
Diftong: a tool for validating big data
workflows
Raya Rizk1*  , Steve McKeever1, Johan Petrini2 and Erik Zeitler2

Introduction
Due to the rapid development of data there has been an exponential growth in the num-
ber of applications that use big data techniques [1]. Many applications and workflows
that process data in diverse domains and transform them into business value have been
developed. In order for those transformations to provide solutions for business problems
in organisations, it is necessary to perform data analysis based on valid inputs and then
ensure the correctness and accuracy of the outputs produced at later stages [2]. Thus,
process validation is necessary to check the results with the expected behaviour [3].

The demand for implementing effective and efficient validation methods has
increased in order to ensure data quality in all processing phases [4]. Data quality
can be defined as the degree to which the state of data serves its purpose in a given
context [5]. According to Experian Data Quality [6], 75% of businesses are wasting an
average of 14% of their revenue due to poor data quality. In addition, Gartner research
indicates that the average annual impact of such low data quality on organisations is
as high as $9.7 million [7]. This can also be linked to IBM’s estimation in 2016 [8],
where they stated that the yearly cost of poor quality data in the US alone was $3.1
trillion. This is likely to worsen with the increased amount and complexity of data. It

Abstract 

Data validation is about verifying the correctness of data. When organisations update
and refine their data transformations to meet evolving requirements, it is imperative
to ensure that the new version of a workflow still produces the correct output. We
motivate the need for workflows and describe the implementation of a validation tool
called Diftong. This tool compares two tabular databases resulting from different ver-
sions of a workflow to detect and prevent potential unwanted alterations. Row-based
and column-based statistics are used to quantify the results of the database compari-
son. Diftong was shown to provide accurate results in test scenarios, bringing benefits
to companies that need to validate the outputs of their workflows. By automating
this process, the risk of human error is also eliminated. Compared to the more labour-
intensive manual alternative, it has the added benefit of improved turnaround time
for the validation process. Together this allows for a more agile way of updating data
transformation workflows.

Keywords:  Big data, Data testing, Data validation, Data quality, Big data validation
process, Big data validation tool, Big data workflow

Open Access

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

METHODOLOGY

Rizk et al. J Big Data (2019) 6:41
https://doi.org/10.1186/s40537-019-0204-5

*Correspondence:
raya.rizk@im.uu.se
1 Department of Informatics
and Media, Uppsala
University, Kyrkogådsgatan
10, 753 13 Uppsala, Sweden
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0003-1150-3503
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-019-0204-5&domain=pdf

Page 2 of 27Rizk et al. J Big Data (2019) 6:41

is critical to maintain the quality as it is essential to derive value from data that can
have a profound impact on companies decision-making processes [9].

However, the large volume and fast velocity in which heterogeneous data is being
generated and processed makes measuring data quality difficult [2]. Most big data sets
lack clear structure since the data are extracted from a diversity of data sources. This
poses challenges on big data testing processes [10]. Furthermore, manual data valida-
tion is difficult and inefficient [3] as mentioned in the Harvard Business Review [11]
where about 50% of knowledge workers’ time is wasted trying to identify and correct
errors. Thus, automated validation is required to detect the effect of every data trans-
formation that has occurred. Numerous papers have been published concerning big
data and their applications, but they seldom address the validation process [3] and
how to assure data quality during different stages of a big data application [5]. Most
of the current tools only provide the common basic data validation functions, such as
checking null values and data types, ranges, and constraints [5]. Thus, a more detailed
data validation process that examines all values in a data set and detects potential
errors is still lacking.

Companies develop workflows (data transformations) to process data continuously.
Such workflows define and manage a series of steps that process and transform data [12].
They then store the new results in databases to be used for planning and decision-mak-
ing, or as inputs to other workflows. This process can be protracted and complex as it
deals with a large amount of data with many integrations. Consequently, managing such
workflows can be difficult [13] and deploying them without validation can lead to unde-
sirable outputs [3].

Driven by evolving business needs and due to the rapid increase in the volume and
variety of data, these workflows often need to be improved and updated. A workflow can
be improved through the implementation of more efficient and optimised transforma-
tions. The updates can be related to the inclusion of new data models or meeting chang-
ing business requirements. In addition, any infrastructure upgrade can affect the results
of a transformation even if no changes to the workflow were conducted.

It is imperative to implement a data validation tool that automatically compares the
outputs of a pre-updated workflow and its post-update counterpart. This is accom-
plished by taking the same inputs and indicating whether the results of the new work-
flow match the previous one, or whether it produces incorrect results, as illustrated in
Fig. 1. Laranjeiro et al. [14] present an approach to test data-centric services with poor
quality data and no validation. Their study highlighted vulnerabilities arising from poor
data at both the application level but also at the middleware level too.

Starting from the needs of Klarna Bank AB, a fintech company, which offers online
consumer credit and payment solutions [15], this study provides a new solution that
attempts to tackle some of the big data validation problems. Klarna extends soft credit
to consumers mainly by providing payment products and flexible credit lines in their
Checkout product, which is integrated with numerous on-line merchants. To make
credit and fraud assessments for each request in real-time, it is mission critical to have
adequate data continuously available. Numerous heavyweight transformations are exe-
cuted on a regular basis to provide data for these risk and fraud assessments. It is impor-
tant that these transformations are accurate, quick, and scalable.

Page 3 of 27Rizk et al. J Big Data (2019) 6:41

The following two examples illustrate how Klarna leverages automatic comparison of
databases in order to improve their company workflows:

Credit risk assessment capabilities	� A workflow (w1) produces data for real-time credit
risk assessment and decision making. To enhance
data freshness w1 was ported to a faster execution
engine resulting in a new version of the workflow
(w2). After running w1 and w2 side by side on the
same input and doing automatic comparison of
their respective result databases, some differences
were identified. A root cause analysis was initiated
with an effort to discard any potential non-deter-
ministic behaviour within the workflow. This was
accomplished by running w1 in parallel with itself
(w1baseline ). The same differences were noticed
for w1 and w1baseline . Since the non-determinism
was benign, it was concluded that enhancing data
freshness, by moving to a faster execution engine,
did not introduce any errors and the workflow was
deployed in production.

Fraud risk assessment capabilities	� A workflow (w1) produces data for real-time fraud
risk assessment and decision making. To enhance
data freshness w1 was ported to a faster execution
engine (w2). An automatic comparison of w1 and
w2’s result databases showed some differences.
Running w1 against w1baseline resulted in the same
differences and identified non-determinism in the
workflow. However, this time the differences were
not benign but a consequence of semantic incon-
sistencies in the data. After updating the workflow
to eliminate those inconsistencies, w1 and w2 were
once again run in parallel. Their respective result
databases were compared, found to be identical

Fig. 1  Validating the outputs of two different versions of a workflow

Page 4 of 27Rizk et al. J Big Data (2019) 6:41

and the workflow was deployed in production. In
this case, not only did the comparison give at hand
that moving to a faster execution engine did not
introduce any errors in the data, it also resulted in
improved data quality.

In Klarna, automatic comparison of databases enables a more agile approach to work-
flow improvements and updates. More specifically, such comparisons:

1.	 Reduce the delay in improving workflow performance. This occurs through the rapid
identification of any differences (rows and columns) in the result data produced by
two versions of a workflow. This in turn makes it easier for the workflow owner to
trust and verify the correctness of the improvement.

2.	 Improve the quality of the data due to easier identification of issues such as corrupt
information and inconsistent semantics.

This paper presents a general solution for comparing any two databases that have the
same schema. We will only focus on parts of the process validation stage of the over-
all big data testing process and not on the data staging or output validation that are
explained later in the "Background" section.

