “Orders" tables

Table TPCH TPCH_copy � Deduplicated Deduplicated � Difference count %
TPCH TPCH_copy

LineItem 5,999,989,709 5,999,989,726 17 5,999,989,709 5,999,989,710 1 2,961,350,409 24.7

Orders 1,500,000,000 1,500,000,000 0 1,500,000,000 1,500,000,000 0 3,000,000,000 100
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deduplication stage, plus creating and populating row delta tables in the row validation 
stage in order to detect whether any differences have occurred or not. The cost of those 
two operations comes from the fact that deduplicating a table means that all rows in the 
table are grouped on all columns using the Hive GROUP BY operator, while row vali-
dating two tables (A and B) means selecting all rows in A that are not in B and all rows in 
B that are not in A; row validation was implemented using the Hive full outer join opera-
tor. For further analysis, it is interesting to investigate whether the deduplication step 
can be optimized. The work of Chu et al. should be considered [40].

The two test cases have demonstrated how the tool was able to detect every change 
that has occurred, providing results that help ensure the data accuracy.

X-axis: Row count Y-axis: Table name
Rows in TPCH Rows in TPCH copy Rows in deduplicated TPCH

Rows in deduplicated TPCH copy Number of differences
Fig. 11  Row validation chart for the difference count

Fig. 12  Row validation chart for the difference percentage. X-axis: Difference percentage; Y-axis: Table name

Table 11  Column validation statistics—“LineItem" and “Orders" tables

Table Column Difference count Max Min Q1 Q2 Q3

LineItem L_returnflag 1,480,675,200 1 1 1 1 1

row_count 4 10 1 1.75 2.5 4.75

Orders O_orderdate 1,500,000,000 90,000,000 82,800,000 86,400,000 86,400,000 86,400,000
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Fig. 13  Column validation chart for the difference count. X-axis: Difference count Y-axis: Column name

X-axis: Statistics Y-axis: Column name
Max difference Min difference Q1 Q2 Q3

Fig. 14  Column statistics chart for the “LineItem" table

X-axis: Statistics Y-axis: Column name
Max difference Min difference Q1 Q2 Q3

Fig. 15  Column statistics chart for the “Orders" table
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Conclusion
Our work aimed to provide a general solution for scalable validation of data processing 
workflows. Diftong involves three stages: (i) deduplication, (ii) row validation, resulting 
in row statistics, and (iii) column validation resulting in column statistics. Row statistics 
give an overview of the data in all rows and identify the total number of discrepancies 
in each table with the aid of the per cent difference. Detecting the differences and simi-
larities on a row-based level gives the user a clear idea of any changes that might have 
occurred. If this is the case, the user can ask for a deeper level of statistics based on 
each column in that table. Column statistics provide a more detailed view of the changes 
in data. The number of differences is calculated for each column along with the mini-
mum and maximum difference in the data, which provides a further insight about the 
range of differences that have occurred. In addition, the quartile values (lower, middle, 
and upper) give more understanding of the distribution of data by measuring how differ-
ences are spread.

Diftong automatically computes overall statistics of the differences between two 
databases with identical schema. The automation of this process eliminates the time-
consuming manual labour and the risk of human error. Using Diftong in real use 
cases related to Klarna’s core business has shown that the capability of identifying the 

Table 12  Run-time and CPU-time for the two test cases

Validation stage Run-time CPU-time

First test case Second test case First test case Second test case

Deduplication 3,627,636 3,110,763 427,517,000 465,107,430

Row validation 2,162,731 3,379,068 739,369,180 835,724,920

Column validation 0 599,418 0 173,312,140

Total in milliseconds 5,790,367 7,089,249 1,166,886,180 1,474,144,490

Total in hours 1.6 2 324 409

Fig. 16  Run-time chart for the two test cases. X-axis: Validation stage Y-axis: Run-time in milliseconds
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differences between large scale databases helps organisations manage their data trans-
formation workflows. In particular, Diftong has helped Klarna validate optimisations of 
workflows. It has also allowed the company to be more agile in their work with their data 
transformations, adding substantial value.

Using HiveQL, that provides standard SQL functionality, as the main development 
tool in this project delivers backwards compatibility and allows for interoperability 
between various database management systems. To validate data using Diftong, data 
have to be available in tabular form in Hive. Future work includes looking into adopting 
the tool to other storage engines and other query languages such as relational databases/
data warehouses, as well as key/value databases and graph databases.

Performance optimization of Diftong is a part of future work as well. For example, it is 
interesting to investigate whether the deduplication step can be optimized as it accounts 
for a majority of the execution time.

Finally, it should be considered whether Hive meta store could be extended to provide 
more statistics than the currently provided COUNT, MINIMUM and MAXIMUM val-
ues. Enriching Hive meta-store with additional descriptive statistics would facilitate the 
column validation stage of Diftong.
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