The paper is structured as follows. The remainder of this section presents some related
work in the field. In addition, it describes the background and covers the concept of big
data, its testing and validation, in addition to the development frameworks that are used
in this project. A detailed explanation of the proposed validation process and its imple-
mentation is listed in Section two. Section three introduces Diftong, our validation tool,
and shows two test cases then analyses and discusses the results. Conclusions are pre-
sented in Section four.

Related work

Validation techniques have struggled to cope with the exploding size of data. Current
research in big data quality considers the issue in broad terms, but there is little focus on
how to effectively validate big data applications. Gao et al. [5] discuss big data validation
and quality assurance by focusing on validation processes which includes data collec-
tion, cleaning, transformation, loading, analysis, and reporting. Their study presents a
comparison of eight existing data validation tools concluding that all of them provide the
basic validation criteria that are set in the paper such as checking data types, formats,
ranges, logic, and null values, even if this comes with some limitations.

More detailed analysis was undertaken by the same authors a year later [9] where
they conducted a case study and displayed the differences between the results that vari-
ous data validation tools generate when validating the same set of data. It is worth not-
ing that there is a lack of tools that generate descriptive statistics. Moreover, the study
defines a quality checklist for big data including non-basic data validation types such as
checking for duplication in data, inconsistency, and incompleteness. The authors reflect
on the current data validation solutions and discuss the primary challenges and needs.
In general, they stress that there is a gap in the available research in the area and that
data quality issues are still open. Hence, it follows that further research and studies in

Page 5 of 27Rizk et al. J Big Data (2019) 6:41

this field should be conducted as only few published papers addresses big data validation
methods.

Other studies focused on the general concept of data quality applied to big data.
Firmani et al. [16] highlight that it could be challenging to define a unique concept
of big data quality due to the fact that data quality is multidimensional and difficult
to characterise even in the case of structured data. The authors attempt to define a
method to apply the various notions of quality to specific types of big data. Accord-
ing to a classification proposed by the United Nations Economic Commission for
Europe (UNECE), there are three main types of data sources in relation to big data:
human-sourced information, process-mediated, and machine-generated sources. The
paper describes a data model for each data source by quantifying data quality and its
dimensions (accuracy, correctness, redundancy, readability, accessibility, consistency,
usefulness, and trust) using metrics specific to the context and based on the charac-
teristics of big data.

The overall aim of the study is to identify further research directions in the area of
big data quality, and which was the base of another study conducted by Arolfo et al.
[17] later on. In their paper [17], the authors also argue that data quality is depend-
ent on the context and relative to the problem to be solved. In other words, different
data quality dimensions and metrics can be considered for various applications areas.
The paper defines how data quality dimensions can be used in a real-time scenario to
address the quality of Twitter feeds. Thus, the study focuses on the human-sourced
information type in reference to Firmani et al. [16], and only considers metrics for
four dimensions related to this data source (readability, completeness, usefulness, and
trust). On the other hand, our study can be considered as a part of the process-medi-
ated type since it concerns banking, transactions, and e-commerce. Hence, the data is
more structured than in the human-sourced generated type. As a result, the accuracy
dimension (that is explained in "Background" section later) provides a valuable tool
for improving the overall data quality in this type of applications as it deals with the
closeness of values to a what is considered as the correct representation.

Both studies [16, 17] have emphasised that more research in the area is needed,
as there has not been much work regarding data quality in the context of big data
despite of the relevance of the topic.

There are some tools that attempt to validate big data. QuerySurge [18] is a tool that
compares data that reside in two data stores (source and target). The input of this tool
is two queries (QueryPairs) to be run against both source and target data stores, and
the output is reflected in showing the difference in row numbers along with listing
the values that differ in both stores. The tool comes with some limitations regarding a
maximum row size of a result set and a maximum number of QueryPairs to compare
in one run. QuerySurge is a closed source software that can be distributed under a
licensing agreement.

Another example of a tool that attempts to calculate the delta between two values
of large data sets is BigDiffy [19], an open source library for pairwise field-level sta-
tistical differences of data sets developed by Spotify. Delta is defined by Spotify as “a
change of any changeable quantity" and the tool provides a record-oriented compari-
son that is undertaken on a columnar level based on unique keys. BigDiffy generates

Page 6 of 27Rizk et al. J Big Data (2019) 6:41

statistics and corresponds to the column validation step in Diftong, and which is a
part of the whole validation process that is proposed in this paper.

Background

Relational Database Management Systems (RDBMS) have been the dominant model
for more than 40 years. The relational model has a rigid schema with a clear struc-
ture [20]. Despite the robustness of RDBMS, it has limitations. It cannot handle the
increasing size of data or process unstructured information [20].

Big data is more than just size, it is also varied and fast-growing. Hence it poses
challenges to data management [21]. Non-relational databases do not use the RDBMS
principles and do not store the data in tables [20]. The main characteristic of these
databases is having a schema-free [22] format that results in unstructured data that
the user has to interpret when retrieving it. The absence of structure, rules, and con-
straints makes it difficult to maintain clean and correct data without duplicates. It
also affects the overall quality of information and introduces complexity in the testing
and validation processes.

Testing software that uses big data techniques is significantly more complex than
testing other more traditional data management applications. Simple test cases can-
not be used for big data applications as processing the data requires that it be trans-
ferred and transformed at different points during each process of the application,
costing time [1]. In order to test big data applications effectively, continuous valida-
tion throughout the transformation stages is advocated [23].

There are different types of tests that can be conducted to maintain the standard of
data. Data quality includes various dimensions that should be measured such as data
accuracy, correctness, redundancy, readability, accessibility, consistency, usefulness,
and trust [24]. Data accuracy is usually measured by comparing the data in multiple
data sources, as this quality factor refers to how close the results are to the values that
are accepted as being true [5]. We mainly focus on this factor in the validation of data
in our work.

The processing of big data, and thus its validation, can be divided into three differ-
ent stages [25] as shown in Fig. 2:

1	 Data staging: Loading data from various external sources. Validation includes verify-
ing that the needed data were extracted and retrieved correctly, then uploaded into
the system without any corruption.

2	 Processing: In this step, it is required to validate the results of a parallelized job appli-
cation and other similar big data application processes, while ensuring the accuracy
and correctness of the data.

3	 Output: Extracting the output results, and where validation includes checking
whether the data have been loaded correctly into the target system for any further
processing.

We used the Hadoop framework that supports parallel processing. It was designed
to scale up to thousands of machines that offer local storage and computation. Hadoop
achieves scalability and fault tolerance by distributing and replicating the data and

Page 7 of 27Rizk et al. J Big Data (2019) 6:41

parallelizing the work across multiple nodes, effectively moving the computations closer
to the data [27]. This helps with solving problems on large and complex data sets in a
reliable manner, as it also provides automatic fault tolerance and recovery.

Apache Hive is a data warehouse built on top of Hadoop [28] to reduce the complexity
of big data frameworks to gain easier access to the desired data. Due to the limited query
capabilities of Hadoop and the complexity of the MapReduce framework, developers
were required to write complex programs that might be hard to maintain and reuse even
for simple analysis [29]. In contrast, Hive supports queries expressed in a declarative
language similar to SQL—called HiveQL—and has its own Data Definition Language
(DDL) and Data Manipulation Language (DML) commands. Those queries are compiled
into MapReduce jobs that use the parallel processing in Hadoop [30]. Hive also provides
a mechanism to project structure onto the large volume of data that reside in distributed
storage. It facilitates the management of these data sets by executing queries using an
SQL-like query language as it makes the data in Hadoop look like it is stored in tables
that consist of a number of rows, and each row has a specified number of columns [29].

In order to make sense of the unstructured nature of big data, a certain level of meta-
data is to be expected. In Hive, this is commonly achieved through a meta-store service;
it is a system catalog, created in a RDBMS, that contains within itself information and
details about the objects definitions (schemas, tables, partitions, columns, etc.) [30]. By
separating parsing instructions from the actual data, the meta-store acts as a form of
index for otherwise impenetrable data files. In addition, meta-store deals with supple-
mentary statistics concerning the data, providing utility in data exploration, query opti-
misation, and query compilation [29].

Conventionally, MapReduce has been the engine used to run Hive jobs in Hadoop.
MapReduce has gradually been replaced by other more efficient execution engines, such
as Tez and Spark. These execution engines are capable of executing more efficient Hive

Fig. 2  Big data validation stages [26]

Page 8 of 27Rizk et al. J Big Data (2019) 6:41

query execution plans, and are overall more resource efficient [30]. In particular, we have
seen how one single Tez job can replace multiple MapReduce jobs in the applications.

A number of configuration variables in Hive are available to change the behaviour of
the default installation settings. For instance, in order to get the number of rows in a
table faster, Hive provides configurations to store the results of some queries—such as
the COUNT statistics—in the meta-store [31]. This optimises the statistics collection
as the values will be read from the meta-store directly instead of being calculated each
time. Those variables can be configured using the SET command that works on a session
level [32]. In addition, setting the “hive.stats.autogather" configuration to “true" enables
automatic gathering and updating of statistics during operations, and “hive.compute.
query.using.stats" answers queries like MIN, MAX, and COUNT solely using statistics
stored in the meta-store.

Methods and implementation
This section describes the implementation of Diftong, which enables large scale valida-
tion of heavyweight data transformations. A small running example is used to illustrate
the steps of the process.

To provide an overview of the changes, Diftong generates a statistical summary on
both row and column levels for all tables. Furthermore, to help analysts and engineers
perform root cause analysis of changes, Diftong also provides a detailed description of
each difference in the form of a change capture. The validation is performed in three
stages: Deduplication, Row validation, and Column Validation. Figure 3 displays a high-
level illustration of the validation process with a summary of the generated statistics.

Our running example consists of two databases “DB1" and “DB2" with identical sche-
mas that are to be validated. Each database contains a table named “Users" with four col-
umns (id, name, salary, and birthday) as displayed in Table 1, while Fig. 4 shows the data
in the “Users" table present in both databases.

Fig. 3  High-level illustration of the validation process

Page 9 of 27Rizk et al. J Big Data (2019) 6:41

The validation stages are further detailed in the following sections.

Deduplication

As key constraints are not necessarily enforced in Hive, duplicate rows may be pre-
sent. A duplication in data is where all values in one row match exactly all the values
in another row. Each row in both databases is counted and the results are stored for
use in subsequent stages of the validation process. Figure 5 illustrates the deduplica-
tion step.

Based on the data in the “Users" table that is shown in Fig. 4, all records appear once
in each table except for the record with the id = 2 in “DB2". This record has two iden-
tical rows where the values of all columns are equal. Hence, the COUNT for all the
rows is 1 except for the record with the id = 2 in “DB2", which is 2 instead.

Table 1  Original databases schema—“Users” table

Column name Data type

id int

name string

salary int

birthday timestamp

Fig. 4  Data in “Users" table—“DB1" and “DB2"

Fig. 5  The deduplication step

Page 10 of 27Rizk et al. J Big Data (2019) 6:41

After the deduplication step, two new databases are created. Each database contains
the same tables and data as the original databases before deduplication, but with one
additional column “row_count" that shows the number of times each row appears in
a table. Table 2 displays the schema of the databases “DDB1" and “DDB2"—dedupli-
cated copies of “DB1" and “DB2" respectively—while Fig. 6 shows their data.

The results show that the different number of records for the user with id = 2 is
detected. With this count in place, it is easy to spot this discrepancy in the row valida-
tion stage described next.

The implementation steps for the deduplication stage are as follows. First, a dedupli-
cated database instance is created by extracting all “CREATE TABLE" statements from
DB1 and DB2. Each table is extended with an additional column called “row_count" as
displayed in Script 1. By using COUNT and GROUP BY in this script, all duplicates in
the original database are represented in the new deduplicated database using only one
row with the extra column “row_count".

CREATE TABLE IF NOT EXISTS {deduplicated database name}.{table name} AS
SELECT {columns names}, COUNT(∗) AS row count
FROM {original database name}.{table name}
GROUP BY {columns names};

Script 1 Template for creating a table in the deduplicated database

Row validation

In order to get an overview of the total number of changes in each table, the differences
between the rows of all tables in the two deduplicated databases are calculated. Consider
the case of two databases “DB1" and “DB2", deduplicated respectively into “DDB1" and

Table 2  Deduplicated databases schema—“Users" table

Column name Data type

Id int

Name string

Salary int

Birthday timestamp

Row_count int

Fig. 6  Data in “Users" table—“DDB1" and “DDB2"

Page 11 of 27Rizk et al. J Big Data (2019) 6:41

“DDB2". Figure 7 shows a simple representation of this step where the following statis-
tics are generated:

To calculate the number of differences in the data values of each row (7) as a per
cent (8), there is a need to detect which records in each table from “DDB1" have been
changed in “DDB2" and what those changes are.

Figure 8 illustrates the differences in the values of all rows and columns in the “Users"
table. It can be seen that five rows out of seven are different between “DDB1" and
“DDB2", thus the difference is 71.4%.

As a result, Table 3 displays the calculated row statistics for the “Users" table and
depicts the number of changes on a row-based level with the difference as a per cent.

We describe how these statistics, from (1) to (8), are calculated as follows:
Row statistics (1), (2), (4), and (5): COUNT(*) in Hive is used to calculate the total

number of rows in all tables of the databases “DB1", “DB2", “DDB1", and “DDB2".

(1)Number of rows in DB1

(2)Number of rows in DB2

(3)Absolute difference of DB1 and DB2

(4)Number of rows in DDB1

(5)Number of rows in DDB2

(6)Absolute difference of DDB1 and DDB2

(7)Total number of differences between DDB1 and DDB2

(8)Per cent of differences between DDB1 and DDB2

Fig. 7  The row validation step

Page 12 of 27Rizk et al. J Big Data (2019) 6:41

Row statistics (3) and (6): The absolute difference of the number of rows between
(“DB1", “DB2") and (“DDB1", “DDB2") is calculated using the function ABS in Hive.

Row statistics (7): To calculate the total number of differences in the data of each table
in “DDB1" and “DDB2", there is a need to compare the values in each row and detect any
potential changes. Those differences and changes are referred to as the “delta" values.
The differences are stored in row delta tables that help in generating the related statistics
at a later step in this validation stage. The chosen method to store the delta tables is to
create a new database that is used for both row and column validation stages.

One way to reflect changes in data is to represent each change as a record in the delta
table. Each record contains the affected values with a validation status. The validation
status can be either INSERT (when there is a new record in “DDB2" that does not exist
in “DDB1") or DELETE (when a record exists in “DDB1" but not in “DDB2"). Note that
the UPDATE status is actually a DELETE operation followed by an INSERT of the new
values.

Table 4 displays an example of a possible representation of the differences that are
shown in Fig. 8 for “Users" tables in both deduplicated databases, along with the related
delta validation status. In other words, and based on the validation status of each record
of the row delta calculation, applying the changes in sequence on the related table in the
first deduplicated database will result in the data of the same table in the second one.

In order to implement the previous representation using Hive, delta values are calcu-
lated and stored in the newly created delta tables based on Script 2. The row delta table
contains all columns from both tables that are being compared along with the validation
status that indicates what kind of change (INSERT or DELETE) has occurred on the data

Fig. 8  Row differences between “Users" table in “DDB1" and “DDB2"

Table 3  Row validation statistics—“Users" table

DB1 count 3 DDB1 count 3

DB2 count 5 DDB2 count 4

Absolute difference of DB1 and DB2 2 Absolute difference of DDB1 and DDB2 1

Difference count 5 Difference in per cent 71.4%

Page 13 of 27Rizk et al. J Big Data (2019) 6:41

in those tables. Table 5 shows the schema of the newly created validation database “Vali-
dationDB" with the “Users_row_delta" table.

In Script 2, a full join between the tables in “DDB1" and “DDB2" is applied based on
a unique value that identify each record, and the related validation status is then calcu-
lated. Lastly, the result is filtered to get the rows that are only represented in either table.

Note that since there are no primary keys to identify the rows in a big data set, a new
user defined hash function, “multi_hash", was implemented to generate a unique identi-
fier for each row based on the values in all its columns. The function “multi_hash" takes
one input argument as an array of strings and concatenates its values taking into account
the length of each string, then returns the SHA-512 hash for the concatenation of all
string values in the input array. This is done to prevent any collision that might appear
from moving text from one string to the next. Thus, moving any text will not produce
collisions since the lengths would change. As an example, applying “multi_hash" func-
tion on the array of strings [‘hello’, ‘world!’] (the concatenation is ‘hello5world!6’) results
in a hex string that is different than the generated hash from the same function for the
array [‘hellow’, ‘orld!’], (the concatenation is ‘hellow6orld!5’) as the length of each word is
taken into account. The hash value that was obtained from “multi_hash" is then used to
compare and join similar records in those tables.

Table 4  Validation status for row delta table—“Users" table

Id Name Salary Birthday Row_count Validation_status

2 Mark 31,000 1987-06-23 02:00:00 1 DELETE

2 Mark 31,000 1987-06-23 02:00:00 2 INSERT

3 Sofie 25,000 1990-08-07 08:00:00 1 DELETE

3 Sofia 25,500 1990-08-07 08:30:00 1 INSERT

4 Anna 29,000 1992-09-22 10:15:00 1 INSERT

Table 5  Validation database schema—“Users_row_delta" table

Column name Data type

Id1 int

Name1 string

Salary1 int

Birthday1 timestamp

Row_count1 int

Id2 int

Name2 string

Salary2 int

Birthday2 timestamp

Row_count2 int

Validation_status string

Page 14 of 27Rizk et al. J Big Data (2019) 6:41

CREATE TABLE {validation database name}.{row delta table name}AS
SELECT ddb1.{columns names}, ddb2.{columns names},
CASE WHEN ddb1.hash IS NULL THEN ’INSERT’ ELSE ’DELETE’ END
AS validation status
FROM

(SELECT multi hash(ARRAY({columns names})) AS hash, ∗
FROM {deduplicated database1 name}.{table name}) ddb1

FULL JOIN
(SELECT multi hash(ARRAY({columns names})) AS hash, ∗
FROM {deduplicated database2 name}.{table name}) ddb2

ON (ddb1.hash = ddb2.hash)
−− Look for all the rows that are only represented in either table
WHERE ddb2.hash IS NULL OR ddb1.hash IS NULL;

Script 2 Template for creating a row delta table in the validation database

As a result, Table 6 displays the items of data that have been changed with the related
validation status column as the result of applying Script 2 on the “Users" table. A bet-
ter representation of the data in “Users_row_delta" table is shown earlier in this section
using Table 4.

After extracting the results from the row validation delta tables, the total number of
differences in values of rows between “DDB1" and “DDB2" can be calculated based on
counting the number of rows in those row delta tables in the validation database using
COUNT(*).

Row statistics (8): The per cent difference in each table is calculated by dividing the
total number of differences that are calculated in (7) by the sum of the number of rows in
both deduplicated databases tables, then multiplying the result by 100 and rounding it to
one decimal place.

Running the “ANALYZE TABLE .. COMPUTE STATISTICS" query on all tables in
“DDB1" and “DDB2" and on all row delta tables in the validation database helps in opti-
mising the calculation of row statistics [31]. Note that tables in “DB1" and “DB2" were
already analysed during the deduplication phase.

Column validation

Starting from the results of the row validation step, column based statistics are calculated
for the tables that contain differences in order to get a deeper insight of the changes. It
is important to first know how many changes have occurred and in what range. This
can be achieved by calculating the total number of differences along with the minimum
and maximum difference in the data. Calculating the average was also considered at the
beginning but it did not give much added value to the results, so it was excluded from
the generated statistics at a later stage.

Moreover, it is significant to measure the spread of the differences and get a deeper
understanding of the data distribution. This can be obtained using the quartile statistics.
By dividing the differences into four equal parts, the estimated quartiles and the median
of the distribution can be calculated using 25th, 50th, and 75th percentiles of the data.
Those percentiles reflect the first quartile (Q1—the middle number between the small-
est number and the median), the second quartile (Q2—the median of the data), and the
third quartile (Q3—the middle value between the median and the highest number in
the data set) respectively [33]. Those measurements provide a better gauge of the overall
data distribution as they ignore the values that are outside of the expected range, i.e. our
measurements are not affected by outliers.

Page 15 of 27Rizk et al. J Big Data (2019) 6:41

Ta
bl

e 
6 

D
at

a
in

 “U
se

rs
_r

ow
_d

el
ta

" t
ab

le
—

“V
al

id
at

io
nD

B"

Id
1

N
am

e1
Sa

la
ry

1
Bi

rt
hd

ay
1

Co
un

t1
Id

2
N

am
e2

Sa
la

ry
2

Bi
rt

hd
ay

2
Co

un
t2

St
at

us

2
M

ar
k

31
,0

00
19

87
-0

6-
23

 0
2:

00
:0

0
1

N
U

LL
N

U
LL

N
U

LL
N

U
LL

N
U

LL
D

EL
ET

E

N
U

LL
N

U
LL

N
U

LL
N

U
LL

N
U

LL
2

M
ar

k
31

,0
00

19
87

-0
6-

23
 0

2:
00

:0
0

2
IN

SE
RT

3
So

fie
25

,0
00

19
90

-0
8-

07
 0

8:
00

:0
0

1
N

U
LL

N
U

LL
N

U
LL

N
U

LL
N

U
LL

D
EL

ET
E

N
U

LL
N

U
LL

N
U

LL
N

U
LL

N
U

LL
3

so
fia

25
,5

00
19

90
-0

8-
07

 0
8:

30
:0

0
1

IN
SE

RT

N
U

LL
N

U
LL

N
U

LL
N

U
LL

N
U

LL
4

A
nn

a
29

,0
00

19
92

-0
9-

22
 1

0:
15

:0
0

1
IN

SE
RT

Page 16 of 27Rizk et al. J Big Data (2019) 6:41

Consequently, the following statistics are generated for each column in the tables that
are being validated:

Consider the case of two databases “DDB1" and “DDB2", deduplicated copies of “DB1"
and “DB2", in addition to a validation database “ValidationDB" that contains the row
delta tables from the previous step. In order to generate the previous statistics, there is a
need to compare and calculate the delta between each value inside the tables of “DDB1"
and the related one in “DDB2". Figure 9 illustrates how each value is being compared in
order to generate the needed statistics.

Figure 10 shows the differences in values of the columns in the “Users" table between
“DDB1" and “DDB2". It can be seen that there is one difference in each of the columns.
Note that any identical rows in both databases (such as the record with id = 1 ), or rows
that only exist in one of the databases (like the record with id = 4 ) will not be a part of
this validation stage.

As a result, Table 7 displays the calculated column statistics for the “Users" table. It
shows the total number of differences in the data along with the related maximum and
minimum delta values. In addition, it displays the three quartile values of each column.
Notice that the numbers in all statistics match in this example due to having a single dif-
ference in each column.

The implementation of the column validation step starts with comparing the values
in each column and calculating the delta between them. The differences are stored in
new delta tables that help in generating the related statistics at a later step in this vali-
dation stage. Similar to the row validation stage, the column delta tables are stored in
“ValidationDB".

For each record, the differences between all columns are calculated and stored in col-
umn delta tables that have the schema shown in Table 8.

CREATE TABLE {validation database name}.{col delta table name} AS
SELECT delta1.{column id}, calc diff(delta1.{columns names}, delta2.{columns names})
AS {columns names} diff
FROM {validation database name}.{row delta table name} delta1
JOIN {validation database name}.{row delta table name} delta2
ON (delta1.{column id} = delta2.{column id});

Script 3 Template for creating a column delta table in the validation database

Based on the data of row delta tables in “ValidationDB" (Table 6 is given as an exam-
ple), column delta tables are generated using Script 3. First, a self join is applied on the
row delta tables based on the id column of both “DDB1" and “DDB2" tables. Note that
the id column should be provided by the user due to the lack of primary keys when

(9)Total number of differences in data

(10)Maximum difference in data

(11)Minimum difference in data

(12)First quartile (25th percentile)

(13)Second quartile (50th percentile)−median

(14)Third quartile (75th percentile)

Page 17 of 27Rizk et al. J Big Data (2019) 6:41

Fig. 9  The column validation step

Fig. 10  Column differences between two tables in “DDB1" and “DDB2"

working with big data. Then, and for each column, the difference between all values of
the tables in both deduplicated databases is calculated with the help of a user defined
function, “calc_diff", that takes two values of the same type (integer, double, string, date,
timestamp, or boolean) as parameters then calculates and returns the delta between
them.

As a result, Table 9 displays the result of running Script 3 on “Users_row_delta" table.
Note that NULL is stored if both values that are being compared are identical, i.e. the
delta is equal to zero, or if both inputs are NULL.

Starting from the values in the column delta table, column statistics, from (9) to (14),
are generated. A description of how they were generated is provided as follows:

Column statistics (9), (10), and (11): Calculating the count of changes along with the
minimum and maximum differences for all columns can be costly. In order to opti-
mise generating those statistics, and similar to the approach that is used in the previous
validation stages, Hive configurations are set to obtain the values of MIN, MAX, and

Page 18 of 27Rizk et al. J Big Data (2019) 6:41

COUNT using the statistics that are stored in the meta-store instead of calculating them
each time.

Consequently, and in addition to analyzing the tables as in the row validation step,
another script “ANALYZE TABLE .. COMPUTE STATISTICS FOR COLUMNS" [34] is
executed to analyse column delta tables in “ValidationDB" and compute column-level
statistics for all existing columns.

As for the next step, executing “DESCRIBE FORMATTED" script in HiveQL [34] on
all the columns that hold information regarding the existing differences will generate the
needed numbers to be used in the column statistics. The minimum and maximum values
of differences are obtained along with the number of null values in each column, which
reflect that no changes have been made to the data in the related fields of that column.
As for the total number of changes, it is calculated by the subtraction of the number of
null values from the total number of rows in the delta table. The latter is generated using
COUNT(*).

Column statistics (12), (13), and (14): Hive provides a function called percentile that
can be used to calculate the lowest and highest quartile of a data set along with the
median value “percentile (BIGINT col, array (p1 [, p2] ...))" [34]. This function cal-
culates the specified percentiles for a data set, which is the list of differences for each
column in this case. The provided percentile values are (0.25, 0.5, 0.75) as 25%, 50%, and
75% reflect the values of Q1, Q2, and Q3.

Table 7  Column validation statistics—“Users" table

Column Difference
count

Max Min Q1 Q2 Q3

Name 1 2 2 2 2 2

Salary 1 500 500 500 500 500

Birthday 1 1,800,000 1,800,000 1,800,000 1,800,000 1,800,000

Row count 1 1 1 1 1 1

Table 8  Validation database schema—“Users_col_delta" table

Column name Data type

id int

name_diff int

salary_diff int

birthday_diff int

count_diff int

Table 9  Data in “Users_col_delta" table—“ValidationDB"

id name_diff salary_diff birthday_diff count_diff

2 NULL NULL NULL 1

3 2 500 1,800,000 NULL

Page 19 of 27Rizk et al. J Big Data (2019) 6:41

In this section we have shown how row-based and column-based statistics are gen-
erated by applying the aforementioned validation process. Row validation gives an
overview of the total number of differences in each table with the per cent difference.
Column validation, on the other hand, generates more detailed statistics such as the
number of differences and the minimum and maximum difference in the data in each
column. It also calculates the first quartile, the median, and the third quartile of the data.
The analysis of those statistics is discussed in the next section.

Results and discussion
Diftong is our big data validation tool based on the validation process described previ-
ously. The tool has many features that create a solution for the validation of big data. It
helps organisations to ensure the correctness of their transformations by detecting any
changes in the generated data of different versions of the same workflow. In a more gen-
eral context, the tool compares any two databases that have the same schemas and high-
lights the differences and similarities between them. Diftong could be included in a more
robust information life cycle management framework as described in [35]. Similarly by
ensuring data quality, big data analytics [36] can be applied with more trust [37].

Even though the tool was implemented using Hive and the Hadoop framework for the
validation in a big data environment, the proposed validation process is generic and can
easily be tailored to other table-based database management systems. Any key/value
data set represented in the form of columns in a Hive table and queryable in HiveQL can
be validated using the tool.

Diftong is easy-to-use and provides the ability to customise the validation process. This
is achieved by giving the user the option to choose which steps to execute and which
tables and/or columns to include or exclude from the validation.

Test cases and analysis

For the purpose of the analysis, two test cases were conducted on a test database with
the size of 1TB. TPC-H is a decision support benchmark [38] that was used in the vali-
dation of the results of this study. A Hive testbench [39] that provides experiments with
Apache Hive at any data scale was used to generate and populate a test database based
on the TPC-H benchmark with a scale factor equal to 1000 (1TB). The TPC-H database
consists of eight tables (Customer, LineItem, Nation, Orders, Part, PartSupp, Region,
and Supplier) that contain several billions of records [38].

First test case

The Diftong tool was used to compare the previously stated test database—named
“TPCH"—with an identical copy of it named “TPCH_copy". The data in both databases
were first deduplicated, then the row validation stage was executed. As expected, no dif-
ferences were found in any of the tables.

As a result, there is no need to run the column validation stage in this case. However,
and in order to fulfil the purposes of this test case, the column validation step was exe-
cuted anyway based on the results of the previous stages. Once again the tool behaved
as expected by detecting that no differences were found and aborting the execution after

Page 20 of 27Rizk et al. J Big Data (2019) 6:41

displaying an information message to the user stating the reason behind not continuing
with the execution of this stage.

Second test case

The following modifications were made to the data in the “TPCH_copy" database before
executing the tool again:

•	 Table “LineItem":
	 New rows: One new row was added.
	 Duplication: Four rows were duplicated, the first was duplicated once, the second

twice, the third three times, and the fourth ten times.
	 Column “L_returnflag": According to the specification of the TPC-H database [38],

this column can contain one of the following values: “R", “A", or “N". All “R" values
were uncapitalised and replaced by “r". The number of rows that contain this value is
1,480,675,200.

•	 Table “Orders":
	 Column “O_orderdate": All dates in this column were shifted 1 day forwards.

Row statistics Table 10 displays the new generated row statistics for the tables that contain
differences. There is a 17-row difference (1 new row + (1+ 2+ 3+ 10) duplicated rows)
in the “LineItem" table between the two databases before the deduplication step is
applied. This number decreases to 1 (only the new row) where it reflects the delta
between row numbers in both deduplicated databases.

As was explained in the previous section, the total number of differences can be cal-
culated based on the number of changes that have occurred. In addition to the new row
and the four duplications in rows, 1,480,675,200 values from the “TPCH" database were
changed in “TPCH_copy" because of the modification that was undertaken in the col-
umn “L_returnflag". Thus, the total number of rows that are different in both databases
and the per cent difference can be calculated as follows:

Similarly, it can be seen that there is 100% difference regarding the table “Orders" while
no new rows were added and no rows were duplicated. In other words, all existing rows
in the “TPCH" database table are different from the related ones in the “TPCH_copy"
database, and this is due to the change that was made on all dates in the “O_orderdate"
column. As the results indicate, there is clearly a need to execute the column validation
step in both tables “LineItem" and “Orders" in order to get more detailed insights regard-
ing the changes that have occurred.

Figures 11 and 12 display the results of the row validation step in graphical interfaces
as a part of the outputs of the Diftong tool.

(1480675200 changed values + 4 rows without deduplication) in TPCH

+ (1480675200 changed values + 4 deduplicated rows + 1 new row)

in TPCH_copy = 2961350409

(2961350409/(5999989709+ 5999989710)) ∗ 100 = 24.7%

Page 21 of 27Rizk et al. J Big Data (2019) 6:41

Column statistics The result of the row validation stage indicates which columns
should be further investigated. In Table 11, the total number of differences that were
caused by uncapitalising a letter in the “LineItem" table is reflected, with a minimum
and maximum of 1, which means that only one letter has changed. In addition, the four
duplication operations are also listed with a range from 1 to 10. The quartile values here
give a good measure of the distribution of data, as it shows that smaller number of row
duplications have occurred in general even if the maximum value is 10, which is correct
considering how the data was spread in this example (1, 2, 3, and 10).

In some cases, the change is not necessarily unwanted. For example, the systematic
change in the “O_orderdate" column in the “Orders" table shown in Table 11, may be a
desired change. Desired changes may be excluded from the validation process by apply-
ing an exclude flag in Diftong. If this is the case, considering the differences in such col-
umns might not give any added value, and thus they can be excluded from the validation
process. Excluding the “O_orderdate" column in this example will make the per cent dif-
ference disappear.

Figures 13, 14, and 15 show the results of the column validation stage of the Diftong
tool for both tables “LineItem" and “Orders".

Performance measurements

In order to estimate the effort for a validation using Diftong, execution time and CPU-
time were measured for all queries in each test case (where databases of 1TB size were
compared). Each experiment was repeated three times. Table 12 shows the average run-
time and CPU-time for each test case, and Fig. 16 displays the chart related to the run-
time measurements.

To put these 400 CPU-hours for a validation experiment in context, it is worth noting
that counting all rows in both databases takes ∼ 3.5 CPU-hours. Thus, the computational
cost of a validation using Diftong is comparable to the cost of running ∼ 100 passes over
the data.

It is notable that the measurement of the deduplication stage is similar in both test
cases as the same database structures were used and only a few more rows were added
to the data in the second case. However, the row validation step took longer compared
to the first case since differences were detected and row statistics were calculated and
generated. As for the column validation step, there was no time added for the first test
case since no differences were found, while statistics were generated for both “LineItem"
and “Orders" tables in the second case resulting in more time being added to the total
number of milliseconds.

Moreover, by analysing and comparing the numbers in the two columns “First test
case" and “Second test case", it can be noted that up to 80% of the time is devoted to the

Table 10  Row validation statistics—“LineItem" and “Orders" tables

Table TPCH TPCH_copy � Deduplicated Deduplicated � Difference count %
TPCH TPCH_copy

LineItem 5,999,989,709 5,999,989,726 17 5,999,989,709 5,999,989,710 1 2,961,350,409 24.7

Orders 1,500,000,000 1,500,000,000 0 1,500,000,000 1,500,000,000 0 3,000,000,000 100

Page 22 of 27Rizk et al. J Big Data (2019) 6:41

deduplication stage, plus creating and populating row delta tables in the row validation
stage in order to detect whether any differences have occurred or not. The cost of those
two operations comes from the fact that deduplicating a table means that all rows in the
table are grouped on all columns using the Hive GROUP BY operator, while row vali-
dating two tables (A and B) means selecting all rows in A that are not in B and all rows in
B that are not in A; row validation was implemented using the Hive full outer join opera-
tor. For further analysis, it is interesting to investigate whether the deduplication step
can be optimized. The work of Chu et al. should be considered [40].

The two test cases have demonstrated how the tool was able to detect every change
that has occurred, providing results that help ensure the data accuracy.

X-axis: Row count Y-axis: Table name
Rows in TPCH Rows in TPCH copy Rows in deduplicated TPCH

Rows in deduplicated TPCH copy Number of differences
Fig. 11  Row validation chart for the difference count

Fig. 12  Row validation chart for the difference percentage. X-axis: Difference percentage; Y-axis: Table name

Table 11  Column validation statistics—“LineItem" and “Orders" tables

Table Column Difference count Max Min Q1 Q2 Q3

LineItem L_returnflag 1,480,675,200 1 1 1 1 1

row_count 4 10 1 1.75 2.5 4.75

Orders O_orderdate 1,500,000,000 90,000,000 82,800,000 86,400,000 86,400,000 86,400,000

Page 23 of 27Rizk et al. J Big Data (2019) 6:41

Fig. 13  Column validation chart for the difference count. X-axis: Difference count Y-axis: Column name

X-axis: Statistics Y-axis: Column name
Max difference Min difference Q1 Q2 Q3

Fig. 14  Column statistics chart for the “LineItem" table

X-axis: Statistics Y-axis: Column name
Max difference Min difference Q1 Q2 Q3

Fig. 15  Column statistics chart for the “Orders" table

Page 24 of 27Rizk et al. J Big Data (2019) 6:41

Conclusion
Our work aimed to provide a general solution for scalable validation of data processing
workflows. Diftong involves three stages: (i) deduplication, (ii) row validation, resulting
in row statistics, and (iii) column validation resulting in column statistics. Row statistics
give an overview of the data in all rows and identify the total number of discrepancies
in each table with the aid of the per cent difference. Detecting the differences and simi-
larities on a row-based level gives the user a clear idea of any changes that might have
occurred. If this is the case, the user can ask for a deeper level of statistics based on
each column in that table. Column statistics provide a more detailed view of the changes
in data. The number of differences is calculated for each column along with the mini-
mum and maximum difference in the data, which provides a further insight about the
range of differences that have occurred. In addition, the quartile values (lower, middle,
and upper) give more understanding of the distribution of data by measuring how differ-
ences are spread.

Diftong automatically computes overall statistics of the differences between two
databases with identical schema. The automation of this process eliminates the time-
consuming manual labour and the risk of human error. Using Diftong in real use
cases related to Klarna’s core business has shown that the capability of identifying the

Table 12  Run-time and CPU-time for the two test cases

Validation stage Run-time CPU-time

First test case Second test case First test case Second test case

Deduplication 3,627,636 3,110,763 427,517,000 465,107,430

Row validation 2,162,731 3,379,068 739,369,180 835,724,920

Column validation 0 599,418 0 173,312,140

Total in milliseconds 5,790,367 7,089,249 1,166,886,180 1,474,144,490

Total in hours 1.6 2 324 409

Fig. 16  Run-time chart for the two test cases. X-axis: Validation stage Y-axis: Run-time in milliseconds

Page 25 of 27Rizk et al. J Big Data (2019) 6:41

differences between large scale databases helps organisations manage their data trans-
formation workflows. In particular, Diftong has helped Klarna validate optimisations of
workflows. It has also allowed the company to be more agile in their work with their data
transformations, adding substantial value.

Using HiveQL, that provides standard SQL functionality, as the main development
tool in this project delivers backwards compatibility and allows for interoperability
between various database management systems. To validate data using Diftong, data
have to be available in tabular form in Hive. Future work includes looking into adopting
the tool to other storage engines and other query languages such as relational databases/
data warehouses, as well as key/value databases and graph databases.

Performance optimization of Diftong is a part of future work as well. For example, it is
interesting to investigate whether the deduplication step can be optimized as it accounts
for a majority of the execution time.

Finally, it should be considered whether Hive meta store could be extended to provide
more statistics than the currently provided COUNT, MINIMUM and MAXIMUM val-
ues. Enriching Hive meta-store with additional descriptive statistics would facilitate the
column validation stage of Diftong.

Abbreviations
DDL: Data Definition Language; DML: Data Manipulation Language; RDBMS: Relational Database Management Sys-
tems; UNECE: United Nations Economic Commission for Europe.

Acknowledgements
The authors acknowledge the support from Uppsala University during the time of the study. The authors also acknowl-
edge the help of the Klarna Bank AB and Klarna’s employees at their Uppsala office for knowledge sharing and meaning-
ful discussions. Jörgen Falk deserves a special mention for his continuous support in the implementation of Diftong.

Authors’ contributions
RR, JP, and EZ designed the study and developed the methodology. RR wrote the manuscript, implemented the system,
and performed the analysis under the supervision of JP. SM was the academic supervisor of the study, provided guidance
with manuscript writing and was iteratively reviewing and revising it. All authors contributed to editing and evaluating
the manuscript. All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
All data used during this study are publicly available and the source is included in the manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Informatics and Media, Uppsala University, Kyrkogådsgatan 10, 753 13 Uppsala, Sweden. 2 Klarna Bank
AB, Sveavägen 46, 111 34 Stockholm, Sweden.

Received: 16 February 2019 Accepted: 6 May 2019

References
	1.	 Li N, Escalona A, Guo Y, Offutt J. A scalable big data test framework. In: 2015 IEEE 8th international conference on

software testing, verification and validation (ICST); 2015. p. 1–2. https​://doi.org/10.1109/ICST.2015.71026​19.
	2.	 Cai L, Zhu Y. The challenges of data quality and data quality assessment in the big bata era. Data Sci J. 2015;. https​://

doi.org/10.5334/dsj-2015-002.
	3.	 Sadiq S, Orlowska M, Sadiq W, Foulger C. Data flow and validation in workflow modelling. In: Proceedings of the

15th Australasian database conference, Vol. 27. ADC ’04, p. 207–214. Australian Computer Society, Inc., Darlinghurst,
Australia, Australia; 2004. http://dl.acm.org/citat​ion.cfm?id=10122​94.10123​17.

	4.	 Taleb I, Dssouli R, Serhani MA. Big data pre-processing: a quality framework. In: 2015 IEEE international congress on
big data; 2015. p. 191–198. https​://doi.org/10.1109/BigDa​taCon​gress​.2015.35.

https://doi.org/10.1109/ICST.2015.7102619
https://doi.org/10.5334/dsj-2015-002
https://doi.org/10.5334/dsj-2015-002
http://dl.acm.org/citation.cfm?id=1012294.1012317
https://doi.org/10.1109/BigDataCongress.2015.35

Page 26 of 27Rizk et al. J Big Data (2019) 6:41

	5.	 Gao J, Xie C, Tao C. Big data validation and quality assurance–issuses, challenges, and needs. In: 2016 IEEE sympo-
sium on service-oriented system engineering (SOSE); 2016. p. 433–441. https​://doi.org/10.1109/SOSE.2016.63.

	6.	 Experian data quality: the well-oiled data machine; 2014. https​://www.edq.com/uk/blog/the-well-oiled​-data-machi​
ne. Accessed 5 May 2018.

	7.	 Moore S. How to create a business case for data quality improvement; 2017. https​://www.gartn​er.com/smart​erwit​
hgart​ner/how-to-creat​e-a-busin​ess-case-for-data-quali​ty-impro​vemen​t. Accessed 12 May 2018.

	8.	 IBM. Extracting business value from the 4 V’s of big data; 2016. http://www.ibmbi​gdata​hub.com/infog​raphi​c/extra​
cting​-busin​ess-value​-4-vs-big-data. Accessed 12 May 2018.

	9.	 Xie C, Gao J, Tao C. Big data validation case study. 2017 IEEE third international conference on big data computing
service and applications (BigDataService). 2017; p. 281–286. https​://doi.org/10.1109/bigda​taser​vice.2017.44.

	10.	 Garg N, Singla S, Jangra S. Challenges and techniques for testing of big data. Procedia Comput Sci. 2016;85:940–8.
https​://doi.org/10.1016/j.procs​.2016.05.285 International Conference on Computational Modelling and Security
(CMS 2016).

	11.	 Redman TC. Data’s credibility problem; 2013.https​://enter​prise​rspro​ject.com/sites​/defau​lt/files​/Data’sCred​ibili​tyPro​
blem.pdf.

	12.	 Palazzo C, Mariello A, Fiore S, D’Anca A, Elia D, Williams DN, Aloisio G. A workflow-enabled big data analytics software
stack for eScience. In: 2015 International conference on high performance computing simulation (HPCS); 2015. p.
545–552. https​://doi.org/10.1109/HPCSi​m.2015.72370​88.

	13.	 Ordonez C, García-García J. Managing big data analytics workflows with a database system. In: 2016 16th IEEE/ACM
international symposium on cluster, cloud and grid computing (CCGrid); 2016. p. 649–655. https​://doi.org/10.1109/
CCGri​d.2016.63.

	14.	 Laranjeiro N, Soydemir SN, Ivaki N, Bernardino J. Testing data-centric services using poor quality data: from relational
to NoSQL document databases. J Braz Comput Soc. 2017;23(1):14. https​://doi.org/10.1186/s1317​3-017-0063-x.

	15.	 Klarna: About us; 2018. https​://www.klarn​a.com/se/om-oss. Accessed 29 Jan 2018.
	16.	 Firmani D, Mecella M, Scannapieco M, Batini C. On the meaningfulness of “big data quality” (invited paper). Data Sci

Eng. 2016;1(1):6–20. https​://doi.org/10.1007/s4101​9-015-0004-7.
	17.	 Arolfo F, Vaisman A. Data quality in a big data context. In: Benczúr A, Thalheim B, Horváth T, editors. Advances

in databases and information systems. Cham: Springer International Publishing; 2018. p. 159–72. https​://doi.
org/10.1007/978-3-319-98398​-1_11.

	18.	 RTTS: QuerySurge; 2018. http://www.query​surge​.com/solut​ions/testi​ng-big-data. Accessed 04 June 2018.
	19.	 Spotify: BigDiffy; 2018. https​://githu​b.com/spoti​fy/ratat​ool/tree/maste​r/ratat​ool-diffy​. Accessed 04 June 2018.
	20.	 Gyorödi C, Gyorödi R, Sotoc R. A comparative study of relational and non-relational database models in a web-

based application. Int J Adv Comput Sci Appl. 2015;6(11):78–83. https​://doi.org/10.14569​/IJACS​A.2015.06111​1.
	21.	 Najafabadi MM, Villanustre F, Khoshgoftaar TM, Seliya N, Wald R, Muharemagic E. Deep learning applications and

challenges in big data analytics. J Big Data. 2015;2(1):1. https​://doi.org/10.1186/s4053​7-014-0007-7.
	22.	 Mehmood NQ, Culmone R, Mostarda L. Modeling temporal aspects of sensor data for MongoDB NoSQL database. J

Big Data. 2017;4(1):8. https​://doi.org/10.1186/s4053​7-017-0068-5.
	23.	 Geddam, S. Building a robust big data QA ecosystem to mitigate data integrity challenges; 2014. https​://www.cogni​

zant.com/white​paper​s/build​ing-a-robus​t-big-data-qa-ecosy​stem-to-mitig​ate-data-integ​rity-chall​enges​-codex​907.
pdf. Accessed 12 May 2018.

	24.	 Batini C, Monica S. Data and information quality: dimensions, principles and techniques. Switzerland: Springer; 2016.
p. 21–51. https​://doi.org/10.1007/978-3-319-24106​-7.

	25.	 Nagdive AS, Tugnayat DRM, Tembhurkar MP. Overview on performance testing approach in big data. International
Journal of Advanced Research in Computer Science. 2014;5(8):165–169. https​://www.resea​rchga​te.net/publi​catio​
n/27033​8528_Overv​iew_on_Perfo​rmanc​e_Testi​ng_Appro​ach_in_Big_Data. Accessed 12 May 2018.

	26.	 Try QA: Big data testing; 2017. http://tryqa​.com/big-data-testi​ng/. Accessed 13 Aug 2018.
	27.	 Yassien AW, Desouky AF. RDBMS, NoSQL, Hadoop: a performance-based empirical analysis. In: Proceedings of the

2nd Africa and Middle East conference on software engineering. AMECSE ’16, vol. 28-29, p. 52–59. ACM, New York,
NY, USA; 2016. https​://doi.org/10.1145/29441​65.29441​74.

	28.	 Birjali M, Beni-Hssane A, Erritali M. Evaluation of high-level query languages based on MapReduce in big data. J Big
Data. 2018;5(1):36. https​://doi.org/10.1186/s4053​7-018-0146-3.

	29.	 Thusoo A, Sarma JS, Jain N, Shao Z, Chakka P, Zhang N, Anthony S, Liu H, Murthy R. Hive—a petabyte scale data
warehouse using Hadoop. In: Proceedings of the 26th international conference on data engineering, ICDE 2010, p.
996–1005. IEEE, Long Beach, California, USA; 2010. https​://doi.org/10.1109/ICDE.2010.54477​38.

	30.	 Shaw S, Vermeulen AF, Gupta A, Kjerrumgaard D. Practical Hive: a guide to Hadoop’s data warehouse system. 1st ed.
Berkely, CA, USA: Apress; 2016.

	31.	 Atlassian: Apache Hive configuration properties; 2018. https​://cwiki​.apach​e.org/confl​uence​/displ​ay/Hive/Confi​gurat​
ion+Prope​rties​. Accessed 15 Apr 2018.

	32.	 Atlassian: Apache Hive admin manual configuration; 2017. https​://cwiki​.apach​e.org/confl​uence​/displ​ay/Hive/
Admin​Manua​l+Confi​gurat​ion. Accessed 07 May 2018.

	33.	 Žerovnik J, Poklukar DR. Elementary methods for computation of quartiles. Teach Stat. 2017;39(3):88–91. https​://doi.
org/10.1111/test.12133​.

	34.	 Atlassian: Apache Hive language manual; 2017. https​://cwiki​.apach​e.org/confl​uence​/displ​ay/Hive/Langu​ageMa​
nual. Accessed 08 Apr 2018.

	35.	 Moulos V, Chatzikyriakos G, Kassouras V, Doulamis A, Doulamis N, Leventakis G, Florakis T, Varvarigou T, Mitsokapas E,
Kioumourtzis G, Klirodetis P, Psychas A, Marinakis A, Sfetsos T, Koniaris A, Liapis D, Gatzioura A. A robust information
life cycle management framework for securing and governing critical infrastructure systems. Inventions. 2018;. https​
://doi.org/10.3390/inven​tions​30400​71.

	36.	 Schneider J, Handali JP, vom Brocke J. Increasing trust in (big) data analytics. In: Matulevičius R, Dijkman R, editors.
Advanced information systems engineering workshops. Cham: Springer; 2018. p. 70–84.

https://doi.org/10.1109/SOSE.2016.63
https://www.edq.com/uk/blog/the-well-oiled-data-machine
https://www.edq.com/uk/blog/the-well-oiled-data-machine
https://www.gartner.com/smarterwithgartner/how-to-create-a-business-case-for-data-quality-improvement
https://www.gartner.com/smarterwithgartner/how-to-create-a-business-case-for-data-quality-improvement
http://www.ibmbigdatahub.com/infographic/extracting-business-value-4-vs-big-data
http://www.ibmbigdatahub.com/infographic/extracting-business-value-4-vs-big-data
https://doi.org/10.1109/bigdataservice.2017.44
https://doi.org/10.1016/j.procs.2016.05.285
https://enterprisersproject.com/sites/default/files/Data’sCredibilityProblem.pdf
https://enterprisersproject.com/sites/default/files/Data’sCredibilityProblem.pdf
https://doi.org/10.1109/HPCSim.2015.7237088
https://doi.org/10.1109/CCGrid.2016.63
https://doi.org/10.1109/CCGrid.2016.63
https://doi.org/10.1186/s13173-017-0063-x
https://www.klarna.com/se/om-oss
https://doi.org/10.1007/s41019-015-0004-7
https://doi.org/10.1007/978-3-319-98398-1_11
https://doi.org/10.1007/978-3-319-98398-1_11
http://www.querysurge.com/solutions/testing-big-data
https://github.com/spotify/ratatool/tree/master/ratatool-diffy
https://doi.org/10.14569/IJACSA.2015.061111
https://doi.org/10.1186/s40537-014-0007-7
https://doi.org/10.1186/s40537-017-0068-5
https://www.cognizant.com/whitepapers/building-a-robust-big-data-qa-ecosystem-to-mitigate-data-integrity-challenges-codex907.pdf
https://www.cognizant.com/whitepapers/building-a-robust-big-data-qa-ecosystem-to-mitigate-data-integrity-challenges-codex907.pdf
https://www.cognizant.com/whitepapers/building-a-robust-big-data-qa-ecosystem-to-mitigate-data-integrity-challenges-codex907.pdf
https://doi.org/10.1007/978-3-319-24106-7
https://www.researchgate.net/publication/270338528_Overview_on_Performance_Testing_Approach_in_Big_Data
https://www.researchgate.net/publication/270338528_Overview_on_Performance_Testing_Approach_in_Big_Data
http://tryqa.com/big-data-testing/
https://doi.org/10.1145/2944165.2944174
https://doi.org/10.1186/s40537-018-0146-3
https://doi.org/10.1109/ICDE.2010.5447738
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Configuration
https://cwiki.apache.org/confluence/display/Hive/AdminManual+Configuration
https://doi.org/10.1111/test.12133
https://doi.org/10.1111/test.12133
https://cwiki.apache.org/confluence/display/Hive/LanguageManual
https://cwiki.apache.org/confluence/display/Hive/LanguageManual
https://doi.org/10.3390/inventions3040071
https://doi.org/10.3390/inventions3040071

Page 27 of 27Rizk et al. J Big Data (2019) 6:41

	37.	 Sänger J, Richthammer C, Hassan S, Pernul, G. Trust and big data: a roadmap for research. In: 2014 25th international
workshop on database and expert systems applications; 2014. p. 278–282. https​://doi.org/10.1109/DEXA.2014.63.

	38.	 TPC: TPC BenchmarkTM H standard specification revision 2.17.3, San Francisco. Transaction processing performance
council (TPC); 1993–2017. http://www.tpc.org/tpc_docum​ents_curre​nt_versi​ons/pdf/tpc-h_v2.17.3.pdf.

	39.	 Hortonworks: Hive TestBench; 2018. https​://githu​b.com/horto​nwork​s/hive-testb​ench. Accessed 16 May 2018.
	40.	 Chu X, Ilyas IF, Koutris P. Distributed data deduplication. Proc VLDB Endowment. 2016;9(11):864–75. https​://doi.

org/10.14778​/29832​00.29832​03.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/DEXA.2014.63
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.3.pdf
https://github.com/hortonworks/hive-testbench
https://doi.org/10.14778/2983200.2983203
https://doi.org/10.14778/2983200.2983203

	Diftong: a tool for validating big data workflows
	Abstract
	Introduction
	Related work
	Background

	Methods and implementation
	Deduplication
	Row validation
	Column validation

	Results and discussion
	Test cases and analysis
	First test case
	Second test case
	Performance measurements

	Conclusion
	Acknowledgements
	References

